101
|
Brophy MB, Nakashige TG, Gaillard A, Nolan EM. Contributions of the S100A9 C-terminal tail to high-affinity Mn(II) chelation by the host-defense protein human calprotectin. J Am Chem Soc 2013; 135:17804-17. [PMID: 24245608 PMCID: PMC3892207 DOI: 10.1021/ja407147d] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Human calprotectin (CP) is an antimicrobial protein that coordinates Mn(II) with high affinity in a Ca(II)-dependent manner at an unusual histidine-rich site (site 2) formed at the S100A8/S100A9 dimer interface. We present a 16-member CP mutant family where mutations in the S100A9 C-terminal tail (residues 96-114) are employed to evaluate the contributions of this region, which houses three histidines and four acidic residues, to Mn(II) coordination at site 2. The results from analytical size-exclusion chromatography, Mn(II) competition titrations, and electron paramagnetic resonance spectroscopy establish that the C-terminal tail is essential for high-affinity Mn(II) coordination by CP in solution. The studies indicate that His103 and His105 (HXH motif) of the tail complete the Mn(II) coordination sphere in solution, affording an unprecedented biological His6 site. These solution studies are in agreement with a Mn(II)-CP crystal structure reported recently (Damo, S. M.; et al. Proc. Natl. Acad. Sci. U.S.A. 2013, 110, 3841). Remarkably high-affinity Mn(II) binding is retained when either H103 or H105 are mutated to Ala, when the HXH motif is shifted from positions 103-105 to 104-106, and when the human tail is substituted by the C-terminal tail of murine S100A9. Nevertheless, antibacterial activity assays employing human CP mutants reveal that the native disposition of His residues is important for conferring growth inhibition against Escherichia coli and Staphylococcus aureus. Within the S100 family, the S100A8/S100A9 heterooligomer is essential for providing high-affinity Mn(II) binding; the S100A7, S100A9(C3S), S100A12, and S100B homodimers do not exhibit such Mn(II)-binding capacity.
Collapse
Affiliation(s)
- Megan Brunjes Brophy
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Toshiki G. Nakashige
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Aleth Gaillard
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Elizabeth M. Nolan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
102
|
Ctr2 regulates biogenesis of a cleaved form of mammalian Ctr1 metal transporter lacking the copper- and cisplatin-binding ecto-domain. Proc Natl Acad Sci U S A 2013; 110:E4279-88. [PMID: 24167251 DOI: 10.1073/pnas.1311749110] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Copper is an essential catalytic cofactor for enzymatic activities that drive a range of metabolic biochemistry including mitochondrial electron transport, iron mobilization, and peptide hormone maturation. Copper dysregulation is associated with fatal infantile disease, liver, and cardiac dysfunction, neuropathy, and anemia. Here we report that mammals regulate systemic copper acquisition and intracellular mobilization via cleavage of the copper-binding ecto-domain of the copper transporter 1 (Ctr1). Although full-length Ctr1 is critical to drive efficient copper import across the plasma membrane, cleavage of the ecto-domain is required for Ctr1 to mobilize endosomal copper stores. The biogenesis of the truncated form of Ctr1 requires the structurally related, previously enigmatic copper transporter 2 (Ctr2). Ctr2(-/-) mice are defective in accumulation of truncated Ctr1 and exhibit increased tissue copper levels, and X-ray fluorescence microscopy demonstrates that copper accumulates as intracellular foci. These studies identify a key regulatory mechanism for mammalian copper transport through Ctr2-dependent accumulation of a Ctr1 variant lacking the copper- and cisplatin-binding ecto-domain.
Collapse
|
103
|
SLC31 (CTR) family of copper transporters in health and disease. Mol Aspects Med 2013; 34:561-70. [PMID: 23506889 DOI: 10.1016/j.mam.2012.07.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2012] [Accepted: 05/31/2012] [Indexed: 12/19/2022]
Abstract
Copper is a vital mineral for many organisms, yet it is highly toxic as demonstrated by serious health concerns associated with its deficiency or excess accumulation. The SLC31 (CTR) family of copper transporters is a major gateway of copper acquisition in eukaryotes, ranging from yeast to humans. Characterization of the function, modes of action, and regulation of CTR and other molecular factors that functionally cooperate with CTR for copper transport, compartmentalization, incorporation into cuproproteins, and detoxification has revealed that organisms have evolved fascinating mechanisms for tight control of copper metabolism. This research progress further indicates the significance of copper in health and disease and opens avenues for therapeutic control of copper bioavailability and its metabolic pathways.
Collapse
|
104
|
Miyamoto T, Kamino S, Odani A, Hiromura M, Enomoto S. Basicity of N-Terminal Amine in ATCUN Peptide Regulates Stability Constant of Albumin-like Cu2+ Complex. CHEM LETT 2013. [DOI: 10.1246/cl.130405] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Takaaki Miyamoto
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
| | | | - Akira Odani
- Division of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University
| | | | - Shuichi Enomoto
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University
- Next-generation Imaging Team, RIKEN-CLST
| |
Collapse
|
105
|
Du X, Li H, Wang X, Liu Q, Ni J, Sun H. Kinetics and thermodynamics of metal binding to the N-terminus of a human copper transporter, hCTR1. Chem Commun (Camb) 2013; 49:9134-6. [PMID: 23962988 DOI: 10.1039/c3cc45360j] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The N-terminus of hCTR1 was demonstrated to bind three Cu(+) ions tightly (log K = 14.92) and reversibly via its Met-rich motifs. Ag(+) binds to the protein with the same stoichiometry but much lower affinities than Cu(+). The protein also coordinates two Cu(2+) ions through its ATCUN motif and His-rich motif with lower affinity. This study provides an insight into the selectivity of the transporter.
Collapse
Affiliation(s)
- Xiubo Du
- Department of Chemistry, The University of Hong Kong, Hong Kong, China.
| | | | | | | | | | | |
Collapse
|
106
|
Binding of transition metal ions to albumin: sites, affinities and rates. Biochim Biophys Acta Gen Subj 2013; 1830:5444-55. [PMID: 23811338 DOI: 10.1016/j.bbagen.2013.06.018] [Citation(s) in RCA: 329] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 06/14/2013] [Accepted: 06/17/2013] [Indexed: 01/13/2023]
Abstract
BACKGROUND Serum albumin is the most abundant protein in the blood and cerebrospinal fluid and plays a fundamental role in the distribution of essential transition metal ions in the human body. Human serum albumin (HSA) is an important physiological transporter of the essential metal ions Cu(2+), and Zn(2+) in the bloodstream. Its binding of metals like Ni(2+), Co(2+), or Cd(2+) can occur in vivo, but is only of toxicological relevance. Moreover, HSA is one of the main targets and hence most studied binding protein for metallodrugs based on complexes with Au, Pt and V. SCOPE OF REVIEW We discuss i) the four metal-binding sites so far described on HSA, their localization and metal preference, ii) the binding of the metal ions mentioned above, i.e. their stability constants and association/dissociation rates, their coordination chemistry and their selectivity versus the four binding sites iii) the methodology applied to study issues of items i and ii and iv) oligopeptide models of the N-terminal binding site. MAJOR CONCLUSIONS Albumin has four partially selective metal binding sites with well-defined metal preferences. It is an important regulator of the blood transport of physiological Cu(II) and Zn(II) and toxic Ni(II) and Cd(II). It is also an important target for metal-based drugs containing Pt(II), V(IV)O, and Au(I). GENERAL SIGNIFICANCE The thorough understanding of metal binding properties of serum albumin, including the competition of various metal ions for specific binding sites is important for biomedical issues, such as new disease markers and design of metal-based drugs. This article is part of a Special Issue entitled Serum Albumin.
Collapse
|
107
|
Shenberger Y, Yarmiayev V, Ruthstein S. Exploring the interaction between the human copper transporter, CTR1, c-terminal domain and a methionine motif in the presence of Cu(I) and Ag(I) ions, using EPR spectroscopy. Mol Phys 2013. [DOI: 10.1080/00268976.2013.807947] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
108
|
|
109
|
Wee NK, Weinstein DC, Fraser ST, Assinder SJ. The mammalian copper transporters CTR1 and CTR2 and their roles in development and disease. Int J Biochem Cell Biol 2013; 45:960-3. [DOI: 10.1016/j.biocel.2013.01.018] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 01/14/2013] [Accepted: 01/25/2013] [Indexed: 12/26/2022]
|
110
|
Wang Y, Wang L, Li F. Micelle-bound structure of an extracellular Met-rich domain of hCtr1 and its binding with silver. RSC Adv 2013. [DOI: 10.1039/c3ra41352g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
111
|
|
112
|
Designing a functional type 2 copper center that has nitrite reductase activity within α-helical coiled coils. Proc Natl Acad Sci U S A 2012; 109:21234-9. [PMID: 23236170 DOI: 10.1073/pnas.1212893110] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
One of the ultimate objectives of de novo protein design is to realize systems capable of catalyzing redox reactions on substrates. This goal is challenging as redox-active proteins require design considerations for both the reduced and oxidized states of the protein. In this paper, we describe the spectroscopic characterization and catalytic activity of a de novo designed metallopeptide Cu(I/II)(TRIL23H)(3)(+/2+), where Cu(I/II) is embeded in α-helical coiled coils, as a model for the Cu(T2) center of copper nitrite reductase. In Cu(I/II)(TRIL23H)(3)(+/2+), Cu(I) is coordinated to three histidines, as indicated by X-ray absorption data, and Cu(II) to three histidines and one or two water molecules. Both ions are bound in the interior of the three-stranded coiled coils with affinities that range from nano- to micromolar [Cu(II)], and picomolar [Cu(I)]. The Cu(His)(3) active site is characterized in both oxidation states, revealing similarities to the Cu(T2) site in the natural enzyme. The species Cu(II)(TRIL23H)(3)(2+) in aqueous solution can be reduced to Cu(I)(TRIL23H)(3)(+) using ascorbate, and reoxidized by nitrite with production of nitric oxide. At pH 5.8, with an excess of both the reductant (ascorbate) and the substrate (nitrite), the copper peptide Cu(II)(TRIL23H)(3)(2+) acts as a catalyst for the reduction of nitrite with at least five turnovers and no loss of catalytic efficiency after 3.7 h. The catalytic activity, which is first order in the concentration of the peptide, also shows a pH dependence that is described and discussed.
Collapse
|
113
|
Tardito S, Barilli A, Bassanetti I, Tegoni M, Bussolati O, Franchi-Gazzola R, Mucchino C, Marchiò L. Copper-dependent cytotoxicity of 8-hydroxyquinoline derivatives correlates with their hydrophobicity and does not require caspase activation. J Med Chem 2012; 55:10448-59. [PMID: 23170953 DOI: 10.1021/jm301053a] [Citation(s) in RCA: 171] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This study reports the structure-activity relationship of a series of 8-hydroxoquinoline derivatives (8-HQs) and focuses on the cytotoxic activity of 5-Cl-7-I-8-HQ (clioquinol, CQ) copper complex (Cu(CQ)). 8-HQs alone cause a dose-dependent loss of viability of the human tumor HeLa and PC3 cells, but the coadministration of copper increases the ligands effects, with extensive cell death occurring in both cell lines. Cytotoxic doses of Cu(CQ) promote intracellular copper accumulation and massive endoplasmic reticulum vacuolization that precede a nonapoptotic (paraptotic) cell death. The cytotoxic effect of Cu(CQ) is reproduced in normal human endothelial cells (HUVEC) at concentrations double those effective in tumor cells, pointing to a potential therapeutic window for Cu(CQ). Finally, the results show that the paraptotic cell death induced by Cu(CQ) does not require nor involve caspases, giving an indication for the current clinical assessment of clioquinol as an antineoplastic agent.
Collapse
Affiliation(s)
- Saverio Tardito
- Dipartimento di Chimica, Università degli Studi di Parma, Viale delle Scienze 17/A, 43123 Parma, Italy
| | | | | | | | | | | | | | | |
Collapse
|
114
|
Zatulovskiy EA, Skvortsov AN, Rusconi P, Ilyechova EY, Babich PS, Tsymbalenko NV, Broggini M, Puchkova LV. Serum depletion of holo-ceruloplasmin induced by silver ions in vivo reduces uptake of cisplatin. J Inorg Biochem 2012; 116:88-96. [PMID: 23018271 DOI: 10.1016/j.jinorgbio.2012.07.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Revised: 06/01/2012] [Accepted: 07/03/2012] [Indexed: 02/02/2023]
Abstract
There is an emerging link between extracellular copper concentration and the uptake of cisplatin mediated by copper transporter CTR1 in cell cultures and unicellular eukaryotes. To test the link between extracellular copper level and cisplatin uptake by organs in vivo we used mice with low copper status parameters induced by AgCl-containing diet (Ag-mice). In Ag-mice, serum copper status and liver copper metabolism were characterized. It was shown that the expression level of copper transporter genes and activity of ubiquitous intracellular cuproenzymes were not affected but the level of serum holo-ceruloplasmin was not detectable. Silver was selectively absorbed by liver and accumulated in the mitochondrial matrix. Silver was present in an exchangeable form and was excreted through bile. Ag-mice model is characterized by high reproducibility, reversibility, synchronicity, and definiteness of ceruloplasmin-associated copper deficiency. After cisplatin treatment Ag-mice, as compared to control mice, demonstrated the delay in platinum uptake by organs during first 30 min. This effect was not observed at later time points probably due to cisplatin induced copper release to blood, which resulted in the recovery of copper status. These data allowed us to conclude that cisplatin uptake was coupled to copper transport in vivo.
Collapse
Affiliation(s)
- Evgeny A Zatulovskiy
- Department of Biophysics, St. Petersburg State Polytechnical University, St. Petersburg, 195251, Russia
| | | | | | | | | | | | | | | |
Collapse
|
115
|
Tsigelny IF, Sharikov Y, Greenberg JP, Miller MA, Kouznetsova VL, Larson CA, Howell SB. An all-atom model of the structure of human copper transporter 1. Cell Biochem Biophys 2012; 63:223-34. [PMID: 22569840 PMCID: PMC3590913 DOI: 10.1007/s12013-012-9358-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Human copper transporter 1 (hCTR1) is the major high affinity copper influx transporter in mammalian cells that also mediates uptake of the cancer chemotherapeutic agent cisplatin. A low resolution structure of hCTR1 determined by cryoelectron microscopy was recently published. Several protein structure simulation techniques were used to create an all-atom model of this important transporter using the low resolution structure as a starting point. The all-atom model provides new insights into the roles of specific residues of the N-terminal extracellular domain, the intracellular loop, and C-terminal region in metal ion transport. In particular, the model demonstrates that the central region of the pore contains four sets of methionine triads in the intramembranous region. The structure confirms that two triads of methionine residues delineate the intramembranous region of the transporter, and further identifies two additional methionine triads that are located in the extracellular N-terminal part of the transporter. Together, the four triads create a structure that promotes stepwise transport of metal ions into and then through the intramembranous channel of the transporter via transient thioether bonds to methionine residues. Putative copper-binding sites in the hCTR1 trimer were identified by a program developed by us for prediction of metal-binding sites. These sites correspond well with the known effects of mutations on the ability of the protein to transport copper and cisplatin.
Collapse
Affiliation(s)
- Igor F Tsigelny
- Department of Neurosciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, San Diego, CA 92093-0505. USA,
| | | | | | | | | | | | | |
Collapse
|
116
|
Otoikhian A, Barry AN, Mayfield M, Nilges M, Huang Y, Lutsenko S, Blackburn NJ. Lumenal loop M672-P707 of the Menkes protein (ATP7A) transfers copper to peptidylglycine monooxygenase. J Am Chem Soc 2012; 134:10458-68. [PMID: 22577880 DOI: 10.1021/ja301221s] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Copper transfer to cuproproteins located in vesicular compartments of the secretory pathway depends on activity of the copper-translocating ATPase (ATP7A), but the mechanism of transfer is largely unexplored. Copper-ATPase ATP7A is unique in having a sequence rich in histidine and methionine residues located on the lumenal side of the membrane. The corresponding fragment binds Cu(I) when expressed as a chimera with a scaffold protein, and mutations or deletions of His and/or Met residues in its sequence inhibit dephosphorylation of the ATPase, a catalytic step associated with copper release. Here we present evidence for a potential role of this lumenal region of ATP7A in copper transfer to cuproenzymes. Both Cu(II) and Cu(I) forms were investigated since the form in which copper is transferred to acceptor proteins is currently unknown. Analysis of Cu(II) using EPR demonstrated that at Cu:P ratios below 1:1 (15)N-substituted protein had Cu(II) bound by 4 His residues, but this coordination changed as the Cu(II) to protein ratio increased toward 2:1. XAS confirmed this coordination via analysis of the intensity of outer-shell scattering from imidazole residues. The Cu(II) complexes could be reduced to their Cu(I) counterparts by ascorbate, but here again, as shown by EXAFS and XANES spectroscopy, the coordination was dependent on copper loading. At low copper Cu(I) was bound by a mixed ligand set of His + Met, whereas at higher ratios His coordination predominated. The copper-loaded loop was able to transfer either Cu(II) or Cu(I) to peptidylglycine monooxygenase in the presence of chelating resin, generating catalytically active enzyme in a process that appeared to involve direct interaction between the two partners. The variation of coordination with copper loading suggests copper-dependent conformational change which in turn could act as a signal for regulating copper release by the ATPase pump.
Collapse
Affiliation(s)
- Adenike Otoikhian
- Institute of Environmental Health, Oregon Health & Sciences University, Beaverton, Oregon 97006, USA
| | | | | | | | | | | | | |
Collapse
|
117
|
Skvortsov AN, Zatulovskiy EA, Puchkova LV. Structure-functional organization of eukaryotic high-affinity copper importer CTR1 determines its ability to transport copper, silver, and cisplatin. Mol Biol 2012. [DOI: 10.1134/s0026893312010219] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
118
|
Coordination chemistry of copper proteins: How nature handles a toxic cargo for essential function. J Inorg Biochem 2012; 107:129-43. [DOI: 10.1016/j.jinorgbio.2011.11.024] [Citation(s) in RCA: 232] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 10/25/2011] [Accepted: 11/15/2011] [Indexed: 01/16/2023]
|
119
|
Niedźwiecka A, Cisnetti F, Lebrun C, Gateau C, Delangle P. Lanthanide-binding peptides with two pendant aminodiacetate arms: Impact of the sequence on chelation. Dalton Trans 2012; 41:3239-47. [DOI: 10.1039/c2dt11686c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
120
|
Hasan NM, Lutsenko S. Regulation of copper transporters in human cells. CURRENT TOPICS IN MEMBRANES 2012; 69:137-61. [PMID: 23046650 DOI: 10.1016/b978-0-12-394390-3.00006-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Copper is essential for normal growth and development of human organisms. The role of copper as a cofactor of important metabolic enzymes, such as cytochrome c oxidase, superoxide dismutase, lysyl oxidase, dopamine-β-hydroxylase, and many others, has been well established. In recent years, new regulatory roles of copper have emerged. Accumulating evidence points to the involvement of copper in lipid metabolism, antimicrobial defense, neuronal activity, resistance of tumor cells to platinum-based chemotherapeutic drugs, kinase-mediated signal transduction, and other essential cellular processes. For many of these processes, the precise mechanism of copper action remains to be established. Nevertheless, it is increasingly clear that many regulatory and signaling events are associated with changes in the intracellular localization and abundance of copper transporters, as well as distinct compartmentalization of copper itself. In this review, we discuss current data on regulation of the localization and abundance of copper transporters in response to metabolic and signaling events in human cells. Regulation by kinase-mediated phosphorylation will be addressed along with the emerging area of the redox-driven control of copper transport. We highlight mechanistic questions that await further testing.
Collapse
Affiliation(s)
- Nesrin M Hasan
- Department of Physiology, Johns Hopkins University, Baltimore, MD, USA
| | | |
Collapse
|