101
|
El-Sayed N, Schneider M. Advances in biomedical and pharmaceutical applications of protein-stabilized gold nanoclusters. J Mater Chem B 2020; 8:8952-8971. [PMID: 32901648 DOI: 10.1039/d0tb01610a] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
The interest in using gold nanoclusters (AuNCs) as imaging probes is growing, covering wide ranges of applications. The stabilization of AuNCs with protein ligands enhances their biomedical and pharmaceutical applications. This is due to the biocompatibility, water solubility and bioactivity of proteins. Different factors can control the optical properties of AuNCs such as protein size, amino acids content and conformational structure. Controlling the synthesis conditions can result in tuning the AuNCs excitation, emission, fluorescence intensity and physicochemical properties to fulfill different applications. NIR-emitting protein-stabilized AuNCs are promising as imaging agents for targeting and visualization of cancer in vitro and in vivo. They are promising to be included as an important part of multifunctional theranostic nanosystems, due to their potential dual functions as imaging and photosensitizing agent for photodynamic therapy. Additionally, the protein around AuNCs represents a rich environment of active functional groups that are susceptible for conjugation with various biomolecules. Protein-AuNCs can act as fluorescent probes for rapid and selective analysis of different analytes in solution, cells or biological fluids. In conclusion, the variability of protein-AuNC applications can advance research in different biomedical and pharmaceutical fields.
Collapse
Affiliation(s)
- Nesma El-Sayed
- Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, Campus C4 1, D-66123 Saarbrücken, Germany. and Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, 21521 Alexandria, Egypt.
| | - Marc Schneider
- Department of Pharmacy, Biopharmaceutics and Pharmaceutical Technology, Saarland University, Campus C4 1, D-66123 Saarbrücken, Germany.
| |
Collapse
|
102
|
Morstein J, Höfler D, Ueno K, Jurss JW, Walvoord RR, Bruemmer KJ, Rezgui SP, Brewer TF, Saitoe M, Michel BW, Chang CJ. Ligand-Directed Approach to Activity-Based Sensing: Developing Palladacycle Fluorescent Probes That Enable Endogenous Carbon Monoxide Detection. J Am Chem Soc 2020; 142:15917-15930. [DOI: 10.1021/jacs.0c06405] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
| | | | - Kohei Ueno
- Tokyo Metropolitan Institute of Medical Science, Tokyo 1568506, Japan
| | | | | | | | - Samir P. Rezgui
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80210, United States
| | | | - Minoru Saitoe
- Tokyo Metropolitan Institute of Medical Science, Tokyo 1568506, Japan
| | - Brian W. Michel
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado 80210, United States
| | | |
Collapse
|
103
|
Bruemmer KJ, Crossley SWM, Chang CJ. Activity-Based Sensing: A Synthetic Methods Approach for Selective Molecular Imaging and Beyond. Angew Chem Int Ed Engl 2020; 59:13734-13762. [PMID: 31605413 PMCID: PMC7665898 DOI: 10.1002/anie.201909690] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Indexed: 01/10/2023]
Abstract
Emerging from the origins of supramolecular chemistry and the development of selective chemical receptors that rely on lock-and-key binding, activity-based sensing (ABS)-which utilizes molecular reactivity rather than molecular recognition for analyte detection-has rapidly grown into a distinct field to investigate the production and regulation of chemical species that mediate biological signaling and stress pathways, particularly metal ions and small molecules. Chemical reactions exploit the diverse chemical reactivity of biological species to enable the development of selective and sensitive synthetic methods to decipher their contributions within complex living environments. The broad utility of this reaction-driven approach facilitates application to imaging platforms ranging from fluorescence, luminescence, photoacoustic, magnetic resonance, and positron emission tomography modalities. ABS methods are also being expanded to other fields, such as drug and materials discovery.
Collapse
Affiliation(s)
- Kevin J Bruemmer
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Steven W M Crossley
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Christopher J Chang
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720, USA
| |
Collapse
|
104
|
Pham D, Basu U, Pohorilets I, St Croix CM, Watkins SC, Koide K. Fluorogenic Probe Using a Mislow–Evans Rearrangement for Real‐Time Imaging of Hydrogen Peroxide. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007104] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Dianne Pham
- Department of Chemistry University of Pittsburgh 219 Parkman Avenue Pittsburgh PA 15260 USA
| | - Upamanyu Basu
- Department of Chemistry University of Pittsburgh 219 Parkman Avenue Pittsburgh PA 15260 USA
| | - Ivanna Pohorilets
- Department of Chemistry University of Pittsburgh 219 Parkman Avenue Pittsburgh PA 15260 USA
| | - Claudette M. St Croix
- Center for Biologic Imaging Department of Cell Biology University of Pittsburgh 3500 Terrace Street Pittsburgh PA 15261 USA
| | - Simon C. Watkins
- Center for Biologic Imaging Department of Cell Biology University of Pittsburgh 3500 Terrace Street Pittsburgh PA 15261 USA
| | - Kazunori Koide
- Department of Chemistry University of Pittsburgh 219 Parkman Avenue Pittsburgh PA 15260 USA
| |
Collapse
|
105
|
Pham D, Basu U, Pohorilets I, St Croix CM, Watkins SC, Koide K. Fluorogenic Probe Using a Mislow–Evans Rearrangement for Real‐Time Imaging of Hydrogen Peroxide. Angew Chem Int Ed Engl 2020; 59:17435-17441. [DOI: 10.1002/anie.202007104] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/19/2020] [Indexed: 12/18/2022]
Affiliation(s)
- Dianne Pham
- Department of Chemistry University of Pittsburgh 219 Parkman Avenue Pittsburgh PA 15260 USA
| | - Upamanyu Basu
- Department of Chemistry University of Pittsburgh 219 Parkman Avenue Pittsburgh PA 15260 USA
| | - Ivanna Pohorilets
- Department of Chemistry University of Pittsburgh 219 Parkman Avenue Pittsburgh PA 15260 USA
| | - Claudette M. St Croix
- Center for Biologic Imaging Department of Cell Biology University of Pittsburgh 3500 Terrace Street Pittsburgh PA 15261 USA
| | - Simon C. Watkins
- Center for Biologic Imaging Department of Cell Biology University of Pittsburgh 3500 Terrace Street Pittsburgh PA 15261 USA
| | - Kazunori Koide
- Department of Chemistry University of Pittsburgh 219 Parkman Avenue Pittsburgh PA 15260 USA
| |
Collapse
|
106
|
Sawayama J, Okitsu T, Nakamata A, Kawahara Y, Takeuchi S. Hydrogel Glucose Sensor with In Vivo Stable Fluorescence Intensity Relying on Antioxidant Enzymes for Continuous Glucose Monitoring. iScience 2020; 23:101243. [PMID: 32629609 PMCID: PMC7306611 DOI: 10.1016/j.isci.2020.101243] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/15/2020] [Accepted: 06/02/2020] [Indexed: 01/09/2023] Open
Abstract
Hydrogel glucose sensors with boronic acid-based fluorescence intensity theoretically hold promise to improve in vivo continuous glucose monitoring (CGM) by facilitating long-lasting accuracy. However, these sensors generally degrade after implantation and the fluorescence intensity decreases immediately over time. Herein, we describe a hydrogel glucose sensor with in vivo stability based on boronic acid-based fluorescence intensity, integrating two antioxidant enzymes, superoxide dismutase (SOD), and catalase. These protected the arylboronic acid from being degraded by hydrogen peroxide in vitro and preserved the boronic acid-based fluorescence intensity of the hydrogel glucose sensors in rats for 28 days. These antioxidant enzymes also allowed the hydrogel glucose sensor attached to a homemade semi-implantable CGM device to trace blood glucose concentrations in rats for 5 h with the accuracy required for clinical settings. Hydrogel glucose sensors with boronic acid-based fluorescence intensity containing SOD and catalase could comprise a new strategy for in vivo CGM. The arylboronic acids of hydrogel glucose sensors are sensitive to cleavage by ROS The antioxidant enzymes suppress the degradation of fluorescence effectively in vivo The developed sensor performs CGM with the accuracy required for clinical settings
Collapse
Affiliation(s)
- Jun Sawayama
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, Japan
| | - Teru Okitsu
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, Japan
| | - Akihiro Nakamata
- Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Yoshihiro Kawahara
- Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Shoji Takeuchi
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, Japan; Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan; International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
107
|
Hiller NDJ, do Amaral e Silva NA, Tavares TA, Faria RX, Eberlin MN, de Luna Martins D. Arylboronic Acids and their Myriad of Applications Beyond Organic Synthesis. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000396] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Noemi de Jesus Hiller
- Instituto de Química; Laboratório de Catálise e Síntese (Lab CSI); Laboratório 413; Universidade Federal Fluminense; Outeiro de São João Batista s/n; Campus do Valonguinho, Centro Niterói RJ 24020-141 Brasil
| | - Nayane Abreu do Amaral e Silva
- Instituto de Química; Laboratório de Catálise e Síntese (Lab CSI); Laboratório 413; Universidade Federal Fluminense; Outeiro de São João Batista s/n; Campus do Valonguinho, Centro Niterói RJ 24020-141 Brasil
| | - Thais Apolinário Tavares
- Instituto de Química; Laboratório de Catálise e Síntese (Lab CSI); Laboratório 413; Universidade Federal Fluminense; Outeiro de São João Batista s/n; Campus do Valonguinho, Centro Niterói RJ 24020-141 Brasil
| | - Robson Xavier Faria
- Laboratório de Toxoplasmose e outras Protozooses; Instituto Oswaldo Cruz, Fiocruz; Av. Brasil, 4365 Manguinhos Rio de Janeiro RJ 21040-360 Brasil
| | - Marcos Nogueira Eberlin
- Mackenzie Presbyterian University; School of Engineering; Rua da Consolação, 930 SP 01302-907 São Paulo Brasil
| | - Daniela de Luna Martins
- Instituto de Química; Laboratório de Catálise e Síntese (Lab CSI); Laboratório 413; Universidade Federal Fluminense; Outeiro de São João Batista s/n; Campus do Valonguinho, Centro Niterói RJ 24020-141 Brasil
| |
Collapse
|
108
|
Lu M, Zhang X, Zhao J, You Q, Jiang Z. A hydrogen peroxide responsive prodrug of Keap1-Nrf2 inhibitor for improving oral absorption and selective activation in inflammatory conditions. Redox Biol 2020; 34:101565. [PMID: 32422540 PMCID: PMC7231841 DOI: 10.1016/j.redox.2020.101565] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/22/2020] [Accepted: 04/29/2020] [Indexed: 12/12/2022] Open
Abstract
Transcription factor Nuclear factor erythroid 2-related factor 2 (Nrf2) and its negative regulator, the E3 ligase adaptor Kelch-like ECH-associated protein 1 (Keap1), control the redox and metabolic homeostasis and oxidative stress. Inhibitors of Keap1-Nrf2 interaction are promising in oxidative stress related inflammatory diseases but now hit hurdles. By utilizing thiazolidinone moiety to shield the key carboxyl pharmacophore in Keap1-Nrf2 inhibitor, a hydrogen peroxide (H2O2)-responsive prodrug pro2 was developed. The prodrug modification improved the physicochemical properties and cell membrane permeability of the parent drug. Pro2 was stable and stayed inactive under various physiological conditions, while became active by stimulation of H2O2 or inflammation derived reactive oxygen species. Moreover, pro2 exhibited proper pharmacokinetic profile suitable for oral administration and enhanced anti-inflammatory efficiency in vivo. Thus, this novel prodrug approach may not only provide an important advance in the therapy of chronic inflammatory diseases with high level of H2O2, but also offer a fresh solution to improve the drug-like and selectivity issues of Keap1-Nrf2 inhibitors. Pro2 was developed by utilizing H2O2-responsive thiazolidinone moiety to shield carboxyl group in Keap1-Nrf2 inhibitor. Pro2 was stable and inactive under various physiological conditions, while became active under inflammatory conditions. Pro2 exhibited proper pharmacokinetic profile for oral administration and enhanced anti-inflammatory efficiency in vivo.
Collapse
Affiliation(s)
- Mengchen Lu
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Xian Zhang
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China
| | - Jing Zhao
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Zhengyu Jiang
- State Key Laboratory of Natural Medicines and Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
109
|
Bruemmer KJ, Crossley SWM, Chang CJ. Aktivitätsbasierte Sensorik: ein synthetisch‐methodischer Ansatz für die selektive molekulare Bildgebung und darüber hinaus. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201909690] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Kevin J. Bruemmer
- Department of Chemistry University of California, Berkeley Berkeley CA 94720 USA
| | | | - Christopher J. Chang
- Department of Chemistry University of California, Berkeley Berkeley CA 94720 USA
- Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute University of California, Berkeley Berkeley CA 94720 USA
| |
Collapse
|
110
|
Wu Z, Liu M, Liu Z, Tian Y. Real-Time Imaging and Simultaneous Quantification of Mitochondrial H 2O 2 and ATP in Neurons with a Single Two-Photon Fluorescence-Lifetime-Based Probe. J Am Chem Soc 2020; 142:7532-7541. [PMID: 32233469 DOI: 10.1021/jacs.0c00771] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mitochondrial oxidative stress and energy metabolism are vital biological events and are involved in various physiological and pathological processes such as apoptosis and necrosis. However, it remains unclear how the dynamic patterns of mitochondrial hydrogen peroxide (H2O2) and adenosine-5'-triphosphate (ATP) change in these events and, more importantly, how they affect each other. Herein, we developed a single two-photon fluorescence-lifetime-based probe (TFP), which offered real-time imaging and the simultaneous determination of mitochondrial H2O2 and ATP changes in two well-separated fluorescence channels without spectral crosstalk. The fluorescence lifetime of TFP exhibited good responses and selectivity in the detection ranges of 0.4-10 μM H2O2 and 0.5-15 mM ATP, taking advantage of accuracy and the quantitative ability of fluorescence lifetime imaging. Using this useful probe, we studied the relationship between H2O2 and ATP in mitochondria and visualized the dynamic level changes of mitochondrial H2O2 and ATP induced by the superoxide anion (O2•-). It was discovered that O2•- stimulation in a short period of time (8 min) temporarily changes the levels of H2O2 and ATP in mitochondria, and neurons were capable of recovering to the initial state in a short time. However, increasing time of up to 50 min of O2•- stimulation led to permanent oxidative damage and an energy deficiency. Meanwhile, it was first found that the exogenous stimulation of O2•- and H2O2 had different impacts on the levels of mitochondrial H2O2 and ATP, in which O2•- demonstrated more severe and negative consequences. As a matter of fact, this work not only has provided a general molecular design methodology for multiple species imaging but also has revealed oxidative-stress-induced intracellular functions related to H2O2 and ATP in mitochondria based on this developed TFP probe.
Collapse
Affiliation(s)
- Zhou Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Mengmeng Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Zhichao Liu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, School of Chemistry and Molecular Engineering, East China Normal University, Dongchuan Road 500, Shanghai 200241, China
| |
Collapse
|
111
|
Colorimetric Chemosensor and Turn on Fluorescence Probe for pH Monitoring Based on Xanthene Dye Derivatives and its Bioimaging of Living Escherichia coli Bacteria. J Fluoresc 2020; 30:601-612. [PMID: 32285236 DOI: 10.1007/s10895-020-02522-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 03/09/2020] [Indexed: 10/24/2022]
Abstract
A new turn on fluorescence probe based on 3',6'-dihydroxy-6-methyl-2-((pyridin-2-ylmethylene)amino)-4-(p-tolyl)spiro[benzo[f]isoindole-1,9'-xanthen]-3(2H)-one (BFFPH) derived from benzo[f]fluorescein was prepared. Full characterization of the prepared probe using spectroscopic analysis was described such as IR, NMR and MS spectra. The sensitivity of BFFPH for monitoring of pH change in alkaline medium was studied. BFFPH exhibited a high sensitivity to alkaline pH by two pKa values at 8.82 and 10.66 in UV/vis spectroscopy titration. The pH monitoring was studied in broad range of pH values (2.5-12.2) at two pKa values at 8.72 and 10.73 by recording the effect of pH on the fluorescence intensity of BFFPH. The acid-base reversibility character of the probe was investigated as well as the effect of the pH change on the fluorescence quantum yield. The application of the prepared BFFPH probe for detection of living Escherichia coli (E. coli) bacteria using confocal fluorescence microscope was investigated.
Collapse
|
112
|
Yu G, Feng N, Zhao D, Wang H, Jin Y, Liu D, Li Z, Yang X, Ge K, Zhang J. A highly selective and sensitive upconversion nanoprobe for monitoring hydroxyl radicals in living cells and the liver. SCIENCE CHINA-LIFE SCIENCES 2020; 64:434-442. [PMID: 32239367 DOI: 10.1007/s11427-019-1601-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 11/05/2019] [Indexed: 10/24/2022]
Abstract
Excessive reactive oxygen species (ROS) would attack living cells and cause a series of oxidative stress related diseases, such as liver damage. Hydroxyl radicals (·OH) are currently known as one of the most toxic and harmful free radicals to organisms. Therefore, studies involving hydroxyl radicals have become important research topics in the fields of biology, biochemistry, and biomedicine. In addition, imaging of analytes using upconversion nanoparticles (UCNPs) possesses significant advantages over that using general fluorescent dyes or nanoparticles due to its high spatial resolution, reduced photodamage, and deep tissue penetration properties. Herein, we designed a highly selective and sensitive hydroxyl radical nanoprobe based on the luminescence resonance energy transfer between upconversion nanoparticles and methylene blue (MB). The concentration of ·OH could be determined by the fluorescence recovery of the UCNPs due to the oxidative damage of MB. Using this nanoprobe, the ·OH in living cells or in liver tissues could be monitored with high sensitivity and selectivity.
Collapse
Affiliation(s)
- Guangshun Yu
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding, 071002, China
| | - Na Feng
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding, 071002, China
| | - Dan Zhao
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding, 071002, China
| | - Hao Wang
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding, 071002, China
| | - Yi Jin
- College of Medical Science, Hebei University, Baoding, 071002, China
| | - Dandan Liu
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding, 071002, China
| | - Zhenhua Li
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding, 071002, China
| | - Xinjian Yang
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding, 071002, China.
| | - Kun Ge
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding, 071002, China
| | - Jinchao Zhang
- Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Environmental Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis, Ministry of Education, Hebei University, Baoding, 071002, China.
| |
Collapse
|
113
|
Li M, Lv J, Wang S, Wang J, Lin Y. Expanded mesoporous silica-encapsulated ultrasmall Pt nanoclusters as artificial enzymes for tracking hydrogen peroxide secretion from live cells. Anal Chim Acta 2020; 1104:180-187. [PMID: 32106950 DOI: 10.1016/j.aca.2020.01.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 01/07/2020] [Indexed: 01/09/2023]
Abstract
Design of synthetic structures that possess the similar functions to natural enzymes held great promise in environmental detection and biomedical application. Herein, a new concept for the fabrication of solid-supported catalysts as peroxidase mimic have been proposed to realize high-catalytic activity and stability by utilizing expanded mesoporous silica (EMSN)-encapsulated Pt nanoclusters. Compared with PtNCs, the introduction of amino group modified EMSN would enrich H2O2 on the surface of PtNCs and increase the catalytic sites for H2O2 decomposition, which gave rise to the higher catalytic activity of EMSN-PtNCs over a broad pH range, especially in weakly acidic and neural solutions. This would facilitate their applications for real-time monitoring the secretion of H2O2 from living cancer cells stimulated by various anticancer drugs. Our findings not only pave the way to use porous matrix as the structural component for the design of the biomimetic catalysts, but also provide a simple and reliable platform to monitor H2O2 released from living cells in real time, which holds great potential for elucidating the biological roles of H2O2 and underlying molecular mechanisms of drug cytotoxicity as well as drug therapeutic effects.
Collapse
Affiliation(s)
- Meng Li
- College of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang, 050017, China
| | - Jie Lv
- College of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang, 050017, China
| | - Shuangling Wang
- College of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang, 050017, China
| | - Jing Wang
- College of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang, 050017, China.
| | - Yulong Lin
- College of Pharmaceutical Sciences, Hebei Medical University, Shijiazhuang, 050017, China.
| |
Collapse
|
114
|
Palmer JE, Brietske BM, Bate TC, Blackwood EA, Garg M, Glembotski CC, Cooley CB. Reactive Oxygen Species (ROS)-Activatable Prodrug for Selective Activation of ATF6 after Ischemia/Reperfusion Injury. ACS Med Chem Lett 2020; 11:292-297. [PMID: 32184959 DOI: 10.1021/acsmedchemlett.9b00299] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 11/06/2019] [Indexed: 12/31/2022] Open
Abstract
We describe here the design, synthesis, and biological evaluation of a reactive oxygen species (ROS)-activatable prodrug for the selective delivery of 147, a small molecule ATF6 activator, for ischemia/reperfusion injury. ROS-activatable prodrug 1 and a negative control unable to release free drug were synthesized and examined for peroxide-mediated activation. Prodrug 1 blocks activity of 147 by its inability to undergo metabolic oxidation by ER-resident cytochrome P450 enzymes such as Cyp1A2, probed directly here for the first time. Biological evaluation of ROS-activatable prodrug 1 in primary cardiomyocytes demonstrates protection against peroxide-mediated toxicity and enhances viability following simulated I/R injury. The ability to selectively target ATF6 activation under diseased conditions establishes the potential for localized stress-responsive signaling pathway activation as a therapeutic approach for I/R injury and related protein misfolding maladies.
Collapse
Affiliation(s)
- Jonathan E. Palmer
- Department of Chemistry, Trinity University, One Trinity Place, San Antonio, Texas 78212, United States
| | - Breanna M. Brietske
- Department of Chemistry, Trinity University, One Trinity Place, San Antonio, Texas 78212, United States
| | - Tyler C. Bate
- Department of Chemistry, Trinity University, One Trinity Place, San Antonio, Texas 78212, United States
| | - Erik A. Blackwood
- San Diego State University Heart Institute and Department of Biology, San Diego State University, San Diego, California 92182, United States
| | - Manasa Garg
- Department of Chemistry, Trinity University, One Trinity Place, San Antonio, Texas 78212, United States
| | - Christopher C. Glembotski
- San Diego State University Heart Institute and Department of Biology, San Diego State University, San Diego, California 92182, United States
| | - Christina B. Cooley
- Department of Chemistry, Trinity University, One Trinity Place, San Antonio, Texas 78212, United States
| |
Collapse
|
115
|
Lee HJ, Jeong B. ROS-Sensitive Degradable PEG-PCL-PEG Micellar Thermogel. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1903045. [PMID: 31523921 DOI: 10.1002/smll.201903045] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/05/2019] [Indexed: 06/10/2023]
Abstract
A reactive oxygen species (ROS)-sensitive degradable polymer would be a promising material in designing a disease-responsive system or accelerating degradation of polymers with slow hydrolysis kinetics. Here, a thermogelling poly(ethylene glycol)-polycaprolactone-poly(ethylene glycol) (PEG-PCL-PEG or EG12 -CL20 -EG12 ) triblock copolymer with an oxalate group at the middle of the polymer is reported. The polymers form micelles with an average size of 100 nm in water. Thermogelation is observed in a concentration range of 8.0-37.0 wt%. In particular, the aqueous PEG-PCL-PEG triblock copolymer solutions are in a gel state at 37 °C in a concentration range of 25.0-37.0 wt%, whereas the aqueous PEG-PCL diblock copolymer solutions are in a sol state in the same concentration range at 37 °C. Thus, the gel depot could dissolve out once degradation of the triblock copolymers occurs at the oxalate group as confirmed by the in vitro experiment. In vivo gel formation is confirmed by injecting an aqueous PEG-PCL-PEG solution (36.0 wt%) into the subcutaneous layer of rats. The gel completely disappears in 21 d. A model polypeptide drug (cyclosporine A) is released over 21 d from the in situ formed gel. The micelle-based thermogel of PEG-PCL-PEG with ROS-triggering degradability is a promising injectable material for biomedical applications.
Collapse
Affiliation(s)
- Hyun Jung Lee
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| | - Byeongmoon Jeong
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Korea
| |
Collapse
|
116
|
Bhat SA, Rashid N, Rather MA, Pandit SA, Ingole PP, Bhat MA. Vitamin B12 functionalized N-Doped graphene: A promising electro-catalyst for hydrogen evolution and electro-oxidative sensing of H2O2. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.135730] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
117
|
Breen C, Pal R, Elsegood MRJ, Teat SJ, Iza F, Wende K, Buckley BR, Butler SJ. Time-resolved luminescence detection of peroxynitrite using a reactivity-based lanthanide probe. Chem Sci 2020; 11:3164-3170. [PMID: 34122821 PMCID: PMC8157329 DOI: 10.1039/c9sc06053g] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/14/2020] [Indexed: 12/12/2022] Open
Abstract
Peroxynitrite (ONOO-) is a powerful and short-lived oxidant formed in vivo, which can react with most biomolecules directly. To fully understand the roles of ONOO- in cell biology, improved methods for the selective detection and real-time analysis of ONOO- are needed. We present a water-soluble, luminescent europium(iii) probe for the rapid and sensitive detection of peroxynitrite in human serum, living cells and biological matrices. We have utilised the long luminescence lifetime of the probe to measure ONOO- in a time-resolved manner, effectively avoiding the influence of autofluorescence in biological samples. To demonstrate the utility of the Eu(iii) probe, we monitored the production of ONOO- in different cell lines, following treatment with a cold atmospheric plasma device commonly used in the clinic for skin wound treatment.
Collapse
Affiliation(s)
- Colum Breen
- Department of Chemistry, Loughborough University Epinal Way Loughborough LE11 3TU UK
| | - Robert Pal
- Department of Chemistry, Durham University South Road Durham DH1 3LE UK
| | - Mark R J Elsegood
- Department of Chemistry, Loughborough University Epinal Way Loughborough LE11 3TU UK
| | - Simon J Teat
- Advanced Light Source, Berkeley Lab. 1 Cyclotron Road Berkeley CA 94720 USA
| | - Felipe Iza
- Centre for Biological Engineering, Department of Mechanical, Electrical and Manufacturing Engineering, Loughborough University LE11 3TU UK
| | - Kristian Wende
- Leibniz-Institute for Plasma Science and Technology, ZIK plasmatis Felix-Hausdorff-Str.2 17489 Greifswald Germany
| | - Benjamin R Buckley
- Department of Chemistry, Loughborough University Epinal Way Loughborough LE11 3TU UK
| | - Stephen J Butler
- Department of Chemistry, Loughborough University Epinal Way Loughborough LE11 3TU UK
| |
Collapse
|
118
|
Wang C, Wang Y, Wang G, Huang C, Jia N. A new mitochondria-targeting fluorescent probe for ratiometric detection of H2O2 in live cells. Anal Chim Acta 2020; 1097:230-237. [DOI: 10.1016/j.aca.2019.11.024] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 10/16/2019] [Accepted: 11/06/2019] [Indexed: 01/20/2023]
|
119
|
Bachman JL, Pavlich CI, Boley AJ, Marcotte EM, Anslyn EV. Synthesis of Carboxy ATTO 647N Using Redox Cycling for Xanthone Access. Org Lett 2020; 22:381-385. [PMID: 31825225 DOI: 10.1021/acs.orglett.9b03981] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A synthesis of the carbopyronine dye Carboxy ATTO 647N from simple materials is reported. This route proceeds in 11 forward steps from 3-bromoaniline with the key xanthone intermediate formed using a new oxidation methodology. The step utilizes an oxidation cycle with base, water, iodine, and more than doubles the yield of the standard permanganate oxidation methodology, accessing gram-scale quantities of this late-stage product. From this, Carboxy ATTO 647N was prepared in only four additional steps. This facile route to a complex fluorophore is expected to enable further studies in fluorescence imaging.
Collapse
Affiliation(s)
- James L Bachman
- Department of Chemistry , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Cyprian I Pavlich
- Department of Chemistry , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Alexander J Boley
- Department of Chemistry , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Edward M Marcotte
- Department of Molecular Biosciences , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Eric V Anslyn
- Department of Chemistry , The University of Texas at Austin , Austin , Texas 78712 , United States
| |
Collapse
|
120
|
He H, Shi X, Wang J, Wang X, Wang Q, Yu D, Ge B, Zhang X, Huang F. Reactive Oxygen Species-Induced Aggregation of Nanozymes for Neuron Injury. ACS APPLIED MATERIALS & INTERFACES 2020; 12:209-216. [PMID: 31840496 DOI: 10.1021/acsami.9b17509] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nanozymes show excellent enzyme activity and robust catalytic properties, but the targeting capability to disease organs is limited because of lack of specificity. Herein, we developed an ultrasmall (∼3 nm) organic nanozyme that can gradually aggregate under a reactive oxygen species (ROS)-rich environment via a spontaneous reaction, namely, ROS-induced aggregation. The size of nanozymes is 75 and 100 times higher than the original size under •OH and H2O2 environments without losing enzyme activity. In vitro experiments confirm that nanozymes prefer to aggregate in mitochondria under ROS-rich conditions. Importantly, the nanozymes show in situ ROS-induced aggregation in the brain, ∼9 times higher uptake than ordinary nanozymes, indicating their potential for treating ROS-related diseases in the central nervous system.
Collapse
Affiliation(s)
- Hua He
- State Key Laboratory of Heavy Oil Processing and College of Chemical Engineering , China University of Petroleum (East China) , Qingdao 266580 , China
| | - Xinjian Shi
- State Key Laboratory of Heavy Oil Processing and College of Chemical Engineering , China University of Petroleum (East China) , Qingdao 266580 , China
| | - Junying Wang
- Department of Physics, School of Science , Tianjin University , Tianjin 300350 , China
| | - Xiaojuan Wang
- State Key Laboratory of Heavy Oil Processing and College of Chemical Engineering , China University of Petroleum (East China) , Qingdao 266580 , China
| | - Qian Wang
- State Key Laboratory of Heavy Oil Processing and College of Chemical Engineering , China University of Petroleum (East China) , Qingdao 266580 , China
| | - Daoyong Yu
- State Key Laboratory of Heavy Oil Processing and College of Chemical Engineering , China University of Petroleum (East China) , Qingdao 266580 , China
| | - Baosheng Ge
- State Key Laboratory of Heavy Oil Processing and College of Chemical Engineering , China University of Petroleum (East China) , Qingdao 266580 , China
| | - Xiaodong Zhang
- Department of Physics, School of Science , Tianjin University , Tianjin 300350 , China
| | - Fang Huang
- State Key Laboratory of Heavy Oil Processing and College of Chemical Engineering , China University of Petroleum (East China) , Qingdao 266580 , China
| |
Collapse
|
121
|
Reo YJ, Jun YW, Cho SW, Jeon J, Roh H, Singha S, Dai M, Sarkar S, Kim HR, Kim S, Jin Y, Jung YL, Yang YJ, Ban C, Joo J, Ahn KH. A systematic study on the discrepancy of fluorescence properties between in solutions and in cells: super-bright, environment-insensitive benzocoumarin dyes. Chem Commun (Camb) 2020; 56:10556-10559. [DOI: 10.1039/d0cc03586f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The benzocoumarins show distinctive emission behaviour from some commonly-used dyes in organic, aqueous buffer, and cellular media, which compels us to recognize the cellular environment as the third space for fluorophores.
Collapse
|
122
|
Hu X, Dong D, Xia M, Yang Y, Wang J, Su J, Sun L, Yu H. Oxidative stress and antioxidant capacity: development and prospects. NEW J CHEM 2020. [DOI: 10.1039/d0nj02041a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Signaling pathways regulating redox reactions are activated to balance the redox status and maintain the normal function of cells.
Collapse
Affiliation(s)
- Xiaoqing Hu
- Key Laboratory of Pathobiology
- Ministry of Education
- Department of Pathophysiology
- College of Basic Medical Sciences
- Jilin University
| | - Delu Dong
- Key Laboratory of Pathobiology
- Ministry of Education
- Department of Pathophysiology
- College of Basic Medical Sciences
- Jilin University
| | - Meihui Xia
- The First Hospital of Jilin University
- Changchun 130021
- P. R. China
| | - Yimeng Yang
- Key Laboratory of Pathobiology
- Ministry of Education
- Department of Pathophysiology
- College of Basic Medical Sciences
- Jilin University
| | - Jiabin Wang
- Key Laboratory of Pathobiology
- Ministry of Education
- Department of Pathophysiology
- College of Basic Medical Sciences
- Jilin University
| | - Jing Su
- Key Laboratory of Pathobiology
- Ministry of Education
- Department of Pathophysiology
- College of Basic Medical Sciences
- Jilin University
| | - Liankun Sun
- Key Laboratory of Pathobiology
- Ministry of Education
- Department of Pathophysiology
- College of Basic Medical Sciences
- Jilin University
| | - Huimei Yu
- Key Laboratory of Pathobiology
- Ministry of Education
- Department of Pathophysiology
- College of Basic Medical Sciences
- Jilin University
| |
Collapse
|
123
|
Zhang Y, Bai L, Liu F, Zhang Y, Cheng Y, Zhang H, Ba X. A novel fluorescent glycopolymer for endogenous hydrogen peroxide imaging in living cells in a fully aqueous environment. Polym J 2019. [DOI: 10.1038/s41428-019-0290-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
124
|
Wang H, He Z, Yang Y, Zhang J, Zhang W, Zhang W, Li P, Tang B. Ratiometric fluorescence imaging of Golgi H 2O 2 reveals a correlation between Golgi oxidative stress and hypertension. Chem Sci 2019; 10:10876-10880. [PMID: 32190242 PMCID: PMC7066677 DOI: 10.1039/c9sc04384e] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 10/01/2019] [Indexed: 12/13/2022] Open
Abstract
Golgi oxidative stress is significantly associated with the occurrence and progression of hypertension. Notably, the concentration of hydrogen peroxide (H2O2) is directly proportional to the degree of Golgi oxidative stress. Therefore, based on a novel Golgi-targeting phenylsulfonamide group, we developed a two-photon (TP) fluorescent probe, Np-Golgi, for in situ H2O2 ratiometric imaging in living systems. The phenylsulfonamide moiety effectively assists Np-Golgi in the precise location of Golgi apparatus. In addition, the raw material of phenylsulfonamide is easily available, and chemical modification is easily implemented. By application of Np-Golgi, we explored the generation of H2O2 during Golgi oxidative stress, and also successfully revealed increases on the levels of Golgi H2O2 in the kidneys of mice with hypertension. This work provides an ideal tool to monitor Golgi oxidative stress for the first time and novel drug targets for the future treatment of hypertension.
Collapse
Affiliation(s)
- Hui Wang
- College of Chemistry , Chemical Engineering and Materials Science , Institute of Biomedical Sciences , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Shandong Normal University , Jinan 250014 , PR China . ;
| | - Zixu He
- College of Chemistry , Chemical Engineering and Materials Science , Institute of Biomedical Sciences , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Shandong Normal University , Jinan 250014 , PR China . ;
| | - Yuyun Yang
- College of Chemistry , Chemical Engineering and Materials Science , Institute of Biomedical Sciences , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Shandong Normal University , Jinan 250014 , PR China . ;
| | - Jiao Zhang
- College of Chemistry , Chemical Engineering and Materials Science , Institute of Biomedical Sciences , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Shandong Normal University , Jinan 250014 , PR China . ;
| | - Wei Zhang
- College of Chemistry , Chemical Engineering and Materials Science , Institute of Biomedical Sciences , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Shandong Normal University , Jinan 250014 , PR China . ;
| | - Wen Zhang
- College of Chemistry , Chemical Engineering and Materials Science , Institute of Biomedical Sciences , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Shandong Normal University , Jinan 250014 , PR China . ;
| | - Ping Li
- College of Chemistry , Chemical Engineering and Materials Science , Institute of Biomedical Sciences , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Shandong Normal University , Jinan 250014 , PR China . ;
| | - Bo Tang
- College of Chemistry , Chemical Engineering and Materials Science , Institute of Biomedical Sciences , Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong , Key Laboratory of Molecular and Nano Probes , Ministry of Education , Shandong Normal University , Jinan 250014 , PR China . ;
| |
Collapse
|
125
|
Abstract
Hydrogen peroxide (H2O2) is an important molecule within the human body, but many of its roles in physiology and pathophysiology are not well understood. To better understand the importance of H2O2 in biological systems, it is essential that researchers are able to quantify this reactive species in various settings, including in vitro, ex vivo and in vivo systems. This review covers a broad range of H2O2 sensors that have been used in biological systems, highlighting advancements that have taken place since 2015.
Collapse
|
126
|
Kanoh N, Kawamata-Asano A, Suzuki K, Takahashi Y, Miyazawa T, Nakamura T, Moriya T, Hirano H, Osada H, Iwabuchi Y, Takahashi S. An integrated screening system for the selection of exemplary substrates for natural and engineered cytochrome P450s. Sci Rep 2019; 9:18023. [PMID: 31792277 PMCID: PMC6888865 DOI: 10.1038/s41598-019-54473-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/14/2019] [Indexed: 11/26/2022] Open
Abstract
Information about substrate and product selectivity is critical for understanding the function of cytochrome P450 monooxygenases. In addition, comprehensive understanding of changes in substrate selectivity of P450 upon amino acid mutation would enable the design and creation of engineered P450s with desired selectivities. Therefore, systematic methods for obtaining such information are required. Herein, we developed an integrated P450 substrate screening system for the selection of “exemplary” substrates for a P450 of interest. The established screening system accurately selected the known exemplary substrates and also identified previously unknown exemplary substrates for microbial-derived P450s from a library containing sp3-rich synthetic small molecules. Synthetically potent transformations were also found by analyzing the reactions and oxidation products. The screening system was applied to analyze the substrate selectivity of the P450 BM3 mutants F87A and F87A/A330W, which acquired an ability to hydroxylate non-natural substrate steroids regio- and stereoselectively by two amino acid mutations. The distinct transition of exemplary substrates due to each single amino acid mutation was revealed, demonstrating the utility of the established system.
Collapse
Affiliation(s)
- Naoki Kanoh
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aza-Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan. .,Institute of Medicinal Chemistry, Hoshi University, 2-4-1 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan.
| | - Ayano Kawamata-Asano
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aza-Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Kana Suzuki
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aza-Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Yusuke Takahashi
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aza-Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Takeshi Miyazawa
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Takemichi Nakamura
- Molecular Structure Characterization Unit, Technology Platform Division, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Takashi Moriya
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aza-Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Hiroyuki Hirano
- Chemical Resource Development Research Unit, Technology Platform Division, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Hiroyuki Osada
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.,Chemical Resource Development Research Unit, Technology Platform Division, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Yoshiharu Iwabuchi
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aza-Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| | - Shunji Takahashi
- Natural Product Biosynthesis Research Unit, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| |
Collapse
|
127
|
Mansour O, El Joukhar I, Belbekhouche S. H2O2-sensitive delivery microparticles based on the boronic acid chemistry: (Phenylboronic –alginate derivative/dextran) system. REACT FUNCT POLYM 2019. [DOI: 10.1016/j.reactfunctpolym.2019.104377] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
128
|
Hajipour MJ, Mehrani M, Abbasi SH, Amin A, Kassaian SE, Garbern JC, Caracciolo G, Zanganeh S, Chitsazan M, Aghaverdi H, Shahri SMK, Ashkarran A, Raoufi M, Bauser-Heaton H, Zhang J, Muehlschlegel JD, Moore A, Lee RT, Wu JC, Serpooshan V, Mahmoudi M. Nanoscale Technologies for Prevention and Treatment of Heart Failure: Challenges and Opportunities. Chem Rev 2019; 119:11352-11390. [PMID: 31490059 PMCID: PMC7003249 DOI: 10.1021/acs.chemrev.8b00323] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The adult myocardium has a limited regenerative capacity following heart injury, and the lost cells are primarily replaced by fibrotic scar tissue. Suboptimal efficiency of current clinical therapies to resurrect the infarcted heart results in injured heart enlargement and remodeling to maintain its physiological functions. These remodeling processes ultimately leads to ischemic cardiomyopathy and heart failure (HF). Recent therapeutic approaches (e.g., regenerative and nanomedicine) have shown promise to prevent HF postmyocardial infarction in animal models. However, these preclinical, clinical, and technological advancements have yet to yield substantial enhancements in the survival rate and quality of life of patients with severe ischemic injuries. This could be attributed largely to the considerable gap in knowledge between clinicians and nanobioengineers. Development of highly effective cardiac regenerative therapies requires connecting and coordinating multiple fields, including cardiology, cellular and molecular biology, biochemistry and chemistry, and mechanical and materials sciences, among others. This review is particularly intended to bridge the knowledge gap between cardiologists and regenerative nanomedicine experts. Establishing this multidisciplinary knowledge base may help pave the way for developing novel, safer, and more effective approaches that will enable the medical community to reduce morbidity and mortality in HF patients.
Collapse
Affiliation(s)
| | - Mehdi Mehrani
- Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Ahmad Amin
- Rajaie Cardiovascular, Medical and Research Center, Iran University of Medical Science Tehran, Iran
| | | | - Jessica C. Garbern
- Department of Stem Cell and Regenerative Biology, Harvard University, Harvard Stem Cell Institute, Cambridge, Massachusetts, United States
- Department of Cardiology, Boston Children’s Hospital, Boston, Massachusetts, United States
| | - Giulio Caracciolo
- Department of Molecular Medicine, Sapienza University of Rome, V.le Regina Elena 291, 00161, Rome, Italy
| | - Steven Zanganeh
- Department of Radiology, Memorial Sloan Kettering, New York, NY 10065, United States
| | - Mitra Chitsazan
- Rajaie Cardiovascular, Medical and Research Center, Iran University of Medical Science Tehran, Iran
| | - Haniyeh Aghaverdi
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Seyed Mehdi Kamali Shahri
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Aliakbar Ashkarran
- Precision Health Program, Michigan State University, East Lansing, MI, United States
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Mohammad Raoufi
- Physical Chemistry I, Department of Chemistry and Biology & Research Center of Micro and Nanochemistry and Engineering, University of Siegen, Siegen, Germany
| | - Holly Bauser-Heaton
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Jianyi Zhang
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Jochen D. Muehlschlegel
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Anna Moore
- Precision Health Program, Michigan State University, East Lansing, MI, United States
| | - Richard T. Lee
- Department of Stem Cell and Regenerative Biology, Harvard University, Harvard Stem Cell Institute, Cambridge, Massachusetts, United States
- Department of Medicine, Division of Cardiology, Brigham and Women’s Hospital and Harvard Medical School, Cambridge, Massachusetts, United States
| | - Joseph C. Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, United States
- Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, California, United States
- Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, United States
| | - Vahid Serpooshan
- Department of Biomedical Engineering, Georgia Institute of Technology & Emory University School of Medicine, Atlanta, Georgia, United States
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Morteza Mahmoudi
- Precision Health Program, Michigan State University, East Lansing, MI, United States
- Department of Anesthesiology, Perioperative and Pain Medicine, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Connors Center for Women’s Health & Gender Biology, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
129
|
A boronic acid based intramolecular charge transfer probe for colorimetric detection of hydrogen peroxide. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.151258] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
130
|
Iovan DA, Jia S, Chang CJ. Inorganic Chemistry Approaches to Activity-Based Sensing: From Metal Sensors to Bioorthogonal Metal Chemistry. Inorg Chem 2019; 58:13546-13560. [PMID: 31185541 PMCID: PMC8544879 DOI: 10.1021/acs.inorgchem.9b01221] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The complex network of chemical processes that sustain life motivates the development of new synthetic tools to decipher biological mechanisms of action at a molecular level. In this context, fluorescent and related optical probes have emerged as useful chemical reagents for monitoring small-molecule and metal signals in biological systems, enabling visualization of dynamic cellular events with spatial and temporal resolution. In particular, metals occupy a central role in this field as analytes in their own right, while also being leveraged for their unique biocompatible reactivity with small-molecule substrates. This Viewpoint highlights the use of inorganic chemistry principles to develop activity-based sensing platforms mediated by metal reactivity, spanning indicators for metal detection to metal-based reagents for bioorthogonal tracking, and manipulation of small and large biomolecules, illustrating the privileged roles of metals at the interface of chemistry and biology.
Collapse
Affiliation(s)
- Diana A. Iovan
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Howard Hughes Medical Institute, University of California, Berkeley, California 94720, United States
| | - Shang Jia
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Christopher J. Chang
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
- Howard Hughes Medical Institute, University of California, Berkeley, California 94720, United States
| |
Collapse
|
131
|
Li J, Shi Y, Zhang Z, Liu H, Lang L, Liu T, Chen X, Liu Z. A Metabolically Stable Boron-Derived Tyrosine Serves as a Theranostic Agent for Positron Emission Tomography Guided Boron Neutron Capture Therapy. Bioconjug Chem 2019; 30:2870-2878. [PMID: 31593447 DOI: 10.1021/acs.bioconjchem.9b00578] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Boronophenylalanine (BPA) is the dominant boron delivery agent for boron neutron capture therapy (BNCT), and [18F]FBPA has been developed to assist the treatment planning for BPA-BNCT. However, the clinical application of BNCT has been limited by its inadequate tumor specificity due to the metabolic instability. In addition, the distinctive molecular structures between [18F]FBPA and BPA can be of concern as [18F]FBPA cannot quantitate boron concentration of BPA in a real-time manner. In this study, a metabolically stable boron-derived tyrosine (denoted as fluoroboronotyrosine, FBY) was developed as a theranostic agent for both boron delivery and cancer diagnosis, leading to PET imaging-guided BNCT of cancer. [18F]FBY was synthesized in high radiochemical yield (50%) and high radiochemical purity (98%). FBY showed high similarity with natural tyrosine. As shown in in vitro assays, the uptake of FBY in murine melanoma B16-F10 cells was L-type amino acid transporter (LAT-1) dependent and reached up to 128 μg/106 cells. FBY displayed high stability in PBS solution. [18F]FBY PET showed up to 6 %ID/g in B16-F10 tumor and notably low normal tissue uptake (tumor/muscle = 3.16 ± 0.48; tumor/blood = 3.13 ± 0.50; tumor/brain = 14.25 ± 1.54). Moreover, administration of [18F]FBY tracer along with a therapeutic dose of FBY showed high accumulation in B16-F10 tumor and low normal tissue uptake. Correlation between PET-image and boron biodistribution was established, indicating the possibility of estimating boron concentration via a noninvasive approach. At last, with thermal neutron irradiation, B16-F10 tumor-bearing mice injected with FBY showed significantly prolonged median survival without exhibiting obvious systemic toxicity. In conclusion, FBY holds great potential as an efficient theranostic agent for imaging-guided BNCT by offering a possible solution of measuring local boron concentration through PET imaging.
Collapse
Affiliation(s)
- Jiyuan Li
- Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Yaxin Shi
- Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Zizhu Zhang
- Beijing Capture Tech Co., Ltd. , Beijing 102413 , China
| | - Hui Liu
- Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China
| | - Lixin Lang
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN) , National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH) , Bethesda , Maryland 20892 , United States
| | - Tong Liu
- Beijing Capture Tech Co., Ltd. , Beijing 102413 , China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN) , National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH) , Bethesda , Maryland 20892 , United States
| | - Zhibo Liu
- Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering , Peking University , Beijing 100871 , China.,Peking University-Tsinghua University Center for Life Sciences , Beijing 100871 , China
| |
Collapse
|
132
|
Zheng DJ, Yang YS, Zhu HL. Recent progress in the development of small-molecule fluorescent probes for the detection of hydrogen peroxide. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.06.031] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
133
|
Abstract
Water is considered to be a stable and relatively inert molecule in bulk solution. We report an exceptional behavior of water: Water molecules are spontaneously oxidized to form hydrogen peroxide near the water−air interface of micron-sized water droplets. This process does not require any chemical reagent, catalyst, applied electric potential, or radiation. Only pure water in the form of microdroplets in air is necessary for the appearance of hydrogen peroxide. We suggest that this discovery opens various innovative opportunities including green and inexpensive production of hydrogen peroxide, green chemical synthesis, safe cleaning, and food processing. We show H2O2 is spontaneously produced from pure water by atomizing bulk water into microdroplets (1 μm to 20 µm in diameter). Production of H2O2, as assayed by H2O2-sensitve fluorescence dye peroxyfluor-1, increased with decreasing microdroplet size. Cleavage of 4-carboxyphenylboronic acid and conversion of phenylboronic acid to phenols in microdroplets further confirmed the generation of H2O2. The generated H2O2 concentration was ∼30 µM (∼1 part per million) as determined by titration with potassium titanium oxalate. Changing the spray gas to O2 or bubbling O2 decreased the yield of H2O2 in microdroplets, indicating that pure water microdroplets directly generate H2O2 without help from O2 either in air surrounding the droplet or dissolved in water. We consider various possible mechanisms for H2O2 formation and report a number of different experiments exploring this issue. We suggest that hydroxyl radical (OH) recombination is the most likely source, in which OH is generated by loss of an electron from OH− at or near the surface of the water microdroplet. This catalyst-free and voltage-free H2O2 production method provides innovative opportunities for green production of hydrogen peroxide.
Collapse
|
134
|
Wu D, Chen L, Xu Q, Chen X, Yoon J. Design Principles, Sensing Mechanisms, and Applications of Highly Specific Fluorescent Probes for HOCl/OCl .. Acc Chem Res 2019; 52:2158-2168. [PMID: 31318529 DOI: 10.1021/acs.accounts.9b00307] [Citation(s) in RCA: 221] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hypochlorous acid/hypochlorite (HOCl/OCl-), one of the most important reactive oxygen species (ROS), plays vital roles in various physiological and pathological processes. At normal concentrations, OCl- acts as part of an immune defense system by destroying invasive bacteria and pathogens. However, nonproperly located or excessive amounts of OCl- are related to many diseases, including cancers. Thus, detection of OCl- has great importance. Owing to their high sensitivities, selectivities, fast response times, technical simplicities, and high temporal and spatial resolution, fluorescent probes are powerful tools for in vitro and in vivo sensing of target substances. This Account focuses on the development of new chemosensors for detection of OCl-, which operate by undergoing a chemical reaction with this ROS in conjunction with a change in emission properties. As part of the presentation, we first introduce several important factors that need to be considered in the design of fluorescent chemosensors for OCl-, including fluorophores, reaction groups, cosolvents, and buffers. Discussion here revolves around the need to select fluorophores that resist oxidation by OCl-. As well, attention is given to the sensitivities and selectivities of groups in the sensors that react with OCl- to trigger a fluorescence response. Moreover, well-known reaction groups, which react with highly reactive ROS (hROS), have been redesigned to be specific for OCl-. In addition, it is pointed out that several cosolvents and buffers such as DMSO and HEPES are not suitable for use in systems for the detection of OCl- because they are readily oxidized by this ROS. We further discuss recent investigations carried out by us and others aimed at the development of fluorescent probes for in vitro and in vivo detection of OCl-. These efforts led to the new "dual lock" strategy for designing OCl- chemosensors as well as several new specific reaction groups such as imidazoline-2-thiones and imidazoline-2-boranes. Probes created using this strategy and the new reacting groups have been successfully applied to imaging exogenous and endogenous OCl- in live cells and/or tissues. The design concepts and strategies emanating from our studies of fluorescent OCl- probes have provided insight into the general field of fluorescent probes. Despite the progress made thus far, challenges still remain in developing and applying fluorescent OCl- probes. For example, more highly specific and sensitive fluorescent OCl- probes are still in great demand for studies of the biological roles played by OCl-. Thus, interdisciplinary collaborations of chemists, biologists, and medical practitioners are needed to drive future developments of OCl- probes for disease diagnosis and drug screening.
Collapse
Affiliation(s)
- Di Wu
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Liyan Chen
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Qingling Xu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoqiang Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211816, China
| | - Juyoung Yoon
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
135
|
Molecular imaging of oxidative stress using an LED-based photoacoustic imaging system. Sci Rep 2019; 9:11378. [PMID: 31388020 PMCID: PMC6684596 DOI: 10.1038/s41598-019-47599-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 07/19/2019] [Indexed: 12/22/2022] Open
Abstract
LED-based photoacoustic imaging has practical value in that it is affordable and rugged; however, this technology has largely been confined to anatomic imaging with limited applications into functional or molecular imaging. Here, we report molecular imaging reactive oxygen and nitrogen species (RONS) with a near-infrared (NIR) absorbing small molecule (CyBA) and LED-based photoacoustic imaging equipment. CyBA produces increasing photoacoustic signal in response to peroxynitrite (ONOO−) and hydrogen peroxide (H2O2) with photoacoustic signal increases of 3.54 and 4.23-fold at 50 µM of RONS at 700 nm, respectively. CyBA is insensitive to OCl−, ˙NO, NO2−, NO3−, tBuOOH, O2−, C4H9O˙, HNO, and ˙OH, but can detect ONOO− in whole blood and plasma. CyBA was then used to detect endogenous RONS in macrophage RAW 246.7 cells as well as a rodent model; these results were confirmed with fluorescence microscopy. Importantly, CyB suffers photobleaching under a Nd:YAG laser but the signal decrease is <2% with the low-power LED-based photoacoustic system and the same radiant exposure time. To the best of our knowledge, this is the first report to describe molecular imaging with an LED-based photoacoustic scanner. This study not only reveals the sensitive photoacoustic detection of RONS but also highlights the utility of LED-based photoacoustic imaging.
Collapse
|
136
|
Qiu X, Xin C, Qin W, Li Z, Zhang D, Zhang G, Peng B, Han X, Yu C, Li L, Huang W. A novel pyrimidine based deep-red fluorogenic probe for detecting hydrogen peroxide in Parkinson's disease models. Talanta 2019; 199:628-633. [DOI: 10.1016/j.talanta.2019.03.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/25/2019] [Accepted: 03/02/2019] [Indexed: 11/24/2022]
|
137
|
Meng T, Han J, Zhang P, Hu J, Fu J, Yin J. Introduction of the α-ketoamide structure: en route to develop hydrogen peroxide responsive prodrugs. Chem Sci 2019; 10:7156-7162. [PMID: 31588282 PMCID: PMC6761880 DOI: 10.1039/c9sc00910h] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 06/28/2019] [Indexed: 12/12/2022] Open
Abstract
New light on H2O2-activated prodrugs: the first α-ketoamide based prodrug opens up new alternatives for designing non-boron based H2O2-responsive promoieties.
Leveraging the elevated levels of hydrogen peroxide (H2O2) in cancer, inflammatory diseases and cardiovascular disorders, H2O2-activated promoieties have been widely used in drugs and biomaterials design. However, the overwhelming majority of the promoieties only share the common structure of a H2O2-responsive arylboronic acid/ester moiety with low diversity. We report here an unprecedented strategy to construct novel H2O2-responsive prodrugs based on an α-ketoamide structure. As a proof of concept, we designed and synthesized a panel of α-ketoamide based nitrogen mustard prodrugs, among which KAM-2 showed potent growth inhibitory activity and high selectivity toward cancer cells. The H2O2-trigged decomposition of KAM-2 was validated, and the DNA damaging and apoptosis promoting activity attributed to the released nitrogen mustard were demonstrated. Our work unveils α-ketoamide as a new scaffold for prodrug design and may quickly inspire future developments.
Collapse
Affiliation(s)
- Tingting Meng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology , Ministry of Education , School of Biotechnology , Jiangnan University , Wuxi 214122 , P. R. China . ; .,School of Pharmacy , Nanjing Medical University , Nanjing 211166 , P. R. China
| | - Jing Han
- School of Chemistry & Materials Science , Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials , Jiangsu Normal University , Xuzhou 221116 , P. R. China
| | - Pengfei Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology , Ministry of Education , School of Biotechnology , Jiangnan University , Wuxi 214122 , P. R. China . ;
| | - Jing Hu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology , Ministry of Education , School of Biotechnology , Jiangnan University , Wuxi 214122 , P. R. China . ;
| | - Junjie Fu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology , Ministry of Education , School of Biotechnology , Jiangnan University , Wuxi 214122 , P. R. China . ; .,School of Pharmacy , Nanjing Medical University , Nanjing 211166 , P. R. China
| | - Jian Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology , Ministry of Education , School of Biotechnology , Jiangnan University , Wuxi 214122 , P. R. China . ;
| |
Collapse
|
138
|
Bai X, Ng KKH, Hu JJ, Ye S, Yang D. Small-Molecule-Based Fluorescent Sensors for Selective Detection of Reactive Oxygen Species in Biological Systems. Annu Rev Biochem 2019; 88:605-633. [DOI: 10.1146/annurev-biochem-013118-111754] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Reactive oxygen species (ROS) encompass a collection of intricately linked chemical entities characterized by individually distinct physicochemical properties and biological reactivities. Although excessive ROS generation is well known to underpin disease development, it has become increasingly evident that ROS also play central roles in redox regulation and normal physiology. A major challenge in uncovering the relevant biological mechanisms and deconvoluting the apparently paradoxical roles of distinct ROS in human health and disease lies in the selective and sensitive detection of these transient species in the complex biological milieu. Small-molecule-based fluorescent sensors enable molecular imaging of ROS with great spatial and temporal resolution and have thus been appreciated as excellent tools for aiding discoveries in modern redox biology. We review a selection of state-of-the-art sensors with demonstrated utility in biological systems. By providing a systematic overview based on underlying chemical sensing mechanisms, we wish to highlight the strengths and weaknesses in prior sensor works and propose some guiding principles for the development of future probes.
Collapse
Affiliation(s)
| | | | - Jun Jacob Hu
- Morningside Laboratory for Chemical Biology, Department of Chemistry, The University of Hong Kong, Hong Kong, P. R. China;, , , ,
| | - Sen Ye
- Morningside Laboratory for Chemical Biology, Department of Chemistry, The University of Hong Kong, Hong Kong, P. R. China;, , , ,
| | - Dan Yang
- Morningside Laboratory for Chemical Biology, Department of Chemistry, The University of Hong Kong, Hong Kong, P. R. China;, , , ,
| |
Collapse
|
139
|
Su TA, Bruemmer KJ, Chang CJ. Caged luciferins for bioluminescent activity-based sensing. Curr Opin Biotechnol 2019; 60:198-204. [PMID: 31200275 DOI: 10.1016/j.copbio.2019.05.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 05/07/2019] [Indexed: 02/06/2023]
Abstract
Bioluminescence imaging is a powerful modality for in vivo imaging owing to its low background and high signal-to-noise ratio. Because bioluminescent emission occurs only upon the catalytic reaction between the luciferase enzyme and its luciferin substrate, caging luciferins with analyte-reactive triggers offers a general approach for activity-based sensing of specific biochemical processes in living systems across cell, tissue, and animal models. In this review, we summarize recent efforts in the development of synthetic caged luciferins for tracking enzyme, small molecule, and metal ion activity and their contributions to physiological and pathological processes.
Collapse
Affiliation(s)
- Timothy A Su
- Department of Chemistry, University of California, Berkeley, CA 94720, United States
| | - Kevin J Bruemmer
- Department of Chemistry, University of California, Berkeley, CA 94720, United States
| | - Christopher J Chang
- Department of Chemistry, University of California, Berkeley, CA 94720, United States; Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, United States; Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, United States; Howard Hughes Medical Institute, University of California, Berkeley, California 94720, United States
| |
Collapse
|
140
|
Liu Y, Jiao C, Lu W, Zhang P, Wang Y. Research progress in the development of organic small molecule fluorescent probes for detecting H 2O 2. RSC Adv 2019; 9:18027-18041. [PMID: 35520548 PMCID: PMC9064630 DOI: 10.1039/c9ra02467k] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/03/2019] [Indexed: 12/13/2022] Open
Abstract
Hydrogen peroxide (H2O2), as an important signaling molecule during biological metabolism, is a key member of the reactive oxygen species (ROS) family. The excess of H2O2 will lead to oxidative stress, which is a crucial factor in the production of various ROS-related diseases. In order to study the diverse biological roles of H2O2 in cells and animal tissues, many methods have been developed to detect H2O2. Recently, fluorescence imaging has attracted more and more attention because of its high sensitivity, simple operation, experimental feasibility, and real-time online monitoring. Based on the response group, this study will review the research progress on hydrogen peroxide and summarizes the mechanisms, actualities and prospects of fluorescent probes for H2O2.
Collapse
Affiliation(s)
- Yuanyuan Liu
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences Jinan 250200 Shandong China
- Institute of MateriaMedica, Shandong Academy of Medical Sciences Jinan 250062 Shandong China
- Key Laboratory for Biotech-Drugs Ministry of Health Jinan 250062 Shandong China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province Jinan 250062 Shandong China
| | - Chunpeng Jiao
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences Jinan 250200 Shandong China
- Institute of MateriaMedica, Shandong Academy of Medical Sciences Jinan 250062 Shandong China
- Key Laboratory for Biotech-Drugs Ministry of Health Jinan 250062 Shandong China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province Jinan 250062 Shandong China
| | - Wenjuan Lu
- Institute of MateriaMedica, Shandong Academy of Medical Sciences Jinan 250062 Shandong China
- Key Laboratory for Biotech-Drugs Ministry of Health Jinan 250062 Shandong China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province Jinan 250062 Shandong China
| | - Pingping Zhang
- Institute of MateriaMedica, Shandong Academy of Medical Sciences Jinan 250062 Shandong China
- Key Laboratory for Biotech-Drugs Ministry of Health Jinan 250062 Shandong China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province Jinan 250062 Shandong China
| | - Yanfeng Wang
- Institute of MateriaMedica, Shandong Academy of Medical Sciences Jinan 250062 Shandong China
- Key Laboratory for Biotech-Drugs Ministry of Health Jinan 250062 Shandong China
- Key Laboratory for Rare & Uncommon Diseases of Shandong Province Jinan 250062 Shandong China
| |
Collapse
|
141
|
Liu J, Liang J, Wu C, Zhao Y. A Doubly-Quenched Fluorescent Probe for Low-Background Detection of Mitochondrial H 2O 2. Anal Chem 2019; 91:6902-6909. [PMID: 31021600 DOI: 10.1021/acs.analchem.9b01294] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Hydrogen peroxide (H2O2) is an important product of oxygen metabolism and plays a crucial role in regulating a variety of cellular functions. Fluorescent probes have made a great contribution to our understanding of the biological role of endogenous H2O2. However, fluorescent probes for H2O2 featuring aryl boronates can suffer from moderate turn-on fluorescence responses. Strategies that can reduce the background fluorescence of these boronate-masked probes would significantly improve the sensitivity of endogenous H2O2 detection. In this work, we propose a general and reliable double-quenching concept for the design of fluorescent probes with low background fluorescence. A new fluorescent probe was developed for the detection of endogenous H2O2 in mitochondria of live cancer cells. This probe exploits a boronate-driven lactam formation and an eliminable quenching moiety simultaneously (i.e., the double-quenching effect) to reduce the background fluorescence, which ultimately results in the achievement of a >50-fold fluorescence turn-on. A linear concentration range of response between 1 and 60 μM and a detection limit of 0.025 μM can be obtained. This study not only presents a highly sensitive fluorescent probe for the detection of H2O2 but also provides a new concept for the design of fluorescent probes with a previously unachievable fluorescence off-on response ratio for other types of ROS and many other biologically relevant analytes.
Collapse
Affiliation(s)
- Jun Liu
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation , Xiamen University , Xiamen 361005 , People's Republic of China
| | - Jingjing Liang
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation , Xiamen University , Xiamen 361005 , People's Republic of China
| | - Chuanliu Wu
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation , Xiamen University , Xiamen 361005 , People's Republic of China
| | - Yibing Zhao
- Department of Chemistry, College of Chemistry and Chemical Engineering, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation , Xiamen University , Xiamen 361005 , People's Republic of China
| |
Collapse
|
142
|
Zhu QH, Yuan WL, Zhang L, Zhang GH, He L, Tao GH. Biocompatible Ionic Liquid Based on Curcumin as Fluorescence Probe for Detecting Benzoyl Peroxide without the Interference of H 2O 2. Anal Chem 2019; 91:6593-6599. [PMID: 31026152 DOI: 10.1021/acs.analchem.9b00396] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Accurate estimation of the level of benzoyl peroxide (BPO) is of considerable significance because of its threat to humanity and environment. Several research efforts have been devoted to the detection of BPO by fluorescent method with high sensitivity and selectivity. However, it remains challenging to eliminate the interference of H2O2 due to its similar properties to BPO. In this work, the first demonstration of fluorescent and colorimetric probe for specific detection of BPO without the disturbance of H2O2 was achieved by curcumin-based ionic liquid (CIL) that possesses simple fabrication, good biocompatibility, and low cost. The fluorescence quenches and emission peak blue-shifts once the probe selectively interacts with BPO, whereas the other possible interfering agents, including H2O2, do not have this phenomenon. The probe CIL exhibits prominent sensitivity for BPO sensing and enables the detection limit at levels as ultralow as 10 nM. The local detection of BPO in practical samples is realized by visualization using a portable device derived from CIL-based liquid atomizer.
Collapse
Affiliation(s)
- Qiu-Hong Zhu
- College of Chemistry , Sichuan University , Chengdu 610064 , China
| | - Wen-Li Yuan
- College of Chemistry , Sichuan University , Chengdu 610064 , China
| | - Lei Zhang
- College of Chemistry , Sichuan University , Chengdu 610064 , China
| | - Guo-Hao Zhang
- College of Chemistry , Sichuan University , Chengdu 610064 , China
| | - Ling He
- College of Chemistry , Sichuan University , Chengdu 610064 , China
| | - Guo-Hong Tao
- College of Chemistry , Sichuan University , Chengdu 610064 , China
| |
Collapse
|
143
|
Haque MM, Murale DP, Kim YK, Lee JS. Crosstalk between Oxidative Stress and Tauopathy. Int J Mol Sci 2019; 20:ijms20081959. [PMID: 31013607 PMCID: PMC6514575 DOI: 10.3390/ijms20081959] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/16/2019] [Accepted: 04/19/2019] [Indexed: 12/11/2022] Open
Abstract
Tauopathy is a collective term for neurodegenerative diseases associated with pathological modifications of tau protein. Tau modifications are mediated by many factors. Recently, reactive oxygen species (ROS) have attracted attention due to their upstream and downstream effects on tauopathy. In physiological conditions, healthy cells generate a moderate level of ROS for self-defense against foreign invaders. Imbalances between ROS and the anti-oxidation pathway cause an accumulation of excessive ROS. There is clear evidence that ROS directly promotes tau modifications in tauopathy. ROS is also highly upregulated in the patients’ brain of tauopathies, and anti-oxidants are currently prescribed as potential therapeutic agents for tauopathy. Thus, there is a clear connection between oxidative stress (OS) and tauopathies that needs to be studied in more detail. In this review, we will describe the chemical nature of ROS and their roles in tauopathy.
Collapse
Affiliation(s)
- Md Mamunul Haque
- Molecular Recognition Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea.
| | - Dhiraj P Murale
- Molecular Recognition Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea.
| | - Yun Kyung Kim
- Bio-Med Division, KIST-School UST, Seoul 02792, Korea.
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, Brain Science Institute (BSI), Korea Institute of Science and Technology (KIST), Seoul 02792, Korea.
| | - Jun-Seok Lee
- Molecular Recognition Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea.
- Bio-Med Division, KIST-School UST, Seoul 02792, Korea.
| |
Collapse
|
144
|
Chang J, Chen X, Glass Z, Gao F, Mao L, Wang M, Xu Q. Integrating Combinatorial Lipid Nanoparticle and Chemically Modified Protein for Intracellular Delivery and Genome Editing. Acc Chem Res 2019; 52:665-675. [PMID: 30586281 DOI: 10.1021/acs.accounts.8b00493] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The use of protein to precisely manipulate cell signaling is an effective approach for controlling cell fate and developing precision medicine. More recently, programmable nucleases, such as CRISPR/Cas9, have shown extremely high potency for editing genetic flow of mammalian cells, and for treating genetic disorders. The therapeutic potential of proteins with an intracellular target, however, is mostly challenged by their low cell impermeability. Therefore, a developing delivery system to transport protein to the site of action in a spatiotemporal controlled manner is of great importance to expand the therapeutic index of the protein. In this Account, we first summarize our most recent advances in designing combinatorial lipid nanoparticles with diverse chemical structures for intracellular protein delivery. By designing parallel Michael addition or ring-opening reaction of aliphatic amines, we have generated a combinatorial library of cationic lipids, and identified several leading nanoparticle formulations for intracellular protein delivery both in vitro and in vivo. Moreover, we optimized the chemical structure of lipids to control lipid degradation and protein release inside cells for CRISPR/Cas9 genome-editing protein delivery. In the second part of this Account, we survey our recent endeavor in developing a chemical approach to modify protein, in particular, coupled with the nanoparticle delivery platform, to improve protein delivery for targeted diseases treatment and genome editing. Chemical modification of protein is a useful tool to modulate protein function and to improve the therapeutic index of protein drugs. Herein, we mostly summarize our recent advances on designing chemical approaches to modify protein with following unique findings: (1) chemically modified protein shows selective turn-on activity based on the specific intracellular microenvironment, with which we were able to protein-based targeted cancer therapy; (2) the conjugation of hyaluronic acid (HA) to protein allows cancer cell surface receptor-targeted delivery of protein; (3) the introduction of nonpeptidic boronic acid into protein enabled cell nucleus targeted delivery; this is the first report that a nonpeptidic signal can direct protein to subcellular compartment; and (4) the fusion of protein with negatively supercharged green fluorescent protein (GFP) facilitates the self-assembly of protein with lipid nanoparticle for genome-editing protein delivery. At the end of the Account, we give a perspective of expanding the chemistry that could be integrated to design biocompatible lipid nanocarriers for protein delivery and genome editing in vitro and in vivo, as well as the chemical approaches that we can harness to modulate protein activity in live cells for targeted diseases treatment.
Collapse
Affiliation(s)
- Jin Chang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecule Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing 100190, China
| | - Xianghan Chen
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecule Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing 100190, China
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Zachary Glass
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Feng Gao
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Lanqun Mao
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecule Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming Wang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecule Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiaobing Xu
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
145
|
Microwave-assisted synthesis of gadolinium(III) oxide decorated reduced graphene oxide nanocomposite for detection of hydrogen peroxide in biological and clinical samples. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.02.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
146
|
Wang H, Li Y, Yang M, Wang P, Gu Y. FRET-Based Upconversion Nanoprobe Sensitized by Nd 3+ for the Ratiometric Detection of Hydrogen Peroxide in Vivo. ACS APPLIED MATERIALS & INTERFACES 2019; 11:7441-7449. [PMID: 30673225 DOI: 10.1021/acsami.8b21549] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The exorbitant level of hydrogen peroxide is closely related to many human diseases. The development of novel probes for H2O2 detection will be beneficial to disease diagnosis. In this study, a novel Nd3+-sensitized upconversion nanoprobe based on Förster resonance energy transfer was first developed for sensing H2O2. This nanosystem was made of core-shell upconversion nanoparticles (emission at 540 and 660 nm), dicyanomethylene-4 H-pyran (DCM)-H2O2, and poly acrylic acid (PAA)-octylamine. Obviously, upconversion nanoparticles (UCNPs) doped with Nd3+ acted as an energy donor, and DCM-H2O2, transferring to DCM-OH with the reaction of H2O2, acted as an energy acceptor. The ratiometric upconversion luminescence (540 nm/660 nm) signal could be utilized to visualize the H2O2 level, and the LOD of the nanoprobe for H2O2 was quantified to be 0.168 μM. Meanwhile, owing to the dope of Nd3+, the nanoprobe would not induce the overheating effect in biological samples and could possess deeper tissue penetration depth, compared with the UCNPs excited by 980 nm light during bioimaging. The nanoprobe could also play an important role in detecting the exogenous and endogenous H2O2 in living cells with ratiometric UCL (upconversion luminescence) imaging. Furthermore, our nanoprobe could function in detecting the H2O2 in a tumor-bearing mouse model. Therefore, this novel nanoprobe along with the ratiometric method for responding and bioimaging H2O2 could serve as a new model that promotes the emergence of novel probes for H2O2 detection.
Collapse
Affiliation(s)
- Han Wang
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering , China Pharmaceutical University , Nanjing 210009 , China
| | - Yongkuan Li
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering , China Pharmaceutical University , Nanjing 210009 , China
| | - Man Yang
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering , China Pharmaceutical University , Nanjing 210009 , China
| | - Peng Wang
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering , China Pharmaceutical University , Nanjing 210009 , China
| | - Yueqing Gu
- State Key Laboratory of Natural Medicines, Department of Biomedical Engineering, School of Engineering , China Pharmaceutical University , Nanjing 210009 , China
| |
Collapse
|
147
|
Xia R, Zheng X, Hu X, Liu S, Xie Z. Photothermal-Controlled Generation of Alkyl Radical from Organic Nanoparticles for Tumor Treatment. ACS APPLIED MATERIALS & INTERFACES 2019; 11:5782-5790. [PMID: 30663874 DOI: 10.1021/acsami.8b18953] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The therapeutic properties of light are well known for photodynamic or photothermal therapy, which could cause irreversible photodamage to tumor tissues. Although photodynamic therapy (PDT) has been proved in the clinic, the efficacy is not satisfactory because of complicated tumor microenvironments. For example, the hypoxia in solid tumor has a negative effect on the generation of singlet oxygen. To address the hypoxia issues in PDT, leveraging alkyl radical is an available option due to the oxygen-independent feature. In this work, a new kind of organic nanoparticles (tripolyphosphate (TPP)-NN NPs) from porphyrin and radical initiator is developed. Under near-infrared light irradiation, TPP-NN NPs will split and release alkyl radical, which could induce obvious cytotoxicity both in normal and hypoxia environment. The photothermal-controlled generation of alkyl radical could significantly inhibit the growth of cervical cancer and show ignorable systemic toxicity. This activatable radical therapy opens up new possibilities for the application of PDT in hypoxia condition.
Collapse
Affiliation(s)
- Rui Xia
- State Key Laboratory of Polymer Physics and Chemistry , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun , Jilin 130022 , P. R. China
- University of Science and Technology of China , Hefei 230026 , P. R. China
| | - Xiaohua Zheng
- State Key Laboratory of Polymer Physics and Chemistry , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun , Jilin 130022 , P. R. China
- University of Science and Technology of China , Hefei 230026 , P. R. China
| | - Xiuli Hu
- State Key Laboratory of Polymer Physics and Chemistry , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun , Jilin 130022 , P. R. China
| | - Shi Liu
- State Key Laboratory of Polymer Physics and Chemistry , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun , Jilin 130022 , P. R. China
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun , Jilin 130022 , P. R. China
- University of Science and Technology of China , Hefei 230026 , P. R. China
| |
Collapse
|
148
|
A NIR fluorescent sensor with large Stokes shift for the real-time visualization of endogenous hydrogen peroxide in living cells. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2018.10.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
149
|
Hatanaka M, Wakabayashi T. Theoretical study of lanthanide-based in vivo luminescent probes for detecting hydrogen peroxide. J Comput Chem 2019; 40:500-506. [PMID: 30414197 DOI: 10.1002/jcc.25737] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 09/27/2018] [Accepted: 09/28/2018] [Indexed: 11/06/2022]
Abstract
The 4f-4f emissions from lanthanide trication (Ln3+ ) complexes are widely used in bioimaging probes. The emission intensity from Ln3+ depends on the surroundings, and thus, the design of appropriate photo-antenna ligands is indispensable. In this study, we focus on two probes for detecting hydrogen peroxide, for which emission intensities from Tb3+ are enhanced chemo-selectively by the H2 O2 -mediated oxidation of ligands. To understand the mechanism, the Gibbs free energy profiles of the ground and excited states related to emission and quenching are computed by combining our approximation-called the energy shift method-and density functional theory. The different emission intensities are mainly attributed to different activation barriers for excitation energy transfer from the ligand-centered triplet (T1) to the Tb3+ -centered excited state. Additionally, quenching from T1 to the ground state via intersystem crossing was inhibited by intramolecular hydrogen bonds only in the highly emissive Tb3+ complexes. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Miho Hatanaka
- Institute for Research Initiatives, Division for Research Strategy, Graduate School of Science and Technology, Data Science Center, Nara Institute of Science and Technology, Nara, 630-0192, Japan.,PRESTO, Japan Science and Technology Agency (JST), Saitama, 332-0012, Japan
| | - Tomonari Wakabayashi
- Graduate School of Science and Engineering, Kindai University, Osaka, 577-8502, Japan
| |
Collapse
|
150
|
One-step voltammetric deposition of l-proline assisted silver nanoparticles modified glassy carbon electrode for electrochemical detection of hydrogen peroxide. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2018.11.050] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|