101
|
Cox N, Messinger J. Reflections on substrate water and dioxygen formation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:1020-30. [PMID: 23380392 DOI: 10.1016/j.bbabio.2013.01.013] [Citation(s) in RCA: 204] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 01/23/2013] [Accepted: 01/25/2013] [Indexed: 11/30/2022]
Abstract
This brief article aims at presenting a concise summary of all experimental findings regarding substrate water-binding to the Mn4CaO5 cluster in photosystem II. Mass spectrometric and spectroscopic results are interpreted in light of recent structural information of the water oxidizing complex obtained by X-ray crystallography, spectroscopy and theoretical modeling. Within this framework current proposals for the mechanism of photosynthetic water-oxidation are evaluated. This article is part of a Special Issue entitled: Metals in Bioenergetics and Biomimetics Systems.
Collapse
Affiliation(s)
- Nicholas Cox
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, Mülheim an der Ruhr, Germany
| | | |
Collapse
|
102
|
Kanady JS, Tran R, Stull JA, Lu L, Stich TA, Day MW, Yano J, Britt RD, Agapie T. Role of Oxido Incorporation and Ligand Lability in Expanding Redox Accessibility of Structurally Related Mn 4 Clusters. Chem Sci 2013; 4:3986-3996. [PMID: 24163730 DOI: 10.1039/c3sc51406d] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Photosystem II supports four manganese centers through nine oxidation states from manganese(II) during assembly through to the most oxidized state before O2 formation and release. The protein-based carboxylate and imidazole ligands allow for significant changes of the coordination environment during the incorporation of hydroxido and oxido ligands upon oxidation of the metal centers. We report the synthesis and characterization of a series of tetramanganese complexes in four of the six oxidation states from MnII3MnIII to MnIII2 MnIV2 with the same ligand framework (L) by incorporating four oxido ligands. A 1,3,5-triarylbenzene framework appended with six pyridyl and three alkoxy groups was utilized along with three acetate anions to access tetramanganese complexes, Mn4O x , with x = 1, 2, 3, and 4. Alongside two previously reported complexes, four new clusters in various states were isolated and characterized by crystallography, and four were observed electrochemically, thus accessing the eight oxidation states from MnII4 to MnIIIMnIV3. This structurally related series of compounds was characterized by EXAFS, XANES, EPR, magnetism, and cyclic voltammetry. Similar to the ligands in the active site of the protein, the ancillary ligand (L) is preserved throughout the series and changes its binding mode between the low and high oxido-content clusters. Implications for the rational assembly and properties of high oxidation state metal-oxido clusters are presented.
Collapse
Affiliation(s)
- Jacob S Kanady
- Department of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd MC 127-72, Pasadena CA 91125, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Energy-dispersive X-ray emission spectroscopy using an X-ray free-electron laser in a shot-by-shot mode. Proc Natl Acad Sci U S A 2012; 109:19103-7. [PMID: 23129631 DOI: 10.1073/pnas.1211384109] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ultrabright femtosecond X-ray pulses provided by X-ray free-electron lasers open capabilities for studying the structure and dynamics of a wide variety of systems beyond what is possible with synchrotron sources. Recently, this "probe-before-destroy" approach has been demonstrated for atomic structure determination by serial X-ray diffraction of microcrystals. There has been the question whether a similar approach can be extended to probe the local electronic structure by X-ray spectroscopy. To address this, we have carried out femtosecond X-ray emission spectroscopy (XES) at the Linac Coherent Light Source using redox-active Mn complexes. XES probes the charge and spin states as well as the ligand environment, critical for understanding the functional role of redox-active metal sites. Kβ(1,3) XES spectra of Mn(II) and Mn(2)(III,IV) complexes at room temperature were collected using a wavelength dispersive spectrometer and femtosecond X-ray pulses with an individual dose of up to >100 MGy. The spectra were found in agreement with undamaged spectra collected at low dose using synchrotron radiation. Our results demonstrate that the intact electronic structure of redox active transition metal compounds in different oxidation states can be characterized with this shot-by-shot method. This opens the door for studying the chemical dynamics of metal catalytic sites by following reactions under functional conditions. The technique can be combined with X-ray diffraction to simultaneously obtain the geometric structure of the overall protein and the local chemistry of active metal sites and is expected to prove valuable for understanding the mechanism of important metalloproteins, such as photosystem II.
Collapse
|
104
|
Siegbahn PEM. Water oxidation mechanism in photosystem II, including oxidations, proton release pathways, O-O bond formation and O2 release. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1827:1003-19. [PMID: 23103385 DOI: 10.1016/j.bbabio.2012.10.006] [Citation(s) in RCA: 286] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 10/15/2012] [Accepted: 10/18/2012] [Indexed: 11/17/2022]
Abstract
The present status of DFT studies on water oxidation in photosystem II is described. It is argued that a full understanding of all steps is close. In each S-transition, the manganese that is oxidized and the proton released are strongly implicated, and structures of all intermediates have been determined. For the S2-state, recent important experimental findings support key elements of the structure and the mechanism. In this mechanism, the O-O bond is formed between an oxyl radical in the center of the cluster and an Mn-bridging μ-oxo ligand, which was suggested already in 2006. The DFT structure of the oxygen evolving complex, suggested in 2008, is very similar to the recent high-resolution X-ray structure. Some new aspects of the interaction between P680 and the OEC are suggested. This article is part of a Special Issue entitled: Metals in Bioenergetics and Biomimetics Systems.
Collapse
|
105
|
Brena B, Siegbahn PEM, Ågren H. Modeling Near-Edge Fine Structure X-ray Spectra of the Manganese Catalytic Site for Water Oxidation in Photosystem II. J Am Chem Soc 2012; 134:17157-67. [DOI: 10.1021/ja306794p] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Barbara Brena
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala, Sweden
| | - Per E. M. Siegbahn
- Department of Physics, Alba
Nova, and Department of Biochemistry and Biophysics, Arrhenius Laboratory, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Hans Ågren
- School of Biotechnology, Theoretical
Chemistry and Biology, Royal Institute of Technology, S-106 91 Stockholm, Sweden
| |
Collapse
|
106
|
Leidel N, Chernev P, Havelius KGV, Schwartz L, Ott S, Haumann M. Electronic Structure of an [FeFe] Hydrogenase Model Complex in Solution Revealed by X-ray Absorption Spectroscopy Using Narrow-Band Emission Detection. J Am Chem Soc 2012; 134:14142-57. [DOI: 10.1021/ja304970p] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Nils Leidel
- Institut für Experimentalphysik, Freie Universität Berlin, 14195 Berlin, Germany
| | - Petko Chernev
- Institut für Experimentalphysik, Freie Universität Berlin, 14195 Berlin, Germany
| | - Kajsa G. V. Havelius
- Institut für Experimentalphysik, Freie Universität Berlin, 14195 Berlin, Germany
| | - Lennart Schwartz
- Department of Chemistry, Uppsala University, Ångström Laboratories,
75120 Uppsala, Sweden
| | - Sascha Ott
- Department of Chemistry, Uppsala University, Ångström Laboratories,
75120 Uppsala, Sweden
| | - Michael Haumann
- Institut für Experimentalphysik, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
107
|
Which oxidation state is preferable at S0 state in oxygen-evolving complex, Mn4(II, III, IV, IV) or Mn4(III, III, III, IV)? A B3LYP study. Chem Phys Lett 2012. [DOI: 10.1016/j.cplett.2012.07.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
108
|
Davis KM, Mattern BA, Pacold JI, Zakharova T, Brewe D, Kosheleva I, Henning RW, Graber TJ, Heald SM, Seidler GT, Pushkar Y. Fast Detection Allows Analysis of the Electronic Structure of Metalloprotein by X-ray Emission Spectroscopy at Room Temperature. J Phys Chem Lett 2012; 3:1858-1864. [PMID: 22919444 PMCID: PMC3423219 DOI: 10.1021/jz3006223] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The paradigm of "detection-before-destruction" was tested for a metalloprotein complex exposed at room temperature to the high x-ray flux typical of third generation synchrotron sources. Following the progression of the x-ray induced damage by Mn Kβ x-ray emission spectroscopy, we demonstrated the feasibility of collecting room temperature data on the electronic structure of native Photosystem II, a trans-membrane metalloprotein complex containing a Mn(4)Ca cluster. The determined non-damaging observation timeframe (about 100 milliseconds using continuous monochromatic beam, deposited dose 1*10(7) photons/µm(2) or 1.3*10(4) Gy, and 66 microseconds in pulsed mode using pink beam, deposited dose 4*10(7) photons/µm(2) or 4.2*10(4) Gy) is sufficient for the analysis of this protein's electron dynamics and catalytic mechanism at room temperature. Reported time frames are expected to be representative for other metalloproteins. The described instrumentation, based on the short working distance dispersive spectrometer, and experimental methodology is broadly applicable to time-resolved x-ray emission analysis at synchrotron and x-ray free-electron laser light sources.
Collapse
Affiliation(s)
| | - Brian A. Mattern
- Department of Physics, University of Washington, Seattle, WA 98195, USA
| | - Joseph I. Pacold
- Department of Physics, University of Washington, Seattle, WA 98195, USA
| | | | - Dale Brewe
- Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439
| | - Irina Kosheleva
- Center for Advanced Radiation Sources, The University of Chicago, Chicago, IL 60637, USA
| | - Robert W. Henning
- Center for Advanced Radiation Sources, The University of Chicago, Chicago, IL 60637, USA
| | - Timothy J. Graber
- Center for Advanced Radiation Sources, The University of Chicago, Chicago, IL 60637, USA
| | - Steve M. Heald
- Advanced Photon Source, Argonne National Laboratory, Argonne, IL 60439
| | - Gerald T. Seidler
- Department of Physics, University of Washington, Seattle, WA 98195, USA
| | | |
Collapse
|
109
|
Lohmiller T, Cox N, Su JH, Messinger J, Lubitz W. The basic properties of the electronic structure of the oxygen-evolving complex of photosystem II are not perturbed by Ca2+ removal. J Biol Chem 2012; 287:24721-33. [PMID: 22549771 PMCID: PMC3397899 DOI: 10.1074/jbc.m112.365288] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 04/25/2012] [Indexed: 11/06/2022] Open
Abstract
Ca(2+) is an integral component of the Mn(4)O(5)Ca cluster of the oxygen-evolving complex in photosystem II (PS II). Its removal leads to the loss of the water oxidizing functionality. The S(2)' state of the Ca(2+)-depleted cluster from spinach is examined by X- and Q-band EPR and (55)Mn electron nuclear double resonance (ENDOR) spectroscopy. Spectral simulations demonstrate that upon Ca(2+) removal, its electronic structure remains essentially unaltered, i.e. that of a manganese tetramer. No redistribution of the manganese valence states and only minor perturbation of the exchange interactions between the manganese ions were found. Interestingly, the S(2)' state in spinach PS II is very similar to the native S(2) state of Thermosynechococcus elongatus in terms of spin state energies and insensitivity to methanol addition. These results assign the Ca(2+) a functional as opposed to a structural role in water splitting catalysis, such as (i) being essential for efficient proton-coupled electron transfer between Y(Z) and the manganese cluster and/or (ii) providing an initial binding site for substrate water. Additionally, a novel (55)Mn(2+) signal, detected by Q-band pulse EPR and ENDOR, was observed in Ca(2+)-depleted PS II. Mn(2+) titration, monitored by (55)Mn ENDOR, revealed a specific Mn(2+) binding site with a submicromolar K(D). Ca(2+) titration of Mn(2+)-loaded, Ca(2+)-depleted PS II demonstrated that the site is reversibly made accessible to Mn(2+) by Ca(2+) depletion and reconstitution. Mn(2+) is proposed to bind at one of the extrinsic subunits. This process is possibly relevant for the formation of the Mn(4)O(5)Ca cluster during photoassembly and/or D1 repair.
Collapse
Affiliation(s)
- Thomas Lohmiller
- From the Max-Planck-Institut für
Bioanorganische Chemie, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr,
Germany and
| | - Nicholas Cox
- From the Max-Planck-Institut für
Bioanorganische Chemie, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr,
Germany and
| | - Ji-Hu Su
- From the Max-Planck-Institut für
Bioanorganische Chemie, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr,
Germany and
| | - Johannes Messinger
- the Department of Chemistry, Chemical
Biological Centre (KBC), Umeå University, S-90187 Umeå,
Sweden
| | - Wolfgang Lubitz
- From the Max-Planck-Institut für
Bioanorganische Chemie, Stiftstrasse 34-36, 45470 Mülheim an der Ruhr,
Germany and
| |
Collapse
|
110
|
Alonso-Mori R, Kern J, Sokaras D, Weng TC, Nordlund D, Tran R, Montanez P, Delor J, Yachandra VK, Yano J, Bergmann U. A multi-crystal wavelength dispersive x-ray spectrometer. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2012; 83:073114. [PMID: 22852678 PMCID: PMC3422323 DOI: 10.1063/1.4737630] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 07/02/2012] [Indexed: 05/23/2023]
Abstract
A multi-crystal wavelength dispersive hard x-ray spectrometer with high-energy resolution and large solid angle collection is described. The instrument is specifically designed for time-resolved applications of x-ray emission spectroscopy (XES) and x-ray Raman scattering (XRS) at X-ray Free Electron Lasers (XFEL) and synchrotron radiation facilities. It also simplifies resonant inelastic x-ray scattering (RIXS) studies of the whole 2d RIXS plane. The spectrometer is based on the Von Hamos geometry. This dispersive setup enables an XES or XRS spectrum to be measured in a single-shot mode, overcoming the scanning needs of the Rowland circle spectrometers. In conjunction with the XFEL temporal profile and high-flux, it is a powerful tool for studying the dynamics of time-dependent systems. Photo-induced processes and fast catalytic reaction kinetics, ranging from femtoseconds to milliseconds, will be resolvable in a wide array of systems circumventing radiation damage.
Collapse
Affiliation(s)
- Roberto Alonso-Mori
- LCLS, SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Leidel N, Chernev P, Havelius KGV, Ezzaher S, Ott S, Haumann M. Site-Selective X-ray Spectroscopy on an Asymmetric Model Complex of the [FeFe] Hydrogenase Active Site. Inorg Chem 2012; 51:4546-59. [DOI: 10.1021/ic2024154] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Nils Leidel
- Freie Universität Berlin, Institut für Experimentalphysik, 14195
Berlin, Germany
| | - Petko Chernev
- Freie Universität Berlin, Institut für Experimentalphysik, 14195
Berlin, Germany
| | - Kajsa G. V. Havelius
- Freie Universität Berlin, Institut für Experimentalphysik, 14195
Berlin, Germany
| | - Salah Ezzaher
- University of Uppsala, Department of Chemistry, Ångström
Laboratories, 75120
Uppsala, Sweden
| | - Sascha Ott
- University of Uppsala, Department of Chemistry, Ångström
Laboratories, 75120
Uppsala, Sweden
| | - Michael Haumann
- Freie Universität Berlin, Institut für Experimentalphysik, 14195
Berlin, Germany
| |
Collapse
|
112
|
Han G, Mamedov F, Styring S. Misses during water oxidation in photosystem II are S state-dependent. J Biol Chem 2012; 287:13422-9. [PMID: 22374999 DOI: 10.1074/jbc.m112.342543] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The period of four oscillation of the S state intermediates of the water oxidizing complex in Photosystem II (PSII) is commonly analyzed by the Kok parameters. The important miss factor determines the efficiency for each S transition. Commonly, an equal miss factor has been used in the analysis. We have used EPR signals which probe all S states in the same sample during S cycle advancement. This allows, for the first time, to measure directly the miss parameter for each S state transition. Experiments were performed in PSII membrane preparations from spinach in the presence of electron acceptor at 1 °C and 20 °C. The data show that the miss parameter is different in different transitions and shows different temperature dependence. We found no misses at 1 °C and 10% misses at 20 °C during the S(1)→S(2) transition. The highest miss factor was found in the S(2)→S(3) transition which decreased from 23% to 16% with increasing temperature. For the S(3)→S(0) transition the miss parameter was found to be 7% at 1 °C and decreased to 3% at 20 °C. For the S(0)→S(1) transition the miss parameter was found to be approximately 10% at both temperatures. The contribution from the acceptor side in the form of recombination reactions as well as from the donor side of PSII to the uneven misses is discussed. It is suggested that the different transition efficiency in each S transition partly reflects the chemistry at the CaMn(4)O(5) cluster. That consequently contributes to the uneven misses during S cycle turnover in PSII.
Collapse
Affiliation(s)
- Guangye Han
- Photochemistry and Molecular Science, the Department of Chemistry-Ångström, Box 523, Uppsala University, 751 20 Uppsala, Sweden
| | | | | |
Collapse
|
113
|
Taguchi T, Gupta R, Lassalle-Kaiser B, Boyce DW, Yachandra VK, Tolman WB, Yano J, Hendrich MP, Borovik AS. Preparation and properties of a monomeric high-spin Mn(V)-oxo complex. J Am Chem Soc 2012; 134:1996-9. [PMID: 22233169 DOI: 10.1021/ja210957u] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Oxomanganese(V) species have been implicated in a variety of biological and synthetic processes, including their role as a key reactive center within the oxygen-evolving complex in photosynthesis. Nearly all mononuclear Mn(V)-oxo complexes have tetragonal symmetry, producing low-spin species. A new high-spin Mn(V)-oxo complex that was prepared from a well-characterized oxomanganese(III) complex having trigonal symmetry is now reported. Oxidation experiments with [FeCp(2)](+) were monitored with optical and electron paramagnetic resonance (EPR) spectroscopies and support a high-spin oxomanganese(V) complex formulation. The parallel-mode EPR spectrum has a distinctive S = 1 signal at g = 4.01 with a six-line hyperfine pattern having A(z) = 113 MHz. The presence of an oxo ligand was supported by resonance Raman spectroscopy, which revealed O-isotope-sensitive peaks at 737 and 754 cm(-1) assigned as a Fermi doublet centered at 746 cm(-1)(Δ(18)O = 31 cm(-1)). Mn Kβ X-ray emission spectra showed Kβ' and Kβ(1,3) bands at 6475.92 and 6490.50 eV, respectively, which are characteristic of a high-spin Mn(V) center.
Collapse
Affiliation(s)
- Taketo Taguchi
- Department of Chemistry, University of California-Irvine, 1102 Natural Sciences II, Irvine, California 92697, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Leidel N, Popović-Bijelić A, Havelius KGV, Chernev P, Voevodskaya N, Gräslund A, Haumann M. High-valent [MnFe] and [FeFe] cofactors in ribonucleotide reductases. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:430-44. [PMID: 22222354 DOI: 10.1016/j.bbabio.2011.12.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 12/13/2011] [Accepted: 12/16/2011] [Indexed: 11/30/2022]
Abstract
Ribonucleotide reductases (RNRs) are essential for DNA synthesis in most organisms. In class-Ic RNR from Chlamydia trachomatis (Ct), a MnFe cofactor in subunit R2 forms the site required for enzyme activity, instead of an FeFe cofactor plus a redox-active tyrosine in class-Ia RNRs, for example in mouse (Mus musculus, Mm). For R2 proteins from Ct and Mm, either grown in the presence of, or reconstituted with Mn and Fe ions, structural and electronic properties of higher valence MnFe and FeFe sites were determined by X-ray absorption spectroscopy and complementary techniques, in combination with bond-valence-sum and density functional theory calculations. At least ten different cofactor species could be tentatively distinguished. In Ct R2, two different Mn(IV)Fe(III) site configurations were assigned either L(4)Mn(IV)(μO)(2)Fe(III)L(4) (metal-metal distance of ~2.75Å, L = ligand) prevailing in metal-grown R2, or L(4)Mn(IV)(μO)(μOH)Fe(III)L(4) (~2.90Å) dominating in metal-reconstituted R2. Specific spectroscopic features were attributed to an Fe(IV)Fe(III) site (~2.55Å) with a L(4)Fe(IV)(μO)(2)Fe(III)L(3) core structure. Several Mn,Fe(III)Fe(III) (~2.9-3.1Å) and Mn,Fe(III)Fe(II) species (~3.3-3.4Å) likely showed 5-coordinated Mn(III) or Fe(III). Rapid X-ray photoreduction of iron and shorter metal-metal distances in the high-valent states suggested radiation-induced modifications in most crystal structures of R2. The actual configuration of the MnFe and FeFe cofactors seems to depend on assembly sequences, bound metal type, valence state, and previous catalytic activity involving subunit R1. In Ct R2, the protonation of a bridging oxide in the Mn(IV)(μO)(μOH)Fe(III) core may be important for preventing premature site reduction and initiation of the radical chemistry in R1.
Collapse
Affiliation(s)
- Nils Leidel
- Institut für Experimentalphysik, Freie Universität Berlin, 14195 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
115
|
Chatterjee R, Milikisiyants S, Lakshmi KV. Two-dimensional 14N HYSCORE spectroscopy of the coordination geometry of ligands in dimanganese di-μ-oxo mimics of the oxygen evolving complex of photosystem II. Phys Chem Chem Phys 2012; 14:7090-7. [DOI: 10.1039/c2cp40416h] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
116
|
Pace RJ, Jin L, Stranger R. What spectroscopy reveals concerning the Mn oxidation levels in the oxygen evolving complex of photosystem II: X-ray to near infra-red. Dalton Trans 2012; 41:11145-60. [DOI: 10.1039/c2dt30938f] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
117
|
Chen G, Han G, Göransson E, Mamedov F, Styring S. Stability of the S3 and S2 State Intermediates in Photosystem II Directly Probed by EPR Spectroscopy. Biochemistry 2011; 51:138-48. [PMID: 22112168 DOI: 10.1021/bi200627j] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Guiying Chen
- Molecular
Biomimetics, Department of Photochemistry
and Molecular Science, Ångström Laboratory, Box 523, Uppsala University, SE-751 20 Uppsala, Sweden
| | - Guangye Han
- Molecular
Biomimetics, Department of Photochemistry
and Molecular Science, Ångström Laboratory, Box 523, Uppsala University, SE-751 20 Uppsala, Sweden
| | - Erik Göransson
- Molecular
Biomimetics, Department of Photochemistry
and Molecular Science, Ångström Laboratory, Box 523, Uppsala University, SE-751 20 Uppsala, Sweden
| | - Fikret Mamedov
- Molecular
Biomimetics, Department of Photochemistry
and Molecular Science, Ångström Laboratory, Box 523, Uppsala University, SE-751 20 Uppsala, Sweden
| | - Stenbjörn Styring
- Molecular
Biomimetics, Department of Photochemistry
and Molecular Science, Ångström Laboratory, Box 523, Uppsala University, SE-751 20 Uppsala, Sweden
| |
Collapse
|
118
|
Beckwith MA, Roemelt M, Collomb MN, DuBoc C, Weng TC, Bergmann U, Glatzel P, Neese F, DeBeer S. Manganese Kβ X-ray emission spectroscopy as a probe of metal-ligand interactions. Inorg Chem 2011; 50:8397-409. [PMID: 21805960 DOI: 10.1021/ic200970t] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A systematic series of high-spin mononuclear Mn(II), Mn(III), and Mn(IV) complexes has been investigated by manganese Kβ X-ray emission spectroscopy (XES). The factors contributing to the Kβ main line and the valence to core region are discussed. The Kβ main lines are dominated by 3p-3d exchange correlation (spin state) effects, shifting to lower energy upon oxidation of Mn(II) to Mn(III) due to the decrease in spin state from S = 5/2 to S = 2, whereas the valence to core region shows greater sensitivity to the chemical environment surrounding the Mn center. A density functional theory (DFT) approach has been used to calculate the valence to core spectra and assess the contributions to the energies and intensities. The valence spectra are dominated by manganese np to 1s electric dipole-allowed transitions and are particularly sensitive to spin state and ligand identity (reflected primarily in the transition energies) as well as oxidation state and metal-ligand bond lengths (reflected primarily in the transition intensities). The ability to use these methods to distinguish different ligand contributions within a heteroleptic coordination sphere is highlighted. The similarities and differences between the current Mn XES study and previous studies of Fe XES investigations are discussed. These findings serve as an important calibration for future applications to manganese active sites in biological and chemical catalysis.
Collapse
Affiliation(s)
- Martha A Beckwith
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Grundmeier A, Dau H. Structural models of the manganese complex of photosystem II and mechanistic implications. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:88-105. [PMID: 21787743 DOI: 10.1016/j.bbabio.2011.07.004] [Citation(s) in RCA: 191] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 07/06/2011] [Accepted: 07/08/2011] [Indexed: 11/29/2022]
Abstract
Photosynthetic water oxidation and O₂ formation are catalyzed by a Mn₄Ca complex bound to the proteins of photosystem II (PSII). The catalytic site, including the inorganic Mn₄CaO(n)H(x) core and its protein environment, is denoted as oxygen-evolving complex (OEC). Earlier and recent progress in the endeavor to elucidate the structure of the OEC is reviewed, with focus on recent results obtained by (i) X−ray spectroscopy (specifically by EXAFS analyses), and (ii) X-ray diffraction (XRD, protein crystallography). Very recently, an impressive resolution of 1.9Å has been achieved by XRD. Most likely however, all XRD data on the Mn₄CaO(n)H(x) core of the OEC are affected by X-ray induced modifications (radiation damage). Therefore and to address (important) details of the geometric and electronic structure of the OEC, a combined analysis of XRD and XAS data has been approached by several research groups. These efforts are reviewed and extended using an especially comprehensive approach. Taking into account XRD results on the protein environment of the inorganic core of the Mn complex, 12 alternative OEC models are considered and evaluated by quantitative comparison to (i) extended-range EXAFS data, (ii) polarized EXAFS of partially oriented PSII membrane particles, and (iii) polarized EXAFS of PSII crystals. We conclude that there is a class of OEC models that is in good agreement with both the recent crystallographic models and the XAS data. On these grounds, mechanistic implications for the O−O bond formation chemistry are discussed. This article is part of a Special Issue entitled: Photosystem II.
Collapse
|
120
|
Application of computational chemistry to understanding the structure and mechanism of the Mn catalytic site in photosystem II – A review. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2011; 104:80-93. [DOI: 10.1016/j.jphotobiol.2011.02.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 01/28/2011] [Accepted: 02/05/2011] [Indexed: 11/22/2022]
|
121
|
Ho FM. Structural and mechanistic investigations of photosystem II through computational methods. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:106-20. [PMID: 21565158 DOI: 10.1016/j.bbabio.2011.04.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 03/22/2011] [Accepted: 04/02/2011] [Indexed: 11/17/2022]
Abstract
The advent of oxygenic photosynthesis through water oxidation by photosystem II (PSII) transformed the planet, ultimately allowing the evolution of aerobic respiration and an explosion of ecological diversity. The importance of this enzyme to life on Earth has ironically been paralleled by the elusiveness of a detailed understanding of its precise catalytic mechanism. Computational investigations have in recent years provided more and more insights into the structural and mechanistic details that underlie the workings of PSII. This review will present an overview of some of these studies, focusing on those that have aimed at elucidating the mechanism of water oxidation at the CaMn₄ cluster in PSII, and those exploring the features of the structure and dynamics of this enzyme that enable it to catalyse this energetically demanding reaction. This article is part of a Special Issue entitled: Photosystem II.
Collapse
Affiliation(s)
- Felix M Ho
- Deparment of Photochemistry and Molecular Sciences, Angström Laboratory, Uppsala University, Sweden.
| |
Collapse
|
122
|
Jaszewski AR, Petrie S, Pace RJ, Stranger R. Toward the Assignment of the Manganese Oxidation Pattern in the Water-Oxidizing Complex of Photosystem II: A Time-Dependent DFT Study of XANES Energies. Chemistry 2011; 17:5699-713. [DOI: 10.1002/chem.201001996] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 12/23/2010] [Indexed: 11/10/2022]
|
123
|
Jaszewski AR, Stranger R, Pace RJ. Structural and Electronic Models of the Water Oxidizing Complex in the S0 State of Photosystem II: A Density Functional Study. J Phys Chem B 2011; 115:4484-99. [DOI: 10.1021/jp200053n] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Adrian R. Jaszewski
- Research School of Chemistry, College of Science, Australian National University, Canberra ACT 0200, Australia
| | - Rob Stranger
- Research School of Chemistry, College of Science, Australian National University, Canberra ACT 0200, Australia
| | - Ronald J. Pace
- Research School of Chemistry, College of Science, Australian National University, Canberra ACT 0200, Australia
| |
Collapse
|
124
|
Cox N, Rapatskiy L, Su JH, Pantazis DA, Sugiura M, Kulik L, Dorlet P, Rutherford AW, Neese F, Boussac A, Lubitz W, Messinger J. Effect of Ca2+/Sr2+ substitution on the electronic structure of the oxygen-evolving complex of photosystem II: a combined multifrequency EPR, 55Mn-ENDOR, and DFT study of the S2 state. J Am Chem Soc 2011; 133:3635-48. [PMID: 21341708 DOI: 10.1021/ja110145v] [Citation(s) in RCA: 182] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The electronic structures of the native Mn(4)O(x)Ca cluster and the biosynthetically substituted Mn(4)O(x)Sr cluster of the oxygen evolving complex (OEC) of photosystem II (PSII) core complexes isolated from Thermosynechococcus elongatus, poised in the S(2) state, were studied by X- and Q-band CW-EPR and by pulsed Q-band (55)Mn-ENDOR spectroscopy. Both wild type and tyrosine D less mutants grown photoautotrophically in either CaCl(2) or SrCl(2) containing media were measured. The obtained CW-EPR spectra of the S(2) state displayed the characteristic, clearly noticeable differences in the hyperfine pattern of the multiline EPR signal [Boussac et al. J. Biol. Chem.2004, 279, 22809-22819]. In sharp contrast, the manganese ((55)Mn) ENDOR spectra of the Ca and Sr forms of the OEC were remarkably similar. Multifrequency simulations of the X- and Q-band CW-EPR and (55)Mn-pulsed ENDOR spectra using the Spin Hamiltonian formalism were performed to investigate this surprising result. It is shown that (i) all four manganese ions contribute to the (55)Mn-ENDOR spectra; (ii) only small changes are seen in the fitted isotropic hyperfine values for the Ca(2+) and Sr(2+) containing OEC, suggesting that there is no change in the overall spin distribution (electronic coupling scheme) upon Ca(2+)/Sr(2+) substitution; (iii) the changes in the CW-EPR hyperfine pattern can be explained by a small decrease in the anisotropy of at least two hyperfine tensors. It is proposed that modifications at the Ca(2+) site may modulate the fine structure tensor of the Mn(III) ion. DFT calculations support the above conclusions. Our data analysis also provides strong support for the notion that in the S(2) state the coordination of the Mn(III) ion is square-pyramidal (5-coordinate) or octahedral (6-coordinate) with tetragonal elongation. In addition, it is shown that only one of the currently published OEC models, the Siegbahn structure [Siegbahn, P. E. M. Acc. Chem. Res.2009, 42, 1871-1880, Pantazis, D. A. et al. Phys. Chem. Chem. Phys.2009, 11, 6788-6798], is consistent with all data presented here. These results provide important information for the structure of the OEC and the water-splitting mechanism. In particular, the 5-coordinate Mn(III) is a potential site for substrate 'water' (H(2)O, OH(-)) binding. Its location within the cuboidal structural unit, as opposed to the external 'dangler' position, may have important consequences for the mechanism of O-O bond formation.
Collapse
Affiliation(s)
- Nicholas Cox
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Yano J, Walker LM, Strickler MA, Service RJ, Yachandra VK, Debus RJ. Altered structure of the Mn4Ca cluster in the oxygen-evolving complex of photosystem II by a histidine ligand mutation. J Biol Chem 2011; 286:9257-67. [PMID: 21233216 DOI: 10.1074/jbc.m110.205740] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The effect of replacing a histidine ligand on the properties of the oxygen-evolving complex (OEC) and the structure of the Mn(4)Ca cluster in Photosystem II (PSII) is studied by x-ray absorption spectroscopy using PSII core complexes from the Synechocystis sp. PCC 6803 D1 polypeptide mutant H332E. In the x-ray crystallographic structures of PSII, D1-His(332) has been assigned as a direct ligand of a manganese ion, and the mutation of this histidine ligand to glutamate has been reported to prevent the advancement of the OEC beyond the S(2)Yz(•) intermediate state. The manganese K-edge (1s core electron to 4p) absorption spectrum of D1-H332E shifts to a lower energy compared with that of the native WT samples, suggesting that the electronic structure of the manganese cluster is affected by the presence of the additional negative charge on the OEC of the mutant. The extended x-ray absorption spectrum shows that the geometric structure of the cluster is altered substantially from that of the native WT state, resulting in an elongation of manganese-ligand and manganese-manganese interactions in the mutant. The strontium-H332E mutant, in which calcium is substituted by strontium, confirms that strontium (calcium) is a part of the altered cluster. The structural perturbations caused by the D1-H332E mutation are much larger than those produced by any biochemical treatment or mutation examined previously with x-ray absorption spectroscopy. The substantial structural changes provide an explanation not only for the altered properties of the D1-H332E mutant but also the importance of the histidine ligand for proper assembly of the Mn(4)Ca cluster.
Collapse
Affiliation(s)
- Junko Yano
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | | | | | | | | | | |
Collapse
|
126
|
Gerencsér L, Dau H. Water Oxidation by Photosystem II: H2O−D2O Exchange and the Influence of pH Support Formation of an Intermediate by Removal of a Proton before Dioxygen Creation. Biochemistry 2010; 49:10098-106. [DOI: 10.1021/bi101198n] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- László Gerencsér
- Freie Universität Berlin, FB Physik, Arnimallee 14, D-14195 Berlin, Germany
| | - Holger Dau
- Freie Universität Berlin, FB Physik, Arnimallee 14, D-14195 Berlin, Germany
| |
Collapse
|
127
|
Havelius KGV, Su JH, Han G, Mamedov F, Ho FM, Styring S. The formation of the split EPR signal from the S(3) state of Photosystem II does not involve primary charge separation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1807:11-21. [PMID: 20863810 DOI: 10.1016/j.bbabio.2010.09.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 09/14/2010] [Accepted: 09/15/2010] [Indexed: 11/16/2022]
Abstract
Metalloradical EPR signals have been found in intact Photosystem II at cryogenic temperatures. They reflect the light-driven formation of the tyrosine Z radical (Y(Z)) in magnetic interaction with the CaMn(4) cluster in a particular S state. These so-called split EPR signals, induced at cryogenic temperatures, provide means to study the otherwise transient Y(Z) and to probe the S states with EPR spectroscopy. In the S(0) and S(1) states, the respective split signals are induced by illumination of the sample in the visible light range only. In the S(3) state the split EPR signal is induced irrespective of illumination wavelength within the entire 415-900nm range (visible and near-IR region) [Su, J. H., Havelius, K. G. V., Ho, F. M., Han, G., Mamedov, F., and Styring, S. (2007) Biochemistry 46, 10703-10712]. An important question is whether a single mechanism can explain the induction of the Split S(3) signal across the entire wavelength range or whether wavelength-dependent mechanisms are required. In this paper we confirm that the Y(Z) radical formation in the S(1) state, reflected in the Split S(1) signal, is driven by P680-centered charge separation. The situation in the S(3) state is different. In Photosystem II centers with pre-reduced quinone A (Q(A)), where the P680-centered charge separation is blocked, the Split S(3) EPR signal could still be induced in the majority of the Photosystem II centers using both visible and NIR (830nm) light. This shows that P680-centered charge separation is not involved. The amount of oxidized electron donors and reduced electron acceptors (Q(A)(-)) was well correlated after visible light illumination at cryogenic temperatures in the S(1) state. This was not the case in the S(3) state, where the Split S(3) EPR signal was formed in the majority of the centers in a pathway other than P680-centered charge separation. Instead, we propose that one mechanism exists over the entire wavelength interval to drive the formation of the Split S(3) signal. The origin for this, probably involving excitation of one of the Mn ions in the CaMn(4) cluster in Photosystem II, is discussed.
Collapse
Affiliation(s)
- Kajsa G V Havelius
- Molecular Biomimetrics, Department of Photochemistry and Molecular Sciences, Uppsala University, The Angström Laboratory, Uppsala, Sweden
| | | | | | | | | | | |
Collapse
|
128
|
Dau H, Limberg C, Reier T, Risch M, Roggan S, Strasser P. The Mechanism of Water Oxidation: From Electrolysis via Homogeneous to Biological Catalysis. ChemCatChem 2010. [DOI: 10.1002/cctc.201000126] [Citation(s) in RCA: 1320] [Impact Index Per Article: 94.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
129
|
Liebisch P, Dau H. Linear Dichroism in the XANES of Partially Oriented Samples: Theory and Application to the Photosynthetic Manganese Complex. Chemphyschem 2010; 11:1236-47. [DOI: 10.1002/cphc.200900954] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
130
|
Wang LP, Wu Q, Van Voorhis T. Acid−Base Mechanism for Ruthenium Water Oxidation Catalysts. Inorg Chem 2010; 49:4543-53. [DOI: 10.1021/ic100075k] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lee-Ping Wang
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139
| | - Qin Wu
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973
| | - Troy Van Voorhis
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139
| |
Collapse
|
131
|
Pushkar Y, Long X, Glatzel P, Brudvig GW, Dismukes GC, Collins TJ, Yachandra VK, Yano J, Bergmann U. Direct detection of oxygen ligation to the Mn(4)Ca cluster of photosystem II by X-ray emission spectroscopy. Angew Chem Int Ed Engl 2010; 49:800-3. [PMID: 20017172 DOI: 10.1002/anie.200905366] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yulia Pushkar
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Smolentsev G, Soldatov AV, Messinger J, Merz K, Weyhermüller T, Bergmann U, Pushkar Y, Yano J, Yachandra VK, Glatzel P. X-ray emission spectroscopy to study ligand valence orbitals in Mn coordination complexes. J Am Chem Soc 2010; 131:13161-7. [PMID: 19663435 DOI: 10.1021/ja808526m] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We discuss a spectroscopic method to determine the character of chemical bonding and for the identification of metal ligands in coordination and bioinorganic chemistry. It is based on the analysis of satellite lines in X-ray emission spectra that arise from transitions between valence orbitals and the metal ion 1s level (valence-to-core XES). The spectra, in connection with calculations based on density functional theory (DFT), provide information that is complementary to other spectroscopic techniques, in particular X-ray absorption (XANES and EXAFS). The spectral shape is sensitive to protonation of ligands and allows ligands, which differ only slightly in atomic number (e.g., C, N, O...), to be distinguished. A theoretical discussion of the main spectral features is presented in terms of molecular orbitals for a series of Mn model systems: [Mn(H(2)O)(6)](2+), [Mn(H(2)O)(5)OH](+), and [Mn(H(2)O)(5)NH(3)](2+). An application of the method, with comparison between theory and experiment, is presented for the solvated Mn(2+) ion in water and three Mn coordination complexes, namely [LMn(acac)N(3)]BPh(4), [LMn(B(2)O(3)Ph(2))(ClO(4))], and [LMn(acac)N]BPh(4), where L represents 1,4,7-trimethyl-1,4,7-triazacyclononane, acac stands for the 2,4-pentanedionate anion, and B(2)O(3)Ph(2) represents the 1,3-diphenyl-1,3-dibora-2-oxapropane-1,3-diolato dianion.
Collapse
Affiliation(s)
- Grigory Smolentsev
- Faculty of Physics and Research Center for Nanoscale Structure of Matter, Southern Federal University, 344090 Rostov-on-Don, Russia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Katsuda M, Hishikawa E, Mitani M, Yoshioka Y. Theoretical study of electronic structures of [(H2O)3(O-)Mn(μ-oxo)2Mn(OH2)4]q+ (q = 2 or 3) with Mn–O bond. Phys Chem Chem Phys 2010; 12:2730-9. [DOI: 10.1039/b914793d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
134
|
Abstract
Water oxidation, forming O(2) from water and sunlight, is a fundamental process for life on earth. In nature, the enzyme photosystem II (PSII) catalyzes this reaction. The oxygen evolving complex (OEC), the complex within PSII that catalyzes the actual formation of the O-O bond, contains four manganese atoms and one calcium atom connected by oxo bonds. Seven amino acid side chains in the structure, mostly carboxylates, are ligated to the metal atoms. In the study of many enzyme mechanisms, theoretical modeling using density functional theory has served as an indispensable tool. This Account summarizes theoretical research to elucidate the mechanism for water oxidation in photosynthesis, including the most recent findings. The development of successively larger models, ranging from 50 atoms in the active site up to the present model size of 170 atoms, has revealed the mechanism of O(2) formation with increasing detail. The X-ray crystal structures of PSII have provided a framework for optimizing the theoretical models. By constraint of the backbone atoms to be at the same positions as those in the X-ray structures, the theoretical structures are in good agreement with both the measured electron density and extended X-ray absorption fine structure (EXAFS) interpretations. By following the structural and energetic changes in those structures through the different steps in the catalytic process, we have modeled the oxidation of the catalytic complex, the binding of the two substrate water molecules, and the subsequent deprotonations of those substrate molecules. In these models, the OEC forms a basin into which the water molecules naturally fit. These findings demonstrate that the binding of the second water molecule causes a reconstruction, results that are consistent with earlier EXAFS measurements. Most importantly, this Account describes a low-barrier mechanism for formation of the O-O bond, involving an oxygen radical that reacts with a mu-oxo ligand of the OEC. Further research revealed that the oxygen radical is bound in the Mn(3)Ca cube rather than to the outside manganese. This Account provides detailed diagrams of the energetics of the different S-transitions both without and with a membrane gradient. An interesting detail of these reactions concerns the role of the tyrosine (Tyr(Z)), which appears as an intermediate radical in the oxidation of the OEC. By simple electrostatic arguments, these results show that the initial oxidation of Tyr(Z) is downhill for the first two transitions but uphill for the final ones. In these later transitions, the oxidation of the OEC is coupled to deprotonations of water.
Collapse
Affiliation(s)
- Per E. M. Siegbahn
- Department of Physics, ALBA NOVA, and Department of Biochemistry and Biophysics, Arrhenius Laboratory, Stockholm University,SE-106 91 Stockholm, Sweden
| |
Collapse
|
135
|
Pushkar Y, Long X, Glatzel P, Brudvig G, Dismukes G, Collins T, Yachandra V, Yano J, Bergmann U. Direct Detection of Oxygen Ligation to the Mn4Ca Cluster of Photosystem II by X-ray Emission Spectroscopy. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200905366] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
136
|
Zaharieva I, Chernev P, Risch M, Gerencser L, Berggren G, Shevchenko D, Anderlund M, Weng TC, Haumann M, Dau H. Towards a comprehensive X-ray approach for studying the photosynthetic manganese complex–XANES, Kα/Kβ/Kβ-satellite emission lines, RIXS, and comparative computational approaches for selected model complexes. ACTA ACUST UNITED AC 2009. [DOI: 10.1088/1742-6596/190/1/012142] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
137
|
Bergmann U, Glatzel P. X-ray emission spectroscopy. PHOTOSYNTHESIS RESEARCH 2009; 102:255-66. [PMID: 19705296 DOI: 10.1007/s11120-009-9483-6] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Accepted: 07/19/2009] [Indexed: 05/19/2023]
Abstract
We describe the chemical information that can be obtained by means of hard X-ray emission spectroscopy (XES). XES is presented as a technique that is complementary to X-ray absorption spectroscopy (XAS) and that provides valuable information with respect to the electronic structure (local charge- and spin-density) as well as the ligand environment of a 3d transition metal. We address non-resonant and resonant XES and present results that were recorded on Mn model systems and the Mn(4)Ca-cluster in the oxygen evolving complex of photosystem II. A brief description of the instrumentation is given with an outlook toward future developments.
Collapse
Affiliation(s)
- Uwe Bergmann
- Stanford Synchrotron Radiation Lightsource, P.O. Box 20450, Stanford, CA 94305, USA.
| | | |
Collapse
|
138
|
Yano J, Yachandra VK. X-ray absorption spectroscopy. PHOTOSYNTHESIS RESEARCH 2009; 102:241-54. [PMID: 19653117 PMCID: PMC2777224 DOI: 10.1007/s11120-009-9473-8] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Accepted: 07/09/2009] [Indexed: 05/20/2023]
Abstract
This review gives a brief description of the theory and application of X-ray absorption spectroscopy, both X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS), especially, pertaining to photosynthesis. The advantages and limitations of the methods are discussed. Recent advances in extended EXAFS and polarized EXAFS using oriented membranes and single crystals are explained. Developments in theory in understanding the XANES spectra are described. The application of X-ray absorption spectroscopy to the study of the Mn(4)Ca cluster in Photosystem II is presented.
Collapse
Affiliation(s)
- Junko Yano
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 USA
| | - Vittal K. Yachandra
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, University of California, Berkeley, CA 94720 USA
| |
Collapse
|
139
|
|
140
|
Photosynthetic water oxidation at elevated dioxygen partial pressure monitored by time-resolved X-ray absorption measurements. Proc Natl Acad Sci U S A 2008; 105:17384-9. [PMID: 18987324 DOI: 10.1073/pnas.0802596105] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The atmospheric dioxygen (O(2)) is produced at a tetramanganese complex bound to the proteins of photosystem II (PSII). To investigate product inhibition at elevated oxygen partial pressure (pO(2) ranging from 0.2 to 16 bar), we monitored specifically the redox reactions of the Mn complex in its catalytic S-state cycle by rapid-scan and time-resolved X-ray absorption near-edge spectroscopy (XANES) at the Mn K-edge. By using a pressure cell for X-ray measurements after laser-flash excitation of PSII particles, we found a clear pO(2) influence on the redox reactions of the Mn complex, with a similar half-effect pressure as determined (2-3 bar). However, XANES spectra and the time courses of the X-ray fluorescence collected with microsecond resolution suggested that the O(2) evolution transition itself (S(3)-->S(0)+O(2)) was not affected. Additional (nonstandard) oxidation of the Mn complex at high pO(2) explains our experimental findings more readily. Our results suggest that photosynthesis at ambient conditions is not limited by product inhibition of the O(2) formation step.
Collapse
|
141
|
Jaszewski AR, Stranger R, Pace RJ. Time-Dependent DFT Studies of Metal Core-Electron Excitations in Mn Complexes. J Phys Chem A 2008; 112:11223-34. [DOI: 10.1021/jp803286c] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Adrian R. Jaszewski
- Department of Chemistry, Faculty of Science, Australian National University, Canberra ACT 0200, Australia
| | - Rob Stranger
- Department of Chemistry, Faculty of Science, Australian National University, Canberra ACT 0200, Australia
| | - Ronald J. Pace
- Department of Chemistry, Faculty of Science, Australian National University, Canberra ACT 0200, Australia
| |
Collapse
|
142
|
Conlan B. Designing photosystem II: molecular engineering of photo-catalytic proteins. PHOTOSYNTHESIS RESEARCH 2008; 98:687-700. [PMID: 18777102 DOI: 10.1007/s11120-008-9355-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Accepted: 08/11/2008] [Indexed: 05/26/2023]
Abstract
Biological photosynthesis utilizes membrane-bound pigment/protein complexes to convert light into chemical energy through a series of electron-transfer events. In the unique photosystem II (PSII) complex these electron-transfer events result in the oxidation of water to molecular oxygen. PSII is an extremely complex enzyme and in order to exploit its unique ability to convert sunlight into chemical energy it will be necessary to make a minimal model. Here we will briefly describe how PSII functions and identify those aspects that are essential in order to catalyze the oxidation of water into O(2), and review previous attempts to design simple photo-catalytic proteins and summarize our current research exploiting the E. coli bacterioferritin protein as a scaffold into which multiple cofactors can be bound, to oxidize a manganese metal center upon illumination. Through the reverse engineering of PSII and light driven water splitting reactions it may be possible to provide a blueprint for catalysts that can produce clean green fuel for human energy needs.
Collapse
Affiliation(s)
- Brendon Conlan
- Research School of Biological Science, Australian National University, Canberra, ACT 0200, Australia.
| |
Collapse
|
143
|
McConnell IL. Substrate water binding and oxidation in photosystem II. PHOTOSYNTHESIS RESEARCH 2008; 98:261-276. [PMID: 18766463 DOI: 10.1007/s11120-008-9337-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Accepted: 07/19/2008] [Indexed: 05/26/2023]
Abstract
This mini review presents a general introduction to photosystem II with an emphasis on the oxygen evolving complex. An attempt is made to summarise what is currently known about substrate interaction in the oxygen evolving complex of photosystem II in terms of the nature of the substrate, the timing and the location of its binding. As the nature of substrate water binding has a direct bearing on the mechanism of O-O bond formation in PSII, a discussion of O-O bond formation follows the summary of current opinion in substrate interaction.
Collapse
Affiliation(s)
- Iain L McConnell
- Research School of Biological Sciences, The Australian National University, 0200 Canberra, ACT, Australia.
| |
Collapse
|
144
|
Govindjee. Recollections of Thomas John Wydrzynski. PHOTOSYNTHESIS RESEARCH 2008; 98:13-31. [PMID: 18770010 DOI: 10.1007/s11120-008-9341-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Accepted: 07/23/2008] [Indexed: 05/26/2023]
Abstract
In appreciation of his contribution to the Photosystsem II research and commemoration of the book Photosystem II: The Light-Driven Water-Plastoquinone Oxido-Reductase, co-edited with Kimiyuki Satoh, I present here some of my recollections of Thomas John Wydrzynski and by several others with whom he has associated over the years at Urbana (Illinois), Berkeley (California), Standard Oil Company-Indiana (Illinois), Berlin (Germany), Gothenburg (Sweden), and Canberra (Australia). We not only recognize him for his unique career path in Photosystem II research, but also for his qualities as a collaborative scientist working on the only system on Earth that has the ability to oxidize water to molecular oxygen using the energy of sunlight.
Collapse
|
145
|
Zaleski CM, Weng TC, Dendrinou-Samara C, Alexiou M, Kanakaraki P, Hsieh WY, Kampf J, Penner-Hahn JE, Pecoraro VL, Kessissoglou DP. Structural and Physical Characterization of Tetranuclear [MnII3MnIV] and [MnII2MnIII2] Valence-Isomer Manganese Complexes. Inorg Chem 2008; 47:6127-36. [DOI: 10.1021/ic702109c] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
146
|
Direct quantification of the four individual S states in Photosystem II using EPR spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2008; 1777:496-503. [DOI: 10.1016/j.bbabio.2008.03.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Revised: 03/14/2008] [Accepted: 03/17/2008] [Indexed: 11/18/2022]
|
147
|
Yeagle GJ, Gilchrist ML, McCarrick RM, Britt RD. Multifrequency pulsed electron paramagnetic resonance study of the S2 state of the photosystem II manganese cluster. Inorg Chem 2008; 47:1803-14. [PMID: 18330971 DOI: 10.1021/ic701680c] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Multifrequency electron spin-echo envelope modulation (ESEEM) spectroscopy is employed to measure the strength of the hyperfine coupling of magnetic nuclei to the paramagnetic (S = 1/2) S2 form of photosystem II (PSII). Previous X-band-frequency ESEEM studies indicated that one or more histidine nitrogens are electronically coupled to the tetranuclear manganese cluster in the S2 state of PSII. However, the spectral resolution was relatively poor at the approximately 9 GHz excitation frequency, precluding any in-depth analysis of the corresponding bonding interaction between the detected histidine and the manganese cluster. Here we report ESEEM experiments using higher X-, P-, and Ka-band microwave frequencies to target PSII membranes isolated from spinach. The X- to P-band ESEEM spectra suffer from the same poor resolution as that observed in previous experiments, while the Ka-band spectra show remarkably well-resolved features that allow for the direct determination of the nuclear quadrupolar couplings for a single I = 1(14)N nucleus. The Ka-band results demonstrate that at an applied field of 1.1 T we are much closer to the exact cancellation limit (alpha iso = 2nu(14)N) that optimizes ESEEM spectra. These results reveal hyperfine (alpha iso = 7.3 +/- 0.20 MHz and alpha dip = 0.50 +/- 0.10 MHz) and nuclear quadrupolar (e(2)qQ = 1.98 +/- 0.05 MHz and eta = 0.84 +/- 0.06) couplings for a single (14)N nucleus magnetically coupled to the manganese cluster in the S 2 state of PSII. These values are compared to the histidine imidazole nitrogen hyperfine and nuclear quadrupolar couplings found in superoxidized manganese catalase as well as (14)N couplings in relevant manganese model complexes.
Collapse
Affiliation(s)
- Gregory J Yeagle
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, USA
| | | | | | | |
Collapse
|
148
|
Pecoraro VL, Hsieh WY. In search of elusive high-valent manganese species that evaluate mechanisms of photosynthetic water oxidation. Inorg Chem 2008; 47:1765-78. [PMID: 18330968 DOI: 10.1021/ic7017488] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Significant progress in the understanding of biological water oxidation has occurred during the past 25 years. Today we have a somewhat clearer description of the structure of the Mn4Ca cluster and an idea of the appropriate oxidation states for the enzyme during catalysis. At issue is the mechanism of water oxidation. Depending on one's belief of the manganese ion oxidation levels at the catalytically active S4 configuration, one can invoke a variety of different processes that could lead to water oxidation. We have suggested that the most likely process is the nucleophilic attack of a water bound to calcium (or manganese) onto a highly electrophilic Mn(V)=O center. In this Article, we explore the difficulties of preparing Mn(V) in dimeric systems and the even more arduous task of definitively assigning oxidation states to such highly reactive species.
Collapse
Affiliation(s)
- Vincent L Pecoraro
- Department of Chemistry and Biophysics, The University of Michigan, Ann Arbor, Michigan 48109-1055, USA.
| | | |
Collapse
|
149
|
Yano J, Kern J, Pushkar Y, Sauer K, Glatzel P, Bergmann U, Messinger J, Zouni A, Yachandra VK. High-resolution structure of the photosynthetic Mn4Ca catalyst from X-ray spectroscopy. Philos Trans R Soc Lond B Biol Sci 2008; 363:1139-47; discussion 1147. [PMID: 17954437 DOI: 10.1098/rstb.2007.2209] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The application of high-resolution X-ray spectroscopy methods to study the photosynthetic water oxidizing complex, which contains a unique hetero-nuclear catalytic Mn4Ca cluster, is described. Issues of X-ray damage, especially at the metal sites in the Mn4Ca cluster, are discussed. The structure of the Mn4Ca catalyst at high resolution, which has so far eluded attempts of determination by X-ray diffraction, X-ray absorption fine structure (EXAFS) and other spectroscopic techniques, has been addressed using polarized EXAFS techniques applied to oriented photosystem II (PSII) membrane preparations and PSII single crystals. A review of how the resolution of traditional EXAFS techniques can be improved, using methods such as range-extended EXAFS, is presented, and the changes that occur in the structure of the cluster as it advances through the catalytic cycle are described. X-ray absorption and emission techniques (XANES and Kbeta emission) have been used earlier to determine the oxidation states of the Mn4Ca cluster, and in this report we review the use of X-ray resonant Raman spectroscopy to understand the electronic structure of the Mn4Ca cluster as it cycles through the intermediate S-states.
Collapse
Affiliation(s)
- Junko Yano
- Melvin Calvin Laboratory, Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Sproviero EM, Shinopoulos K, Gascón JA, McEvoy JP, Brudvig GW, Batista VS. QM/MM computational studies of substrate water binding to the oxygen-evolving centre of photosystem II. Philos Trans R Soc Lond B Biol Sci 2008; 363:1149-56; discussion 1156. [PMID: 17971333 DOI: 10.1098/rstb.2007.2210] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This paper reports computational studies of substrate water binding to the oxygen-evolving centre (OEC) of photosystem II (PSII), completely ligated by amino acid residues, water, hydroxide and chloride. The calculations are based on quantum mechanics/molecular mechanics hybrid models of the OEC of PSII, recently developed in conjunction with the X-ray crystal structure of PSII from the cyanobacterium Thermosynechococcus elongatus. The model OEC involves a cuboidal Mn3CaO4Mn metal cluster with three closely associated manganese ions linked to a single mu4-oxo-ligated Mn ion, often called the 'dangling manganese'. Two water molecules bound to calcium and the dangling manganese are postulated to be substrate molecules, responsible for dioxygen formation. It is found that the energy barriers for the Mn(4)-bound water agree nicely with those of model complexes. However, the barriers for Ca-bound waters are substantially larger. Water binding is not simply correlated to the formal oxidation states of the metal centres but rather to their corresponding electrostatic potential atomic charges as modulated by charge-transfer interactions. The calculations of structural rearrangements during water exchange provide support for the experimental finding that the exchange rates with bulk 18 O-labelled water should be smaller for water molecules coordinated to calcium than for water molecules attached to the dangling manganese. The models also predict that the S1-->S2 transition should produce opposite effects on the two water-exchange rates.
Collapse
Affiliation(s)
- Eduardo M Sproviero
- Department of Chemistry, Yale University, PO Box 208107, New Haven, CT 06520-8107, USA
| | | | | | | | | | | |
Collapse
|