101
|
Tanabe K, Okada K, Sugiura M, Ito T, Nishimoto SI. Hypoxic X-irradiation as an external stimulus for conformational change of oligodeoxynucleotides that possess disulfide bond and regulation of DNAzyme function. Bioorg Med Chem Lett 2014; 25:310-2. [PMID: 25479773 DOI: 10.1016/j.bmcl.2014.11.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 11/10/2014] [Accepted: 11/14/2014] [Indexed: 12/17/2022]
Abstract
We achieved a conformational change of oligodeoxynucleotides and the regulation of DNAzyme function by means of a radiolytic strand exchange reaction of disulfide bond. We designed a system in which the DNAzyme function of RNA cleavage was suppressed by the hybridization of an inhibitor strand that possessed disulfide bond with an active DNAzyme. Hypoxic X-irradiation led to the recovery of RNA cleavage because the strand exchange reaction at the disulfide bond in inhibitor strand resulted in a release of inhibitor strand. This strategy may be applicable to gene regulation by hypoxic X-irradiation.
Collapse
Affiliation(s)
- Kazuhito Tanabe
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura Campus, Nishikyo-ku, Kyoto 615-8510, Japan.
| | - Kana Okada
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura Campus, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Masaaki Sugiura
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura Campus, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Takeo Ito
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura Campus, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Sei-Ichi Nishimoto
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura Campus, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
102
|
Hwang K, Wu P, Kim T, Lei L, Tian S, Wang Y, Lu Y. Photocaged DNAzymes as a General Method for Sensing Metal Ions in Living Cells. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201408333] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Kevin Hwang
- Department of Chemistry, University of Illinois at Urbana‐Champaign, Urbana, IL, 61801 (USA)
| | - Peiwen Wu
- Department of Biochemistry, University of Illinois at Urbana‐Champaign, Urbana, IL, 61801 (USA)
| | - Taejin Kim
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana‐Champaign, Urbana, IL, 61801 (USA)
| | - Lei Lei
- Department of Bioengineering and Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, 92093 (USA)
| | - Shiliang Tian
- Department of Chemistry, University of Illinois at Urbana‐Champaign, Urbana, IL, 61801 (USA)
| | - Yingxiao Wang
- Department of Bioengineering and Institute of Engineering in Medicine, University of California, San Diego, La Jolla, CA, 92093 (USA)
| | - Yi Lu
- Department of Chemistry, University of Illinois at Urbana‐Champaign, Urbana, IL, 61801 (USA)
- Department of Biochemistry, University of Illinois at Urbana‐Champaign, Urbana, IL, 61801 (USA)
| |
Collapse
|
103
|
Marcélis L, Van Overstraeten-Schlögel N, Lambermont J, Bontems S, Spinelli N, Defrancq E, Moucheron C, Kirsch-De Mesmaeker A, Raes M. Light-Triggered Green Fluorescent Protein Silencing in Human Keratinocytes in Culture Using Antisense Oligonucleotides Coupled to a Photoreactive Ruthenium(II) Complex. Chempluschem 2014. [DOI: 10.1002/cplu.201402212] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
104
|
Wu L, Pei F, Zhang J, Wu J, Feng M, Wang Y, Jin H, Zhang L, Tang X. Synthesis of Site-Specifically Phosphate-Caged siRNAs and Evaluation of Their RNAi Activity and Stability. Chemistry 2014; 20:12114-22. [DOI: 10.1002/chem.201403430] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Indexed: 01/17/2023]
|
105
|
Brown CW, Lakin MR, Horwitz EK, Fanning ML, West HE, Stefanovic D, Graves SW. Signal propagation in multi-layer DNAzyme cascades using structured chimeric substrates. Angew Chem Int Ed Engl 2014; 53:7183-7. [PMID: 24890874 PMCID: PMC4134131 DOI: 10.1002/anie.201402691] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 04/20/2014] [Indexed: 12/30/2022]
Abstract
Signal propagation through enzyme cascades is a critical component of information processing in cellular systems. Although such systems have potential as biomolecular computing tools, rational design of synthetic protein networks remains infeasible. DNA strands with catalytic activity (DNAzymes) are an attractive alternative, enabling rational cascade design through predictable base-pair hybridization principles. Multi-layered DNAzyme signaling and logic cascades are now reported. Signaling between DNAzymes was achieved using a structured chimeric substrate (SCS) that releases a downstream activator after cleavage by an upstream DNAzyme. The SCS can be activated by various upstream DNAzymes, can be coupled to DNA strand-displacement devices, and is highly resistant to interference from background DNA. This work enables the rational design of synthetic DNAzyme regulatory networks, with potential applications in biomolecular computing, biodetection, and autonomous theranostics.
Collapse
Affiliation(s)
- Carl W. Brown
- Center for Biomedical Engineering, Department of Chemical and Nuclear Engineering, University of New Mexico, Albuquerque, NM 87131 (USA)
| | - Matthew R. Lakin
- Department of Computer Science, Center for Biomedical Engineering, University of New Mexico, Albuquerque, NM 87131 (USA)
| | - Eli K. Horwitz
- Center for Biomedical Engineering, Department of Chemical and Nuclear Engineering, University of New Mexico, Albuquerque, NM 87131 (USA)
| | - M. Leigh Fanning
- Department of Computer Science, Center for Biomedical Engineering, University of New Mexico, Albuquerque, NM 87131 (USA)
| | - Hannah E. West
- Center for Biomedical Engineering, Department of Chemical and Nuclear Engineering, University of New Mexico, Albuquerque, NM 87131 (USA)
| | - Darko Stefanovic
- Department of Computer Science, Center for Biomedical Engineering, University of New Mexico, Albuquerque, NM 87131 (USA)
| | - Steven W. Graves
- Center for Biomedical Engineering, Department of Chemical and Nuclear Engineering, University of New Mexico, Albuquerque, NM 87131 (USA)
| |
Collapse
|
106
|
Brown CW, Lakin MR, Horwitz EK, Fanning ML, West HE, Stefanovic D, Graves SW. Signal Propagation in Multi‐Layer DNAzyme Cascades Using Structured Chimeric Substrates. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201402691] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Carl W. Brown
- Center for Biomedical Engineering, Department of Chemical and Nuclear Engineering, University of New Mexico, Albuquerque, NM 87131 (USA)
| | - Matthew R. Lakin
- Department of Computer Science, Center for Biomedical Engineering, University of New Mexico, Albuquerque, NM 87131 (USA)
| | - Eli K. Horwitz
- Center for Biomedical Engineering, Department of Chemical and Nuclear Engineering, University of New Mexico, Albuquerque, NM 87131 (USA)
| | - M. Leigh Fanning
- Department of Computer Science, Center for Biomedical Engineering, University of New Mexico, Albuquerque, NM 87131 (USA)
| | - Hannah E. West
- Center for Biomedical Engineering, Department of Chemical and Nuclear Engineering, University of New Mexico, Albuquerque, NM 87131 (USA)
| | - Darko Stefanovic
- Department of Computer Science, Center for Biomedical Engineering, University of New Mexico, Albuquerque, NM 87131 (USA)
| | - Steven W. Graves
- Center for Biomedical Engineering, Department of Chemical and Nuclear Engineering, University of New Mexico, Albuquerque, NM 87131 (USA)
| |
Collapse
|
107
|
Hemphill J, Govan J, Uprety R, Tsang M, Deiters A. Site-specific promoter caging enables optochemical gene activation in cells and animals. J Am Chem Soc 2014; 136:7152-8. [PMID: 24802207 PMCID: PMC4333597 DOI: 10.1021/ja500327g] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
![]()
In
cell and molecular biology, double-stranded circular DNA constructs,
known as plasmids, are extensively used to express a gene of interest.
These gene expression systems rely on a specific promoter region to
drive the transcription of genes either constitutively (i.e., in a
continually “ON” state) or conditionally (i.e., in response
to a specific transcription initiator). However, controlling plasmid-based
expression with high spatial and temporal resolution in cellular environments
and in multicellular organisms remains challenging. To overcome this
limitation, we have site-specifically installed nucleobase-caging
groups within a plasmid promoter region to enable optochemical control
of transcription and, thus, gene expression, via photolysis of the
caging groups. Through the light-responsive modification of plasmid-based
gene expression systems, we have demonstrated optochemical activation
of an exogenous fluorescent reporter gene in both tissue culture and
a live animal model, as well as light-induced overexpression of an
endogenous signaling protein.
Collapse
Affiliation(s)
- James Hemphill
- Department of Chemistry, North Carolina State University , Raleigh, North Carolina 27695, United States
| | | | | | | | | |
Collapse
|
108
|
Brown CW, Lakin MR, Stefanovic D, Graves SW. Catalytic molecular logic devices by DNAzyme displacement. Chembiochem 2014; 15:950-4. [PMID: 24692254 DOI: 10.1002/cbic.201400047] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Indexed: 01/09/2023]
Abstract
Chemical reactions catalyzed by DNAzymes offer a route to programmable modification of biomolecules for therapeutic purposes. To this end, we have developed a new type of catalytic DNA-based logic gates in which DNAzyme catalysis is controlled via toehold-mediated strand displacement reactions. We refer to these as DNAzyme displacement gates. The use of toeholds to guide input binding provides a favorable pathway for input recognition, and the innate catalytic activity of DNAzymes allows amplification of nanomolar input concentrations. We demonstrate detection of arbitrary input sequences by rational introduction of mismatched bases into inhibitor strands. Furthermore, we illustrate the applicability of DNAzyme displacement to compute logic functions involving multiple logic gates. This work will enable sophisticated logical control of a range of biochemical modifications, with applications in pathogen detection and autonomous theranostics.
Collapse
Affiliation(s)
- Carl W Brown
- Center for Biomedical Engineering, MSC01 1141, 1 University of New Mexico, Albuquerque, NM 87131 (USA)
| | | | | | | |
Collapse
|
109
|
Liu Q, Deiters A. Optochemical control of deoxyoligonucleotide function via a nucleobase-caging approach. Acc Chem Res 2014; 47:45-55. [PMID: 23981235 PMCID: PMC3946944 DOI: 10.1021/ar400036a] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Synthetic oligonucleotides have been extensively applied tocontrol a wide range of biological processes such as gene expression, gene repair, DNA replication, and protein activity. Based on well-established sequence design rules that typically rely on Watson-Crick base pairing interactions researchers can readily program the function of these oligonucleotides. Therefore oligonucleotides provide a flexible platform for targeting a wide range of biological molecules, including DNA, RNA, and proteins. In addition, oligonucleotides are commonly used research tools in cell biology and developmental biology. However, a lack of conditional control methods has hampered the precise spatial and temporal regulation of oligonucleotide activity, which limits the application of these reagents to investigate complex biological questions. Nature controls biological function with a high level of spatial and temporal resolution and in order to elucidate the molecular mechanisms of biological processes, researchers need tools that allow for the perturbation of these processes with Nature's precision. Light represents an excellent external regulatory element since irradiation can be easily controlled spatially and temporally. Thus, researchers have developed several different methods to conditionally control oligonucleotide activity with light. One of the most versatile strategies is optochemical regulation through the installation and removal of photolabile caging groups on oligonucleotides. To produce switches that can control nucleic acid function with light, chemists introduce caging groups into the oligomer backbone or on specific nucleobases to block oligonucleotide function until the caging groups are removed by light exposure. In this Account, we focus on the application of caged nucleobases to the photoregulation of DNA function. Using this approach, we have both activated and deactivated gene expression optochemically at the transcriptional and translational level with spatial and temporal control. Specifically, we have used caged triplex-forming oligomers and DNA decoys to regulate transcription, and we have regulated translation with light-activated antisense agents. Moreover, we also discuss strategies that can trigger DNA enzymatic activity, DNA amplification, and DNA mutagenesis by light illumination. More recently, we have developed light-activated DNA logic operations, an advance that may lay the foundation for the optochemical control of complex DNA calculations.
Collapse
Affiliation(s)
- Qingyang Liu
- Department of Chemistry, North Carolina State University , Raleigh, North Carolina 27695, United States
| | | |
Collapse
|
110
|
Morihiro K, Kodama T, Waki R, Obika S. Light-triggered strand exchange reaction using the change in the hydrogen bonding pattern of a nucleobase analogue. Chem Sci 2014. [DOI: 10.1039/c3sc51987b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
111
|
Mosquera J, Sánchez MI, Vázquez ME, Mascareñas JL. Ruthenium bipyridyl complexes as photocleavable dimerizers: deactivation of DNA-binding peptides using visible light. Chem Commun (Camb) 2014; 50:10975-8. [DOI: 10.1039/c4cc04512b] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Turning off DNA binding by visible light.
Collapse
Affiliation(s)
- Jesús Mosquera
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica
- Campus Vida
- Universidade de Santiago de Compostela
- , Spain
| | - Mateo I. Sánchez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica
- Campus Vida
- Universidade de Santiago de Compostela
- , Spain
| | - M. Eugenio Vázquez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica
- Campus Vida
- Universidade de Santiago de Compostela
- , Spain
| | - José L. Mascareñas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica
- Campus Vida
- Universidade de Santiago de Compostela
- , Spain
| |
Collapse
|
112
|
Morihiro K, Kodama T, Mori S, Obika S. Photoinduced changes in hydrogen bonding patterns of 8-thiopurine nucleobase analogues in a DNA strand. Org Biomol Chem 2014; 12:2468-73. [DOI: 10.1039/c3ob42427h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photoinduced changes in hydrogen bonding patterns have a strong effect on base recognition by nucleobase analogues.
Collapse
Affiliation(s)
- Kunihiko Morihiro
- Graduate School of Pharmaceutical Sciences
- Osaka University
- Suita, Japan
- National Institute of Biomedical Innovation (NIBIO)
- Ibaraki, Japan
| | - Tetsuya Kodama
- Graduate School of Pharmaceutical Sciences
- Nagoya University
- Nagoya, Japan
| | - Shohei Mori
- Graduate School of Pharmaceutical Sciences
- Osaka University
- Suita, Japan
| | - Satoshi Obika
- Graduate School of Pharmaceutical Sciences
- Osaka University
- Suita, Japan
- National Institute of Biomedical Innovation (NIBIO)
- Ibaraki, Japan
| |
Collapse
|
113
|
Govan JM, Uprety R, Thomas M, Lusic H, Lively MO, Deiters A. Cellular delivery and photochemical activation of antisense agents through a nucleobase caging strategy. ACS Chem Biol 2013; 8:2272-82. [PMID: 23915424 DOI: 10.1021/cb400293e] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Antisense oligonucleotides are powerful tools to regulate gene expression in cells and model organisms. However, a transfection or microinjection is typically needed for efficient delivery of the antisense agent. We report the conjugation of multiple HIV TAT peptides to a hairpin-protected antisense agent through a light-cleavable nucleobase caging group. This conjugation allows for the facile delivery of the antisense agent without a transfection reagent, and photochemical activation offers precise control over gene expression. The developed approach is highly modular, as demonstrated by the conjugation of folic acid to the caged antisense agent. This enabled targeted cell delivery through cell-surface folate receptors followed by photochemical triggering of antisense activity. Importantly, the presented strategy delivers native oligonucleotides after light-activation, devoid of any delivery functionalities or modifications that could otherwise impair their antisense activity.
Collapse
Affiliation(s)
- Jeane M. Govan
- North Carolina State University, Department of Chemistry, Raleigh,
North Carolina 27695, United States
| | - Rajendra Uprety
- North Carolina State University, Department of Chemistry, Raleigh,
North Carolina 27695, United States
| | - Meryl Thomas
- North Carolina State University, Department of Chemistry, Raleigh,
North Carolina 27695, United States
| | - Hrvoje Lusic
- North Carolina State University, Department of Chemistry, Raleigh,
North Carolina 27695, United States
| | - Mark O. Lively
- Wake Forest University School of Medicine, Center for Structural Biology, Winston-Salem,
North Carolina 27157, United States
| | - Alexander Deiters
- North Carolina State University, Department of Chemistry, Raleigh,
North Carolina 27695, United States
| |
Collapse
|
114
|
Govan JM, Young DD, Lusic H, Liu Q, Lively MO, Deiters A. Optochemical control of RNA interference in mammalian cells. Nucleic Acids Res 2013; 41:10518-28. [PMID: 24021631 PMCID: PMC3905849 DOI: 10.1093/nar/gkt806] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Short interfering RNAs (siRNAs) and microRNAs (miRNAs) have been widely used in mammalian tissue culture and model organisms to selectively silence genes of interest. One limitation of this technology is the lack of precise external control over the gene-silencing event. The use of photocleavable protecting groups installed on nucleobases is a promising strategy to circumvent this limitation, providing high spatial and temporal control over siRNA or miRNA activation. Here, we have designed, synthesized and site-specifically incorporated new photocaged guanosine and uridine RNA phosphoramidites into short RNA duplexes. We demonstrated the applicability of these photocaged siRNAs in the light-regulation of the expression of an exogenous green fluorescent protein reporter gene and an endogenous target gene, the mitosis motor protein, Eg5. Two different approaches were investigated with the caged RNA molecules: the light-regulation of catalytic RNA cleavage by RISC and the light-regulation of seed region recognition. The ability to regulate both functions with light enables the application of this optochemical methodology to a wide range of small regulatory RNA molecules.
Collapse
Affiliation(s)
- Jeane M Govan
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA, Department of Chemistry, College of William & Mary, Williamsburg, VA 32187, USA, Center for Structural Biology, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA and Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | | | | | | | |
Collapse
|
115
|
Pedro JMNS, Greenberg MM. Photochemical control of DNA structure through radical disproportionation. Chembiochem 2013; 14:1590-6. [PMID: 23940105 PMCID: PMC3807129 DOI: 10.1002/cbic.201300369] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Indexed: 11/10/2022]
Abstract
Photolysis of an aryl sulfide-containing 5,6-dihydropyrimidine (1) at 350 nm produces high yields of thymidine and products resulting from trapping of a 5,6-dihydrothymidin-5-yl radical by O₂ or thiols. Thymidine is believed to result from disproportionation of the radical pair originally generated from C--S bond homolysis of 1 on the microsecond timescale, which is significantly shorter than other photochemical transformations of modified nucleotides into their native forms. Duplex DNA containing 1 is destabilized, presumably due to disruption of π-stacking. Incorporation of 1 within the binding site of the restriction endonuclease EcoRV provides a photochemical switch for turning on the enzyme's activity. In contrast, 1 is a substrate for endonuclease VIII and serves as a photochemical off switch for this base excision repair enzyme. Modification 1 also modulates the activity of the 10-23 DNAzyme, despite its incorporation into a nonduplex region. Overall, dihydropyrimidine 1 shows promise as a tool to provide spatiotemporal control over DNA structure on the miscrosecond timescale.
Collapse
|
116
|
Hemphill J, Deiters A. DNA Computation in Mammalian Cells: MicroRNA Logic Operations. J Am Chem Soc 2013; 135:10512-8. [DOI: 10.1021/ja404350s] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- James Hemphill
- Department
of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United
States
| | - Alexander Deiters
- Department
of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United
States
| |
Collapse
|
117
|
Singer M, Nierth A, Jäschke A. Photochromism of Diarylethene-Functionalized 7-Deazaguanosines. European J Org Chem 2013. [DOI: 10.1002/ejoc.201300261] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
118
|
Hollenstein M, Hipolito CJ, Lam CH, Perrin DM. Toward the combinatorial selection of chemically modified DNAzyme RNase A mimics active against all-RNA substrates. ACS COMBINATORIAL SCIENCE 2013; 15:174-82. [PMID: 23485334 DOI: 10.1021/co3001378] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The convenient use of SELEX and related combinatorial methods of in vitro selection provides a formidable gateway for the generation of DNA enzymes, especially in the context of improving their potential as gene therapeutic agents. Here, we report on the selection of DNAzyme 12-91, a modified nucleic acid catalyst adorned with imidazole, ammonium, and guanidinium groups that provide for efficient M(2+)-independent cleavage of an all-RNA target sequence (kobs = 0.06 min(-1)). While Dz12-91 was selected for intramolecular cleavage of an all-RNA target, it surprisingly cleaves a target containing a lone ribocytosine unit with even greater efficiency (kobs = 0.27 min(-1)) than Dz9-86 (kobs = 0.13 min(-1)). The sequence composition of Dz12-91 bears a marked resemblance to that of Dz9-86 (kobs = 0.0014 min(-1) with an all-RNA substrate) that was selected from the same library to cleave a target containing a single ribonucleotide. However, small alterations in the sequence composition have a profound impact on the substrate preference and catalytic properties. Indeed, Dz12-91 displays the highest known rate enhancement for the M(2+)-independent cleavage of all-RNA targets. Hence, Dz12-91 represents a step toward the generation of potentially therapeutically active DNAzymes and further underscores the usefulness of modified triphosphates in selection experiments.
Collapse
Affiliation(s)
- Marcel Hollenstein
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver BC, V6T
1Z1, Canada
| | - Christopher J. Hipolito
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver BC, V6T
1Z1, Canada
| | - Curtis H. Lam
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver BC, V6T
1Z1, Canada
| | - David M. Perrin
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver BC, V6T
1Z1, Canada
| |
Collapse
|
119
|
Zhang B, Liu B, Zhuang J, Tang D. Cleavage of Metal-Ion-Induced DNAzymes Released from Nanolabels for Highly Sensitive and Specific Immunoassay. Bioconjug Chem 2013; 24:678-83. [DOI: 10.1021/bc3006557] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Bing Zhang
- Key Laboratory of Analysis and Detection for Food Safety (Fujian Province & Ministry of Education of China), Department of Chemistry, Fuzhou University, Fuzhou 350108, P.R. China
| | - Bingqian Liu
- Key Laboratory of Analysis and Detection for Food Safety (Fujian Province & Ministry of Education of China), Department of Chemistry, Fuzhou University, Fuzhou 350108, P.R. China
| | - Junyang Zhuang
- Key Laboratory of Analysis and Detection for Food Safety (Fujian Province & Ministry of Education of China), Department of Chemistry, Fuzhou University, Fuzhou 350108, P.R. China
| | - Dianping Tang
- Key Laboratory of Analysis and Detection for Food Safety (Fujian Province & Ministry of Education of China), Department of Chemistry, Fuzhou University, Fuzhou 350108, P.R. China
| |
Collapse
|
120
|
Connelly CM, Uprety R, Hemphill J, Deiters A. Spatiotemporal control of microRNA function using light-activated antagomirs. MOLECULAR BIOSYSTEMS 2013; 8:2987-93. [PMID: 22945263 DOI: 10.1039/c2mb25175b] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that act as post-transcriptional gene regulators and have been shown to regulate many biological processes including embryonal development, cell differentiation, apoptosis, and proliferation. Variations in the expression of certain miRNAs have been linked to a wide range of human diseases - especially cancer - and the diversity of miRNA targets suggests that they are involved in various cellular networks. Several tools have been developed to control the function of individual miRNAs and have been applied to study their biogenesis, biological role, and therapeutic potential; however, common methods lack a precise level of control that allows for the study of miRNA function with high spatial and temporal resolution. Light-activated miRNA antagomirs for mature miR-122 and miR-21 were developed through the site-specific installation of caging groups on the bases of selected nucleotides. Installation of caged nucleotides led to complete inhibition of the antagomir-miRNA hybridization and thus inactivation of antagomir function. The miRNA-inhibitory activity of the caged antagomirs was fully restored upon decaging through a brief UV irradiation. The synthesized antagomirs were applied to the photochemical regulation of miRNA function in mammalian cells. Moreover, spatial control over antagomir activity was obtained in mammalian cells through localized UV exposure. The presented approach enables the precise regulation of miRNA function and miRNA networks with unprecedented spatial and temporal resolution using UV irradiation and can be extended to any miRNA of interest.
Collapse
Affiliation(s)
- Colleen M Connelly
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | | | | | | |
Collapse
|
121
|
Furuta T, Manabe K, Teraoka A, Murakoshi K, Ohtsubo A, Suzuki A. Design, synthesis, and photochemistry of modular caging groups for photoreleasable nucleotides. Org Lett 2012. [PMID: 23205776 DOI: 10.1021/ol3029093] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A modular approach to preparing caged nucleotides having additional properties has been achieved. The modular caging agent includes three components: an amine reactive NHS ester moiety, a photoactive Bhc group, and tosylhydrazone as a precursor of the diazomethyl group. Various amines including biotin and an Arg-Gly-Asp (RGD) peptide were introduced into the key intermediate via amide linkage. The Bio-Bhc-diazo thus synthesized enables the preparation of a photoreleasable siRNA with additional properties.
Collapse
Affiliation(s)
- Toshiaki Furuta
- Department of Biomolecular Science, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, 274-8510, Japan.
| | | | | | | | | | | |
Collapse
|
122
|
Wu L, Wang Y, Wu J, Lv C, Wang J, Tang X. Caged circular antisense oligonucleotides for photomodulation of RNA digestion and gene expression in cells. Nucleic Acids Res 2012; 41:677-86. [PMID: 23104375 PMCID: PMC3592401 DOI: 10.1093/nar/gks996] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
We synthesized three 20mer caged circular antisense oligodeoxynucleotides (R20, R20B2 and R20B4) with a photocleavable linker and an amide bond linker between two 10mer oligodeoxynucleotides. With these caged circular antisense oligodeoxynucleotides, RNA-binding affinity and its digestion by ribonuclease H were readily photomodulated. RNA cleavage rates were upregulated ∼43-, 25- and 15-fold for R20, R20B2 and R20B4, respectively, upon light activation in vitro. R20B2 and R20B4 with 2- or 4-nt gaps in the target RNA lost their ability to bind the target RNA even though a small amount of RNA digestion was still observed. The loss of binding ability indicated promising gene photoregulation through a non-enzymatic strategy. To test this strategy, three caged circular antisense oligonucleotides (PS1, PS2 and PS3) with 2′-OMe RNA and phosphorothioate modifications were synthesized to target GFP expression. Upon light activation, photomodulation of target hybridization and GFP expression in cells was successfully achieved with PS1, PS2 and PS3. These caged circular antisense oligonucleotides show promising applications of photomodulating gene expression through both ribonuclease H and non-enzyme involved antisense strategies.
Collapse
Affiliation(s)
- Li Wu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No 38 Xueyuan Road, Haidian District, Beijing 100191, China
| | | | | | | | | | | |
Collapse
|
123
|
Yehl K, Joshi JP, Greene BL, Dyer RB, Nahta R, Salaita K. Catalytic deoxyribozyme-modified nanoparticles for RNAi-independent gene regulation. ACS NANO 2012; 6:9150-7. [PMID: 22966955 PMCID: PMC3482470 DOI: 10.1021/nn3034265] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
DNAzymes are catalytic oligonucleotides with important applications in gene regulation, DNA computing, responsive soft materials, and ultrasensitive metal-ion sensing. The most significant challenge for using DNAzymes in vivo pertains to nontoxic delivery and maintaining function inside cells. We synthesized multivalent deoxyribozyme "10-23" gold nanoparticle (DzNP) conjugates, varying DNA density, linker length, enzyme orientation, and linker composition in order to study the role of the steric environment and gold surface chemistry on catalysis. DNAzyme catalytic efficiency was modulated by steric packing and proximity of the active loop to the gold surface. Importantly, the 10-23 DNAzyme was asymmetrically sensitive to the gold surface and when anchored through the 5' terminus was inhibited 32-fold. This property was used to generate DNAzymes whose catalytic activity is triggered by thiol displacement reactions or by photoexcitation at λ = 532 nm. Importantly, cell studies revealed that DzNPs are less susceptible to nuclease degradation, readily enter mammalian cells, and catalytically down-regulate GDF15 gene expression levels in breast cancer cells, thus addressing some of the key limitations in the adoption of DNAzymes for in vivo work.
Collapse
Affiliation(s)
- Kevin Yehl
- Department of Chemistry, Emory University, Atlanta, GA 30322, United States
| | - Jayashree P. Joshi
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States
- Department of Pharmacology, Emory University, Atlanta, GA 30322, United States
| | - Brandon L. Greene
- Department of Chemistry, Emory University, Atlanta, GA 30322, United States
| | - R. Brian Dyer
- Department of Chemistry, Emory University, Atlanta, GA 30322, United States
| | - Rita Nahta
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States
- Department of Pharmacology, Emory University, Atlanta, GA 30322, United States
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA 30322, United States
| | - Khalid Salaita
- Department of Chemistry, Emory University, Atlanta, GA 30322, United States
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, United States
- Corresponding Author:
| |
Collapse
|
124
|
Polstein LR, Gersbach CA. Light-inducible spatiotemporal control of gene activation by customizable zinc finger transcription factors. J Am Chem Soc 2012; 134:16480-3. [PMID: 22963237 PMCID: PMC3468123 DOI: 10.1021/ja3065667] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Advanced gene regulatory systems are necessary for scientific
research,
synthetic biology, and gene-based medicine. An ideal system would
allow facile spatiotemporal manipulation of gene expression within
a cell population that is tunable, reversible, repeatable, and can
be targeted to diverse DNA sequences. To meet these criteria, a gene
regulation system was engineered that combines light-sensitive proteins
and programmable zinc finger transcription factors. This system, light-inducible
transcription using engineered zinc finger proteins (LITEZ), uses
two light-inducible dimerizing proteins from Arabidopsis thaliana, GIGANTEA and the LOV domain of FKF1, to control synthetic zinc
finger transcription factor activity in human cells. Activation of
gene expression in human cells engineered with LITEZ was reversible
and repeatable by modulating the duration of illumination. The level
of gene expression could also be controlled by modulating light intensity.
Finally, gene expression could be activated in a spatially defined
pattern by illuminating the human cell culture through a photomask
of arbitrary geometry. LITEZ enables new approaches for precisely
regulating gene expression in biotechnology and medicine, as well
as studying gene function, cell–cell interactions, and tissue
morphogenesis.
Collapse
Affiliation(s)
- Lauren R Polstein
- Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA
| | | |
Collapse
|
125
|
Wang Y, Wu L, Wang P, Lv C, Yang Z, Tang X. Manipulation of gene expression in zebrafish using caged circular morpholino oligomers. Nucleic Acids Res 2012; 40:11155-62. [PMID: 23002141 PMCID: PMC3505977 DOI: 10.1093/nar/gks840] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Morpholino oligomers (MOs) have been widely used to knock down specific genes in zebrafish, but their constitutive activities limit their experimental applications for studying a gene with multiple functions or within a gene network. We report herein a new design and synthesis of caged circular MOs (caged cMOs) with two ends linked by a photocleavable moiety. These caged cMOs were successfully used to photomodulate β-catenin-2 and no tail expression in zebrafish embryos.
Collapse
Affiliation(s)
- Yuan Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, No. 38, Xueyuan Road, Beijing 100191, China
| | | | | | | | | | | |
Collapse
|
126
|
Resendiz MJE, Schön A, Freire E, Greenberg MM. Photochemical control of RNA structure by disrupting π-stacking. J Am Chem Soc 2012; 134:12478-81. [PMID: 22827464 DOI: 10.1021/ja306304w] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Photolabile nucleotides that disrupt nucleic acid structure are useful mechanistic probes and can be used as tools for regulating biochemical processes. Previous probes can be limited by the need to incorporate multiple modified nucleotides into oligonucleotides and in kinetic studies by the rate-limiting step in the conversion to the native nucleotide. Photolysis of aryl sulfide 1 produces high yields of 5-methyluridine, and product formation is complete in less than a microsecond. Aryl sulfide 1 prevents RNA hairpin formation and complete folding of the preQ(1) class I riboswitch. Proper folding is achieved in each instance upon photolysis at 350 nm. Aryl sulfide 1 is a novel tool for modulating RNA structure, and formation of 5-methyluridine within a radical cage suggests that it will be useful in kinetic studies.
Collapse
Affiliation(s)
- Marino J E Resendiz
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | | | | | | |
Collapse
|
127
|
Brieke C, Rohrbach F, Gottschalk A, Mayer G, Heckel A. Light-controlled tools. Angew Chem Int Ed Engl 2012; 51:8446-76. [PMID: 22829531 DOI: 10.1002/anie.201202134] [Citation(s) in RCA: 750] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Indexed: 12/21/2022]
Abstract
Spatial and temporal control over chemical and biological processes plays a key role in life, where the whole is often much more than the sum of its parts. Quite trivially, the molecules of a cell do not form a living system if they are only arranged in a random fashion. If we want to understand these relationships and especially the problems arising from malfunction, tools are necessary that allow us to design sophisticated experiments that address these questions. Highly valuable in this respect are external triggers that enable us to precisely determine where, when, and to what extent a process is started or stopped. Light is an ideal external trigger: It is highly selective and if applied correctly also harmless. It can be generated and manipulated with well-established techniques, and many ways exist to apply light to living systems--from cells to higher organisms. This Review will focus on developments over the last six years and includes discussions on the underlying technologies as well as their applications.
Collapse
Affiliation(s)
- Clara Brieke
- Goethe University Frankfurt, Institute for Organic Chemistry and Chemical Biology Buchmann Institute for Molecular Life Sciences, Max-von-Laue-Strasse 9, 60438 Frankfurt/Main, Germany
| | | | | | | | | |
Collapse
|
128
|
Brieke C, Rohrbach F, Gottschalk A, Mayer G, Heckel A. Lichtgesteuerte Werkzeuge. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201202134] [Citation(s) in RCA: 225] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Clara Brieke
- Goethe‐Universität Frankfurt, Institut für Organische Chemie und Chemische Biologie, Buchmann‐Institut für Molekulare Lebenswissenschaften, Max‐von‐Laue‐Straße 9, 60438 Frankfurt/Main (Deutschland)
| | - Falk Rohrbach
- Universität Bonn, LIMES‐Institut, Gerhard‐Domagk‐Straße 1, 53121 Bonn (Deutschland)
| | - Alexander Gottschalk
- Buchmann‐Institut für Molekulare Lebenswissenschaften, Institut für Biochemie, Max‐von‐Laue‐Straße 15, 60438 Frankfurt/Main (Deutschland)
| | - Günter Mayer
- Universität Bonn, LIMES‐Institut, Gerhard‐Domagk‐Straße 1, 53121 Bonn (Deutschland)
| | - Alexander Heckel
- Goethe‐Universität Frankfurt, Institut für Organische Chemie und Chemische Biologie, Buchmann‐Institut für Molekulare Lebenswissenschaften, Max‐von‐Laue‐Straße 9, 60438 Frankfurt/Main (Deutschland)
| |
Collapse
|
129
|
Govan JM, Uprety R, Hemphill J, Lively MO, Deiters A. Regulation of transcription through light-activation and light-deactivation of triplex-forming oligonucleotides in mammalian cells. ACS Chem Biol 2012; 7:1247-56. [PMID: 22540192 DOI: 10.1021/cb300161r] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Triplex-forming oligonucleotides (TFOs) are efficient tools to regulate gene expression through the inhibition of transcription. Here, nucleobase-caging technology was applied to the temporal regulation of transcription through light-activated TFOs. Through site-specific incorporation of caged thymidine nucleotides, the TFO:DNA triplex formation is blocked, rendering the TFO inactive. However, after a brief UV irradiation, the caging groups are removed, activating the TFO and leading to the inhibition of transcription. Furthermore, the synthesis and site-specific incorporation of caged deoxycytidine nucleotides within TFO inhibitor sequences was developed, allowing for the light-deactivation of TFO function and thus photochemical activation of gene expression. After UV-induced removal of the caging groups, the TFO forms a DNA dumbbell structure, rendering it inactive, releasing it from the DNA, and activating transcription. These are the first examples of light-regulated TFOs and their application in the photochemical activation and deactivation of gene expression. In addition, hairpin loop structures were found to significantly increase the efficacy of phosphodiester DNA-based TFOs in tissue culture.
Collapse
Affiliation(s)
- Jeane M. Govan
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina
27695, United States
| | - Rajendra Uprety
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina
27695, United States
| | - James Hemphill
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina
27695, United States
| | - Mark O. Lively
- Center
for Structural Biology, Wake Forest University School of Medicine, Winston-Salem,
North Carolina 27157, United States
| | - Alexander Deiters
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina
27695, United States
| |
Collapse
|
130
|
Lehner R, Wang X, Wolf M, Hunziker P. Designing switchable nanosystems for medical application. J Control Release 2012; 161:307-16. [DOI: 10.1016/j.jconrel.2012.04.040] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 04/27/2012] [Indexed: 11/26/2022]
|
131
|
Gardner L, Deiters A. Light-controlled synthetic gene circuits. Curr Opin Chem Biol 2012; 16:292-9. [PMID: 22633822 DOI: 10.1016/j.cbpa.2012.04.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Revised: 04/10/2012] [Accepted: 04/15/2012] [Indexed: 01/09/2023]
Abstract
Highly complex synthetic gene circuits have been engineered in living organisms to develop systems with new biological properties. A precise trigger to activate or deactivate these complex systems is desired in order to tightly control different parts of a synthetic or natural network. Light represents an excellent tool to achieve this goal as it can be regulated in timing, location, intensity, and wavelength, which allows for precise spatiotemporal control over genetic circuits. Recently, light has been used as a trigger to control the biological function of small molecules, oligonucleotides, and proteins involved as parts in gene circuits. Light activation has enabled the construction of unique systems in living organisms such as band-pass filters and edge-detectors in bacterial cells. Additionally, light also allows for the regulation of intermediate steps of complex dynamic pathways in mammalian cells such as those involved in kinase networks. Herein we describe recent advancements in the area of light-controlled synthetic networks.
Collapse
Affiliation(s)
- Laura Gardner
- North Carolina State University, Department of Chemistry, Raleigh, NC 27695, United States
| | | |
Collapse
|
132
|
Loakes D. Nucleotides and nucleic acids; oligo- and polynucleotides. ORGANOPHOSPHORUS CHEMISTRY 2012. [DOI: 10.1039/9781849734875-00169] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- David Loakes
- Medical Research Council Laboratory of Molecular Biology, Hills Road Cambridge CB2 2QH UK
| |
Collapse
|
133
|
Fokina AA, Meschaninova MI, Durfort T, Venyaminova AG, François JC. Targeting insulin-like growth factor I with 10-23 DNAzymes: 2'-O-methyl modifications in the catalytic core enhance mRNA cleavage. Biochemistry 2012; 51:2181-91. [PMID: 22352843 DOI: 10.1021/bi201532q] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Insulin-like growth factor I (IGF-I) and its cognate receptor (IGF-1R) contribute to normal cell function and to tumorigenesis. The role of IGF-I signaling in tumor growth has been demonstrated in vivo using nucleic acid-based strategies. Here, we designed the first 10-23 DNAzymes directed against IGF-I mRNA. Unlike antisense approaches and RNA interference that require protein catalysis, DNAzymes catalyze protein-free RNA cleavage. We identified target sequences and measured catalytic properties of differently designed DNAzymes on short synthetic RNA targets and on in vitro transcribed IGF-I mRNA. The most efficient cleavers were then transfected into cells, and their inhibitory effect was analyzed using reporter gene assays. We found that increasing the size of DNAzyme flanking sequences and modifications of the termini with 2'-O-methyl residues improved cleavage rates of target RNAs. Modification of the catalytic loop with six 2'-O-methyl ribonucleotides at nonessential positions increased or decreased catalytic efficiency depending on the mRNA target site. In cells, DNAzymes with 2'-O-methyl-modified catalytic cores and flanking sequences were able to inhibit reporter gene activity because of specific recognition and cleavage of IGF-I mRNA sequences. Mutant DNAzymes with inactive catalytic cores were unable to block reporter gene expression, demonstrating that the RNA cleaving ability of 10-23 DNAzymes contributed to inhibitory mechanisms. Our results show that nuclease-resistant 2'-O-methyl-modified DNAzymes with high catalytic efficiencies are useful for inhibiting IGF-I gene function in cells.
Collapse
Affiliation(s)
- Alesya A Fokina
- INSERM, U565, Acides nucléiques: dynamique, ciblage et fonctions biologiques, 75005 Paris, France
| | | | | | | | | |
Collapse
|
134
|
Prokup A, Hemphill J, Deiters A. DNA computation: a photochemically controlled AND gate. J Am Chem Soc 2012; 134:3810-5. [PMID: 22239155 DOI: 10.1021/ja210050s] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
DNA computation is an emerging field that enables the assembly of complex circuits based on defined DNA logic gates. DNA-based logic gates have previously been operated through purely chemical means, controlling logic operations through DNA strands or other biomolecules. Although gates can operate through this manner, it limits temporal and spatial control of DNA-based logic operations. A photochemically controlled AND gate was developed through the incorporation of caged thymidine nucleotides into a DNA-based logic gate. By using light as the logic inputs, both spatial control and temporal control were achieved. In addition, design rules for light-regulated DNA logic gates were derived. A step-response, which can be found in a controller, was demonstrated. Photochemical inputs close the gap between DNA computation and silicon-based electrical circuitry, since light waves can be directly converted into electrical output signals and vice versa. This connection is important for the further development of an interface between DNA logic gates and electronic devices, enabling the connection of biological systems with electrical circuits.
Collapse
Affiliation(s)
- Alex Prokup
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695-8204, USA
| | | | | |
Collapse
|
135
|
Catalytic cleavage activities of 10–23 DNAzyme analogs functionalized with an amino group in its catalytic core. Acta Pharm Sin B 2012. [DOI: 10.1016/j.apsb.2011.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
136
|
Ceo LM, Koh JT. Photocaged DNA provides new levels of transcription control. Chembiochem 2012; 13:511-3. [PMID: 22271631 DOI: 10.1002/cbic.201100683] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Indexed: 12/24/2022]
Abstract
Spot lit: photocaged nucleic acids have been used to regulate gene expression through the action of light. Whereas most methods target mRNAs, DNA decoys have recently been used to target DNA transcription by targeting specific DNA-transcription-factor interactions. This has allowed researchers to "turn-off" transcription through the action of light on caged nucleic acids for the first time.
Collapse
Affiliation(s)
- Luke M Ceo
- Department of Chemistry and Biochemistry, University of Delaware, Brown Laboratories, USA
| | | |
Collapse
|
137
|
Ruble BK, Richards JL, Cheung-Lau JC, Dmochowski IJ. Mismatch Discrimination and Efficient Photomodulation with Split 10-23 DNAzymes. Inorganica Chim Acta 2012; 380:386-391. [PMID: 22544974 PMCID: PMC3337724 DOI: 10.1016/j.ica.2011.10.068] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
DNA enzymes (DNAzymes) that catalyze the degradation of complementary RNA molecules have been investigated for many biochemical and sensing applications. Here, we investigated a 10-23 DNAzyme that has been shown previously to possess cellular activity. We determined that it has very low Mg(2+) ion dependence, with DNAzyme activity observed at [Mg(2+)] = 0.01 mM. This metal ion dependence is much lower than is typical for DNAzymes studied to date, and suggests that DNAzymes may be engineered for many additional biological applications. Recently, we demonstrated that this 10-23 DNAzyme can be divided into two parts, which assemble into an active oligonucleotide complex. We investigated in more detail the functionality of the split 10-23 DNAzyme and found that dividing the 15-nucleotide catalytic loop after the 7(th) or 8(th) base maximized its activity. The split DNAzymes required higher metal ion concentrations ([Mg(2+)] = 5 mM), and as we anticipated due to their lower hybridization activity, the split enzymes had the advantage of being more sensitive to single base mismatches in the DNAzyme-RNA duplex. Finally, we demonstrated facile photomodulation of split DNAzyme activity by incorporating a photocleavable biotin moiety bound to streptavidin.
Collapse
Affiliation(s)
- Brittani K Ruble
- Department of Chemistry, University of Pennsylvania, 231 S. 34 Street, Philadelphia, PA 19104
| | | | | | | |
Collapse
|
138
|
Takada T, Kawano Y, Nakamura M, Yamana K. Photo-triggered generation of a free thiol group on DNA: application to DNA conjugation. Tetrahedron Lett 2012. [DOI: 10.1016/j.tetlet.2011.10.150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
139
|
Joshi KB, Vlachos A, Mikat V, Deller T, Heckel A. Light-activatable molecular beacons with a caged loop sequence. Chem Commun (Camb) 2012; 48:2746-8. [DOI: 10.1039/c2cc16654b] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
140
|
Govan JM, McIver AL, Deiters A. Stabilization and photochemical regulation of antisense agents through PEGylation. Bioconjug Chem 2011; 22:2136-42. [PMID: 21928851 DOI: 10.1021/bc200411n] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Oligonucleotides are effective tools for the regulation of gene expression in cell culture and model organisms, most importantly through antisense mechanisms. Due to the inherent instability of DNA antisense agents, various modifications have been introduced to increase the efficacy of oligonucleotides, including phosphorothioate DNA, locked nucleic acids, peptide nucleic acids, and others. Here, we present antisense agent stabilization through conjugation of a poly(ethylene glycol) (PEG) group to a DNA oligonucleotide. By employing a photocleavable linker between the PEG group and the antisense agent, we were able to achieve light-induced deactivation of antisense activity. The bioconjugated PEG group provides stability to the DNA antisense agent without affecting its native function of silencing gene expression via RNase H-catalyzed mRNA degradation. Once irradiated with UV light of 365 nm, the PEG group is cleaved from the antisense agent leaving the DNA unprotected and open for degradation by endogenous nucleases, thereby restoring gene expression. By using a photocleavable PEG group (PhotoPEG), antisense activity can be regulated with high spatial and temporal resolution, paving the way for precise regulation of gene expression in biological systems.
Collapse
Affiliation(s)
- Jeane M Govan
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | | | | |
Collapse
|
141
|
|
142
|
Govan JM, Lively MO, Deiters A. Photochemical control of DNA decoy function enables precise regulation of nuclear factor κB activity. J Am Chem Soc 2011; 133:13176-82. [PMID: 21761875 PMCID: PMC3157586 DOI: 10.1021/ja204980v] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
DNA decoys have been developed for the inhibition of transcriptional regulation of gene expression. However, the present methodology lacks the spatial and temporal control of gene expression that is commonly found in nature. Here, we report the application of photoremovable protecting groups on nucleobases of nuclear factor κB (NF-κB) DNA decoys to regulate NF-κB-driven transcription of secreted alkaline phosphatase using light as an external control element. The NF-κB family of proteins is comprised of important eukaryotic transcription factors that regulate a wide range of cellular processes and are involved in immune response, development, cellular growth, and cell death. Several diseases, including cancer, arthritis, chronic inflammation, asthma, neurodegenerative diseases, and heart disease, have been linked to constitutively active NF-κB. Through the direct incorporation of caging groups into an NF-κB decoy, we were able to disrupt DNA:DNA hybridization and inhibit the binding of the transcription factor to the DNA decoy until UV irradiation removed the caging groups and restored the activity of the oligonucleotide. Excellent light-switching behavior of transcriptional regulation was observed. This is the first example of a caged DNA decoy for the photochemical regulation of gene expression in mammalian cells and represents an important addition to the toolbox of light-controlled gene regulatory agents.
Collapse
Affiliation(s)
- Jeane M. Govan
- North Carolina State University, Department of Chemistry, Raleigh, NC 27695
| | - Mark O. Lively
- Wake Forest University School of Medicine, Center for Structural Biology, Winston-Salem, NC 27157
| | - Alexander Deiters
- North Carolina State University, Department of Chemistry, Raleigh, NC 27695
| |
Collapse
|
143
|
Menge C, Heckel A. Coumarin-caged dG for improved wavelength-selective uncaging of DNA. Org Lett 2011; 13:4620-3. [PMID: 21834506 DOI: 10.1021/ol201842x] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Herein we report on diethylaminocoumarin (DEACM) as a new photoremovable protecting group for 2'-deoxyguanosine in oligonucleotides. An oligonucleotide with O(6)-DEACM-caged dG was synthesized and photochemically analyzed. The DEACM group shows superior photochemical properties at 405 nm with an uncaging efficiency (ε·φ) for deprotection that is 17 times higher than that for 2-(o-nitrophenyl)-propyl NPP caging groups in the same position. Wavelength-selective deprotection in the presence of NPP groups proceeds up to 80 times faster.
Collapse
Affiliation(s)
- Clara Menge
- Frankfurt Institute for Molecular Life Sciences (FMLS), Goethe University of Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt (M.), Germany
| | | |
Collapse
|
144
|
Gardner L, Zou Y, Mara A, Cropp TA, Deiters A. Photochemical control of bacterial signal processing using a light-activated erythromycin. MOLECULAR BIOSYSTEMS 2011; 7:2554-7. [PMID: 21785768 DOI: 10.1039/c1mb05166k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bacterial cells control resistance to the macrolide antibiotic erythromycin using the MphR(A) repressor protein. Erythromycin binds to MphR(A), causing release of the PmphR promoter, activating expression of the 2'-phosphotransferase Mph(A). We engineered the MphR(A)/promoter system to, in conjunction with a light-activatable derivative of erythromycin, enable photochemical activation of gene expression in E. coli. We applied this photochemical gene switch to the construction of a light-triggered logic gate, a light-controlled band-pass filter, as well as spatial and temporal control of gene expression.
Collapse
Affiliation(s)
- Laura Gardner
- Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA
| | | | | | | | | |
Collapse
|
145
|
He J, Zhang D, Wang Q, Wei X, Cheng M, Liu K. A novel strategy of chemical modification for rate enhancement of 10-23 DNAzyme: a combination of A9 position and 8-aza-7-deaza-2'-deoxyadenosine analogs. Org Biomol Chem 2011; 9:5728-36. [PMID: 21717014 DOI: 10.1039/c1ob05065f] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
With the help of a divalent-metal ion, 10-23 DNAzyme cleaves RNA. Chemical modification of its catalytic loop to make a more efficient enzyme has been a challenge. Our strategy started from its five 2'-deoxyadenosine residues (A5, A9, A11, A12, and A15) in the loop based on the capability of the N7 atom to form hydrogen bonds in tertiary structures. 8-Aza-7-deaza-2'-deoxyadenosine and its analogs with 7-substituents (3-aminopropyl, 3-hydroxylpropyl, or phenethyl) were each used to replace five dA residues, respectively, and their effect on cleavage rate were evaluated under single-turnover conditions. The results indicated that the N7 atom of five dA residues were necessary for catalytic activity, and the N8 atom and 7-substituents were detrimental to the catalytic behavior of 10-23 DNAzyme, except that all these modifications at A9 were favourable for the activity. Especially, DZ-3-9 with 7-(3-aminopropyl)-8-aza-7-deaza-2'-deoxyadenosine (3) at A9 position gave a 12- fold increase of k(obs), compared to the corresponding parent 10-23 DNAzyme. DZ-3-9 was supposed to catalyze the cleavage reaction with the same mechanism as 10-23 DNAzyme based on their very similar pH-dependent and divalent metal ions-dependent cleavage patterns. Introduction of functional groups at A9 position was demonstrated to be a successful and feasible approach for more efficient 10-23 DNAzyme analogs.
Collapse
Affiliation(s)
- Junlin He
- Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | | | | | | | | | | |
Collapse
|
146
|
Zhou L, Yang H, Wang P. Development of Trityl-Based Photolabile Hydroxyl Protecting Groups. J Org Chem 2011; 76:5873-81. [DOI: 10.1021/jo200692c] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Lei Zhou
- Department of Chemistry, University of Alabama at Birmingham, 901 14th Street South, Birmingham, Alabama 35294, United States
| | - Haishen Yang
- Department of Chemistry, University of Alabama at Birmingham, 901 14th Street South, Birmingham, Alabama 35294, United States
| | - Pengfei Wang
- Department of Chemistry, University of Alabama at Birmingham, 901 14th Street South, Birmingham, Alabama 35294, United States
| |
Collapse
|
147
|
Yang H, Zhang X, Zhou L, Wang P. Development of a Photolabile Carbonyl-Protecting Group Toolbox. J Org Chem 2011; 76:2040-8. [DOI: 10.1021/jo102429g] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Haishen Yang
- Department of Chemistry, University of Alabama at Birmingham, 901 14th Street South, Birmingham, Alabama 35294, United States
| | - Xin Zhang
- Department of Chemistry, University of Alabama at Birmingham, 901 14th Street South, Birmingham, Alabama 35294, United States
| | - Lei Zhou
- Department of Chemistry, University of Alabama at Birmingham, 901 14th Street South, Birmingham, Alabama 35294, United States
| | - Pengfei Wang
- Department of Chemistry, University of Alabama at Birmingham, 901 14th Street South, Birmingham, Alabama 35294, United States
| |
Collapse
|
148
|
Op de Beeck M, Madder A. Unprecedented C-selective interstrand cross-linking through in situ oxidation of furan-modified oligodeoxynucleotides. J Am Chem Soc 2010; 133:796-807. [PMID: 21162525 DOI: 10.1021/ja1048169] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Chemical reagents that form interstrand cross-links have been used for a long time in cancer therapy. They covalently link two strands of DNA, thereby blocking transcription. Cross-link repair enzymes, however, can restore the transcription processes, causing resistance to certain anti-cancer drugs. The mechanism of these cross-link repair processes has not yet been fully revealed. One of the obstacles in this study is the lack of sufficient amounts of well-defined, stable, cross-linked duplexes to study the pathways of cross-link repair enzymes. Our group has developed a cross-link strategy where a furan moiety is incorporated into oligodeoxynucleotides (ODNs). These furan-modified nucleic acids can form interstrand cross-links upon selective furan oxidation with N-bromosuccinimide. We here report on the incorporation of the furan moiety at the 2'-position of a uridine through an amido or ureido linker. The resulting modified ODNs display an unprecedented selectivity for cross-linking toward a cytidine opposite the modified residue, forming one specific cross-linked duplex, which could be isolated in good yield. Furthermore, the structure of the formed cross-linked duplexes could be unambiguously characterized.
Collapse
Affiliation(s)
- Marieke Op de Beeck
- Laboratory for Organic and Biomimetic Chemistry, University of Ghent, Krijgslaan 281 S4, B-9000 Ghent, Belgium
| | | |
Collapse
|
149
|
Zaghloul EM, Madsen AS, Moreno PMD, Oprea II, El-Andaloussi S, Bestas B, Gupta P, Pedersen EB, Lundin KE, Wengel J, Smith CIE. Optimizing anti-gene oligonucleotide 'Zorro-LNA' for improved strand invasion into duplex DNA. Nucleic Acids Res 2010; 39:1142-54. [PMID: 20860997 PMCID: PMC3035455 DOI: 10.1093/nar/gkq835] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Zorro-LNA (Zorro) is a newly developed, oligonucleotide (ON)-based, Z-shaped construct with the potential of specific binding to each strand of duplex DNA. The first-generation Zorros are formed by two hybridized LNA/DNA mixmers (2-ON Zorros) and was hypothesized to strand invade. We have now established a method, which conclusively demonstrates that an LNA ON can strand invade into duplex DNA. To make Zorros smaller in size and easier to design, we synthesized 3′–5′–5′–3′ single-stranded Zorro-LNA (ssZorro) by using both 3′- and 5′-phosphoramidites. With ssZorro, a significantly greater extent and rate of double-strand invasion (DSI) was obtained than with conventional 2-ON Zorros. Introducing hydrophilic PEG-linkers connecting the two strands did not significantly change the rate or extent of DSI as compared to ssZorro with a nucleotide-based linker, while the longest alkyl-chain linker tested (36 carbons) resulted in a very slow DSI. The shortest alkyl-chain linker (3 carbons) did not reduce the extent of DSI of ssZorro, but significantly decreased the DSI rate. Collectively, ssZorro is smaller in size, easier to design and more efficient than conventional 2-ON Zorro in inducing DSI. Analysis of the chemical composition of the linker suggests that it could be of importance for future therapeutic considerations.
Collapse
Affiliation(s)
- Eman M Zaghloul
- Department of Laboratory Medicine, Karolinska Institutet, 141 86 Huddinge, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Introduction of guanidinium-modified deoxyuridine into the substrate binding regions of DNAzyme 10–23 to enhance target affinity: Implications for DNAzyme design. Bioorg Med Chem Lett 2010; 20:5119-22. [DOI: 10.1016/j.bmcl.2010.07.027] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 07/04/2010] [Accepted: 07/07/2010] [Indexed: 12/22/2022]
|