101
|
Ji X, Ahmed M, Long L, Khashab NM, Huang F, Sessler JL. Adhesive supramolecular polymeric materials constructed from macrocycle-based host–guest interactions. Chem Soc Rev 2019; 48:2682-2697. [DOI: 10.1039/c8cs00955d] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This review describes recent progress in adhesive supramolecular polymeric materials constructed from macrocycle-based host–guest interactions.
Collapse
Affiliation(s)
- Xiaofan Ji
- Department of Chemistry
- The University of Texas at Austin
- Austin
- USA
| | - Mehroz Ahmed
- Department of Chemistry
- The University of Texas at Austin
- Austin
- USA
| | - Lingliang Long
- Department of Chemistry
- The University of Texas at Austin
- Austin
- USA
- School of Chemistry and Chemical Engineering
| | - Niveen M. Khashab
- King Abdullah University of Science and Technology (KAUST)
- 4700 King Abdullah University of Science and Technology
- Thuwal 23955-6900
- Kingdom of Saudi Arabia
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering
- Center for Chemistry of High-Performance & Novel Materials
- Department of Chemistry
- Yuquan Campus
- Zhejiang University
| | - Jonathan L. Sessler
- Department of Chemistry
- The University of Texas at Austin
- Austin
- USA
- Center for Supramolecular Chemistry and Catalysis
| |
Collapse
|
102
|
Ouyang Y, Zhang Y, Luo Z, Li X, Duan A, Dong S. Differences in solubilities, crystal structures, NMR spectra and fluorescence emissions induced by potassium cation/benzo-21-crown-7 molecular recognition. NEW J CHEM 2019. [DOI: 10.1039/c9nj03208h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Changes of the fundamental properties of host–guest pairs induced by potassium cation complexation were investigated.
Collapse
Affiliation(s)
- Yunyun Ouyang
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Yi Zhang
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Zheng Luo
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Xing Li
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| | - Abing Duan
- College of Environmental Science and Engineering, Hunan University
- Changsha 410082
- P. R. China
| | - Shengyi Dong
- College of Chemistry and Chemical Engineering
- Hunan University
- Changsha 410082
- P. R. China
| |
Collapse
|
103
|
Li B, He T, Shen X, Tang D, Yin S. Fluorescent supramolecular polymers with aggregation induced emission properties. Polym Chem 2019. [DOI: 10.1039/c8py01396a] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review summarizes the recent developments in AIE fluorescent supramolecular polymeric materials based on different types of intermolecular noncovalent interactions, and their wide ranging applications as chemical sensors, organic electronic materials, bio-imaging agents and so on.
Collapse
Affiliation(s)
- Bo Li
- College of Material
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310036
- P. R. China
| | - Tian He
- College of Material
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310036
- P. R. China
| | - Xi Shen
- College of Material
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310036
- P. R. China
| | - Danting Tang
- College of Material
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310036
- P. R. China
| | - Shouchun Yin
- College of Material
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310036
- P. R. China
| |
Collapse
|
104
|
Li B, He T, Fan Y, Yuan X, Qiu H, Yin S. Recent developments in the construction of metallacycle/metallacage-cored supramolecular polymers via hierarchical self-assembly. Chem Commun (Camb) 2019; 55:8036-8059. [PMID: 31206102 DOI: 10.1039/c9cc02472g] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Supramolecular polymers have received considerable attention during the last few decades due to their scientific value in polymer chemistry and profound implications for future developments of advanced materials. Discrete supramolecular coordination complexes (SCCs) with well-defined size, shape, and geometry have been widely employed to construct hierarchical systems by coordination-driven self-assembly with the spontaneous formation of metal-ligand bonds, which results in the formation of well-defined two-dimensional (2D) metallacycles or three-dimensional (3D) metallacages with high functionalities. The incorporation of discrete SCCs into supramolecular polymers by the orthogonal combination of metal-ligand coordination and other noncovalent interactions or covalent bonding could further facilitate the construction of novel supramolecular polymers with hierarchical architectures and multiple functions including controllable uptake and release of guest molecules, providing a flexible platform for the development of smart materials. In this review, the recent progress in metallacycle/metallacage-cored supramolecular polymers that were constructed by the combination of metal-ligand interactions and other orthogonal interactions (including hydrophobic or hydrophilic interactions, hydrogen bonding, van der Waals forces, π-π stacking, electrostatic interactions, host-guest interactions and covalent bonding) has been discussed. In addition, the potential applications of metallacycle/metallacage-cored supramolecular polymers in the areas of light emitting, sensing, bio-imaging, delivery and release, etc., are also presented.
Collapse
Affiliation(s)
- Bo Li
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, P. R. China.
| | | | | | | | | | | |
Collapse
|
105
|
Mena-Hernando S, Pérez EM. Mechanically interlocked materials. Rotaxanes and catenanes beyond the small molecule. Chem Soc Rev 2019; 48:5016-5032. [DOI: 10.1039/c8cs00888d] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
An overview of the progress in mechanically interlocked materials is presented. In particular, we focus on polycatenanes, polyrotaxanes, metal–organic rotaxane frameworks (MORFs), and mechanically interlocked derivatives of carbon nanotubes (MINTs).
Collapse
|
106
|
Xiao T, Xu L, Zhou L, Sun XQ, Lin C, Wang L. Dynamic hydrogels mediated by macrocyclic host-guest interactions. J Mater Chem B 2018; 7:1526-1540. [PMID: 32254900 DOI: 10.1039/c8tb02339e] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Hydrogels have attracted increasing research interest in recent years due to their dynamic properties and potential applications in biomaterials. Concurrently, macrocycle-based host-guest interactions have played an important role in the development of supramolecular chemistry. Recently, research towards dynamic hydrogels mediated by various macrocyclic host-guest interactions has been gradually disclosed. In this review, we will outline the burgeoning progress in the development of functional hydrogels mediated by various host molecules, such as cyclodextrins, cucurbit[n]urils, calix[n]arenes, pillar[n]arenes, and other macrocycles. Smart hydrogels with outstanding properties, like biocompatibility, toughness, and self-healing, are mainly focused. We believe that this review will highlight the potential of dynamic hydrogels mediated by macrocycle-based host-guest interactions.
Collapse
Affiliation(s)
- Tangxin Xiao
- School of Petrochemical Engineering, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, 213164, China.
| | | | | | | | | | | |
Collapse
|
107
|
Krajina BA, Zhu A, Heilshorn SC, Spakowitz AJ. Active DNA Olympic Hydrogels Driven by Topoisomerase Activity. PHYSICAL REVIEW LETTERS 2018; 121:148001. [PMID: 30339454 DOI: 10.1103/physrevlett.121.148001] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 08/07/2018] [Indexed: 06/08/2023]
Abstract
Biological systems are equipped with a diverse repertoire of proteins that regulate DNA topology with precision that is beyond the reach of conventional polymer chemistry. Here, we harness the unique properties of topoisomerases to synthesize Olympic hydrogels formed by topologically interlinked DNA rings. Using dynamic light scattering microrheology to probe the viscoelasticity of DNA topological networks, we show that topoisomerase II enables the facile preparation of active, adenosine triphosphate-driven Olympic hydrogels that can be switched between liquid and solid states on demand. Our results provide a versatile system for engineering switchable topological materials that may be broadly leveraged to model the impact of topological constraints and active dynamics in the physics of chromosomes and other polymeric materials.
Collapse
Affiliation(s)
- Brad A Krajina
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, USA
| | - Audrey Zhu
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, USA
| | - Sarah C Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA
| | - Andrew J Spakowitz
- Department of Chemical Engineering, Stanford University, Stanford, California 94305, USA
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA
- Department of Applied Physics, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
108
|
Nguyen MT, Ferris DP, Pezzato C, Wang Y, Stoddart JF. Densely Charged Dodecacationic [3]- and Tetracosacationic Radial [5]Catenanes. Chem 2018. [DOI: 10.1016/j.chempr.2018.07.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
109
|
Rauscher PM, Rowan SJ, de Pablo JJ. Topological Effects in Isolated Poly[ n]catenanes: Molecular Dynamics Simulations and Rouse Mode Analysis. ACS Macro Lett 2018; 7:938-943. [PMID: 35650969 DOI: 10.1021/acsmacrolett.8b00393] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Poly[n]catenanes are mechanically interlocked polymers consisting of interlocking ring molecules. Over the years, researchers have speculated that the permanent topological interactions within the poly[n]catenane backbone could lead to unique dynamical behaviors. To investigate these unusual polymers, molecular dynamics simulations of isolated poly[n]catenanes have been conducted, along with a Rouse mode analysis. Owing to the mechanical bonds within the molecule, the dynamics of poly[n]catenanes at short length scales are significantly slowed and the distribution of relaxation times is broadened; these same behaviors have been observed in melts of linear polymers and are associated with entanglement. Despite these entanglement-like effects, at large length scales poly[n]catenanes do not relax much slower than isolated linear polymers and are less strongly impacted by increased segmental stiffness.
Collapse
|
110
|
Ng AWH, Yee CC, Wang K, Au-Yeung HY. Efficient catenane synthesis by cucurbit[6]uril-mediated azide-alkyne cycloaddition. Beilstein J Org Chem 2018; 14:1846-1853. [PMID: 30112089 PMCID: PMC6071691 DOI: 10.3762/bjoc.14.158] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 06/25/2018] [Indexed: 11/23/2022] Open
Abstract
We report here the efficient synthesis of a series of [3]catenanes featuring the use of cucurbit[6]uril to simultaneously mediate the mechanical and covalent bond formations. By coupling the mechanical interlocking with covalent macrocyclization, formation of topological isomers is eliminated and the [3]catenanes are formed exclusively in good yields. The efficient access to these [3]catenanes and the presence of other recognition units render them promising building blocks for the construction of other high-order interlocked structures.
Collapse
Affiliation(s)
- Antony Wing Hung Ng
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Chi-Chung Yee
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Kai Wang
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Ho Yu Au-Yeung
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| |
Collapse
|
111
|
Schweez C, Höger S. A Nanosized Phenylene-Ethynylene-Butadiynylene [2]Catenane. Chemistry 2018; 24:12006-12009. [PMID: 29964336 DOI: 10.1002/chem.201802567] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/27/2018] [Indexed: 01/06/2023]
Abstract
In a convergent, template-directed synthesis, an efficient route to a phenylene-ethynylene-butadiynylene based [2]catenane is described. The key step is performed by the aminolysis of the corresponding precatenane, which is obtained by a sequence of metal-catalyzed cross-coupling and desilylation reactions. The cyclization reaction leads besides the [2]precatenane to a variety of larger precatenanes and offers an attractive approach to mechanically interlocked structures of different size.
Collapse
Affiliation(s)
- Christopher Schweez
- Kekule-Institut für Organische Chemie und Biochemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Str. 1, 53121, Bonn, Germany
| | - Sigurd Höger
- Kekule-Institut für Organische Chemie und Biochemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Gerhard-Domagk-Str. 1, 53121, Bonn, Germany
| |
Collapse
|
112
|
Ogoshi T, Yamafuji D, Aoki T, Yamagishi TA. An Electric Trap: Electron-Rich Carbonyl Axis Ends Slow Threading/Dethreading Exchange Dynamics of Pillar[5]arene Ring along Axis. Isr J Chem 2018. [DOI: 10.1002/ijch.201800019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Tomoki Ogoshi
- Graduate School of Natural Science and Technology; Kanazawa University, Kakuma-machi; Kanazawa 920-1192 Japan
- WPI Nano Life Science Institute; Kanazawa University, Kakuma-machi; Kanazawa 920-1192 Japan
| | - Daiki Yamafuji
- Graduate School of Natural Science and Technology; Kanazawa University, Kakuma-machi; Kanazawa 920-1192 Japan
| | - Takamichi Aoki
- Graduate School of Natural Science and Technology; Kanazawa University, Kakuma-machi; Kanazawa 920-1192 Japan
| | - Tada-aki Yamagishi
- Graduate School of Natural Science and Technology; Kanazawa University, Kakuma-machi; Kanazawa 920-1192 Japan
| |
Collapse
|
113
|
Omondi BA, Okabe H, Hidaka Y, Hara K. Synthesis and Characterization of Poly(1,4,7-Trioxacycloundecane-8,11-dione) Macrocyclic Functionalized Hydrogel for High Selectivity Adsorption and Complexation of Bismuth Ion. Polymers (Basel) 2018; 10:E662. [PMID: 30966696 PMCID: PMC6404153 DOI: 10.3390/polym10060662] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/08/2018] [Accepted: 06/08/2018] [Indexed: 11/26/2022] Open
Abstract
Macrocyclic functional hydrogels incorporating new poly cyclic active sites (1,4,7-trioxacycloundecane-8,11-dione) within their entire network, have been synthesized. Using the high-dilution coupling of the bi-functional monomers maleic acid and bis(chloroethyl)ether in a sol-gel chemistry synthesis, 11-membered chelate rings infused with three oxygen donor atoms were created and characterized, and their structures confirmed using Fourier transform infrared (FTIR) and nuclear magnetic resonance (NMR) spectroscopic analyses. The macrocyclic gel, designed for selective host-guest adsorption and complexation of metal substrates, was initially tested against an aqueous set of 14 metal competitive solutions, where it demonstrated exclusive selectivity for Bi3+aq, with the other metals exhibiting zero adsorption. Further analysis using binary and single ion Bi3+-containing solutions showed a near-complete removal of Bi3+ using this polycyclic hydrogel, with 98% extraction efficiency and q = 9.80 mg/g. These results clearly confirm that the 1,4,7-trioxacycloundecane-8,11-dione cyclic sites are most suitable for high selectivity and capture of Bi. The metal substrates were entrapped within the 1,4,7-trioxacycloundecane-8,11-dione cyclic sites. Evidently, by exploiting the host-guest complexation chemistry of macrocycles, we were able to design hydrogel adsorbents whose networks were comprised entirely of macrocyclic active groups for possible purification works of copper involving bismuth impurities, and/or for efficient selective uptake and recovery of bismuth trace ions existing in highly competitive environments such as sea water.
Collapse
Affiliation(s)
- Brian A Omondi
- Department of Applied Quantum Physics and Nuclear Engineering, Faculty of Engineering, West 2, 922-2, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan.
- Center for Research and Education of Environmental Technology, Faculty of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan.
| | - Hirotaka Okabe
- Department of Applied Quantum Physics and Nuclear Engineering, Faculty of Engineering, West 2, 922-2, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan.
- Center for Research and Education of Environmental Technology, Faculty of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan.
| | - Yoshiki Hidaka
- Department of Applied Quantum Physics and Nuclear Engineering, Faculty of Engineering, West 2, 922-2, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan.
- Center for Research and Education of Environmental Technology, Faculty of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan.
| | - Kazuhiro Hara
- Department of Applied Quantum Physics and Nuclear Engineering, Faculty of Engineering, West 2, 922-2, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan.
- Center for Research and Education of Environmental Technology, Faculty of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan.
| |
Collapse
|
114
|
Yu G, Yang J, Fu X, Wang Z, Shao L, Mao Z, Liu Y, Yang Z, Zhang F, Fan W, Song J, Zhou Z, Gao C, Huang F, Chen X. Supramolecular Hybrid Material Constructed from Graphene Oxide and Pillar[6]arene-Based Host-Guest Complex as a Ultrasound and Photoacoustic Signals Nanoamplifier. MATERIALS HORIZONS 2018; 5:429-435. [PMID: 29910956 PMCID: PMC5997277 DOI: 10.1039/c8mh00128f] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Photoacoustic imaging combines the merits of ultrasound imaging and optical imaging that allows a fascinating imaging paradigm with deeper tissue penetration than optical imaging and higher spatial resolution than ultrasound imaging. Herein, we develop a supramolecular hybrid material composed of graphene oxide (GO) and a pillar[6]arene-based host-guest complex (CP6⊃PyN), which can be used as a ultrasound (US) and photoacoustic (PA) signal nanoamplifier. Triggered by the near-infrared (NIR) light mediated photothermal effect, CO2 nanobubbles are generated on the surface of GO@CP6⊃PyN due to the decomposition of bicarbonate counterions, thus strongly amplifying its US and PA performances. Our study, for the first time, demonstrates enhanced US and PA activity in supramolecular hybrid material on the basis of host-guest chemistry as a photoacoustic nanoplatform.
Collapse
Affiliation(s)
- Guocan Yu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Jie Yang
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Xiao Fu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Zhantong Wang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Li Shao
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Yijing Liu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Zhen Yang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Fuwu Zhang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Wenpei Fan
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Jibin Song
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Zijian Zhou
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Changyou Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
115
|
Omondi BA, Okabe H, Hidaka Y, Hara K. Poly (1, 4-diazocane-5, 8-dione) macrocyclic-functionalized hydrogel for high selectivity transition metal ion adsorption. REACT FUNCT POLYM 2018. [DOI: 10.1016/j.reactfunctpolym.2018.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
116
|
|
117
|
Sun L, Guo RY, Yang XD, Ma S, Zhang J. Vapour-driven crystal-to-crystal transformation showing an interlocking switch of the coordination polymer chains between 1D and 3D. CrystEngComm 2018. [DOI: 10.1039/c8ce00591e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A rare crystal-to-crystal transformation occurs between 1D coordination polymer chains and 3D mechanically interlocked structures via reversible opening and closing of the homogeneous chains without any change in the coordination mode and composition.
Collapse
Affiliation(s)
- Li Sun
- MOE Key Laboratory of Cluster Science
- Beijing Key Laboratory of Photo-electronic/Electrophotonic Conversion Materials
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing 102488
| | - Rui-Yun Guo
- MOE Key Laboratory of Cluster Science
- Beijing Key Laboratory of Photo-electronic/Electrophotonic Conversion Materials
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing 102488
| | - Xiao-Dong Yang
- MOE Key Laboratory of Cluster Science
- Beijing Key Laboratory of Photo-electronic/Electrophotonic Conversion Materials
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing 102488
| | - Shuai Ma
- MOE Key Laboratory of Cluster Science
- Beijing Key Laboratory of Photo-electronic/Electrophotonic Conversion Materials
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing 102488
| | - Jie Zhang
- MOE Key Laboratory of Cluster Science
- Beijing Key Laboratory of Photo-electronic/Electrophotonic Conversion Materials
- School of Chemistry and Chemical Engineering
- Beijing Institute of Technology
- Beijing 102488
| |
Collapse
|
118
|
Wang W, Xing H. A novel supramolecular polymer network based on a catenane-type crosslinker. Polym Chem 2018. [DOI: 10.1039/c7py02034a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel supramolecular mechanically interlocked crosslinker was designed and used to prepare a supramolecular polymer network.
Collapse
Affiliation(s)
- Wenbo Wang
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- P. R. China
| | - Hao Xing
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- P. R. China
| |
Collapse
|
119
|
Shao L, Sun J, Hua B, Huang F. An AIEE fluorescent supramolecular cross-linked polymer network based on pillar[5]arene host–guest recognition: construction and application in explosive detection. Chem Commun (Camb) 2018; 54:4866-4869. [DOI: 10.1039/c8cc02077a] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A novel fluorescent supramolecular cross-linked polymer network with aggregation induced enhanced emission properties was constructed and further used for explosive detection.
Collapse
Affiliation(s)
- Li Shao
- State Key Laboratory of Chemical Engineering
- Center for Chemistry of High-Performance & Novel Materials
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
| | - Jifu Sun
- State Key Laboratory of Chemical Engineering
- Center for Chemistry of High-Performance & Novel Materials
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
| | - Bin Hua
- State Key Laboratory of Chemical Engineering
- Center for Chemistry of High-Performance & Novel Materials
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering
- Center for Chemistry of High-Performance & Novel Materials
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
| |
Collapse
|
120
|
Tobiasz P, Poterała M, Jaśkowska E, Krawczyk H. Synthesis and investigation of new cyclic molecules using the stilbene scaffold. RSC Adv 2018; 8:30678-30682. [PMID: 35548740 PMCID: PMC9085490 DOI: 10.1039/c8ra04249g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/16/2018] [Indexed: 12/24/2022] Open
Abstract
A new approach to the synthesis of asymmetrical cyclic compounds using a stilbene scaffold has been developed. The use of boron trifluoride diethyl etherate as the catalyst, both with and without paraformaldehyde, allows us to obtain new substituted dioxanes, oxanes, cyclic compounds or dimer. The analysis of products was run using experimental and theoretical methods. A new approach to the synthesis of asymmetrical cyclic compounds using a stilbene scaffold has been developed.![]()
Collapse
Affiliation(s)
- Piotr Tobiasz
- Department of Organic Chemistry
- Faculty of Chemistry
- Warsaw University of Technology
- 00-664 Warsaw
- Poland
| | - Marcin Poterała
- Department of Organic Chemistry
- Faculty of Chemistry
- Warsaw University of Technology
- 00-664 Warsaw
- Poland
| | - Eliza Jaśkowska
- Department of Organic Chemistry
- Faculty of Chemistry
- Warsaw University of Technology
- 00-664 Warsaw
- Poland
| | - Hanna Krawczyk
- Department of Organic Chemistry
- Faculty of Chemistry
- Warsaw University of Technology
- 00-664 Warsaw
- Poland
| |
Collapse
|
121
|
Huang D, Zhang Q, Deng Y, Luo Z, Li B, Shen X, Qi Z, Dong S, Ge Y, Chen W. Polymeric crown ethers: LCST behavior in water and stimuli-responsiveness. Polym Chem 2018. [DOI: 10.1039/c8py00412a] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A crown ether-functionalized poly(vinyl alcohol) (PVA) system shows lower critical solution temperature (LCST) phase separation behavior in water.
Collapse
|
122
|
Wang H, Ji X, Li Y, Li Z, Tang G, Huang F. An ATP/ATPase responsive supramolecular fluorescent hydrogel constructedviaelectrostatic interactions between poly(sodiump-styrenesulfonate) and a tetraphenylethene derivative. J Mater Chem B 2018; 6:2728-2733. [DOI: 10.1039/c8tb00366a] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We report a supramolecular fluorescent hydrogel based on poly(sodiump-styrenesulfonate) and a tetraphenylethene derivative.
Collapse
Affiliation(s)
- Hu Wang
- State Key Laboratory of Chemical Engineering
- Center for Chemistry of High-Performance & Novel Materials
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
| | - Xiaofan Ji
- State Key Laboratory of Chemical Engineering
- Center for Chemistry of High-Performance & Novel Materials
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
| | - Yang Li
- Department of Chemistry
- Institute of Chemical Biology and Pharmaceutical Chemistry
- Zhejiang University
- Hangzhou 310027
- P. R. China
| | - Zhengtao Li
- State Key Laboratory of Chemical Engineering
- Center for Chemistry of High-Performance & Novel Materials
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
| | - Guping Tang
- Department of Chemistry
- Institute of Chemical Biology and Pharmaceutical Chemistry
- Zhejiang University
- Hangzhou 310027
- P. R. China
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering
- Center for Chemistry of High-Performance & Novel Materials
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
| |
Collapse
|
123
|
Wu D, Li Y, Shen J, Tong Z, Hu Q, Li L, Yu G. Supramolecular chemotherapeutic drug constructed from pillararene-based supramolecular amphiphile. Chem Commun (Camb) 2018; 54:8198-8201. [DOI: 10.1039/c8cc04334e] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A therapeutic supramolecular amphiphile, P5⊃CPT-ss-Py, with GSH-responsiveness was constructed using pillar[5]arene-based host–guest molecular recognition. Cellular internalization and anticancer efficacy were greatly increased through this supramolecular strategy.
Collapse
Affiliation(s)
- Dan Wu
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- P. R. China
| | - Yang Li
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- P. R. China
| | - Jie Shen
- School of Medicine
- Zhejiang University City College
- Hangzhou 310015
- P. R. China
| | - Zaizai Tong
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT)
- Ministry of Education
- Department of Materials Science and Engineering
- Zhejiang Sci-Tech University
- Hangzhou 310018
| | - Qinglian Hu
- College of Biotechnology and Bioengineering
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Liping Li
- Section on Medical Neuroendocrinology
- Eunice Kennedy Shriver National Institute of Child Health and Human Development
- National Institutes of Health
- Bethesda
- USA
| | - Guocan Yu
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
- P. R. China
| |
Collapse
|
124
|
Liu Y, O'Keeffe M, Treacy MMJ, Yaghi OM. The geometry of periodic knots, polycatenanes and weaving from a chemical perspective: a library for reticular chemistry. Chem Soc Rev 2018; 47:4642-4664. [DOI: 10.1039/c7cs00695k] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The geometry of the most regular polycatenanes and weavings, as an extended family of discrete knots and catenanes, is described in terms of sticks and corners in their optimal embeddings.
Collapse
Affiliation(s)
- Yuzhong Liu
- Department of Chemistry
- University of California-Berkeley
- Materials Sciences Division
- Lawrence Berkeley National Laboratory
- Kavli Energy NanoSciences Institute
| | | | | | - Omar M. Yaghi
- Department of Chemistry
- University of California-Berkeley
- Materials Sciences Division
- Lawrence Berkeley National Laboratory
- Kavli Energy NanoSciences Institute
| |
Collapse
|
125
|
Li Q, Sun J, Zhou J, Hua B, Shao L, Huang F. Barium cation-responsive supra-amphiphile constructed by a new twisted cucurbit[15]uril/paraquat recognition motif in water. Org Chem Front 2018. [DOI: 10.1039/c8qo00323h] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A new, strong, and barium cation-responsive host–guest recognition motif based on twisted cucurbit[15]uril and paraquat was established in water.
Collapse
Affiliation(s)
- Qing Li
- State Key Laboratory of Chemical Engineering
- Center for Chemistry of High-Performance & Novel Materials
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
| | - Jifu Sun
- State Key Laboratory of Chemical Engineering
- Center for Chemistry of High-Performance & Novel Materials
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
| | - Jiong Zhou
- State Key Laboratory of Chemical Engineering
- Center for Chemistry of High-Performance & Novel Materials
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
| | - Bin Hua
- State Key Laboratory of Chemical Engineering
- Center for Chemistry of High-Performance & Novel Materials
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
| | - Li Shao
- State Key Laboratory of Chemical Engineering
- Center for Chemistry of High-Performance & Novel Materials
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering
- Center for Chemistry of High-Performance & Novel Materials
- Department of Chemistry
- Zhejiang University
- Hangzhou 310027
| |
Collapse
|
126
|
Au-Yeung HY, Yee CC, Hung Ng AW, Hu K. Strategies To Assemble Catenanes with Multiple Interlocked Macrocycles. Inorg Chem 2017; 57:3475-3485. [DOI: 10.1021/acs.inorgchem.7b02523] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Ho Yu Au-Yeung
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Chi-Chung Yee
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Antony Wing Hung Ng
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Keling Hu
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| |
Collapse
|
127
|
Wu Q, Rauscher PM, Lang X, Wojtecki RJ, de Pablo JJ, Hore MJA, Rowan SJ. Poly[ n]catenanes: Synthesis of molecular interlocked chains. Science 2017; 358:1434-1439. [PMID: 29192134 DOI: 10.1126/science.aap7675] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 11/13/2017] [Indexed: 12/20/2022]
Abstract
As the macromolecular version of mechanically interlocked molecules, mechanically interlocked polymers are promising candidates for the creation of sophisticated molecular machines and smart soft materials. Poly[n]catenanes, where the molecular chains consist solely of interlocked macrocycles, contain one of the highest concentrations of topological bonds. We report, herein, a synthetic approach toward this distinctive polymer architecture in high yield (~75%) via efficient ring closing of rationally designed metallosupramolecular polymers. Light-scattering, mass spectrometric, and nuclear magnetic resonance characterization of fractionated samples support assignment of the high-molar mass product (number-average molar mass ~21.4 kilograms per mole) to a mixture of linear poly[7-26]catenanes, branched poly[13-130]catenanes, and cyclic poly[4-7]catenanes. Increased hydrodynamic radius (in solution) and glass transition temperature (in bulk materials) were observed upon metallation with Zn2.
Collapse
Affiliation(s)
- Qiong Wu
- Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA.,Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Phillip M Rauscher
- Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Xiaolong Lang
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Rudy J Wojtecki
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Juan J de Pablo
- Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA.,Materials Science Division and Institute for Molecular Engineering, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA
| | - Michael J A Hore
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Stuart J Rowan
- Institute for Molecular Engineering, University of Chicago, Chicago, IL 60637, USA.,Department of Macromolecular Science and Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.,Materials Science Division and Institute for Molecular Engineering, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439, USA.,Department of Chemistry, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
128
|
Duan Q, Zhao W, Lu K. Synthesis of a water-soluble pillar[6]arene dodecaamine and its selective binding of acidic amino acids in water. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.10.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
129
|
Xing H, Li Z, Wu ZL, Huang F. Catenane Crosslinked Mechanically Adaptive Polymer Gel. Macromol Rapid Commun 2017; 39. [PMID: 28795447 DOI: 10.1002/marc.201700361] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 06/09/2017] [Indexed: 11/08/2022]
Abstract
A new strategy is introduced to prepare an adaptive polymer gel that has a unique adaptability in response to environmental stimuli. This gel is prepared by the thiol-ene "click" reaction between a bisvinyl [2]catenane and a poly(ethylene glycol) derivative containing multiple thiol groups. The catenane crosslinker is responsive to external stimuli due to the existence of intercomponent hydrogen bonding (IHB). The strong IHB restricts the rotation and movement of the crosslinker, giving it a rigid feature; however, the crosslinker becomes flexible when the IHB is destroyed. In consequence, the resulting gel can be reversibly switched between tough and soft states under stimulations.
Collapse
Affiliation(s)
- Hao Xing
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance and Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Zhengtao Li
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance and Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Zi Liang Wu
- Key Laboratory of Macromolecular Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance and Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
130
|
Pederson AMP, Price TL, Slebodnick C, Schoonover DV, Gibson HW. The Long and the Short of It: Regiospecific Syntheses of Isomers of Dicarbomethoxydibenzo-27-crown-9 and Binding Abilities of Their Pyridyl Cryptands. J Org Chem 2017; 82:8489-8496. [DOI: 10.1021/acs.joc.7b01242] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Adam M.-P. Pederson
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Terry L Price
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Carla Slebodnick
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Daniel V. Schoonover
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Harry W. Gibson
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24060, United States
| |
Collapse
|
131
|
Teunissen AJP, Berrocal JA, Corbet CHWA, Meijer EW. Supramolecular polymerization of a ureidopyrimidinone-based [2]catenane prepared via ring-closing metathesis. ACTA ACUST UNITED AC 2017; 55:2971-2976. [PMID: 28931969 PMCID: PMC5575501 DOI: 10.1002/pola.28694] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 06/06/2017] [Indexed: 12/01/2022]
Abstract
The synthesis and supramolecular polymerization of a ureidopyrimidinone‐based Sauvage‐type [2]catenane is reported. The monomer synthesis explores many routes using the elegant metathesis catalysts of Bob Grubbs, yielding a catenane with one ureidopyrimidinone in each cycle. The supramolecular polymer obtained features both mechanical bonds and quadruple hydrogen bonding connections.
![]()
Collapse
Affiliation(s)
- Abraham J P Teunissen
- Institute for Complex Molecular Systems, Eindhoven University of Technology 5600 MB Eindhoven P.O. Box 513 Eindhoven The Netherlands.,Laboratory of Macromolecular and Organic Chemistry Eindhoven University of Technology 5600 MB Eindhoven P.O. Box 513 Eindhoven The Netherlands
| | - José Augusto Berrocal
- Institute for Complex Molecular Systems, Eindhoven University of Technology 5600 MB Eindhoven P.O. Box 513 Eindhoven The Netherlands.,Laboratory of Macromolecular and Organic Chemistry Eindhoven University of Technology 5600 MB Eindhoven P.O. Box 513 Eindhoven The Netherlands
| | - Christiaan H W A Corbet
- Laboratory of Macromolecular and Organic Chemistry Eindhoven University of Technology 5600 MB Eindhoven P.O. Box 513 Eindhoven The Netherlands
| | - E W Meijer
- Institute for Complex Molecular Systems, Eindhoven University of Technology 5600 MB Eindhoven P.O. Box 513 Eindhoven The Netherlands.,Laboratory of Macromolecular and Organic Chemistry Eindhoven University of Technology 5600 MB Eindhoven P.O. Box 513 Eindhoven The Netherlands
| |
Collapse
|
132
|
Cui W, Tang H, Xu L, Wang L, Meier H, Cao D. Pillar[5]arene-Diketopyrrolopyrrole Fluorescent Copolymer: A Promising Recognition and Adsorption Material for Adiponitrile by Selective Formation of a Conjugated Polypseudorotaxane. Macromol Rapid Commun 2017; 38. [PMID: 28524251 DOI: 10.1002/marc.201700161] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 04/11/2017] [Indexed: 11/10/2022]
Abstract
Conjugated pillar[5]arene-diketopyrrolopyrrole copolymer (P1) is synthesized by the copolymerization of a difunctionalized pillar[5]arene and a diketopyrrolopyrrole-based monomer, which shows large extinction coefficients (1.1 × 104 m-1 cm-1 ) at 519 nm and strong emission at 587 nm. P1 exhibits very strong host-guest binding affinity towards adiponitrile but low binding affinity towards 1,4-dihalobutane and 1,4-bis(imidazol-1-yl)butane. Such an enhanced selectivity is first found in the polypseudorotaxane between pillararene and neutral guests in organic solution and is successfully used for the recognition and adsorption of adiponitrile by the formation of a P1-adiponitrile polypseudorotaxane.
Collapse
Affiliation(s)
- Wei Cui
- School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510641, China
| | - Hao Tang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510641, China
| | - Linxian Xu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510641, China
| | - Lingyun Wang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510641, China
| | - Herbert Meier
- Institute of Organic Chemistry, University of Mainz, D-55099, Mainz, Germany
| | - Derong Cao
- School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510641, China
| |
Collapse
|
133
|
Nguyen MT, Krzyaniak MD, Owczarek M, Ferris DP, Wasielewski MR, Stoddart JF. A Boat‐Shaped Tetracationic Macrocycle with a Semiconducting Organic Framework. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201702019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Minh T. Nguyen
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Matthew D. Krzyaniak
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Magdalena Owczarek
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Daniel P. Ferris
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Michael R. Wasielewski
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - J. Fraser Stoddart
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| |
Collapse
|
134
|
Nguyen MT, Krzyaniak MD, Owczarek M, Ferris DP, Wasielewski MR, Stoddart JF. A Boat‐Shaped Tetracationic Macrocycle with a Semiconducting Organic Framework. Angew Chem Int Ed Engl 2017; 56:5795-5800. [DOI: 10.1002/anie.201702019] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Indexed: 12/27/2022]
Affiliation(s)
- Minh T. Nguyen
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Matthew D. Krzyaniak
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Magdalena Owczarek
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Daniel P. Ferris
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - Michael R. Wasielewski
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| | - J. Fraser Stoddart
- Department of Chemistry Northwestern University 2145 Sheridan Road Evanston IL 60208 USA
| |
Collapse
|
135
|
Ahamed BN, Van Velthem P, Robeyns K, Fustin CA. Influence of a Single Catenane on the Solid-State Properties of Mechanically Linked Polymers. ACS Macro Lett 2017; 6:468-472. [PMID: 35610870 DOI: 10.1021/acsmacrolett.7b00204] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report on mechanically linked polymers containing a single catenane in the middle of the chain. These polymers were synthesized by a simple procedure consisting in "clicking" polymer chains onto a functionalized palladium-templated [2]catenane, allowing the preparation of a variety of mechanically linked polymers. The flexibility of the catenane junction was modulated by removing the Pd ion from the catenane to unlock the macrocycles and increase their mobility. We show that this mobility change has a strong impact on the solid-state properties of the polymers. This is illustrated by studying the glass transition temperature of polystyrene-based polymers and the crystallization behavior of poly(ethylene oxide)-based polymers. Our study proves that a change of flexibility of a single catenane inserted into a polymer chain drastically influences the polymer behavior in the solid state.
Collapse
Affiliation(s)
- B. Nisar Ahamed
- Institute of Condensed Matter and Nanosciences (IMCN), Bio- and Soft
Matter Division (BSMA), and ‡Institute of Condensed Matter and Nanosciences (IMCN),
Molecules Structure and Reactivity Division (MOST), Université catholique de Louvain, Place Pasteur
1, 1348, Louvain-la-Neuve, Belgium
| | - Pascal Van Velthem
- Institute of Condensed Matter and Nanosciences (IMCN), Bio- and Soft
Matter Division (BSMA), and ‡Institute of Condensed Matter and Nanosciences (IMCN),
Molecules Structure and Reactivity Division (MOST), Université catholique de Louvain, Place Pasteur
1, 1348, Louvain-la-Neuve, Belgium
| | - Koen Robeyns
- Institute of Condensed Matter and Nanosciences (IMCN), Bio- and Soft
Matter Division (BSMA), and ‡Institute of Condensed Matter and Nanosciences (IMCN),
Molecules Structure and Reactivity Division (MOST), Université catholique de Louvain, Place Pasteur
1, 1348, Louvain-la-Neuve, Belgium
| | - Charles-André Fustin
- Institute of Condensed Matter and Nanosciences (IMCN), Bio- and Soft
Matter Division (BSMA), and ‡Institute of Condensed Matter and Nanosciences (IMCN),
Molecules Structure and Reactivity Division (MOST), Université catholique de Louvain, Place Pasteur
1, 1348, Louvain-la-Neuve, Belgium
| |
Collapse
|
136
|
Wang H, Ji X, Li Z, Huang F. Fluorescent Supramolecular Polymeric Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29. [PMID: 28198107 DOI: 10.1002/adma.201606117] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 12/13/2016] [Indexed: 05/07/2023]
Abstract
Fluorescent supramolecular polymeric materials are rising stars in the field of fluorescent materials not only because of the inherent optoelectronic properties originating from their chromophores, but also due to the fascinating stimuli-responsiveness and reversibility coming from their noncovalent connections. Especially, these noncovalent connections influence the fluorescence properties of the chromophores because their state of aggregation and energy transfer can be regulated by the assembly-disassembly process. Considering these unique properties, fluorescent supramolecular polymeric materials have facilitated the evolution of new materials useful for applications in fluorescent sensors, probes, as imaging agents in biological systems, light-emitting diodes, and organic electronic devices. In this Review, fluorescent supramolecular polymeric materials are classified depending on the types of main driving forces for supramolecular polymerization, including multiple hydrogen bonding, electrostatic interactions, π-π stacking interactions, metal-coordination, van der Waals interactions and host-guest interactions. Through the summary of the studies about fluorescent supramolecular polymeric materials, the status quo of this research field is assessed. Based on existing challenges, directions for the future development of this field are furnished.
Collapse
Affiliation(s)
- Hu Wang
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Xiaofan Ji
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Zhengtao Li
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
137
|
Niu Z, Huang F, Gibson HW. Steric effects on complexation of bis(
meta
‐phenylene)‐32‐crown‐10 derivatives with paraquats. HETEROATOM CHEMISTRY 2017. [DOI: 10.1002/hc.21359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Zhenbin Niu
- Department of Chemistry Virginia Polytechnic Institute and State University Blacksburg VA USA
| | - Feihe Huang
- Department of Chemistry Virginia Polytechnic Institute and State University Blacksburg VA USA
| | - Harry W. Gibson
- Department of Chemistry Virginia Polytechnic Institute and State University Blacksburg VA USA
| |
Collapse
|
138
|
Chi X, Ji X, Shao L, Huang F. A Multiresponsive Amphiphilic Supramolecular Diblock Copolymer Based on Pillar[10]arene/Paraquat Complexation for Rate-Tunable Controlled Release. Macromol Rapid Commun 2017; 38. [DOI: 10.1002/marc.201600626] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 11/12/2016] [Indexed: 01/09/2023]
Affiliation(s)
- Xiaodong Chi
- State Key Laboratory of Chemical Engineering; Center for Chemistry of High-Performance and Novel Materials; Department of Chemistry; Zhejiang University; Hangzhou 310027 P. R. China
| | - Xiaofan Ji
- State Key Laboratory of Chemical Engineering; Center for Chemistry of High-Performance and Novel Materials; Department of Chemistry; Zhejiang University; Hangzhou 310027 P. R. China
| | - Li Shao
- State Key Laboratory of Chemical Engineering; Center for Chemistry of High-Performance and Novel Materials; Department of Chemistry; Zhejiang University; Hangzhou 310027 P. R. China
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering; Center for Chemistry of High-Performance and Novel Materials; Department of Chemistry; Zhejiang University; Hangzhou 310027 P. R. China
| |
Collapse
|
139
|
Dasgupta S, Mukherjee PS. Carboxylatopillar[n]arenes: a versatile class of water soluble synthetic receptors. Org Biomol Chem 2017; 15:762-772. [DOI: 10.1039/c6ob02214f] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Carboxylatopillar[n]arenes (CP[n]As, n = 5, 6, 7, 9, 10) constitute a family of water soluble synthetic receptors. These receptors are excellent hosts for a wide range of cationic organic molecules and have shown promising application in the fields of stimuli-responsive supramolecular assemblies, targeted drug delivery vehicles and sensors. Analogous metal-coordinated prismatic structures have shown excellent affinities for analytes.
Collapse
Affiliation(s)
- Suvankar Dasgupta
- Department of Chemistry
- National Institute of Technology Patna
- Patna-800005
- India
| | | |
Collapse
|
140
|
Liu Y, Shangguan L, Wang H, Xia D, Shi B. A supramolecular polymer network gel with stimuli-responsiveness constructed by orthogonal metal ion coordination and pillar[5]arene-based host–guest recognition. Polym Chem 2017. [DOI: 10.1039/c7py00656j] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel external stimuli-responsive supramolecular polymer network gel was fabricated by orthogonal Ag-coordination and pillar[5]arene-based host–guest interactions.
Collapse
Affiliation(s)
- Yuezhou Liu
- Department of Chemistry
- Zhejiang University
- Hangzhou
- China
| | | | - Hu Wang
- Department of Chemistry
- Zhejiang University
- Hangzhou
- China
| | - Danyu Xia
- Department of Chemistry
- Zhejiang University
- Hangzhou
- China
| | - Bingbing Shi
- Department of Chemistry
- Zhejiang University
- Hangzhou
- China
| |
Collapse
|
141
|
Ma S, Chen H, Li J, Jia X, Li C. Molecular Recognition Properties of Biphen[4]arene. Chem Asian J 2016; 11:3449-3453. [DOI: 10.1002/asia.201601373] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Suxiang Ma
- School of Chemical and Environmental Engineering; Shanghai Institute of Technology; Shanghai 201418 P.R. China
- Department of Chemistry; Center for Supramolecular Chemistry and Catalysis; Shanghai University; Shanghai 200444 P.R. China
| | - Huanqing Chen
- Department of Chemistry; Center for Supramolecular Chemistry and Catalysis; Shanghai University; Shanghai 200444 P.R. China
| | - Jian Li
- Department of Chemistry; Center for Supramolecular Chemistry and Catalysis; Shanghai University; Shanghai 200444 P.R. China
| | - Xueshun Jia
- Department of Chemistry; Center for Supramolecular Chemistry and Catalysis; Shanghai University; Shanghai 200444 P.R. China
- State Key Laboratory of Applied Organic Chemistry; Lanzhou University; Lanzhou 730000 P.R. China
| | - Chunju Li
- School of Chemical and Environmental Engineering; Shanghai Institute of Technology; Shanghai 201418 P.R. China
- Department of Chemistry; Center for Supramolecular Chemistry and Catalysis; Shanghai University; Shanghai 200444 P.R. China
| |
Collapse
|
142
|
Yu G, Zhao R, Wu D, Zhang F, Shao L, Zhou J, Yang J, Tang G, Chen X, Huang F. Pillar[5]arene-based amphiphilic supramolecular brush copolymer: fabrication, controllable self-assembly and application in self-imaging targeted drug delivery. Polym Chem 2016; 7:6178-6188. [PMID: 27795740 PMCID: PMC5084091 DOI: 10.1039/c6py01402j] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Supramolecular brush copolymers have attracted continuing interest due to their unusual architectures, fascinating properties, and potential applications in many fields involving smart stimuli-responsive drug delivery systems. Herein, the first pillararene-based amphiphilic supramolecular brush copolymer (P5-PEG-Biotin⊃PTPE) was constructed on the basis of the host-guest molecular recognition between a water-soluble pillar[5]arene (P5) and a viologen salt (M). P5-PEG-Biotin⊃PTPE self-assembled into supramolecular nanoparticles (SNPs), which were utilized as a self-imaging drug delivery vehicle by taking advantage of the aggregation-induced emission (AIE) effect. Encapsulation of anticancer drug doxorubicin (DOX) caused deactivation of the fluorescences of both the tetraphenylethene (TPE) and DOX chromophores due to the energy transfer relay (ETR) effect, mediated by Förster resonance energy transfer (FRET) and aggregation-caused quenching (ACQ). The release of loaded DOX molecules can be triggered by low pH and reductase, recovering the "silenced" fluorescence caused by the interruption of the ETR effect, achieving in situ visualization of the drug release process by observing the location and magnitude of the energy transfer-dependent fluorescence variation. The biotin ligands on the surfaces of the DOX-loaded SNPs act as targeting agents to deliver DOX preferentially to cancer cells over-expressing biotin receptor. In vitro studies demonstrated that the loading of DOX by this supramolecular nanomaterial exhibited selective cytotoxicity towards cancer cells over normal cells. The potency of this sophisticated supramolecular drug delivery system in cancer therapy was further evaluated in HeLa tumor-bearing mice. In vivo experiments confirmed that the DOX-loaded SNPs possess excellent antitumor efficacy with negligible systemic toxicity.
Collapse
Affiliation(s)
- Guocan Yu
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Run Zhao
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Dan Wu
- Department of Chemistry, Institute of Chemical Biology and Pharmaceutical Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Fuwu Zhang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Li Shao
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Jiong Zhou
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Jie Yang
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Guping Tang
- Department of Chemistry, Institute of Chemical Biology and Pharmaceutical Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| |
Collapse
|
143
|
Lee B, Niu Z, Craig SL. The Mechanical Strength of a Mechanical Bond: Sonochemical Polymer Mechanochemistry of Poly(catenane) Copolymers. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201606893] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Bobin Lee
- Department of Chemistry; Duke University; Durham NC 27708 USA
| | - Zhenbin Niu
- Department of Chemistry; Duke University; Durham NC 27708 USA
| | | |
Collapse
|
144
|
Lee B, Niu Z, Craig SL. The Mechanical Strength of a Mechanical Bond: Sonochemical Polymer Mechanochemistry of Poly(catenane) Copolymers. Angew Chem Int Ed Engl 2016; 55:13086-13089. [DOI: 10.1002/anie.201606893] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Indexed: 02/01/2023]
Affiliation(s)
- Bobin Lee
- Department of Chemistry; Duke University; Durham NC 27708 USA
| | - Zhenbin Niu
- Department of Chemistry; Duke University; Durham NC 27708 USA
| | | |
Collapse
|
145
|
A Porphyrin-Based Discrete Tetragonal Prismatic Cage: Host-Guest Complexation and Its Application in Tuning Liquid-Crystalline Behavior. Macromol Rapid Commun 2016; 37:1540-7. [DOI: 10.1002/marc.201600280] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 06/03/2016] [Indexed: 12/23/2022]
|
146
|
Yu G, Zhou J, Shen J, Tang G, Huang F. Cationic pillar[6]arene/ATP host-guest recognition: selectivity, inhibition of ATP hydrolysis, and application in multidrug resistance treatment. Chem Sci 2016; 7:4073-4078. [PMID: 30155051 PMCID: PMC6013913 DOI: 10.1039/c6sc00531d] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 03/02/2016] [Indexed: 12/23/2022] Open
Abstract
Due to the differences in the cavity size of the hosts and the charge and length of the guests, a cationic water-soluble pillar[6]arene (WP6) selectively complexes with ATP to form a stable 1 : 1 inclusion complex WP6⊃ATP. This host-guest complexation was utilized to efficiently inhibit the hydrolysis of ATP, arising from the existence of the hydrophobic cavity of WP6. A folic acid functionalized diblock copolymer (FA-PEG-b-PAA) was employed to PEGylate WP6 to endow the polyion complex (PIC) micelles with specific targeting ability, preferentially delivering WP6 to folate receptor over-expressing KB cell. This host-guest complexation was further used to block the efflux pump to transport anticancer drugs out of cells by cutting off the energy source, which enhanced the efficacy of the cancer chemotherapy of DOX·HCl towards drug resistant MCF-7/ADR cell. This supramolecular method provides an extremely distinct strategy to potentially overcome multidrug resistance (MDR).
Collapse
Affiliation(s)
- Guocan Yu
- State Key Laboratory of Chemical Engineering , Center for Chemistry of High-Performance & Novel Materials , Department of Chemistry , Zhejiang University , Hangzhou 310027 , P. R. China . ; ; Tel: +86-571-8795-3189
| | - Jiong Zhou
- State Key Laboratory of Chemical Engineering , Center for Chemistry of High-Performance & Novel Materials , Department of Chemistry , Zhejiang University , Hangzhou 310027 , P. R. China . ; ; Tel: +86-571-8795-3189
| | - Jie Shen
- Department of Chemistry , Institute of Chemical Biology and Pharmaceutical Chemistry , Zhejiang University , Hangzhou 310027 , P. R. China
| | - Guping Tang
- Department of Chemistry , Institute of Chemical Biology and Pharmaceutical Chemistry , Zhejiang University , Hangzhou 310027 , P. R. China
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering , Center for Chemistry of High-Performance & Novel Materials , Department of Chemistry , Zhejiang University , Hangzhou 310027 , P. R. China . ; ; Tel: +86-571-8795-3189
| |
Collapse
|
147
|
Han Y, Huo GF, Sun J, Xie J, Yan CG, Zhao Y, Wu X, Lin C, Wang L. Formation of a series of stable pillar[5]arene-based pseudo[1]-rotaxanes and their [1]rotaxanes in the crystal state. Sci Rep 2016; 6:28748. [PMID: 27350382 PMCID: PMC4923850 DOI: 10.1038/srep28748] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 06/07/2016] [Indexed: 11/09/2022] Open
Abstract
A series of mono-amide-functionalized pillar[5]arenes with different lengths of N-ω-aminoalkyl groups as the side chain on the rim were designed and synthesized, which all formed pseudo[1]rotaxanes in the crystal state. And these pseudo[1]rotaxanes could be transformed into [1]rotaxanes or open forms in the crystal state. In addition, they were also studied in solution by (1)H NMR spectroscopy.
Collapse
Affiliation(s)
- Ying Han
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Gui-Fei Huo
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Jing Sun
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Ju Xie
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Chao-Guo Yan
- College of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Xuan Wu
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Chen Lin
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Leyong Wang
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| |
Collapse
|
148
|
Wei P, Yan X, Cook TR, Ji X, Stang PJ, Huang F. Supramolecular Copolymer Constructed by Hierarchical Self-Assembly of Orthogonal Host-Guest, H-Bonding, and Coordination Interactions. ACS Macro Lett 2016; 5:671-675. [PMID: 35614665 DOI: 10.1021/acsmacrolett.6b00286] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Supramolecular copolymers with complex architectures and emergent functions constitute a class of challenging but enticing synthetic targets in polymer science. Individual building blocks can be tailored to endow a resulting supramolecular copolymer with increased structural and functional complexity. Herein, we describe the construction of a linear supramolecular copolymer comprising mechanically interlocked segments with hydrogen-bonding metallorhomboidal units. Specifically, a hierarchical supramolecular polymerization of a crown ether-based [2]rotaxane and a discrete organoplatinum(II) metallacycle driven by 2-ureido-4-pyrimidinone (UPy) quadruple hydrogen bonding provides the impetus for its formation. This system demonstrates enhanced structural complexity accessed by the unification of orthogonal noncovalent interactions: metal coordination, host-guest chemistry, and multiple hydrogen bonding interfaces.
Collapse
Affiliation(s)
- Peifa Wei
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Xuzhou Yan
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
- Department
of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| | - Timothy R. Cook
- Department
of Chemistry, University at Buffalo, 359 Natural Sciences Complex, Buffalo, New York 14260, United States
| | - Xiaofan Ji
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| | - Peter J. Stang
- Department
of Chemistry, University of Utah, 315 South 1400 East, Room 2020, Salt Lake City, Utah 84112, United States
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering, Center for Chemistry of High-Performance & Novel Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China
| |
Collapse
|
149
|
Nisar Ahamed B, Duchêne R, Robeyns K, Fustin CA. Catenane-based mechanically-linked block copolymers. Chem Commun (Camb) 2016; 52:2149-52. [PMID: 26699198 DOI: 10.1039/c5cc09775d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
An original strategy for the synthesis of diblock copolymers where the blocks are linked by a catenane junction is described. Starting from a functionalized catenane precursor, our strategy enables the preparation of a variety of copolymers by different techniques such as ROP, ATRP and CuAAC click reaction.
Collapse
Affiliation(s)
- B Nisar Ahamed
- Institute of Condensed Matter and Nanosciences (IMCN), Bio- and Soft Matter division (BSMA), Université catholique de Louvain, Place Pasteur 1, 1348, Louvain-la-Neuve, Belgium.
| | - Roland Duchêne
- Institute of Condensed Matter and Nanosciences (IMCN), Bio- and Soft Matter division (BSMA), Université catholique de Louvain, Place Pasteur 1, 1348, Louvain-la-Neuve, Belgium.
| | - Koen Robeyns
- IMCN, Molecules Solids and Reactivity division (MOST), Université catholique de Louvain, Place Pasteur 1, 1348, Louvain-la-Neuve, Belgium
| | - Charles-André Fustin
- Institute of Condensed Matter and Nanosciences (IMCN), Bio- and Soft Matter division (BSMA), Université catholique de Louvain, Place Pasteur 1, 1348, Louvain-la-Neuve, Belgium.
| |
Collapse
|
150
|
Yu G, Wu D, Li Y, Zhang Z, Shao L, Zhou J, Hu Q, Tang G, Huang F. A pillar[5]arene-based [2]rotaxane lights up mitochondria. Chem Sci 2016; 7:3017-3024. [PMID: 29997791 PMCID: PMC6003608 DOI: 10.1039/c6sc00036c] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 01/20/2016] [Indexed: 12/21/2022] Open
Abstract
Subcellular organelle-specific reagents for simultaneous targeting, imaging and treatment are highly desirable for cancer therapy. However, it remains a challenge to fabricate a single molecular platform containing a targeting group, imaging and therapeutic agents through traditional synthesis. Due to their superior sensitivity and photostability, fluorescent probes with aggregation-induced emission (AIE) characteristics have attracted more and more attention in studying the process of translocation, drug release, and excretion of nanomedicines in vitro or in vivo. We construct a pillar[5]arene-based [2]rotaxane (R1) by employing tetraphenylethene (TPE) and triphenylphosphonium (TPP) moieties as stoppers; the TPE unit retains the aggregation-induced emission (AIE) attribute and the TPP group is used as a mitochondria-targeting agent. R1 exhibits enhanced AIE, high specificity to mitochondria, and superior photostability. By introducing doxorubicin (DOX) into R1, prodrug R2 is constructed as a dual-fluorescence-quenched Förster resonance energy transfer (FRET) system, in which the TPE-based axle acts as a donor fluorophore and the DOX unit acts as the acceptor. Upon hydrolysis of R2 in endo/lysosomes, the fluorescences of the carrier and the drug recover. R1 is further utilized as a drug delivery platform to conjugate other anticancer drugs containing amine groups through imine formation to prepare prodrugs. The anticancer drugs are released from these prodrugs in the cells upon hydrolysis of the pH-responsive imine bonds.
Collapse
Affiliation(s)
- Guocan Yu
- State Key Laboratory of Chemical Engineering , Center for Chemistry of High-Performance & Novel Materials , Department of Chemistry , Zhejiang University , Hangzhou 310027 , P. R. China . ; ; Tel: +86-571-8795-3189
| | - Dan Wu
- Department of Chemistry , Institute of Chemical Biology and Pharmaceutical Chemistry , Zhejiang University , Hangzhou 310027 , P. R. China
| | - Yang Li
- Department of Chemistry , Institute of Chemical Biology and Pharmaceutical Chemistry , Zhejiang University , Hangzhou 310027 , P. R. China
| | - Zhihua Zhang
- State Key Laboratory of Chemical Engineering , Center for Chemistry of High-Performance & Novel Materials , Department of Chemistry , Zhejiang University , Hangzhou 310027 , P. R. China . ; ; Tel: +86-571-8795-3189
| | - Li Shao
- State Key Laboratory of Chemical Engineering , Center for Chemistry of High-Performance & Novel Materials , Department of Chemistry , Zhejiang University , Hangzhou 310027 , P. R. China . ; ; Tel: +86-571-8795-3189
| | - Jiong Zhou
- State Key Laboratory of Chemical Engineering , Center for Chemistry of High-Performance & Novel Materials , Department of Chemistry , Zhejiang University , Hangzhou 310027 , P. R. China . ; ; Tel: +86-571-8795-3189
| | - Qinglian Hu
- College of Biological and Environmental Engineering , Zhejiang University of Technology , Hangzhou 310014 , P. R. China
| | - Guping Tang
- Department of Chemistry , Institute of Chemical Biology and Pharmaceutical Chemistry , Zhejiang University , Hangzhou 310027 , P. R. China
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering , Center for Chemistry of High-Performance & Novel Materials , Department of Chemistry , Zhejiang University , Hangzhou 310027 , P. R. China . ; ; Tel: +86-571-8795-3189
| |
Collapse
|