101
|
Rojas M, Bernales G, Dongil AB, Pecchi G, Escalona N. Reduced alkaline earth metal (Ca, Sr) substituted LaCoO 3 catalysts for succinic acid conversion. NEW J CHEM 2022. [DOI: 10.1039/d2nj03714a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Surface distribution and particle size play a key role in the catalytic activity of substituted La1−xAxCoO3 (A = Ca/Sr, x = 0.2–0.4) perovskites.
Collapse
Affiliation(s)
- Mabel Rojas
- Millennium Nuclei on Catalytic Processes Towards Sustainable Chemistry (CSC), Chile
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, Santiago, 7820436, Chile
| | - Gabriel Bernales
- Millennium Nuclei on Catalytic Processes Towards Sustainable Chemistry (CSC), Chile
- Departamento Físico Química, Facultad de Ciencias Químicas, Universidad de Concepción, Chile
| | - Ana Belen Dongil
- Instituto de Catálisis y Petroleoquímica CSIC, Marie Curie 2 28049, Madrid, Spain
| | - Gina Pecchi
- Millennium Nuclei on Catalytic Processes Towards Sustainable Chemistry (CSC), Chile
- Departamento Físico Química, Facultad de Ciencias Químicas, Universidad de Concepción, Chile
| | - Néstor Escalona
- Millennium Nuclei on Catalytic Processes Towards Sustainable Chemistry (CSC), Chile
- Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, Santiago, 7820436, Chile
- Departamento de Ingeniería Química y Bioprocesos, Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, Santiago, 7820436, Chile
- Universidad de Concepción, Unidad de Desarrollo Tecnológico, UDT, Coronel, Chile
| |
Collapse
|
102
|
Liu X, Mi J, Shi L, Liu H, Liu J, Ding Y, Shi J, He M, Wang Z, Xiong S, Zhang Q, Liu Y, Wu ZS, Chen J, Li J. In Situ Modulation of A-Site Vacancies in LaMnO 3.15 Perovskite for Surface Lattice Oxygen Activation and Boosted Redox Reactions. Angew Chem Int Ed Engl 2021; 60:26747-26754. [PMID: 34665490 DOI: 10.1002/anie.202111610] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Indexed: 11/12/2022]
Abstract
Modulation of A-site defects is crucial to the redox reactions on ABO3 perovskites for both clean air application and electrochemical energy storage. Herein we report a scalable one-pot strategy for in situ regulation of La vacancies (VLa ) in LaMnO3.15 by simply introducing urea in the traditional citrate process, and further reveal the fundamental relationship between VLa creation and surface lattice oxygen (Olatt ) activation. The underlying mechanism is shortened Mn-O bonds, decreased orbital ordering, promoted MnO6 bending vibration and weakened Jahn-Teller distortion, ultimately realizing enhanced Mn-3d and O-2p orbital hybridization. The LaMnO3.15 with optimized VLa exhibits order of magnitude increase in toluene oxidation and ca. 0.05 V versus RHE (reversible hydrogen electrode) increase of half-wave potential in oxygen reduction reaction (ORR). The reported strategy can benefit the development of novel defect-meditated perovskites in both heterocatalysis and electrocatalysis.
Collapse
Affiliation(s)
- Xiaoqing Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, National Engineering Laboratory for Multi Flue Gas Pollution Control Technology and Equipment, School of Environment, Tsinghua University, 100084, Beijing, China.,School of Environment and Safety Engineering, North University of China, 030051, Taiyuan, China
| | - Jinxing Mi
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Lin Shi
- School of Materials Science and Engineering, Yancheng Institute of Technology, 224051, Yancheng, China
| | - Haiyan Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, National Engineering Laboratory for Multi Flue Gas Pollution Control Technology and Equipment, School of Environment, Tsinghua University, 100084, Beijing, China
| | - Jun Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, National Engineering Laboratory for Multi Flue Gas Pollution Control Technology and Equipment, School of Environment, Tsinghua University, 100084, Beijing, China.,College of chemistry and chemical engineering, Taiyuan University of Technology, 030051, Taiyuan, China
| | - Yun Ding
- State Key Joint Laboratory of Environment Simulation and Pollution Control, National Engineering Laboratory for Multi Flue Gas Pollution Control Technology and Equipment, School of Environment, Tsinghua University, 100084, Beijing, China
| | - Jianqiang Shi
- State Key Joint Laboratory of Environment Simulation and Pollution Control, National Engineering Laboratory for Multi Flue Gas Pollution Control Technology and Equipment, School of Environment, Tsinghua University, 100084, Beijing, China.,College of chemistry and chemical engineering, Taiyuan University of Technology, 030051, Taiyuan, China
| | - Minghua He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, National Engineering Laboratory for Multi Flue Gas Pollution Control Technology and Equipment, School of Environment, Tsinghua University, 100084, Beijing, China
| | - Zisha Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, National Engineering Laboratory for Multi Flue Gas Pollution Control Technology and Equipment, School of Environment, Tsinghua University, 100084, Beijing, China.,School of Environment and Safety Engineering, North University of China, 030051, Taiyuan, China
| | - Shangchao Xiong
- State Key Joint Laboratory of Environment Simulation and Pollution Control, National Engineering Laboratory for Multi Flue Gas Pollution Control Technology and Equipment, School of Environment, Tsinghua University, 100084, Beijing, China
| | - Qinfang Zhang
- School of Materials Science and Engineering, Yancheng Institute of Technology, 224051, Yancheng, China
| | - Yuefeng Liu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Science, 116023, Dalian, China
| | - Zhong-Shuai Wu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Jianjun Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, National Engineering Laboratory for Multi Flue Gas Pollution Control Technology and Equipment, School of Environment, Tsinghua University, 100084, Beijing, China
| | - Junhua Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, National Engineering Laboratory for Multi Flue Gas Pollution Control Technology and Equipment, School of Environment, Tsinghua University, 100084, Beijing, China
| |
Collapse
|
103
|
Liu X, Mi J, Shi L, Liu H, Liu J, Ding Y, Shi J, He M, Wang Z, Xiong S, Zhang Q, Liu Y, Wu Z, Chen J, Li J. In Situ Modulation of A‐Site Vacancies in LaMnO
3.15
Perovskite for Surface Lattice Oxygen Activation and Boosted Redox Reactions. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xiaoqing Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control National Engineering Laboratory for Multi Flue Gas Pollution Control Technology and Equipment School of Environment Tsinghua University 100084 Beijing China
- School of Environment and Safety Engineering North University of China 030051 Taiyuan China
| | - Jinxing Mi
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences 116023 Dalian China
| | - Lin Shi
- School of Materials Science and Engineering Yancheng Institute of Technology 224051 Yancheng China
| | - Haiyan Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control National Engineering Laboratory for Multi Flue Gas Pollution Control Technology and Equipment School of Environment Tsinghua University 100084 Beijing China
| | - Jun Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control National Engineering Laboratory for Multi Flue Gas Pollution Control Technology and Equipment School of Environment Tsinghua University 100084 Beijing China
- College of chemistry and chemical engineering Taiyuan University of Technology 030051 Taiyuan China
| | - Yun Ding
- State Key Joint Laboratory of Environment Simulation and Pollution Control National Engineering Laboratory for Multi Flue Gas Pollution Control Technology and Equipment School of Environment Tsinghua University 100084 Beijing China
| | - Jianqiang Shi
- State Key Joint Laboratory of Environment Simulation and Pollution Control National Engineering Laboratory for Multi Flue Gas Pollution Control Technology and Equipment School of Environment Tsinghua University 100084 Beijing China
- College of chemistry and chemical engineering Taiyuan University of Technology 030051 Taiyuan China
| | - Minghua He
- State Key Joint Laboratory of Environment Simulation and Pollution Control National Engineering Laboratory for Multi Flue Gas Pollution Control Technology and Equipment School of Environment Tsinghua University 100084 Beijing China
| | - Zisha Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control National Engineering Laboratory for Multi Flue Gas Pollution Control Technology and Equipment School of Environment Tsinghua University 100084 Beijing China
- School of Environment and Safety Engineering North University of China 030051 Taiyuan China
| | - Shangchao Xiong
- State Key Joint Laboratory of Environment Simulation and Pollution Control National Engineering Laboratory for Multi Flue Gas Pollution Control Technology and Equipment School of Environment Tsinghua University 100084 Beijing China
| | - Qinfang Zhang
- School of Materials Science and Engineering Yancheng Institute of Technology 224051 Yancheng China
| | - Yuefeng Liu
- Dalian National Laboratory for Clean Energy Dalian Institute of Chemical Physics Chinese Academy of Science 116023 Dalian China
| | - Zhong‐Shuai Wu
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences 116023 Dalian China
| | - Jianjun Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control National Engineering Laboratory for Multi Flue Gas Pollution Control Technology and Equipment School of Environment Tsinghua University 100084 Beijing China
| | - Junhua Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control National Engineering Laboratory for Multi Flue Gas Pollution Control Technology and Equipment School of Environment Tsinghua University 100084 Beijing China
| |
Collapse
|
104
|
Füngerlings A, Koul A, Dreyer M, Rabe A, Morales DM, Schuhmann W, Behrens M, Pentcheva R. Synergistic Effects of Co and Fe on the Oxygen Evolution Reaction Activity of LaCo x Fe 1-x O 3. Chemistry 2021; 27:17145-17158. [PMID: 34496083 PMCID: PMC9298257 DOI: 10.1002/chem.202102829] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Indexed: 01/16/2023]
Abstract
In a combined experimental and theoretical study we assess the role of Co incorporation on the OER activity of LaCox Fe1-x O3 . Phase pure perovskites were synthesized up to x = 0 . 300 in 0.025/0.050 steps. HAADF STEM and EDX analysis points towards FeO2 -terminated (001)-facets in LaFeO3 , in accordance with the stability diagram obtained from density functional theory calculations with a Hubbard U term (DFT+U). Linear sweep voltammetry conducted in a rotating disk electrode setup shows a reduction of the OER overpotential and a nonmonotonic trend with x, with double layer capacitance measurements indicating an intrinsic nature of activity. This is supported by DFT+U results that show reduced overpotentials for both Fe and Co reaction sites with the latter reaching values of 0.32-0.40 V, ∼0.3 V lower than for Fe. This correlates with a stronger reduction of the binding energy difference of the *O and *OH intermediates towards an optimum value of 1.6 eV for x = 0 . 250 , the OH deprotonation being the potential limiting step in most cases. Significant variations of the magnetic moments of both surface and subsurface Co and Fe during OER demonstrate that the beneficial effect is a result of a concerted action involving many surrounding ions, which extends the concept of the active site.
Collapse
Affiliation(s)
- Achim Füngerlings
- Department of PhysicsTheoretical Physics and Center of Nanointegration (CENIDE)University of Duisburg-Essen47057DuisburgGermany
| | - Adarsh Koul
- Analytical Chemistry-Center for Electrochemical Sciences (CES)Faculty of Chemistry and BiochemistryRuhr University Bochum44780BochumGermany
| | - Maik Dreyer
- Faculty for ChemistryInorganic Chemistry and Center of Nanointegration (CENIDE)University of Duisburg-Essen45141EssenGermany
| | - Anna Rabe
- Faculty for ChemistryInorganic Chemistry and Center of Nanointegration (CENIDE)University of Duisburg-Essen45141EssenGermany
| | - Dulce M. Morales
- Nachwuchsgruppe Gestaltung des SauerstoffentwicklungsmechanismusHelmholtz-Zentrum Berlin für Materialien und Energie GmbHHahn-Meitner-Platz 114109BerlinGermany
| | - Wolfgang Schuhmann
- Analytical Chemistry-Center for Electrochemical Sciences (CES)Faculty of Chemistry and BiochemistryRuhr University Bochum44780BochumGermany
| | - Malte Behrens
- Faculty for ChemistryInorganic Chemistry and Center of Nanointegration (CENIDE)University of Duisburg-Essen45141EssenGermany
- Institute for Inorganic ChemistryChristian-Albrechts-Universität zu Kiel24118KielGermany
| | - Rossitza Pentcheva
- Department of PhysicsTheoretical Physics and Center of Nanointegration (CENIDE)University of Duisburg-Essen47057DuisburgGermany
| |
Collapse
|
105
|
Dreyer M, Cruz D, Hagemann U, Zeller P, Heidelmann M, Salamon S, Landers J, Rabe A, Ortega KF, Najafishirtari S, Wende H, Hartmann N, Knop‐Gericke A, Schlögl R, Behrens M. The Effect of Water on the 2-Propanol Oxidation Activity of Co-Substituted LaFe 1- Co x O 3 Perovskites. Chemistry 2021; 27:17127-17144. [PMID: 34633707 PMCID: PMC9299464 DOI: 10.1002/chem.202102791] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Indexed: 12/19/2022]
Abstract
Perovskites are interesting oxidation catalysts due to their chemical flexibility enabling the tuning of several properties. In this work, we synthesized LaFe1-x Cox O3 catalysts by co-precipitation and thermal decomposition, characterized them thoroughly and studied their 2-propanol oxidation activity under dry and wet conditions to bridge the knowledge gap between gas and liquid phase reactions. Transient tests showed a highly active, unstable low-temperature (LT) reaction channel in conversion profiles and a stable, less-active high-temperature (HT) channel. Cobalt incorporation had a positive effect on the activity. The effect of water was negative on the LT channel, whereas the HT channel activity was boosted for x>0.15. The boost may originate from a slower deactivation rate of the Co3+ sites under wet conditions and a higher amount of hydroxide species on the surface comparing wet to dry feeds. Water addition resulted in a slower deactivation for Co-rich catalysts and higher activity in the HT channel state.
Collapse
Affiliation(s)
- Maik Dreyer
- Faculty for Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE)University of Duisburg-EssenUniversitätsstr. 745141EssenGermany
| | - Daniel Cruz
- Department of Inorganic ChemistryFritz-Haber-Institut der Max-Planck GesellschaftFaradayweg 4–614195BerlinGermany
- Department of Heterogeneous ReactionsMax Planck Institute for Chemical Energy ConversionStiftstraße 34–36Mülheim an der Ruhr45470Germany
| | - Ulrich Hagemann
- Interdisciplinary Center for Analytics on the Nanoscale (ICAN)NanoEnergieTechnikZentrum at University of Duisburg-EssenCarl-Benz-Str. 19947057DuisburgGermany
| | - Patrick Zeller
- Department of Inorganic ChemistryFritz-Haber-Institut der Max-Planck GesellschaftFaradayweg 4–614195BerlinGermany
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbHBESSY IIDepartment of Catalysis for EnergyAlbert-Einstein-Straße 1512489BerlinGermany
| | - Markus Heidelmann
- Interdisciplinary Center for Analytics on the Nanoscale (ICAN)NanoEnergieTechnikZentrum at University of Duisburg-EssenCarl-Benz-Str. 19947057DuisburgGermany
| | - Soma Salamon
- Faculty of Physics and CENIDEUniversity of Duisburg-EssenLotharstr. 147057DuisburgGermany
| | - Joachim Landers
- Faculty of Physics and CENIDEUniversity of Duisburg-EssenLotharstr. 147057DuisburgGermany
| | - Anna Rabe
- Faculty for Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE)University of Duisburg-EssenUniversitätsstr. 745141EssenGermany
| | - Klaus Friedel Ortega
- Institute of Inorganic ChemistryChristian-Albrechts-Universität zu KielMax-Eyth-Straße 224118KielGermany
| | - Sharif Najafishirtari
- Faculty for Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE)University of Duisburg-EssenUniversitätsstr. 745141EssenGermany
| | - Heiko Wende
- Faculty of Physics and CENIDEUniversity of Duisburg-EssenLotharstr. 147057DuisburgGermany
| | - Nils Hartmann
- Interdisciplinary Center for Analytics on the Nanoscale (ICAN)NanoEnergieTechnikZentrum at University of Duisburg-EssenCarl-Benz-Str. 19947057DuisburgGermany
| | - Axel Knop‐Gericke
- Department of Inorganic ChemistryFritz-Haber-Institut der Max-Planck GesellschaftFaradayweg 4–614195BerlinGermany
- Department of Heterogeneous ReactionsMax Planck Institute for Chemical Energy ConversionStiftstraße 34–36Mülheim an der Ruhr45470Germany
| | - Robert Schlögl
- Department of Inorganic ChemistryFritz-Haber-Institut der Max-Planck GesellschaftFaradayweg 4–614195BerlinGermany
- Department of Heterogeneous ReactionsMax Planck Institute for Chemical Energy ConversionStiftstraße 34–36Mülheim an der Ruhr45470Germany
| | - Malte Behrens
- Faculty for Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE)University of Duisburg-EssenUniversitätsstr. 745141EssenGermany
- Institute of Inorganic ChemistryChristian-Albrechts-Universität zu KielMax-Eyth-Straße 224118KielGermany
| |
Collapse
|
106
|
Yadav P, Yadav S, Atri S, Tomar R. A Brief Review on Key Role of Perovskite Oxides as Catalyst. ChemistrySelect 2021. [DOI: 10.1002/slct.202102292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Pinky Yadav
- Department of Chemistry Faculty of Science SGT University Gurugram Haryana 122505 India
| | - Sangeeta Yadav
- Department of Chemistry Faculty of Science SGT University Gurugram Haryana 122505 India
| | - Shalu Atri
- Department of Chemistry Faculty of Science SGT University Gurugram Haryana 122505 India
| | - Ravi Tomar
- Department of Chemistry Faculty of Science SGT University Gurugram Haryana 122505 India
| |
Collapse
|
107
|
Büker J, Alkan B, Chabbra S, Kochetov N, Falk T, Schnegg A, Schulz C, Wiggers H, Muhler M, Peng B. Liquid-Phase Cyclohexene Oxidation with O 2 over Spray-Flame-Synthesized La 1-x Sr x CoO 3 Perovskite Nanoparticles. Chemistry 2021; 27:16912-16923. [PMID: 34590747 PMCID: PMC9293428 DOI: 10.1002/chem.202103381] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Indexed: 11/24/2022]
Abstract
La1−xSrxCoO3 (x=0, 0.1, 0.2, 0.3, 0.4) nanoparticles were prepared by spray‐flame synthesis and applied in the liquid‐phase oxidation of cyclohexene with molecular O2 as oxidant under mild conditions. The catalysts were systematically characterized by state‐of‐the‐art techniques. With increasing Sr content, the concentration of surface oxygen vacancy defects increases, which is beneficial for cyclohexene oxidation, but the surface concentration of less active Co2+ was also increased. However, Co2+ cations have a superior activity towards peroxide decomposition, which also plays an important role in cyclohexene oxidation. A Sr doping of 20 at. % was found to be the optimum in terms of activity and product selectivity. The catalyst also showed excellent reusability over three catalytic runs; this can be attributed to its highly stable particle size and morphology. Kinetic investigations revealed first‐order reaction kinetics for temperatures between 60 and 100 °C and an apparent activation energy of 68 kJ mol−1 for cyclohexene oxidation. Moreover, the reaction was not affected by the applied O2 pressure in the range from 10 to 20 bar. In situ attenuated total reflection infrared spectroscopy was used to monitor the conversion of cyclohexene and the formation of reaction products including the key intermediate cyclohex‐2‐ene‐1‐hydroperoxide; spin trap electron paramagnetic resonance spectroscopy provided strong evidence for a radical reaction pathway by identifying the cyclohexenyl alkoxyl radical.
Collapse
Affiliation(s)
- Julia Büker
- Laboratory of Industrial Chemistry, Ruhr-University Bochum, Universitätsstraße 150, 44780, Bochum, Germany
| | - Baris Alkan
- IVG, Institute for Combustion and Gasdynamics-Reactive Fluids and, CENIDE Center for Nanointegration, University of Duisburg-Essen, Carl-Benz-Straße 199, 47057, Duisburg, Germany
| | - Sonia Chabbra
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Nikolai Kochetov
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Tobias Falk
- Laboratory of Industrial Chemistry, Ruhr-University Bochum, Universitätsstraße 150, 44780, Bochum, Germany
| | - Alexander Schnegg
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Christof Schulz
- IVG, Institute for Combustion and Gasdynamics-Reactive Fluids and, CENIDE Center for Nanointegration, University of Duisburg-Essen, Carl-Benz-Straße 199, 47057, Duisburg, Germany
| | - Hartmut Wiggers
- IVG, Institute for Combustion and Gasdynamics-Reactive Fluids and, CENIDE Center for Nanointegration, University of Duisburg-Essen, Carl-Benz-Straße 199, 47057, Duisburg, Germany
| | - Martin Muhler
- Laboratory of Industrial Chemistry, Ruhr-University Bochum, Universitätsstraße 150, 44780, Bochum, Germany.,Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Baoxiang Peng
- Laboratory of Industrial Chemistry, Ruhr-University Bochum, Universitätsstraße 150, 44780, Bochum, Germany.,Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470, Mülheim an der Ruhr, Germany
| |
Collapse
|
108
|
Mao W, Fan Y, Hu X. Degradation of tetrabromobisphenol A through peroxymonaosulfate oxidation activated by La 0.5Sr 0.5Co xMn 1-xO 3-δ perovskite. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:65814-65821. [PMID: 34322796 DOI: 10.1007/s11356-021-15510-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
La0.5Sr0.5CoxMn1-xO3-δ (LSCM) perovskite composite oxides prepared by co-doping of Co and Mn in B site-activated peroxymonosulfate (PMS) to degrade tetrabromobisphenol A. The characterization results indicated that the LSCM with x=0.3-0.8 have hexagonal R-3c structure. The activation effect of LSCM on PMS decreased gradually with the increase of Mn doping, among which LSCM82 (x=0.8) had good oxygen desorption performance certificated by O2-TPD and lower relative acidity (1.975). Moreover, the redox pairs of Co/Mn multi-valence ions were the main contributor to its catalytic activity. The electron spin resonance results suggested that SO4•- and •OH existed in the system and SO4•- is the main free radical. Therefore, LSCM82 perovskite catalyst has broad application prospects in aqueous solutions.
Collapse
Affiliation(s)
- Weida Mao
- Research Group of Water Pollution Control and Water Reclamation, College of Chemical Engineering, Beijing University of Chemical Technology, No. 15 Beisanhuan East Road, Beijing, 100029, People's Republic of China
| | - Yan Fan
- Research Group of Water Pollution Control and Water Reclamation, College of Chemical Engineering, Beijing University of Chemical Technology, No. 15 Beisanhuan East Road, Beijing, 100029, People's Republic of China
| | - Xiang Hu
- Research Group of Water Pollution Control and Water Reclamation, College of Chemical Engineering, Beijing University of Chemical Technology, No. 15 Beisanhuan East Road, Beijing, 100029, People's Republic of China.
| |
Collapse
|
109
|
Yang LR, Zhang JJ, Zhao YJ, Wang ZL, Wang H, Lu JX. La1−xSrxFeO3 perovskite electrocatalysts for asymmetric electrocarboxylation of acetophenone with CO2. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
110
|
Shen P, Zhang G, Wu Y, Zhang Y, Liu X, Xu Y, Chen Y, Zhong L. Pd-Based Catalyst on Alumina with Perovskite (La0.67Fe0.83Cu0.17O3) to Reduce Ammonia Content in Natural Gas Exhaust. Catal Letters 2021. [DOI: 10.1007/s10562-021-03598-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
111
|
Ren H, Wang Z, Chen X, Jing Z, Qu Z, Huang L. Effective mineralization of p-nitrophenol by catalytic ozonation using Ce-substituted La 1‒xCe xFeO 3 catalyst. CHEMOSPHERE 2021; 285:131473. [PMID: 34329138 DOI: 10.1016/j.chemosphere.2021.131473] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 07/01/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
In this study, cerium-doped lanthanum ferrite perovskite oxides (La1‒xCexFeO3) with different A-site were synthesized using a sol-gel method and they were used as ozonation catalyst for p-nitrophenol (PNP) mineralization for the first time. Catalytic activity in terms of total organic carbon (TOC) removal followed the order of La0.8Ce0.2FeO3 > La0.4Ce0.6FeO3 > La0.6Ce0.4FeO3 > La0.2Ce0.8FeO3 > LaFeO3 with 77, 66, 61, 60 and 56% respectively. The synthesized catalysts were characterized by diffraction of X-ray (XRD), Raman spectroscopy, Brunauer-Emmett-Teller (BET) and scanning electronic microscopy (SEM). Moreover, electron spin resonance (ESR) and radicals quenching experiments showed that the active oxygen species in the ozone decomposition process are mainly hydroxyl radical (·OH), and also include superoxide radical (O2-) and singlet oxygen (1O2). Furthermore, the superior activity of La0.8Ce0.2FeO3 could be attributed to the higher surface area, the richer lattice oxygen, richer surface -OH groups and the facilitated redox Ce3+/Ce4+ and Fe2+/Fe3+ cycling. In addition, this study provides an insight to use metal-doped perovskite catalysts for catalytic ozonation.
Collapse
Affiliation(s)
- Hongfei Ren
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China.
| | - Zexiang Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China.
| | - Xiaoming Chen
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China.
| | - Zhenyang Jing
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China.
| | - Zhengjun Qu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China.
| | - Lihui Huang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
112
|
Gavrikov AV, Ilyukhin AB, Belova EV, Yapryntsev AD, Khrushcheva AV, Loktev AS. New simple La‐Ni complexes as efficient precursors for functional LaNiO
3
‐based ceramics. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Andrey V. Gavrikov
- N.S. Kurnakov Institute of General and Inorganic Chemistry Russian Academy of Sciences Moscow Russia
| | - Andrey B. Ilyukhin
- N.S. Kurnakov Institute of General and Inorganic Chemistry Russian Academy of Sciences Moscow Russia
| | | | - Alexey D. Yapryntsev
- N.S. Kurnakov Institute of General and Inorganic Chemistry Russian Academy of Sciences Moscow Russia
| | - Alena V. Khrushcheva
- N.S. Kurnakov Institute of General and Inorganic Chemistry Russian Academy of Sciences Moscow Russia
| | - Alexey S. Loktev
- N.S. Kurnakov Institute of General and Inorganic Chemistry Russian Academy of Sciences Moscow Russia
- National University of Oil and Gas Gubkin University Moscow Russia
- A.V. Topchiev Institute of Petrochemical Synthesis Russian Academy of Sciences Moscow Russia
| |
Collapse
|
113
|
Lazzarini A, Colaiezzi R, Gabriele F, Crucianelli M. Support-Activity Relationship in Heterogeneous Catalysis for Biomass Valorization and Fine-Chemicals Production. MATERIALS 2021; 14:ma14226796. [PMID: 34832198 PMCID: PMC8619138 DOI: 10.3390/ma14226796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/04/2021] [Accepted: 11/09/2021] [Indexed: 11/16/2022]
Abstract
Heterogeneous catalysts are progressively expanding their field of application, from high-throughput reactions for traditional industrial chemistry with production volumes reaching millions of tons per year, a sector in which they are key players, to more niche applications for the production of fine chemicals. These novel applications require a progressive utilization reduction of fossil feedstocks, in favor of renewable ones. Biomasses are the most accessible source of organic precursors, having as advantage their low cost and even distribution across the globe. Unfortunately, they are intrinsically inhomogeneous in nature and their efficient exploitation requires novel catalysts. In this process, an accurate design of the active phase performing the reaction is important; nevertheless, we are often neglecting the importance of the support in guaranteeing stable performances and improving catalytic activity. This review has the goal of gathering and highlighting the cases in which the supports (either derived or not from biomass wastes) share the worth of performing the catalysis with the active phase, for those reactions involving the synthesis of fine chemicals starting from biomasses as feedstocks.
Collapse
|
114
|
Palella A, Spadaro L, Di Chio R, Arena F. Effective low-temperature catalytic methane oxidation over MnCeOx catalytic compositions. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.11.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
115
|
Mhlwatika Z, Meijboom R, Bingwa N. Nanocasted perovskites as potential catalysts for acetalization of glycerol. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
116
|
Li H, Chen Y, Seow JZY, Liu C, Fisher AC, Ager JW, Xu ZJ. Surface Reconstruction of Perovskites for Water Oxidation: The Role of Initial Oxides’ Bulk Chemistry. SMALL SCIENCE 2021. [DOI: 10.1002/smsc.202100048] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Haiyan Li
- School of Materials Science and Engineering Nanyang Technological University Singapore 639798 Singapore
| | - Yubo Chen
- School of Materials Science and Engineering Nanyang Technological University Singapore 639798 Singapore
- The Cambridge Centre for Advanced Research and Education in Singapore 1 CREATE Way Singapore 138602 Singapore
| | - Justin Zhu Yeow Seow
- School of Materials Science and Engineering Nanyang Technological University Singapore 639798 Singapore
- Energy Research Institute@NTU ERI@N Interdisciplinary Graduate School Nanyang Technological University Singapore 639798 Singapore
| | - Chuntai Liu
- Key Laboratory of Materials Processing & Mold (Zhengzhou University) Ministry of Education Zhengzhou University Zhengzhou 450002 China
| | - Adrian C. Fisher
- The Cambridge Centre for Advanced Research and Education in Singapore 1 CREATE Way Singapore 138602 Singapore
- Department of Chemical Engineering University of Cambridge Cambridge CB2 3RA UK
| | - Joel W. Ager
- Department of Materials Science and Engineering University of California at Berkeley Berkeley CA 94720 USA
- Berkeley Educational Alliance for Research in Singapore Ltd. 1 CREATE Way Singapore 138602 Singapore
| | - Zhichuan J. Xu
- School of Materials Science and Engineering Nanyang Technological University Singapore 639798 Singapore
- The Cambridge Centre for Advanced Research and Education in Singapore 1 CREATE Way Singapore 138602 Singapore
- Energy Research Institute@NTU ERI@N Interdisciplinary Graduate School Nanyang Technological University Singapore 639798 Singapore
| |
Collapse
|
117
|
Brownmillerites CaFeO 2.5 and SrFeO 2.5 as Catalyst Support for CO Oxidation. Molecules 2021; 26:molecules26216413. [PMID: 34770821 PMCID: PMC8587075 DOI: 10.3390/molecules26216413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022] Open
Abstract
The support material can play an important role in oxidation catalysis, notably for CO oxidation. Here, we study two materials of the Brownmillerite family, CaFeO2.5 and SrFeO2.5, as one example of a stoichiometric phase (CaFeO2.5, CFO) and one existing in different modifications (SrFeO2.75, SrFeO2.875 and SrFeO3, SFO). The two materials are synthesized using two synthesis methods, one bottom-up approach via a complexation route and one top-down method (electric arc fusion), allowing to study the impact of the specific surface area on the oxygen mobility and catalytic performance. CO oxidation on 18O-exchanged materials shows that oxygen from SFO participates in the reaction as soon as the reaction starts, while for CFO, this onset takes place 185 °C after reaction onset. This indicates that the structure of the support material has an impact on the catalytic performance. We report here on significant differences in the catalytic activity linked to long-term stability of CFO and SFO, which is an important parameter not only for possible applications, but equally to better understand the mechanism of the catalytic activity itself.
Collapse
|
118
|
Zhu J, Wang Y, Zhi A, Chen Z, Shi L, Zhang Z, Zhang Y, Zhu Y, Qiu X, Tian X, Bai X, Zhang Y, Zhu Y. Cation-Deficiency-Dependent CO 2 Electroreduction over Copper-Based Ruddlesden-Popper Perovskite Oxides. Angew Chem Int Ed Engl 2021; 61:e202111670. [PMID: 34668284 DOI: 10.1002/anie.202111670] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/01/2021] [Indexed: 01/28/2023]
Abstract
We report an effective strategy to enhance CO2 electroreduction (CER) properties of Cu-based Ruddlesden-Popper (RP) perovskite oxides by engineering their A-site cation deficiencies. With La2-x CuO4-δ (L2-x C, x=0, 0.1, 0.2, and 0.3) as proof-of-concept catalysts, we demonstrate that their CER activity and selectivity (to C2+ or CH4 ) show either a volcano-type or an inverted volcano-type dependence on the x values, with the extreme point at x=0.1. Among them, at -1.4 V, the L1.9 C delivers the optimal activity (51.3 mA cm-2 ) and selectivity (41.5 %) for C2+ , comparable to or better than those of most reported Cu-based oxides, while the L1.7 C exhibits the best activity (25.1 mA cm-2 ) and selectivity (22.1 %) for CH4 . Such optimized CER properties could be ascribed to the favorable merits brought by the cation-deficiency-induced oxygen vacancies and/or CuO/RP hybrids, including the facilitated adsorption/activation of key reaction species and thus the manipulated reaction pathways.
Collapse
Affiliation(s)
- Jiawei Zhu
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yanying Wang
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Aomiao Zhi
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zitao Chen
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Lei Shi
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Zhenbao Zhang
- Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| | - Yu Zhang
- School of Mechanical and Power Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yinlong Zhu
- Department of Chemical Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Xiaoyu Qiu
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Xuezeng Tian
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xuedong Bai
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Ying Zhang
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yongfa Zhu
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
119
|
Zhang J, Li J, Zhong C, Xi P, Chao D, Gao D. Surface-Electronic-Structure Reconstruction of Perovskite via Double-Cation Gradient Etching for Superior Water Oxidation. NANO LETTERS 2021; 21:8166-8174. [PMID: 34553939 DOI: 10.1021/acs.nanolett.1c02623] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Reconstructing the surface-electronic-structure of catalysts for efficient electrocatalytic activity is crucial but still under intense exploration. Herein, we introduce a double-cation gradient etching technique to manipulate the electronic structure of perovskite LaCoO3. With the gradient dissolution of cations, the surface was reconstructed, and the perovskite/spinel heterostructure V-LCO/Co3O4 (V-LCO refers to LaCoO3 with La and Co vacancies) can be realized. Its surface-electronic-structure is effectively regulated due to the heterogeneous interface effect and abundant vacancies, resulting in a significantly enhanced activity for oxygen evolution reaction (OER). The V-LCO/Co3O4 exhibits low electrochemical activation energy and 2 orders of magnitude higher carrier concentrations (1.36 × 1021 cm-3) compared with LCO (6.03 × 1019 cm-3). Density functional theory (DFT) calculation unveils that the directional reconstruction of surface-electronic-structure enables the d-band center of V-LCO/Co3O4 to a moderate position, endowing perfect adsorption strength for oxo groups and thus promoting the electrocatalytic activity.
Collapse
Affiliation(s)
- Jingyan Zhang
- Key Laboratory for Magnetism and Magnetic Materials of MOE, Key Laboratory of Special Function Materials and Structure Design of MOE, Lanzhou University, Lanzhou 730000, China
| | - Junfu Li
- Key Laboratory for Magnetism and Magnetic Materials of MOE, Key Laboratory of Special Function Materials and Structure Design of MOE, Lanzhou University, Lanzhou 730000, China
| | - Chenglin Zhong
- College of Chemistry and Chemical Engineering, Linyi University, Linyi, Shandong 276005, China
- Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China
| | - Pinxian Xi
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and The Research Center of Biomedical Nanotechnology, Lanzhou University, Lanzhou 730000, China
| | - Dongliang Chao
- Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China
| | - Daqiang Gao
- Key Laboratory for Magnetism and Magnetic Materials of MOE, Key Laboratory of Special Function Materials and Structure Design of MOE, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
120
|
Wang J, Huang Z, Fang Y, Shen W, Xu H. La‐Based Perovskites Combined with HZSM‐5 for Selective Conversion of Syngas into Aromatics. ChemistrySelect 2021. [DOI: 10.1002/slct.202102689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jinhao Wang
- Department of Chemistry Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and Laboratory of Advanced Materials Collaborative Innovation Center of Chemistry for Energy Materials Fudan University No. 2005 Songhu Road, Yangpu District Shanghai 200438 P. R. China
| | - Zhen Huang
- Department of Chemistry Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and Laboratory of Advanced Materials Collaborative Innovation Center of Chemistry for Energy Materials Fudan University No. 2005 Songhu Road, Yangpu District Shanghai 200438 P. R. China
| | - Yue Fang
- Department of Chemistry Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and Laboratory of Advanced Materials Collaborative Innovation Center of Chemistry for Energy Materials Fudan University No. 2005 Songhu Road, Yangpu District Shanghai 200438 P. R. China
| | - Wei Shen
- Department of Chemistry Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and Laboratory of Advanced Materials Collaborative Innovation Center of Chemistry for Energy Materials Fudan University No. 2005 Songhu Road, Yangpu District Shanghai 200438 P. R. China
| | - Hualong Xu
- Department of Chemistry Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and Laboratory of Advanced Materials Collaborative Innovation Center of Chemistry for Energy Materials Fudan University No. 2005 Songhu Road, Yangpu District Shanghai 200438 P. R. China
| |
Collapse
|
121
|
Koch G, Hävecker M, Kube P, Tarasov A, Schlögl R, Trunschke A. The Influence of the Chemical Potential on Defects and Function of Perovskites in Catalysis. Front Chem 2021; 9:746229. [PMID: 34604174 PMCID: PMC8485044 DOI: 10.3389/fchem.2021.746229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/06/2021] [Indexed: 11/17/2022] Open
Abstract
A Sm-deficient Sm0.96MnO3 perovskite was prepared on a gram scale to investigate the influence of the chemical potential of the gas phase on the defect concentration, the oxidation states of the metals and the nature of the oxygen species at the surface. The oxide was treated at 450°C in nitrogen, synthetic air, oxygen, water vapor or CO and investigated for its properties as a catalyst in the oxidative dehydrogenation of propane both before and after treatment. After treatment in water vapor, but especially after treatment with CO, increased selectivity to propene was observed, but only when water vapor was added to the reaction gas. As shown by XRD, SEM, EDX and XRF, the bulk structure of the oxide remained stable under all conditions. In contrast, the surface underwent strong changes. This was shown by AP-XPS and AP-NEXAFS measurements in the presence of the different gas atmospheres at elevated temperatures. The treatment with CO caused a partial reduction of the metals at the surface, leading to changes in the charge of the cations, which was compensated by an increased concentration of oxygen defects. Based on the present experiments, the influence of defects and concentration of electrophilic oxygen species at the catalyst surface on the selectivity in propane oxidation is discussed.
Collapse
Affiliation(s)
- Gregor Koch
- Department of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany
| | - Michael Hävecker
- Max Planck Institute for Chemical Energy Conversion, Heterogeneous Reactions, Max-Planck-Gesellschaft, Mühlheim, Germany
| | - Pierre Kube
- Department of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany
| | - Andrey Tarasov
- Department of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany
| | - Robert Schlögl
- Department of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany.,Max Planck Institute for Chemical Energy Conversion, Heterogeneous Reactions, Max-Planck-Gesellschaft, Mühlheim, Germany
| | - Annette Trunschke
- Department of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany
| |
Collapse
|
122
|
Research advances of rare earth catalysts for catalytic purification of vehicle exhausts − Commemorating the 100th anniversary of the birth of Academician Guangxian Xu. J RARE EARTH 2021. [DOI: 10.1016/j.jre.2021.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
123
|
Brusamarello E, Blonda C, Salazar-Castro C, Pascui AE, Canu P, Glisenti A. Industrially Produced Fe- and Mn-Based Perovskites: Effect of Synthesis on Reactivity in Three-Way Catalysis: Part 1. ACS OMEGA 2021; 6:24325-24337. [PMID: 34604616 PMCID: PMC8482407 DOI: 10.1021/acsomega.1c02133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Indexed: 06/13/2023]
Abstract
La0.6Ca0.2Fe0.8Cu0.2O3, undoped (LF) and Ca, Cu-doped (LCFC), powders, obtained by different industrial procedures, are compared to evaluate reproducibility and scale-up in different industrial synthetic approaches: flame spray pyrolysis (FSP) and coprecipitation (COP). Also the effects of varying composition (doping) and FSP process variability are considered as comparative studies on morphological, crystallographic, redox and compositional properties, and functional activity. A model reaction (CO + NO) and reactions with an automotive exhaust mixture were carried out. Unexpected results on the effectiveness of doping for catalytic activity emerged. Samples with the same compositions proved to be significantly affected by the synthesis, with variability within the same process. The activity of LCFC COP is comparable to the FSP analogue, at stoichiometric conditions, notwithstanding differences highlighted by characterization. In an oxygen-deficient mixture, LCFC-COP yields higher NO reduction and CO oxidation activity than LCFC-FSP. The absence of Ca in the lattice was unexpectedly beneficial. The doping effectiveness must be carefully checked for large-scale production.
Collapse
Affiliation(s)
- Elena Brusamarello
- Department
of Chemical Sciences, University of Padova, Via F. Marzolo, 1, 35131 Padova, Italy
| | - Cataldo Blonda
- Department
of Industrial Engineering, University of
Padova, Via F. Marzolo,
9, 35131 Padova, Italy
| | - Cristina Salazar-Castro
- L’Urederra
Foundation, Perguita
Industrial Area, No. 1 Street, CP, Los Arcos, 31210 Navarra, Spain
| | - Andrea Eva Pascui
- Johnson
Matthey Technology Centre, Blount’s Court Sonning Common, RG4 9NH Reading, U.K.
| | - Paolo Canu
- Department
of Industrial Engineering, University of
Padova, Via F. Marzolo,
9, 35131 Padova, Italy
| | - Antonella Glisenti
- Department
of Chemical Sciences, University of Padova, Via F. Marzolo, 1, 35131 Padova, Italy
- CNR-ICMATE,
INSTM, Via F. Marzolo,
1, 35131 Padova, Italy
| |
Collapse
|
124
|
Ioannou A, Vareli I, Kaltzoglou A, Koutselas I. Synthesis, characterization and optoelectronic properties of 2D hybrid RPbX4 semiconductors based on an isomer mixture of hexanediamine-based dications. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES 2021. [DOI: 10.1515/znb-2021-0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Three new hybrid two-dimensional (2D) organic–inorganic semiconductors are presented, which contain lead halides and a mixture of hexanediamine-based isomers in the stoichiometry [2,2,4(2,4,4)-trimethyl-1,6-hexanediamine]PbX4 (X = I, Br, Cl). These hexanediamine derivatives, with attached methyl groups at the carbon backbone of both isomers, determine the packing of the organic layers between the inorganic 2D sheets, while the optical absorption and photoluminescence spectra reveal excitonic peaks at T = 77 K and room temperature. The as-synthesized semiconductors were stored for three years in the dark and under low humidity and were examined again and the results were compared to those of the fresh materials. The chloride analogue, after the three year storage, displays white-like luminescence. The use of non-equivalent isomer and racemic mixtures in the organic component to form hybrid organic–inorganic semiconductors is an efficient method to alter the properties of 2D perovskites by tuning the isomers’ chemical functionalities. Finally, a comparison of the observed excitonic absorption and photoluminescence signals to that of analogous 2D compounds is discussed.
Collapse
Affiliation(s)
- Anna Ioannou
- Materials Science Department, School of Natural Sciences , University of Patras , Patras , 26504 , Greece
| | - Ioanna Vareli
- Materials Science Department, School of Natural Sciences , University of Patras , Patras , 26504 , Greece
- Department of Materials Science and Engineering , University of Ioannina , Ioannina , 45110 , Greece
| | - Andreas Kaltzoglou
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation , Athens , 11635 , Greece
| | - Ioannis Koutselas
- Materials Science Department, School of Natural Sciences , University of Patras , Patras , 26504 , Greece
| |
Collapse
|
125
|
Arandiyan H, S Mofarah S, Sorrell CC, Doustkhah E, Sajjadi B, Hao D, Wang Y, Sun H, Ni BJ, Rezaei M, Shao Z, Maschmeyer T. Defect engineering of oxide perovskites for catalysis and energy storage: synthesis of chemistry and materials science. Chem Soc Rev 2021; 50:10116-10211. [PMID: 34542117 DOI: 10.1039/d0cs00639d] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Oxide perovskites have emerged as an important class of materials with important applications in many technological areas, particularly thermocatalysis, electrocatalysis, photocatalysis, and energy storage. However, their implementation faces numerous challenges that are familiar to the chemist and materials scientist. The present work surveys the state-of-the-art by integrating these two viewpoints, focusing on the critical role that defect engineering plays in the design, fabrication, modification, and application of these materials. An extensive review of experimental and simulation studies of the synthesis and performance of oxide perovskites and devices containing these materials is coupled with exposition of the fundamental and applied aspects of defect equilibria. The aim of this approach is to elucidate how these issues can be integrated in order to shed light on the interpretation of the data and what trajectories are suggested by them. This critical examination has revealed a number of areas in which the review can provide a greater understanding. These include considerations of (1) the nature and formation of solid solutions, (2) site filling and stoichiometry, (3) the rationale for the design of defective oxide perovskites, and (4) the complex mechanisms of charge compensation and charge transfer. The review concludes with some proposed strategies to address the challenges in the future development of oxide perovskites and their applications.
Collapse
Affiliation(s)
- Hamidreza Arandiyan
- Laboratory of Advanced Catalysis for Sustainability, School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia. .,Centre for Applied Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, 124 La Trobe Street, Melbourne, VIC, Australia.
| | - Sajjad S Mofarah
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW 2052, Australia.
| | - Charles C Sorrell
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW 2052, Australia.
| | - Esmail Doustkhah
- National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Baharak Sajjadi
- Department of Chemical Engineering, University of Mississippi, University, MS, 38677, USA
| | - Derek Hao
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Yuan Wang
- Centre for Applied Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, 124 La Trobe Street, Melbourne, VIC, Australia. .,School of Chemistry, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Hongyu Sun
- Department of Micro- and Nanotechnology, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Bing-Jie Ni
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Mehran Rezaei
- Catalyst and Nanomaterials Research Laboratory (CNMRL), School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Zongping Shao
- WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Perth, WA 6845, Australia. .,State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 210009, China
| | - Thomas Maschmeyer
- Laboratory of Advanced Catalysis for Sustainability, School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
126
|
Zong R, Fang Y, Zhu C, Zhang X, Wu L, Hou X, Tao Y, Shao J. Surface Defect Engineering on Perovskite Oxides as Efficient Bifunctional Electrocatalysts for Water Splitting. ACS APPLIED MATERIALS & INTERFACES 2021; 13:42852-42860. [PMID: 34469101 DOI: 10.1021/acsami.1c11895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The design of high-performance and cost-effective electrocatalysts for water splitting is of prime importance for efficient and sustainable hydrogen production. In this work, a surface defect engineering method is developed for optimizing the electrocatalytic activity of perovskite oxides for water electrolysis. A typical ferrite-based perovskite oxide material La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) is used and regulated by selective acid etching. The optimal parameters for the surface treatment are identified. An efficient bifunctional perovskite oxide, denoted LSCF-30, is prepared by selectively corroding the A-site Sr element in the surface region, which is found to not only increase the exposure and decrease the coordination of B-site metals but also effectively modulate the electronic structure of these metals. The crystal lattice of the perovskite bulk is kept constant during surface engineering, which ensures the structural stability of the perovskite catalyst. The findings demonstrate an effective strategy of surface defect engineering in enhancing the performance of perovskite oxide electrocatalysts for water splitting.
Collapse
Affiliation(s)
- RuoQi Zong
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - YeGui Fang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Changrong Zhu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xiang Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Lei Wu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xu Hou
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - YouKun Tao
- School of Science, Harbin Institute of Technology, Shenzhen 518055, China
| | - Jing Shao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
127
|
Nikolaeva O, Kapishnikov A, Gerasimov E. Structural Insight into La 0.5Ca 0.5Mn 0.5Co 0.5O 3 Decomposition in the Methane Combustion Process. NANOMATERIALS 2021; 11:nano11092283. [PMID: 34578599 PMCID: PMC8468899 DOI: 10.3390/nano11092283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 08/28/2021] [Accepted: 08/31/2021] [Indexed: 11/30/2022]
Abstract
Perovskite-like solid solution La0.5Ca0.5Mn0.5Co0.5O3 was tested during the total methane combustion reaction. During the reaction, there is a noticeable decrease in methane conversion, the rate of catalyst deactivation increasing with an increase in temperature. The in situ XRD and HRTEM methods show that the observed deactivation occurs as a result of the segregation of calcite and cobalt oxide particles on the perovskite surface. According to the TGA, the observed drop in catalytic activity is also associated with a large loss of oxygen from the perovskite structure.
Collapse
|
128
|
Yang LR, Zhao YJ, Jiang CJ, Xiong R, Wang H, Lu JX. Perovskite La0.7Sr0.3Fe0.8B0.2O3 (B = Ti, Mn, Co, Ni, and Cu) as heterogeneous electrocatalysts for asymmetric electrocarboxylation of aromatic ketones. J Catal 2021. [DOI: 10.1016/j.jcat.2021.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
129
|
Surface modification of macroporous La0.8Sr0.2CoO3 perovskite oxides integrated monolithic catalysts for improved propane oxidation. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.06.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
130
|
Yang Q, Li J, Wang D, Peng Y, Ma Y. Activity improvement of acid treatment on LaFeO3 catalyst for CO oxidation. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.05.056] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
131
|
Chandra P. Modern Trends in the Applications of Perovskites for Selective Organic Transformations. ChemistrySelect 2021. [DOI: 10.1002/slct.202101434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Prakash Chandra
- Department of Chemistry School of Technology Pandit Deendayal Petroleum University Knowledge Corridor, Raisan Village Gandinagar Gujarat 382007
| |
Collapse
|
132
|
Wang J, Tang J. Fe-based Fenton-like catalysts for water treatment: Preparation, characterization and modification. CHEMOSPHERE 2021; 276:130177. [PMID: 33714147 DOI: 10.1016/j.chemosphere.2021.130177] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/06/2021] [Accepted: 02/27/2021] [Indexed: 06/12/2023]
Abstract
Fenton reaction based on hydroxyl radicals () is effective for environment remediation. Nevertheless, the conventional Fenton reaction has several disadvantages, such as working at acidic pH, producing iron-containing sludge, and the difficulty in catalysts reuse. Fenton-like reaction using solid catalysts rather than Fe2+ has received increasing attention. To date, Fe-based catalysts have received increasing attention due to their earth abundance, good biocompatibility, comparatively low toxicity and ready availability, it is necessary to review the current status of Fenton-like catalysts. In this review, the recent advances in Fe-based Fenton-like catalysts were systematically analyzed and summarized. Firstly, the various preparation methods were introduced, including template-free methods (precipitation, sol gel, impregnation, hydrothermal, thermal, and others) and template-based methods (hard-templating method and soft-templating method); then, the characterization techniques for Fe-based catalysts were summarized, such as X-ray diffraction (XRD), Brunauer, Emmett and Teller (BET), SEM (scanning electron microscopy)/TEM (transmission electron microscopy)/HRTEM (high-resolution TEM), FTIR (Fourier transform infrared spectroscopy)/Raman, XPS (X-ray photoelectron spectroscopy), 57Fe Mössbauer spectroscopy etc.; thirdly, some important conventional Fe-based catalysts were introduced, including iron oxides and oxyhydroxides, zero-valent iron (ZVI) and iron disulfide and oxychloride; fourthly, the modification strategies of Fe-based catalysts were discussed, such as microstructure controlling, introduction of support materials, construction of core-shell structure and incorporation of new metal-containing component; Finally, concluding remarks were given and the future perspectives for further study were discussed. This review will provide important information to further advance the development and application of Fe-based catalysts for water treatment.
Collapse
Affiliation(s)
- Jianlong Wang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, Tsinghua University, Beijing, 100084, PR China.
| | - Juntao Tang
- Laboratory of Environmental Technology, INET, Tsinghua University, Beijing, 100084, PR China
| |
Collapse
|
133
|
Ding J, Liu J, Yang Y, Wang Z, Yu Y. Reaction mechanism of dichloromethane oxidation on LaMnO 3 perovskite. CHEMOSPHERE 2021; 277:130194. [PMID: 33780673 DOI: 10.1016/j.chemosphere.2021.130194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/30/2021] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
The reaction mechanism of dichloromethane (CH2Cl2) oxidation on LaMnO3 catalyst was investigated using density functional theory calculations. The results showed that CH2Cl2 dechlorination proceeds via CH2Cl2 → CH2ClO → HCHO. The adsorbed Cl∗ and formaldehyde (HCHO) are identified as the important intermediates of CH2Cl2 dechlorination process. The dissociated Cl atoms prefer to adsorb on the surface Mn sites. Surface hydroxyl groups are not directly involved in the CH2Cl2 dechlorination process, but react with the adsorbed Cl∗ to form HCl. The energy barrier of HCl formation is lower than that of Cl2 formation, indicating that hydroxyl groups facilitate the removal of adsorbed Cl∗ species. Three possible pathways of HCHO oxidation with the assist of lattice oxygen, active oxygen atom and hydroxyl groups were investigated. HCHO catalytic oxidation contains four steps: HCHO → CHO → CO → H2O desorption → CO/CO2 desorption. Compared with the HCHO oxidation by lattice oxygen and hydroxyl groups, HCHO oxidation assisted with activated oxygen atom is more thermodynamically favorable. A complete catalytic cycle was proposed to understand the preferable reaction pathway for CH2Cl2 oxidation on LaMnO3 catalyst. The catalytic cycle includes CH2Cl2 dechlorination, HCl formation and HCHO oxidation. The microkinetic analysis indicates that there are four steps controlling the reaction cycle: CH2Cl2∗ + ∗ → CH2Cl∗ + Cl∗, CH2OCl∗ + Cl∗ → CH2O∗ + Cl∗, O2∗ + ∗ → 2O∗, and CHO2∗ + OH∗ → CO2 + H2O∗.
Collapse
Affiliation(s)
- Junyan Ding
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jing Liu
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Yingju Yang
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhen Wang
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yingni Yu
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
134
|
Propane Steam Reforming over Catalysts Derived from Noble Metal (Ru, Rh)-Substituted LaNiO 3 and La 0.8Sr 0.2NiO 3 Perovskite Precursors. NANOMATERIALS 2021; 11:nano11081931. [PMID: 34443760 PMCID: PMC8401020 DOI: 10.3390/nano11081931] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 11/16/2022]
Abstract
The propane steam reforming (PSR) reaction was investigated over catalysts derived from LaNiO3 (LN), La0.8Sr0.2NiO3 (LSN), and noble metal-substituted LNMx and LSNMx (M = Ru, Rh; x = 0.01, 0.1) perovskites. The incorporation of foreign cations in the A and/or B sites of the perovskite structure resulted in an increase in the specific surface area, a shift of XRD lines toward lower diffraction angles, and a decrease of the mean primary crystallite size of the parent material. Exposure of the as-prepared samples to reaction conditions resulted in the in situ development of new phases including metallic Ni and La2O2CO3, which participate actively in the PSR reaction. The LN-derived catalyst exhibited higher activity compared to LSN, and its performance for the title reaction did not change appreciably following partial substitution of Ru for Ni. In contrast, incorporation of Ru and, especially, Rh in the LSN perovskite matrix resulted in the development of catalysts with significantly enhanced catalytic performance, which improved by increasing the noble metal content. The best results were obtained for the LSNRh0.1-derived sample, which exhibited excellent long-term stability for 40 hours on stream as well as high propane conversion (XC3H8 = 92%) and H2 selectivity (SH2 = 97%) at 600 °C.
Collapse
|
135
|
How Chemoresistive Sensors Can Learn from Heterogeneous Catalysis. Hints, Issues, and Perspectives. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9080193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The connection between heterogeneous catalysis and chemoresistive sensors is emerging more and more clearly, as concerns the well-known case of supported noble metals nanoparticles. On the other hand, it appears that a clear connection has not been set up yet for metal oxide catalysts. In particular, the catalytic properties of several different oxides hold the promise for specifically designed gas sensors in terms of selectivity towards given classes of analytes. In this review, several well-known metal oxide catalysts will be considered by first exposing solidly established catalytic properties that emerge from related literature perusal. On this basis, existing gas-sensing applications will be discussed and related, when possible, with the obtained catalysis results. Then, further potential sensing applications will be proposed based on the affinity of the catalytic pathways and possible sensing pathways. It will appear that dialogue with heterogeneous catalysis may help workers in chemoresistive sensors to design new systems and to gain remarkable insight into the existing sensing properties, in particular by applying the approaches and techniques typical of catalysis. However, several divergence points will appear between metal oxide catalysis and gas-sensing. Nevertheless, it will be pointed out how such divergences just push to a closer exchange between the two fields by using the catalysis knowledge as a toolbox for investigating the sensing mechanisms.
Collapse
|
136
|
Abstract
The energy efficiency of Gasoline Direct Injection (GDI) engines is leading to a continuous increase in GDI engine vehicle population. Consequently, their particulate matter (soot) emissions are also becoming a matter of concern. As required for diesel engines, to meet the limits set by regulations, catalyzed particulate filters are considered as an effective solution through which soot could be trapped and burnt out. However, in contrast to diesel application, the regeneration of gasoline particulate filters (GPF) is critical, as it occurs with almost an absence of NOx and under oxygen deficiency. Therefore, in the recent years it was of scientific interest to develop efficient soot oxidation catalysts that fit such particular gasoline operating conditions. Among them ceria- and perovskite-based formulations are emerging as the most promising materials. This overview summarizes the very recent academic contributions focusing on soot oxidation materials for GDI, in order to point out the most promising directions in this research area.
Collapse
|
137
|
Wei M, Xie P, Yong X, Li Y, Zhang C. Tuning the Catalytic Activity of Complex Metal Oxides Prepared by a One-Pot Method for NO Direct Decomposition. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Miao Wei
- Tianjin Key Laboratory of Applied Catalysis Science and Technology, State Key Laboratory of Chemical Engineering (Tianjin University), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Pingping Xie
- Tianjin Key Laboratory of Applied Catalysis Science and Technology, State Key Laboratory of Chemical Engineering (Tianjin University), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Xin Yong
- Tianjin Key Laboratory of Applied Catalysis Science and Technology, State Key Laboratory of Chemical Engineering (Tianjin University), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Yongdan Li
- Tianjin Key Laboratory of Applied Catalysis Science and Technology, State Key Laboratory of Chemical Engineering (Tianjin University), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- Department of Chemical and Metallurgical Engineering, School of Chemical Engineering, Aalto University, Kemistintie 1, P.O. Box 16100, Espoo FI-00076, Finland
| | - Cuijuan Zhang
- Tianjin Key Laboratory of Applied Catalysis Science and Technology, State Key Laboratory of Chemical Engineering (Tianjin University), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|
138
|
Yang J, Hu S, Shi L, Hoang S, Yang W, Fang Y, Liang Z, Pan C, Zhu Y, Li L, Wu J, Hu J, Guo Y. Oxygen Vacancies and Lewis Acid Sites Synergistically Promoted Catalytic Methane Combustion over Perovskite Oxides. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:9243-9254. [PMID: 34106698 DOI: 10.1021/acs.est.1c00511] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
An in-depth understanding of the surface properties-activity relationship could provide a fundamental guidance for the design of highly efficient perovskite-based catalysts for the control of anthropogenic methane emission. Herein, both oxygen vacancies and Con+ Lewis acid sites were purposely introduced on ordered macroporous La0.8Sr0.2CoO3 monolithic catalysts by one-step reduction and selective etching in oxalic acid, and their synergistic effect on methane combustion was investigated. Combined with experimental and theoretical investigations, we revealed that the positively charged Con+ Lewis acid sites and single-electron-trapped oxygen vacancies (Vo·) formed an active pair, which enabled an effective localized electron cloud shift from Vo· to Con+. The characteristic electronic effect modulates surface electronic properties and coordination structures, thus resulting in superior oxygen activation capacity, lattice oxygen mobility, and reducibility, as well as favorable CH4 interaction and oxidation. Our work not only gives insights into surface properties-activity relationships on perovskite for hydrocarbon combustion but also sheds substantial light on future environmental catalyst design and modulation for hydrocarbon pollutants elimination.
Collapse
Affiliation(s)
- Ji Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Siyu Hu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Limin Shi
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Son Hoang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Weiwei Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Yarong Fang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Zhenfeng Liang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Chuanqi Pan
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Yuhua Zhu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Li Li
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Jian Wu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Jinpeng Hu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Yanbing Guo
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| |
Collapse
|
139
|
Lv C, Chen H, Hu M, Ai T, Fu H. Nano-oxides washcoat for enhanced catalytic oxidation activity toward the perovskite-based monolithic catalyst. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:37142-37157. [PMID: 33709317 DOI: 10.1007/s11356-021-13354-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
In order to explore a superior washcoat material to give full play to the catalytic activity of perovskite active components on the monolithic catalysts, three novel types of LaCoO3/washcoat/cordierite monolith catalysts were prepared by a facile two-step procedure which employed the cordierite honeycomb ceramic as the monolith substrate, the nano-oxides (ZrO2, ɤ-Al2O3, TiO2) as the washcoat, and the perovskite of LaCoO3 as the active components. The blank cordierite, powdered LaCoO3, semi-manufactured monolithic catalysts (washcoat/cordierite), and manufactured monolithic catalysts (LaCoO3/washcoat/cordierite) were characterized by XRD, SEM, XPS, N2 adsorption-desorption, H2-TPR, and ultrasonic test, and their catalytic activities and catalytic stability were evaluated by the toluene oxidation test. The research results indicate that the nanoparticles coated on the cordierite substrate as the washcoat can give full play to the catalytic ability of the LaCoO3 active components and also showed high catalytic stability. However, the catalytic properties of the monolithic catalysts vary notably with the species of nano-washcoat. Among all the catalysts, the porous honeycomb surface structure, uniform distribution, high ratio of surface adsorbed oxygen, and strong reducing ability together give the LaCoO3/ZrO2/cordierite monolithic catalyst the highest catalytic activity on the oxidation of toluene at low temperature, which could be attributed to the excellent interactions of perovskite and nano-ZrO2 washcoat. Therefore, the nano-oxides, especially the nano-ZrO2, have a broad practical application potential for toluene oxidation at low temperature as the washcoat of perovskite-based monolithic catalysts.
Collapse
Affiliation(s)
- Chunwang Lv
- School of Energy Power and Mechanical Engineering, North China Electric Power University, Baoding, 071003, China
| | - Hongwei Chen
- School of Energy Power and Mechanical Engineering, North China Electric Power University, Baoding, 071003, China.
| | - Mingjiang Hu
- School of Energy and Building Environmental Engineering, Henan University of Urban Construction, Pingdingshan, 467036, China
| | - Tianchao Ai
- School of Energy Power and Mechanical Engineering, North China Electric Power University, Baoding, 071003, China
| | - Haoka Fu
- School of Energy and Building Environmental Engineering, Henan University of Urban Construction, Pingdingshan, 467036, China
| |
Collapse
|
140
|
Farahmand N, McGinn CK, Zhang Q, Gai Z, Kymissis I, O'Brien S. Magnetic and dielectric property control in the multivalent nanoscale perovskite Eu 0.5Ba 0.5TiO 3. NANOSCALE 2021; 13:10365-10384. [PMID: 33988208 DOI: 10.1039/d1nr00588j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We report nanoscale Eu0.5Ba0.5TiO3, a multiferroic in the bulk and candidate in the search to quantify the electric dipole moment of the electron. Eu0.5Ba0.5TiO3, in the form of nanoparticles and other nanostructures is interesting for nanocomposite integration, biomedical imaging and fundamental research, based upon the prospect of polarizability, f-orbital magnetism and tunable optical/radio luminescence. We developed a [non-hydrolytic]sol-[H2O-activated]gel route, derived from in-house metallic Ba(s)/Eu(s) alkoxide precursors and Ti{(OCH(CH3)2}4. Two distinct nanoscale compounds of Ba:Ti:Eu with the parent perovskite crystal structure were produced, with variable dielectric, magnetic and optical properties, based on altering the oxidizing/reducing conditions. Eu0.5Ba0.5TiO3 prepared under air/O2 atmospheres produced a spherical core-shell nanostructure (30-35 nm), with perovskite Eu0.5Ba0.5TiO3 nanocrystal core-insulating oxide shell layer (∼3 nm), presumed a pre-pyrochlore layer abundant with Eu3+. Fluorescence spectroscopy shows a high intensity 5D0→7F2 transition at 622 nm and strong red fluorescence. The core/shell structure demonstrated excellent capacitive properties: assembly into dielectric thin films gave low conductivity (2133 GΩ mm-1) and an extremely stable, low loss permittivity of εeff∼25 over a wide frequency range (tan δ < 0.01, 100 kHz-2 MHz). Eu0.5Ba0.5TiO3 prepared under H2/argon produced more irregular shaped nanocrystals (20-25) nm, with a thin film permittivity around 4 times greater (εeff 101, tan δ < 0.05, 10 kHz-2 MHz, σ∼59.54 kΩ mm-1). Field-cooled magnetization values of 0.025 emu g-1 for EBTO-Air and 0.84 emu g-1 for EBTO-Argon were observed. X-ray photoelectron spectroscopy analysis reveals a complex interplay of EuII/III/TiIII/IV configurations which contribute to the observed ferroic and fluorescence behavior.
Collapse
Affiliation(s)
- Nasim Farahmand
- The CUNY Energy Institute, City University of New York, Steinman Hall, 160 Convent Avenue, The City College of New York, New York, NY 10031, USA.
| | | | | | | | | | | |
Collapse
|
141
|
Poffe E, Kaper H, Ehrhardt B, Gigli L, Aubert D, Nodari L, Gross S, Mascotto S. Understanding Oxygen Release from Nanoporous Perovskite Oxides and Its Effect on the Catalytic Oxidation of CH 4 and CO. ACS APPLIED MATERIALS & INTERFACES 2021; 13:25483-25492. [PMID: 34006105 DOI: 10.1021/acsami.1c02281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The design of nanoporous perovskite oxides is considered an efficient strategy to develop performing, sustainable catalysts for the conversion of methane. The dependency of nanoporosity on the oxygen defect chemistry and the catalytic activity of perovskite oxides toward CH4 and CO oxidation was studied here. A novel colloidal synthesis route for nanoporous, high-temperature stable SrTi0.65Fe0.35O3-δ with specific surface areas (SSA) ranging from 45 to 80 m2/g and pore sizes from 10 to 100 nm was developed. High-temperature investigations by in situ synchrotron X-ray diffraction (XRD) and TG-MS combined with H2-TPR and Mössbauer spectroscopy showed that the porosity improved the release of surface oxygen and the oxygen diffusion, whereas the release of lattice oxygen depended more on the state of the iron species and strain effects in the materials. Regarding catalysis, light-off tests showed that low-temperature CO oxidation significantly benefitted from the enhancement of the SSA, whereas high-temperature CH4 oxidation is influenced more by the dioxygen release. During isothermal long-term catalysis tests, however, the continuous oxygen release from large SSA materials promoted both CO and CH4 conversion. Hence, if SSA maximization turned out to efficiently improve low-temperature and long-term catalysis applications, the role of both reducible metal center concentration and crystal structure cannot be completely ignored, as they also contribute to the perovskite oxygen release properties.
Collapse
Affiliation(s)
- Elisa Poffe
- Institut für Anorganische und Angewandte Chemie, Universität Hamburg, Martin-Luther-King-Platz, 6, 20146 Hamburg, Germany
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, via Marzolo 1, 35131 Padova, Italy
| | - Helena Kaper
- Ceramic Synthesis and Functionalization Laboratory, CNRS/Saint-Gobain CREE, Saint-Gobain Research Provence, 550, Ave Alphonse Jauffret, 84306 Cavaillon, France
| | - Benedikt Ehrhardt
- Institut für Anorganische und Angewandte Chemie, Universität Hamburg, Martin-Luther-King-Platz, 6, 20146 Hamburg, Germany
| | - Lara Gigli
- Elettra-Sincrotrone Trieste S.C.p.A., Strada Statale 14, 34149 Basovizza, Trieste, Italy
| | - Daniel Aubert
- Ceramic Synthesis and Functionalization Laboratory, CNRS/Saint-Gobain CREE, Saint-Gobain Research Provence, 550, Ave Alphonse Jauffret, 84306 Cavaillon, France
| | - Luca Nodari
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, via Marzolo 1, 35131 Padova, Italy
- Istituto di Chimica della Materia Condensata e di Tecnologie per l'Energia, ICMATE-CNR, C.so Stati Uniti 4, 35127 Padova, Italy
| | - Silvia Gross
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, via Marzolo 1, 35131 Padova, Italy
- Centro Levi Cases, Università degli Studi di Padova, via Marzolo 9, 35131 Padova, Italy
| | - Simone Mascotto
- Institut für Anorganische und Angewandte Chemie, Universität Hamburg, Martin-Luther-King-Platz, 6, 20146 Hamburg, Germany
| |
Collapse
|
142
|
Wei Y, Weng Z, Guo L, An L, Yin J, Sun S, Da P, Wang R, Xi P, Yan CH. Activation Strategies of Perovskite-Type Structure for Applications in Oxygen-Related Electrocatalysts. SMALL METHODS 2021; 5:e2100012. [PMID: 34927915 DOI: 10.1002/smtd.202100012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/01/2021] [Indexed: 06/14/2023]
Abstract
The oxygen-related electrochemical process, including the oxygen evolution reaction and oxygen reduction reaction, is usually a kinetically sluggish reaction and thus dominates the whole efficiency of energy storage and conversion devices. Owing to the dominant role of the oxygen-related electrochemical process in the development of electrochemical energy, an abundance of oxygen-related electrocatalysts is discovered. Among them, perovskite-type materials with flexible crystal and electronic structures have been researched for a long time. However, most perovskite materials still show low intrinsic activity, which highlights the importance of activation strategies for perovskite-type structures to improve their intrinsic activity. In this review, the recent progress of the activation strategies for perovskite-type structures is summarized and their related applications in oxygen-related electrocatalysis reactions, including electrochemistry water splitting, metal-air batteries, and solid oxide fuel cells are discussed. Furthermore, the existing challenges and the future perspectives for the designing of ideal perovskite-type structure catalysts are proposed and discussed.
Collapse
Affiliation(s)
- Yicheng Wei
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Zheng Weng
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Linchuan Guo
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Li An
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Jie Yin
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Shuoyi Sun
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Pengfei Da
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Rui Wang
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Pinxian Xi
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Chun-Hua Yan
- State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Rare Earth Materials Chemistry and Applications, PKU-HKU Joint Laboratory in Rare Earth Materials and Bioinorganic Chemistry, College of Chemistry and Molecular Engineering Peking University, Beijing, 100871, China
| |
Collapse
|
143
|
Inns DR, Mayer AJ, Skukauskas V, Davies TE, Callison J, Kondrat SA. Evaluating the Activity and Stability of Perovskite LaMO3-Based Pt Catalysts in the Aqueous Phase Reforming of Glycerol. Top Catal 2021. [DOI: 10.1007/s11244-021-01449-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractThe aqueous phase reforming of glycerol, to hydrogen, alkanes and liquid phase dehydration/dehydrogenation products, was studied over a series of 1 wt% Pt/LaMO3 (where M = Al, Cr, Mn, Fe, Co, Ni) catalysts and compared to a standard 1 wt% Pt/γ-Al2O3 catalyst. The sol–gel combustion synthesis of lanthanum-based perovskites LaMO3 produced pure phase perovskites with surface areas of 8–18 m2g−1. Glycerol conversions were higher than the Pt/γ-Al2O3 (10%) for several perovskite supported catalysts, with the highest being for Pt/LaNiO3 (19%). Perovskite-based catalysts showed reduced alkane formation and significantly increased lactic acid formation compared to the standard catalyst. However, most of the perovskite materials undergo phase separation to LaCO3OH and respective M site oxides with Pt particle migration. The exception being the LaCrO3 support which was found to remain structurally stable. Catalytic performance remained stable over several cycles, for catalysts M = Al, Cr and Ni, despite phase separation of some of these materials. Materials where M site leaching into solution was observed (M = Mn and Co), were found to be catalytically unstable, which was hypothesised to be due to significant loss in support surface area and uncontrolled migration of Pt to the remaining support surface. In the case of Pt/LaNiO3 alloying between the exsoluted Ni and Pt was observed post reaction.
Collapse
|
144
|
Wolf M. Thermodynamic assessment of the stability of bulk and nanoparticulate cobalt and nickel during dry and steam reforming of methane. RSC Adv 2021; 11:18187-18197. [PMID: 34046175 PMCID: PMC8132427 DOI: 10.1039/d1ra01856f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 04/15/2021] [Indexed: 11/25/2022] Open
Abstract
The high reaction temperatures during steam and dry reforming of methane inevitably entail catalyst deactivation. Evaluation of the feasibility or potentially relevant mechanisms at play is of utmost importance to develop highly active and stable catalysts. Herein, various oxidation reactions of bulk-sized nickel and cobalt to the corresponding metal oxide or in the presence of a metal oxide carrier are evaluated thermodynamically and linked to approximated conditions during methane reforming. In particular cobalt aluminate, as well as cobalt or nickel titanates are likely to form. As oxidation to bulk-sized metal oxide is unlikely, a thermodynamic analysis of metallic nanoparticles was performed to calculate the size dependent stability against oxidation to nickel oxide or cobalt oxide in water and carbon dioxide-rich environments. The calculations indicate that nickel nanoparticles >3 nm and cobalt nanoparticles >10 nm are expected to withstand oxidation during steam and dry reforming of methane with stoichiometric feed compositions and methane conversion levels >10% at temperatures up to 1100 and 900 °C, respectively. Lastly, the reduced thermal stability of nanoparticles due to melting point suppression was assessed, leading to similar recommendations concerning minimum particle sizes.
Collapse
Affiliation(s)
- Moritz Wolf
- Helmholtz-Institute Erlangen-Nürnberg for Renewable Energy (IEK-11), Forschungszentrum Jülich GmbH Egerlandstraße 3 91058 Erlangen Germany
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Lehrstuhl für Chemische Reaktionstechnik (CRT) Egerlandstr. 3 91058 Erlangen Germany
| |
Collapse
|
145
|
Zhou Z, Harold MP, Luss D. Dynamic Oxygen Storage Capacity of Ceria-Zirconia and Mn 0.5Fe 2.5O 4 Spinel: Experiments and Modeling. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c05187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zhiyu Zhou
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Michael P. Harold
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| | - Dan Luss
- Department of Chemical and Biomolecular Engineering, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
146
|
Abstract
Perovskite oxides are versatile materials due to their wide variety of compositions offering promising catalytic properties, especially in oxidation reactions. In the presented study, LaFe1−xCoxO3 perovskites were synthesized by hydroxycarbonate precursor co-precipitation and thermal decomposition thereof. Precursor and calcined materials were studied by scanning electron microscopy (SEM), attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), thermogravimetric analysis (TG), and X-ray powder diffraction (XRD). The calcined catalysts were in addition studied by transmission electron microscopy (TEM) and N2 physisorption. The obtained perovskites were applied as catalysts in transient CO oxidation, and in operando studies of CO oxidation in diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). A pronounced increase in activity was already observed by incorporating 5% cobalt into the structure, which continued, though not linearly, at higher loadings. This could be most likely due to the enhanced redox properties as inferred by H2-temperature programmed reduction (H2-TPR). Catalysts with higher Co contents showing higher activities suffered less from surface deactivation related to carbonate poisoning. Despite the similarity in the crystalline structures upon Co incorporation, we observed a different promotion or suppression of various carbonate-related bands, which could indicate different surface properties of the catalysts, subsequently resulting in the observed non-linear CO oxidation activity trend at higher Co contents.
Collapse
|
147
|
Wang Y, Hu P, Yang J, Zhu YA, Chen D. C-H bond activation in light alkanes: a theoretical perspective. Chem Soc Rev 2021; 50:4299-4358. [PMID: 33595008 DOI: 10.1039/d0cs01262a] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Alkanes are the major constituents of natural gas and crude oil, the feedstocks for the chemical industry. The efficient and selective activation of C-H bonds can convert abundant and low-cost hydrocarbon feedstocks into value-added products. Due to the increasing global demand for light alkenes and their corresponding polymers as well as synthesis gas and hydrogen production, C-H bond activation of light alkanes has attracted widespread attention. A theoretical understanding of C-H bond activation in light hydrocarbons via density functional theory (DFT) and microkinetic modeling provides a feasible approach to gain insight into the process and guidelines for designing more efficient catalysts to promote light alkane transformation. This review describes the recent progress in computational catalysis that has addressed the C-H bond activation of light alkanes. We start with direct and oxidative C-H bond activation of methane, with emphasis placed on kinetic and mechanistic insights obtained from DFT assisted microkinetic analysis into steam and dry reforming, and the partial oxidation dependence on metal/oxide surfaces and nanoparticle size. Direct and oxidative activation of the C-H bond of ethane and propane on various metal and oxide surfaces are subsequently reviewed, including the elucidation of active sites, intriguing mechanisms, microkinetic modeling, and electronic features of the ethane and propane conversion processes with a focus on suppressing the side reaction and coke formation. The main target of this review is to give fundamental insight into C-H bond activation of light alkanes, which can provide useful guidance for the optimization of catalysts in future research.
Collapse
Affiliation(s)
- Yalan Wang
- Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim, 7491, Norway.
| | | | | | | | | |
Collapse
|
148
|
Arciniegas Jaimes DM, De Paoli JM, Nassif V, Bercoff PG, Tirao G, Carbonio RE, Pomiro F. Effect of B-Site Order-Disorder in the Structure and Magnetism of the New Perovskite Family La 2MnB'O 6 with B' = Ti, Zr, and Hf. Inorg Chem 2021; 60:4935-4944. [PMID: 33705132 DOI: 10.1021/acs.inorgchem.1c00014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this work, we report the synthesis as well as the structural and magnetic characterization of the three perovskites La2MnB'O6 (B' = Ti, Zr, and Hf). Interestingly, only La2MnTiO6 crystallizes in the monoclinic double perovskite space group P21/n, with a complete rocksalt order of the B-site cations, whereas La2MnZrO6 and La2MnHfO6 crystallize in the orthorhombic simple perovskite space group Pbnm, with complete disorder in the B site. Moreover, the magnetic susceptibility at low temperatures shows clear antiferromagnetic transitions below 10 K for the three compounds, but only the Ti-based perovskite has long-range magnetic ordering. The latter compound has an antiferromagnetic type-II structure described by the PS-1 magnetic space group, while the other two have a spin-glass behavior below the transition temperature due to both spin disorder and competing superexchange interactions in the systems. This is the first time that two of the three studied compounds were synthesized (B' = Zr and Hf) and the first time that the whole series is described in thorough detail using symmetry-adapted refinements and magnetic crystallography.
Collapse
Affiliation(s)
- Diana M Arciniegas Jaimes
- INFIQC (CONICET-Universidad Nacional de Córdoba), Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre esq. Medina Allende, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Juan M De Paoli
- INFIQC (CONICET-Universidad Nacional de Córdoba), Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre esq. Medina Allende, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | | | - Paula G Bercoff
- IFEG CONICET, Facultad de Matemática, Astronomía, Física y Computación, Universidad Nacional de Córdoba, Av. Medina Allende s/n, 5000 Córdoba, Argentina
| | - Germán Tirao
- IFEG CONICET, Facultad de Matemática, Astronomía, Física y Computación, Universidad Nacional de Córdoba, Av. Medina Allende s/n, 5000 Córdoba, Argentina
| | - Raúl E Carbonio
- INFIQC (CONICET-Universidad Nacional de Córdoba), Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre esq. Medina Allende, Ciudad Universitaria, X5000HUA Córdoba, Argentina
| | - Fernando Pomiro
- INFIQC (CONICET-Universidad Nacional de Córdoba), Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre esq. Medina Allende, Ciudad Universitaria, X5000HUA Córdoba, Argentina.,Department of Chemistry, University of Warwick, Gibbet Hill, CV4 7AL Coventry, U.K
| |
Collapse
|
149
|
Tapia-P J, Gallego J, Espinal JF. Calcination Temperature Effect in Catalyst Reactivity for the CO SELOX Reaction Using Perovskite-like LaBO3 (B: Mn, Fe, Co, Ni) Oxides. Catal Letters 2021. [DOI: 10.1007/s10562-021-03601-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
150
|
Abstract
Methane, discovered in 1766 by Alessandro Volta, is an attractive energy source because of its high heat of combustion per mole of carbon dioxide. However, methane is the most abundant hydrocarbon in the atmosphere and is an important greenhouse gas, with a 21-fold greater relative radiative effectiveness than CO2 on a per-molecule basis. To avoid or limit the formation of pollutants that are dangerous for both human health and the atmospheric environment, the catalytic combustion of methane appears to be one of the most promising alternatives to thermal combustion. Total oxidation of methane, which is environmentally friendly at much lower temperatures, is believed to be an efficient and economically feasible way to eliminate pollutants. This work presents a literature review, a statu quo, on catalytic methane oxidation on transition metal oxide-modified ceria catalysts (MOx/CeO2). Methane was used for this study since it is of great interest as a model compound for understanding the mechanisms of oxidation and catalytic combustion on metal oxides. The objective was to evaluate the conceptual ideas of oxygen vacancy formation through doping to increase the catalytic activity for methane oxidation over CeO2. Oxygen vacancies were created through the formation of solid solutions, and their catalytic activities were compared to the catalytic activity of an undoped CeO2 sample. The reaction conditions, the type of catalysts, the morphology and crystallographic facets exposing the role of oxygen vacancies, the deactivation mechanism, the stability of the catalysts, the reaction mechanism and kinetic characteristics are summarized.
Collapse
|