101
|
Li S, Cheng D, He L, Yuan L. Recent Progresses in NIR-I/II Fluorescence Imaging for Surgical Navigation. Front Bioeng Biotechnol 2021; 9:768698. [PMID: 34790654 PMCID: PMC8591038 DOI: 10.3389/fbioe.2021.768698] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 09/17/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer is still one of the main causes of morbidity and death rate around the world, although diagnostic and therapeutic technologies are used to advance human disease treatment. Currently, surgical resection of solid tumors is the most effective and a prior remedial measure to treat cancer. Although medical treatment, technology, and science have advanced significantly, it is challenging to completely treat this lethal disease. Near-infrared (NIR) fluorescence, including the first near-infrared region (NIR-I, 650-900 nm) and the second near-infrared region (NIR-II, 1,000-1,700 nm), plays an important role in image-guided cancer surgeries due to its inherent advantages, such as great tissue penetration, minimal tissue absorption and emission light scattering, and low autofluorescence. By virtue of its high precision in identifying tumor tissue margins, there are growing number of NIR fluorescence-guided surgeries for various living animal models as well as patients in clinical therapy. Herein, this review introduces the basic construction and operation principles of fluorescence molecular imaging technology, and the representative application of NIR-I/II image-guided surgery in biomedical research studies are summarized. Ultimately, we discuss the present challenges and future perspectives in the field of fluorescence imaging for surgical navigation and also put forward our opinions on how to improve the efficiency of the surgical treatment.
Collapse
Affiliation(s)
- Songjiao Li
- Cancer Research Institute, Department of Pharmacy and Pharmacology, The First Affiliated Hospital, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, China
| | - Dan Cheng
- The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Longwei He
- Cancer Research Institute, Department of Pharmacy and Pharmacology, The First Affiliated Hospital, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| |
Collapse
|
102
|
Liu D, He Z, Zhao Y, Yang Y, Shi W, Li X, Ma H. Xanthene-Based NIR-II Dyes for In Vivo Dynamic Imaging of Blood Circulation. J Am Chem Soc 2021; 143:17136-17143. [PMID: 34632770 DOI: 10.1021/jacs.1c07711] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Fluorescence bioimaging through the second near-infrared window (NIR-II, 1000-1700 nm) has attracted much attention due to its deep penetration and high contrast. However, exploring new fluorescent materials, especially small molecular fluorophores with long wavelength and high brightness, is still quite challenging. By expanding π-conjugation and enhancing the intramolecular charge transfer effect, herein we report a series of new xanthene-based NIR-II dyes, named VIXs. Among these dyes, VIX-4 exhibits the best performance with fluorescence emission at 1210 nm and high brightness and has been used for dynamically imaging the blood flow of mice at 200 fps. By virtue of high spatiotemporal resolution of the dynamic imaging, we can distinguish directly the artery and vein through the blood flow direction and measure the blood flow volume by the videos. This study provides not only an effective tool for high spatial and temporal resolution bioimaging but also a new and promising conjugated skeleton for NIR-II dyes.
Collapse
Affiliation(s)
- Diankai Liu
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zixu He
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yanyan Zhao
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yuantao Yang
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Wen Shi
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaohua Li
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Huimin Ma
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Analytical Chemistry for Living Biosystems Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
103
|
Liu Y, Li Y, Koo S, Sun Y, Liu Y, Liu X, Pan Y, Zhang Z, Du M, Lu S, Qiao X, Gao J, Wang X, Deng Z, Meng X, Xiao Y, Kim JS, Hong X. Versatile Types of Inorganic/Organic NIR-IIa/IIb Fluorophores: From Strategic Design toward Molecular Imaging and Theranostics. Chem Rev 2021; 122:209-268. [PMID: 34664951 DOI: 10.1021/acs.chemrev.1c00553] [Citation(s) in RCA: 194] [Impact Index Per Article: 64.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In vivo imaging in the second near-infrared window (NIR-II, 1000-1700 nm), which enables us to look deeply into living subjects, is producing marvelous opportunities for biomedical research and clinical applications. Very recently, there has been an upsurge of interdisciplinary studies focusing on developing versatile types of inorganic/organic fluorophores that can be used for noninvasive NIR-IIa/IIb imaging (NIR-IIa, 1300-1400 nm; NIR-IIb, 1500-1700 nm) with near-zero tissue autofluorescence and deeper tissue penetration. This review provides an overview of the reports published to date on the design, properties, molecular imaging, and theranostics of inorganic/organic NIR-IIa/IIb fluorophores. First, we summarize the design concepts of the up-to-date functional NIR-IIa/IIb biomaterials, in the order of single-walled carbon nanotubes (SWCNTs), quantum dots (QDs), rare-earth-doped nanoparticles (RENPs), and organic fluorophores (OFs). Then, these novel imaging modalities and versatile biomedical applications brought by these superior fluorescent properties are reviewed. Finally, challenges and perspectives for future clinical translation, aiming at boosting the clinical application progress of NIR-IIa and NIR-IIb imaging technology are highlighted.
Collapse
Affiliation(s)
- Yishen Liu
- State Key Laboratory of Virology, College of Science, Research Center for Ecology, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Tibet University, Lhasa 850000, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Yang Li
- State Key Laboratory of Virology, College of Science, Research Center for Ecology, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Tibet University, Lhasa 850000, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.,Shenzhen Institute of Wuhan University, Shenzhen 518057, China
| | - Seyoung Koo
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Yao Sun
- Key Laboratory of Pesticides and Chemical Biology, Ministry of Education, International Joint Research Center for Intelligent Biosensor Technology and Health, Center of Chemical Biology, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Yixuan Liu
- State Key Laboratory of Virology, College of Science, Research Center for Ecology, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Tibet University, Lhasa 850000, China
| | - Xing Liu
- State Key Laboratory of Virology, College of Science, Research Center for Ecology, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Tibet University, Lhasa 850000, China.,Laboratory of Plant Systematics and Evolutionary Biology, College of Life Science, Wuhan University, Wuhan 430072, China
| | - Yanna Pan
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Zhiyun Zhang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Mingxia Du
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Siyu Lu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Xue Qiao
- State Key Laboratory of Virology, College of Science, Research Center for Ecology, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Tibet University, Lhasa 850000, China
| | - Jianfeng Gao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.,Center for Animal Experiment, Wuhan University, Wuhan 430071, China
| | - Xiaobo Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Zixin Deng
- State Key Laboratory of Virology, College of Science, Research Center for Ecology, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Tibet University, Lhasa 850000, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yuling Xiao
- State Key Laboratory of Virology, College of Science, Research Center for Ecology, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Tibet University, Lhasa 850000, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China.,Shenzhen Institute of Wuhan University, Shenzhen 518057, China
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Xuechuan Hong
- State Key Laboratory of Virology, College of Science, Research Center for Ecology, Laboratory of Extreme Environmental Biological Resources and Adaptive Evolution, Tibet University, Lhasa 850000, China.,Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| |
Collapse
|
104
|
Bindra AK, Wang D, Zheng Z, Jana D, Zhou W, Yan S, Wu H, Zheng Y, Zhao Y. Self-assembled semiconducting polymer based hybrid nanoagents for synergistic tumor treatment. Biomaterials 2021; 279:121188. [PMID: 34678649 DOI: 10.1016/j.biomaterials.2021.121188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 10/11/2021] [Accepted: 10/15/2021] [Indexed: 12/18/2022]
Abstract
There is an impending need for the development of carrier-free nanosystems for single laser triggered activation of phototherapy, as such approach can overcome the drawbacks associated with irradiation by two distinct laser sources for avoiding prolonged treatment time and complex treatment protocols. Herein, we developed a self-assembled nanosystem (SCP-CS) consisting of a new semiconducting polymer (SCP) and encapsulated ultrasmall CuS (CS) nanoparticles. The SCP component displays remarkable near infrared (NIR) induced photothermal ability, enhanced reactive oxygen species (ROS) generation, and incredible photoacoustic (PA) signals upon activation by 808 nm laser for phototherapy mediated cancer ablation. The CuS component improves the PA imaging ability of SCP-CS, and also enhances photo-induced chemodynamic efficacy. Attributed to promoted single laser-triggered hyperthermia and enhanced ROS generation, the SCP-CS nanosystem shows effective intracellular uptake and intratumoral accumulation, enhanced tumor suppression with reduced treatment time, and devoid of any noticeable toxicity.
Collapse
Affiliation(s)
- Anivind Kaur Bindra
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Dongdong Wang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Zesheng Zheng
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Deblin Jana
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Weiqiang Zhou
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore
| | - Suxia Yan
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Hongwei Wu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore; College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, China.
| | - Yuanjin Zheng
- School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore; School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore.
| |
Collapse
|
105
|
Jia Q, Li Z, Bai M, Yan H, Zhang R, Ji Y, Feng Y, Yang Z, Wang Z, Li J. Estimating dynamic vascular perfusion based on Er-based lanthanide nanoprobes with enhanced down-conversion emission beyond 1500 nm. Theranostics 2021; 11:9859-9872. [PMID: 34815791 PMCID: PMC8581431 DOI: 10.7150/thno.65771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/22/2021] [Indexed: 12/24/2022] Open
Abstract
Peripheral artery disease (PAD) is a common, yet serious, circulatory condition that can increase the risk of amputation, heart attack or stroke. Accurate identification of PAD and dynamic monitoring of the treatment efficacy of PAD in real time are crucial for optimizing therapeutic outcomes. However, current imaging techniques do not enable these requirements. Methods: A lanthanide-based nanoprobe with emission in the second near-infrared window b (NIR-IIb, 1500-1700 nm), Er-DCNPs, was utilized for continuous imaging of dynamic vascular structures and hemodynamic alterations in real time using PAD-related mouse models. The NIR-IIb imaging capability, stability, and biocompatibility of Er-DCNPs were evaluated in vitro and in vivo. Results: Owing to their high temporal-spatial resolution in the NIR-IIb imaging window, Er-DCNPs not only exhibited superior capability in visualizing anatomical and pathophysiological features of the vasculature of mice but also provided dynamic information on blood perfusion for quantitative assessment of blood recovery, thereby achieving the synergistic integration of diagnostic and therapeutic imaging functions, which is very meaningful for the successful management of PAD. Conclusion: Our findings indicate that Er-DCNPs can serve as a promising system to facilitate the diagnosis and treatment of PAD as well as other vasculature-related diseases.
Collapse
Affiliation(s)
- Qian Jia
- Engineering Research Center of Molecular and Neuro-imaging of ministry of education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126 China
| | - Zheng Li
- Engineering Research Center of Molecular and Neuro-imaging of ministry of education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126 China
| | - Mingli Bai
- Engineering Research Center of Molecular and Neuro-imaging of ministry of education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126 China
| | - Haohao Yan
- Engineering Research Center of Molecular and Neuro-imaging of ministry of education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126 China
| | - Ruili Zhang
- Engineering Research Center of Molecular and Neuro-imaging of ministry of education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126 China
- Academy of Advanced Interdisciplinary Research, Xidian University, Xi'an, Shaanxi, 710071, China
| | - Yu Ji
- Engineering Research Center of Molecular and Neuro-imaging of ministry of education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126 China
| | - Yanbin Feng
- Engineering Research Center of Molecular and Neuro-imaging of ministry of education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126 China
| | - Zuo Yang
- Engineering Research Center of Molecular and Neuro-imaging of ministry of education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126 China
| | - Zhongliang Wang
- Engineering Research Center of Molecular and Neuro-imaging of ministry of education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126 China
- Academy of Advanced Interdisciplinary Research, Xidian University, Xi'an, Shaanxi, 710071, China
| | - Jianxiong Li
- Department of Radiotherapy, Chinese PLA General Hospital, Beijing, 100071, China
| |
Collapse
|
106
|
|
107
|
Feng Z, Tang T, Wu T, Yu X, Zhang Y, Wang M, Zheng J, Ying Y, Chen S, Zhou J, Fan X, Zhang D, Li S, Zhang M, Qian J. Perfecting and extending the near-infrared imaging window. LIGHT, SCIENCE & APPLICATIONS 2021; 10:197. [PMID: 34561416 PMCID: PMC8463572 DOI: 10.1038/s41377-021-00628-0] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 05/05/2023]
Abstract
In vivo fluorescence imaging in the second near-infrared window (NIR-II) has been considered as a promising technique for visualizing mammals. However, the definition of the NIR-II region and the mechanism accounting for the excellent performance still need to be perfected. Herein, we simulate the photon propagation in the NIR region (to 2340 nm), confirm the positive contribution of moderate light absorption by water in intravital imaging and perfect the NIR-II window as 900-1880 nm, where 1400-1500 and 1700-1880 nm are defined as NIR-IIx and NIR-IIc regions, respectively. Moreover, 2080-2340 nm is newly proposed as the third near-infrared (NIR-III) window, which is believed to provide the best imaging quality. The wide-field fluorescence microscopy in the brain is performed around the NIR-IIx region, with excellent optical sectioning strength and the largest imaging depth of intravital NIR-II fluorescence microscopy to date. We also propose 1400 nm long-pass detection in off-peak NIR-II imaging whose performance exceeds that of NIR-IIb imaging, using bright fluorophores with short emission wavelength.
Collapse
Affiliation(s)
- Zhe Feng
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, 310058, Hangzhou, China
- Intelligent Optics & Photonics Research Center, Jiaxing Institute of Zhejiang University, 314000, Jiaxing, Zhejiang Province, China
| | - Tao Tang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 430070, Wuhan, China
| | - Tianxiang Wu
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, 310058, Hangzhou, China
| | - Xiaoming Yu
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, 310006, Hangzhou, China
| | - Yuhuang Zhang
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, 310058, Hangzhou, China
- Intelligent Optics & Photonics Research Center, Jiaxing Institute of Zhejiang University, 314000, Jiaxing, Zhejiang Province, China
| | - Meng Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 430070, Wuhan, China
| | - Junyan Zheng
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, 310006, Hangzhou, China
| | - Yanyun Ying
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, 310006, Hangzhou, China
| | - Siyi Chen
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, 310058, Hangzhou, China
| | - Jing Zhou
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, 310058, Hangzhou, China
| | - Xiaoxiao Fan
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, 310058, Hangzhou, China
| | - Dan Zhang
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, 310006, Hangzhou, China
| | - Shengliang Li
- College of Pharmaceutical Sciences, Soochow University, 215123, Suzhou, China
| | - Mingxi Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 430070, Wuhan, China.
| | - Jun Qian
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, 310058, Hangzhou, China.
- Intelligent Optics & Photonics Research Center, Jiaxing Institute of Zhejiang University, 314000, Jiaxing, Zhejiang Province, China.
| |
Collapse
|
108
|
Gu C, Wang H, Wang X, Wen S, Liu X, Tan W, Qiu M, Ma J. Dithieno[3,2- b:2',3'- d]silole-based conjugated polymers for bioimaging in the short-wave infrared region. RSC Adv 2021; 11:30798-30804. [PMID: 35498949 PMCID: PMC9041370 DOI: 10.1039/d1ra05097d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/01/2021] [Indexed: 12/02/2022] Open
Abstract
The short-wave infrared window (SWIR, 900–1700 nm) fluorescence imaging has been demonstrated to have excellent imaging performance in signal/noise ratio and tissue penetration compared to the conventional NIR biological window (NIR-I, 700–900 nm). Conventional organic SWIR fluorescent materials still suffer from low fluorescence quantum efficiency. In this work, a donor unit with sp3 hybrid configuration and an acceptor unit with small hindered alkyl side chains are employed to construct donor–acceptor (D–A) type conjugated polymers P1 and P2, which were substituted with one or two fluorine atoms. These structural features can alleviate the aggregation-caused quenching (ACQ) and contribute to charge transfer, resulting in a significantly improved fluorescence quantum efficiency. The SWIR fluorescent quantum efficiencies of P1 and P2 nanoparticles are 3.4% and 4.4%, respectively, which are some of the highest for organic SWIR fluorophores reported so far. Excellent imaging quality has been demonstrated with P2 nanoparticles for SWIR imaging of the vascular system of nude mice. The results indicate that our design strategy of introducing sp3 hybrid configuration and small hindered alkyl side chains to fabricate conjugated polymers is efficient in improving the fluorescent quantum efficiency as SWIR fluorescent imaging agents for potential clinical practice. A D–A type polymer with a SWIR fluorescence quantum efficiency of 4.4% was obtained after structural optimization.![]()
Collapse
Affiliation(s)
- Chuantao Gu
- School of Environmental and Municipal Engineering, Qingdao University of Technology Qingdao 266525 P. R. China +86-532-85071673.,CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences Qingdao 266101 P. R. China
| | - Haicheng Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology Qingdao 266525 P. R. China +86-532-85071673
| | - Xiaoxia Wang
- Qing Dao Municipal Hospital Qingdao 266011 P. R. China
| | - Shuguang Wen
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences Qingdao 266101 P. R. China
| | - Xiaoguang Liu
- School of Environmental and Municipal Engineering, Qingdao University of Technology Qingdao 266525 P. R. China +86-532-85071673
| | - Weiqiang Tan
- School of Environmental and Municipal Engineering, Qingdao University of Technology Qingdao 266525 P. R. China +86-532-85071673
| | - Meng Qiu
- Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China), Ministry of Education Qingdao 266011 P. R. China
| | - Jiping Ma
- School of Environmental and Municipal Engineering, Qingdao University of Technology Qingdao 266525 P. R. China +86-532-85071673
| |
Collapse
|
109
|
Zhang Z, Tang W, Li Y, Cao Y, Shang Y. Bioinspired Conjugated Tri-Porphyrin-Based Intracellular pH-Sensitive Metallo-Supramolecular Nanoparticles for Near-Infrared Photoacoustic Imaging-Guided Chemo- and Photothermal Combined Therapy. ACS Biomater Sci Eng 2021; 7:4503-4508. [PMID: 34437801 DOI: 10.1021/acsbiomaterials.1c00597] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Porphyrins have been extensively used in clinical phototherapy. However, most of them exhibited absorption below 700 nm. We report conjugated tri-porphyrins showing absorption within a biological phototherapy window (700-850 nm). On this basis, bioinspired intracellular pH-sensitive metallo-supramolecular nanoparticles (NPs) are designed. They provide the simultaneous photothermal therapy and chemotherapy. After treatment by tail vein injection, the tumor was completely relieved without recurrence in a course of 27 days. These bioinspired intracellular pH-sensitive metallo-supramolecular NPs show excellent potential application in near-infrared photoacoustic imaging-guided chemo-photothermal combined therapy.
Collapse
Affiliation(s)
- Zhe Zhang
- Deep-Processing of Fine Flake Graphite Sichuan Province Key Laboratory of Colleges and Universities, Panzhihua University, No. 10, Jichang Road, Panzhihua 617000, Sichuan, P. R. China
| | - Weiwei Tang
- Deep-Processing of Fine Flake Graphite Sichuan Province Key Laboratory of Colleges and Universities, Panzhihua University, No. 10, Jichang Road, Panzhihua 617000, Sichuan, P. R. China
| | - Yufeng Li
- Deep-Processing of Fine Flake Graphite Sichuan Province Key Laboratory of Colleges and Universities, Panzhihua University, No. 10, Jichang Road, Panzhihua 617000, Sichuan, P. R. China
| | - Yue Cao
- Institute of Biomass Functional Materials Interdisciplinary Studies Jilin Engineering Normal University, No.3050, Kaixuan Road, Changchun 130052, P.R. China
| | - Yuanhong Shang
- Deep-Processing of Fine Flake Graphite Sichuan Province Key Laboratory of Colleges and Universities, Panzhihua University, No. 10, Jichang Road, Panzhihua 617000, Sichuan, P. R. China
| |
Collapse
|
110
|
Wang M, Wang E, Cao H, Liu S, Wang X, Wang F. Construction of
Self‐Reporting
Biodegradable
CO
2
‐Based
Polycarbonates for the Visualization of Thermoresponsive Behavior with
Aggregation‐Induced
Emission Technology
†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100372] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Molin Wang
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences, Changchun Jilin 130022 China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei Anhui 230026 China
| | - Enhao Wang
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences, Changchun Jilin 130022 China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei Anhui 230026 China
| | - Han Cao
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences, Changchun Jilin 130022 China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei Anhui 230026 China
| | - Shunjie Liu
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences, Changchun Jilin 130022 China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei Anhui 230026 China
| | - Xianhong Wang
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences, Changchun Jilin 130022 China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei Anhui 230026 China
| | - Fosong Wang
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences, Changchun Jilin 130022 China
- School of Applied Chemistry and Engineering University of Science and Technology of China Hefei Anhui 230026 China
| |
Collapse
|
111
|
Li D, Li Y, Wu Q, Xiao P, Wang L, Wang D, Tang BZ. Add the Finishing Touch: Molecular Engineering of Conjugated Small Molecule for High-Performance AIE Luminogen in Multimodal Phototheranostics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102044. [PMID: 34342937 DOI: 10.1002/smll.202102044] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/19/2021] [Indexed: 06/13/2023]
Abstract
Phototheranostics based on luminogens with aggregation-induced emission (AIE) characteristics is captivating increasing research interest nowadays. However, AIE luminogens are inherently featured by inferior absorption coefficients (ε) resulting from the distorted molecular geometry. Besides, molecular innovation of long-wavelength light-excitable AIE luminogens with highly efficient phototheranostic outputs is an appealing yet significantly challenging task. Herein, on the basis of a fused-ring electron acceptor-donator-acceptor (A-D-A) type molecule (IDT) with aggregation-caused quenching (ACQ) properties, molecular engineering smoothly proceeds and successfully yields a novel AIE luminogen (IDT-TPE) via simply modifying tetraphenylethene (TPE) moieties on the sides of IDT backbone. The AIE tendency endows IDT-TPE nanoparticles with enhanced fluorescence brightness and far superior fluorescence imaging performance to IDT nanoparticles for mice tumors. Moreover, IDT-TPE nanoparticles exhibit near-infrared light-excitable features with a high ε of 8.9 × 104 m-1 cm-1 , which is roughly an order of magnitude higher than that of most previously reported AIE luminogens. Combining with their reactive oxygen species generation capability and extremely high photothermal conversion efficiency (59.7%), IDT-TPE nanoparticles actualize unprecedented performance in multimodal phototheranostics. This study thus brings useful insights into the development of versatile phototheranostic materials with great potential for practical cancer theranostics.
Collapse
Affiliation(s)
- Dan Li
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Youmei Li
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Qian Wu
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Peihong Xiao
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Lei Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| |
Collapse
|
112
|
Xu C, Jiang Y, Huang J, Huang J, Pu K. Second Near-Infrared Light-Activatable Polymeric Nanoantagonist for Photothermal Immunometabolic Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2101410. [PMID: 34296785 DOI: 10.1002/adma.202101410] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/27/2021] [Indexed: 05/05/2023]
Abstract
Immunometabolic modulation offers new opportunities to treat cancers as it is highly associated with cancer progression and immunosuppressive microenvironment. However, traditional regimens using nonselective small-molecule immunomodulators lead to the off-target adverse effects and insufficient therapeutic outcomes. Herein a second near-infrared (NIR-II) photothermally activatable semiconducting polymeric nanoantagonist (ASPA) for synergistic photothermal immunometabolic therapy of cancer is reported. ASPA backbone is obtained by conjugating vipadenant, an antagonist to adenosine A2A receptor, onto NIR-II light-absorbing semiconducting polymer via an azo-based thermolabile linker. Under deep-penetrating NIR-II photoirradiation, ASPA induces tumor thermal ablation and subsequently immunogenic cell death, triggers the cleavage of thermolabile linker, and releases the antagonist to block the immunosuppressive adenosinergic pathway. Such a remotely controlled immunometabolic regulation potentiates cytotoxic T cell functions while suppresses regulatory T cell activities, leading to efficient primary tumor inhibition, pulmonary metastasis prevention, and long-term immunological memory. Thereby, this work provides a generic polymeric approach for precise spatiotemporal regulation of cancer immunometabolism.
Collapse
Affiliation(s)
- Cheng Xu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Yuyan Jiang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Jingsheng Huang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Jiaguo Huang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore, 637457, Singapore
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| |
Collapse
|
113
|
Zhang Q, Hu X, Dai X, Ling P, Sun J, Chen H, Gao F. General Strategy to Achieve Color-Tunable Ratiometric Two-Photon Integrated Single Semiconducting Polymer Dot for Imaging Hypochlorous Acid. ACS NANO 2021; 15:13633-13645. [PMID: 34374516 DOI: 10.1021/acsnano.1c04581] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
It is highly desired and challenging to construct integrated (all-in-one) single semiconducting-polymer-derived dot (Pdot) without any postmodification but with desired performances for bioapplications. In this work, eight hypochlorous acid (HClO)-sensitive integrated polymers and corresponding polymer-derived Pdots are designed through molecular engineering to comparatively study their analytical performances for detecting and imaging HClO. The optimized polymers-derived Pdots are obtained through regulating donor-acceptor structure, the content of HClO-sensitive units, and the position of HClO-sensitive units in the polymer backbone. The designed Pdots display distinguished characteristics including multicolours with blue, yellow, and red three primary fluorescence colors, determination mode from single-channel to dual-channel (ratiometric) quantification, ultrafast response, low detection limit, and high selectivity for ClO- sensing based on specific oxidation of ClO--sensitive unit 10-methylphenothiazine (PT) accompanied by altering the intramolecular charge transfer (ICT) and fluorescence resonance energy transfer (FRET) processes in Pdots. The prepared integrated Pdots are also applied for two-photon ClO- imaging in HeLa cells and one- and two-photon ClO- imaging produced in acute inflammation in mice with satisfactory results. We believe that the present study not only provides excellent integrated fluorescent nanoprobes for ClO- monitoring in living systems but also extends a general strategy for designing integrated semiconducting polymers and Pdots with desired performances for biological applications.
Collapse
Affiliation(s)
- Qiang Zhang
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, People's Republic of China
| | - Xiaoxiao Hu
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, People's Republic of China
| | - Xiaomei Dai
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, People's Republic of China
| | - Pinghua Ling
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, People's Republic of China
| | - Junyong Sun
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, People's Republic of China
| | - Hongqi Chen
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, People's Republic of China
| | - Feng Gao
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, People's Republic of China
| |
Collapse
|
114
|
Sun P, Chen Y, Sun B, Zhang H, Chen K, Miao H, Fan Q, Huang W. Thienothiadiazole-Based NIR-II Dyes with D-A-D Structure for NIR-II Fluorescence Imaging Systems. ACS APPLIED BIO MATERIALS 2021; 4:4542-4548. [PMID: 35006790 DOI: 10.1021/acsabm.1c00274] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Fluorescence imaging (FI) in the second near-infrared optical window (NIR-II, 1000-1700 nm) has received increasing focus due to its capacity of high spatiotemporal resolution, rapid real-time imaging, and deep penetration depth. In addition, D-A-D-based organic small molecules have also attracted wide attention due to their designed chemical structure and rapid renal metabolism. However, most of the fluorescent cores were based on benzobisthiadiazole (BBTD) and 6,7-diphenyl-[1,2,5]thiadiazolo[3,4-g]quinoxaline (TTQ). The design and development of fluorescent core still remain challenging. Therefore, two NIR-II dyes based on the acceptor 4,6-di(2-thienyl)thieno[3,4-c][1,2,5]thiadiazole (TTDT) were designed and developed with donors tributyl(5-(9,9-dioctyl-9H-fluoren-2-yl)thiophen-2-yl)stannane (TF) and (5-(9,9'-spirobi[fluoren]-2-yl)thiophen-2-yl)tributylstannane (TSF) by the Stille coupling reaction, respectively. Subsequently, the corresponding nanoparticles were prepared, and then TTDT-TF-based nanoparticles with superior photostability and strong NIR-II fluorescence signals were chosen for NIR-II FI. More importantly, the in vivo experiments suggested that TTDT-TF NPs exhibited significant accumulation at tumor sites and high signal-to-background ratio (SBR). The above results indicated that the two D-A-D-type fluorophores based on TTDT have potential for NIR-II FI with superior imaging quality and imaging-guided surgery or therapy.
Collapse
Affiliation(s)
- Pengfei Sun
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Yan Chen
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Bo Sun
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Hua Zhang
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Kai Chen
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Han Miao
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Quli Fan
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Wei Huang
- Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210023, China.,Frontiers Science Center for Flexible Electronics & Shaanxi Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
115
|
Gong L, Shan X, Zhao XH, Tang L, Zhang XB. Activatable NIR-II Fluorescent Probes Applied in Biomedicine: Progress and Perspectives. ChemMedChem 2021; 16:2426-2440. [PMID: 33780139 DOI: 10.1002/cmdc.202100142] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Indexed: 12/18/2022]
Abstract
With the advantage of inherent responsiveness that can change the spectroscopic signals from "off" to "on" state in responding to targets (e. g. biological analytes/microenvironmental factors), activatable fluorescent probes have attracted extensive attention and made significant progress in the field of bioimaging and biosensing. Due to the high depth of tissue penetration, minimal tissue damage and negligible background signal at longer wavelengths, the development of second near-infrared window (NIR-II) fluorescent materials provides a new opportunity to develop activable fluorescent probes. Here, we summarized properties, advantages and disadvantages of mainly NIR-II fluorophores (such as rare earth-doped nanoparticles, quantum dots, single-walled carbon nanotubes, small molecule dyes, conjugated polymers and gold nanoclusters), then overviewed current role and development of activatable NIR-II fluorescent probes (AFPs) for biomedical applications including biosensing, bioimaging and therapeutic. The potential challenges and perspectives of AFPs in deep-tissue imaging and clinical application are also discussed.
Collapse
Affiliation(s)
- Liang Gong
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China
| | - Xiuzhi Shan
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China
| | - Xu-Hua Zhao
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, China
| | - Li Tang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou, 412007, China
| | - Xiao-Bing Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| |
Collapse
|
116
|
Min X, Zhang J, Li RH, Xia F, Cheng SQ, Li M, Zhu W, Zhou W, Li F, Sun Y. Encapsulation of NIR-II AIEgens in Virus-like Particles for Bioimaging. ACS APPLIED MATERIALS & INTERFACES 2021; 13:17372-17379. [PMID: 33834757 DOI: 10.1021/acsami.1c02691] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The development of organic nanoparticles that fluoresce in the near-infrared, especially in the second near-infrared (NIR-II) window, improves in vivo fluorescence imaging due to deeper penetration and higher spatiotemporal resolution. We report two kinds of NIR-II fluorescent molecules with twisted intramolecular charge-transfer (TICT) and aggregation-induced emission (AIE) characteristics. The virus-like particles (VLPs) of simian virus 40 (SV40) were used as templates to encapsulate the molecules in a well-defined structure (referred to as CH1-SV40 and CH2-SV40). The CH1-SV40 dots exhibited a highly uniform size of 21.5 nm, strong fluorescence, high photostability, and good biocompatibility in vitro and in vivo. Their fluorescence spectrum exhibited a peak at 955 nm, with a tail extending to 1200 nm. Moreover, the CH1-SV40 dots, with a quantum yield of 13.03%, enabled blood vessel imaging and image-guided surgery with a high signal-to-background ratio. Overall, the hybrid nanoparticles represent a new kind of NIR-II AIE nanoprobes for biomedical imaging.
Collapse
Affiliation(s)
- Xuehong Min
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, P. R. China
| | - Juan Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Run-Hao Li
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, P. R. China
| | - Fangfang Xia
- State Key Laboratory of Material Processing and Die and Mould Technology School of Material Sciences and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Shi-Qi Cheng
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, P. R. China
| | - Ming Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Weiwei Zhu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wei Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Feng Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Wuhan 430071, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yue Sun
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan 430074, P. R. China
| |
Collapse
|
117
|
Rejinold NS, Choi G, Choy JH. Recent Developments on Semiconducting Polymer Nanoparticles as Smart Photo-Therapeutic Agents for Cancer Treatments-A Review. Polymers (Basel) 2021; 13:981. [PMID: 33806912 PMCID: PMC8004612 DOI: 10.3390/polym13060981] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/19/2021] [Accepted: 03/19/2021] [Indexed: 02/07/2023] Open
Abstract
Semiconducting polymer nanoparticles (SPN) have been emerging as novel functional nano materials for phototherapy which includes PTT (photo-thermal therapy), PDT (photodynamic therapy), and their combination. Therefore, it is important to look into their recent developments and further explorations specifically in cancer treatment. Therefore, the present review describes novel semiconducting polymers at the nanoscale, along with their applications and limitations with a specific emphasis on future perspectives. Special focus is given on emerging and trending semiconducting polymeric nanoparticles in this review based on the research findings that have been published mostly within the last five years.
Collapse
Affiliation(s)
- N. Sanoj Rejinold
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea; (N.S.R.); (G.C.)
| | - Goeun Choi
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea; (N.S.R.); (G.C.)
- College of Science and Technology, Dankook University, Cheonan 31116, Korea
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Korea
| | - Jin-Ho Choy
- Intelligent Nanohybrid Materials Laboratory (INML), Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea; (N.S.R.); (G.C.)
- Department of Pre-medical Course, College of Medicine, Dankook University, Cheonan 31116, Korea
- Tokyo Tech World Research Hub Initiative (WRHI), Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8503, Japan
| |
Collapse
|
118
|
Zhang R, He X, Jiang JM, Li PP, Wang HY, Li L, Yang JX, Kong L. A computational and experimental investigation of donor-acceptor BODIPY based near-infrared fluorophore for in vivo imaging. Bioorg Chem 2021; 110:104789. [PMID: 33714760 DOI: 10.1016/j.bioorg.2021.104789] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/01/2021] [Accepted: 02/28/2021] [Indexed: 12/27/2022]
Abstract
TD-DFT quantum calculation was performed to predict and/or illustrate the electronic transition, the related absorption and emission maxima of some pyrrole-difluoroboron derivatives with different electron donor-acceptor unit or π-conjugated degree. Upon the calculated results, a new near infrared (NIR) fluorophore (abbreviated as TPBD-BP) was designed and fabricated through linking triphenylamine and pyrrole-difluoroboron units to benzothiadiazole (BTD) backbone. The fluorescence of TPBD-BP in solid state centered at 932 nm, which was 985 nm for TPBD-BP nanoparticles (TPBD-BP dots) encapsulated in PEG-6000. The fluorescence of TPBD-BP in both solid state and dots exhibited off-peak tail emission to NIR-II region (extended to 1300 nm). The TPBD-BP dots showed excellent water solubility, biocompatibility and aggregation induced emission (AIE), which was suitable to be applied in vivo imaging. NIR-II emission signal of TPBD-BP dots can be observed in the reproductive organ of normal nude mice after tail vein injection. This attractive combination of computational and experimental investigation would help to develop new-typed small-molecular NIR fluorophores.
Collapse
Affiliation(s)
- Rui Zhang
- College of Chemistry and Chemical Engineering, Key Laboratory of Functional Inorganic Materials of Anhui Province, Anhui University, Hefei 230039, PR China
| | - Xuan He
- Institutes of Physical Science and Information Technology, Anhui University, PR China
| | - Jia-Min Jiang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, PR China
| | - Pan-Pan Li
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, PR China
| | - Hai-Yan Wang
- Institutes of Physical Science and Information Technology, Anhui University, PR China
| | - Lin Li
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, PR China
| | - Jia-Xiang Yang
- College of Chemistry and Chemical Engineering, Key Laboratory of Functional Inorganic Materials of Anhui Province, Anhui University, Hefei 230039, PR China
| | - Lin Kong
- College of Chemistry and Chemical Engineering, Key Laboratory of Functional Inorganic Materials of Anhui Province, Anhui University, Hefei 230039, PR China.
| |
Collapse
|
119
|
Liu S, Li Y, Zhang J, Zhang H, Wang Y, Chuah C, Tang Y, Lam J, Kwok R, Ou H, Ding D, Tang B. A two-in-one Janus NIR-II AIEgen with balanced absorption and emission for image-guided precision surgery. Mater Today Bio 2021; 10:100087. [PMID: 33889836 PMCID: PMC8050777 DOI: 10.1016/j.mtbio.2020.100087] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023] Open
Abstract
Fluorescence imaging in the near-infrared II (NIR-II, 1000-1700 nm) region opens up new avenues for biological systems due to suppressed scattering and low autofluorescence at longer-wavelength photons. Nonetheless, the development of organic NIR-II fluorophores is still limited mainly due to the shortage of efficient molecular design strategy. Herein, we propose an approach of designing Janus NIR-II fluorophores by introducing electronic donors with distinct properties into one molecule. As a proof-of-concept, fluorescent dye 2 TT-m, oC6B with both twisted and planar electronic donors displayed balanced absorption and emission which were absent in its parent compound. The key design strategy for Janus molecule is that it combines the merits of intense absorption from planar architecture and high fluorescence quantum yield from twisted motif. The resulting 2 TT-m, oC6B nanoparticles exhibit a high molar absorptivity of 1.12 ⨯104 M-1 cm-1 at 808 nm and a NIR-II quantum yield of 3.7%, displaying a typical aggregation-induced emission (AIE) attribute. The highly bright and stable 2 TT-m, oC6B nanoparticles assured NIR-II image-guided cancer surgery to resect submillimeter tumor nodules. The present study may inspire further development of molecular design philosophy for highly bright NIR-II fluorophores for biomedical applications.
Collapse
Affiliation(s)
- S. Liu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Y. Li
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - J. Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - H. Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Y. Wang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - C. Chuah
- Institute for NanoScale Science and Technology, College of Science and Engineering, Flinders University, South Australia, 5042, Australia
| | - Y. Tang
- Institute for NanoScale Science and Technology, College of Science and Engineering, Flinders University, South Australia, 5042, Australia
| | - J.W.Y. Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - R.T.K. Kwok
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - H. Ou
- Key Laboratory of Bioactive Materials Ministry of Education and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - D. Ding
- Key Laboratory of Bioactive Materials Ministry of Education and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - B.Z. Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Center for Aggregation-Induced Emission SCUT-HKUST Joint Research Institute State Key Laboratory of Luminescent Materials and Devices South China University of Technology, Guangzhou, 510640, China
- AIE Institute, Guangzhou Development District, Huangpu, Guangzhou, 510530, China
| |
Collapse
|
120
|
Dou K, Feng W, Fan C, Cao Y, Xiang Y, Liu Z. Flexible Designing Strategy to Construct Activatable NIR-II Fluorescent Probes with Emission Maxima beyond 1200 nm. Anal Chem 2021; 93:4006-4014. [DOI: 10.1021/acs.analchem.0c04990] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Kun Dou
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Wenqi Feng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Chen Fan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Yu Cao
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules and College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Yunhui Xiang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Zhihong Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
- Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules and College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| |
Collapse
|
121
|
Gupta N, Chan YH, Saha S, Liu MH. Near-Infrared-II Semiconducting Polymer Dots for Deep-tissue Fluorescence Imaging. Chem Asian J 2021; 16:175-184. [PMID: 33331122 DOI: 10.1002/asia.202001348] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/16/2020] [Indexed: 12/12/2022]
Abstract
Fluorescence imaging, particularly in the NIR-II region (1000-1700 nm), has become an unprecedented tool for deep-tissue in vivo imaging. Among the fluorescent nanoprobes, semiconducting polymer nanoparticles (Pdots) appear to be a promising agent because of their tunable optical and photophysical properties, ultrahigh brightness, minimal autofluorescence, narrow-size distribution, and low cytotoxicity. This review elucidates the recent advances in Pdots for deep-tissue fluorescence imaging and the facing future translation to clinical use.
Collapse
Affiliation(s)
- Nidhi Gupta
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, 30010, Taiwan.,Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Yang-Hsiang Chan
- Department of Applied Chemistry, Centre of Emergent Functional Matter Science, National Chiao Tung University, Hsinchu, 30010, Taiwan.,Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Sampa Saha
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Ming-Ho Liu
- Department of Applied Chemistry, National Chiao Tung University, 30010, Hsinchu City, Taiwan
| |
Collapse
|
122
|
Dai H, Shen Q, Shao J, Wang W, Gao F, Dong X. Small Molecular NIR-II Fluorophores for Cancer Phototheranostics. Innovation (N Y) 2021; 2:100082. [PMID: 34557737 PMCID: PMC8454557 DOI: 10.1016/j.xinn.2021.100082] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/13/2021] [Indexed: 12/24/2022] Open
Abstract
Phototheranostics integrates deep-tissue imaging with phototherapy (containing photothermal therapy and photodynamic therapy), holding great promise in early diagnosis and precision treatment of cancers. Recently, second near-infrared (NIR-II) fluorescence imaging exhibits the merits of high accuracy and specificity, as well as real-time detection. Among the NIR-II fluorophores, organic small molecular fluorophores have shown superior properties in the biocompatibility, variable structure, and tunable emission wavelength than the inorganic NIR-II materials. What's more, some small molecular fluorophores also display excellent cytotoxicity when illuminated with the NIR laser. This review summarizes the progress of small molecular NIR-II fluorophores with different central cores for cancer phototheranostics in the past few years, focusing on the molecular structures and phototheranostic performances. Furthermore, challenges and prospects of future development toward clinical translation are discussed. Phototheranostics combines diagnostic imaging with phototherapy, showing broad applications in the early diagnosis and precise treatment of tumors Small molecular NIR-II fluorophores with good biocompatibility, tunable structure, high imaging quality, and excellent phototoxicity, have shown great potential for cancer phototheranostics Small molecular NIR-II fluorophores with different central cores for cancer phototheranostics are summarized, highlighting the design strategies and phototheranostic performances Challenges and prospects of future development toward clinical translation are discussed
Collapse
Affiliation(s)
- Hanming Dai
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Qing Shen
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Jinjun Shao
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Wenjun Wang
- School of Physical Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Fan Gao
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.,School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, China
| |
Collapse
|
123
|
Dai H, Shen Q, Shao J, Wang W, Gao F, Dong X. Small Molecular NIR-II Fluorophores for Cancer Phototheranostics. INNOVATION (NEW YORK, N.Y.) 2021. [PMID: 34557737 DOI: 10.1016/j.xinn.2021.100082,] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Phototheranostics integrates deep-tissue imaging with phototherapy (containing photothermal therapy and photodynamic therapy), holding great promise in early diagnosis and precision treatment of cancers. Recently, second near-infrared (NIR-II) fluorescence imaging exhibits the merits of high accuracy and specificity, as well as real-time detection. Among the NIR-II fluorophores, organic small molecular fluorophores have shown superior properties in the biocompatibility, variable structure, and tunable emission wavelength than the inorganic NIR-II materials. What's more, some small molecular fluorophores also display excellent cytotoxicity when illuminated with the NIR laser. This review summarizes the progress of small molecular NIR-II fluorophores with different central cores for cancer phototheranostics in the past few years, focusing on the molecular structures and phototheranostic performances. Furthermore, challenges and prospects of future development toward clinical translation are discussed.
Collapse
Affiliation(s)
- Hanming Dai
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Qing Shen
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Jinjun Shao
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Wenjun Wang
- School of Physical Science and Information Technology, Liaocheng University, Liaocheng 252059, China
| | - Fan Gao
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China.,School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, China
| |
Collapse
|
124
|
Chen D, Liu Y, Zhang Z, Liu Z, Fang X, He S, Wu C. NIR-II Fluorescence Imaging Reveals Bone Marrow Retention of Small Polymer Nanoparticles. NANO LETTERS 2021; 21:798-805. [PMID: 33346668 DOI: 10.1021/acs.nanolett.0c04543] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The concept that systemically administered nanoparticles are highly accumulated into the liver, spleen and kidney is a central paradigm in the field of nanomedicine. Here, we report that bone is an important organ for retention of small polymer nanoparticles using in vivo fluorescence imaging in the second near-infrared (NIR-II) window. We prepared different sized polymer nanoparticles with both visible and NIR-II fluorescence. NIR-II imaging reveals that the behavior of nanoparticle distribution in bone was largely dependent on the particle size. Small polymer nanoparticles of ∼15 nm diameter showed fast accumulation and long-term retention in bone, while the nanoparticles larger than ∼25 nm were dominantly distributed in liver. Confocal microscopy of bone sections indicated that the nanoparticles were largely distributed in the endothelial cells of sinusoidal vessels in bone marrow. The study provides promising opportunities for bone imaging and treatment of bone-related disease.
Collapse
Affiliation(s)
- Dandan Chen
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Ye Liu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Zhe Zhang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Zhihe Liu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Xiaofeng Fang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Shuqing He
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Changfeng Wu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
125
|
Zhang Q, Yu P, Fan Y, Sun C, He H, Liu X, Lu L, Zhao M, Zhang H, Zhang F. Bright and Stable NIR‐II J‐Aggregated AIE Dibodipy‐Based Fluorescent Probe for Dynamic In Vivo Bioimaging. Angew Chem Int Ed Engl 2020; 60:3967-3973. [DOI: 10.1002/anie.202012427] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Indexed: 01/14/2023]
Affiliation(s)
- Qisong Zhang
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Material Fudan University Shanghai 200433 China
| | - Peng Yu
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Material Fudan University Shanghai 200433 China
| | - Yong Fan
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Material Fudan University Shanghai 200433 China
| | - Caixia Sun
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Material Fudan University Shanghai 200433 China
| | - Haisheng He
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Material Fudan University Shanghai 200433 China
| | - Xuan Liu
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Material Fudan University Shanghai 200433 China
| | - Lingfei Lu
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Material Fudan University Shanghai 200433 China
| | - Mengyao Zhao
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Material Fudan University Shanghai 200433 China
| | - Hongxin Zhang
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Material Fudan University Shanghai 200433 China
| | - Fan Zhang
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Material Fudan University Shanghai 200433 China
| |
Collapse
|
126
|
Zhang Q, Yu P, Fan Y, Sun C, He H, Liu X, Lu L, Zhao M, Zhang H, Zhang F. Bright and Stable NIR‐II J‐Aggregated AIE Dibodipy‐Based Fluorescent Probe for Dynamic In Vivo Bioimaging. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202012427] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Qisong Zhang
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Material Fudan University Shanghai 200433 China
| | - Peng Yu
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Material Fudan University Shanghai 200433 China
| | - Yong Fan
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Material Fudan University Shanghai 200433 China
| | - Caixia Sun
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Material Fudan University Shanghai 200433 China
| | - Haisheng He
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Material Fudan University Shanghai 200433 China
| | - Xuan Liu
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Material Fudan University Shanghai 200433 China
| | - Lingfei Lu
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Material Fudan University Shanghai 200433 China
| | - Mengyao Zhao
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Material Fudan University Shanghai 200433 China
| | - Hongxin Zhang
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Material Fudan University Shanghai 200433 China
| | - Fan Zhang
- Department of Chemistry State Key Laboratory of Molecular Engineering of Polymers and iChem Shanghai Key Laboratory of Molecular Catalysis and Innovative Material Fudan University Shanghai 200433 China
| |
Collapse
|
127
|
Cai W, Fan G, Zhou H, Chen L, Ge J, Huang B, Zhou D, Zeng J, Miao Q, Hu C. Self-Assembled Hybrid Nanocomposites for Multimodal Imaging-Guided Photothermal Therapy of Lymph Node Metastasis. ACS APPLIED MATERIALS & INTERFACES 2020; 12:49407-49415. [PMID: 33086013 DOI: 10.1021/acsami.0c14576] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Multimodal imaging-guided therapy holds great potential for precise theranostics of cancer metastasis. However, imaging agents enabling the convergence of complementary modalities with therapeutic functions to achieve perfect theranostics have been less exploited. This study reports the construction of a multifunctional nanoagent (FIP-99mTc) that comprises Fe3O4 for magnetic resonance imaging, radioactive 99mTc for single-photon-emission computed tomography, and IR-1061 to serve for the second near-infrared fluorescence imaging, photoacoustic imaging, and photothermal therapy treatment of cancer metastasis. The nanoagent possessed superior multimodal imaging capability with high sensitivity and resolution attributing to the complement of all the imaging modalities. Moreover, the nanoagent showed ideal photothermal conversion ability to effectively kill tumor cells at low concentration and power laser irradiation. In the in vivo study, FIP-99mTc confirmed the fast accumulation and clear delineation of metastatic lymph nodes within 1 h after administration. Attributing to the efficient uptake and photothermal conversion, FIP-99mTc could raise the temperature of metastatic lymph nodes to 54 °C within 10 min laser irradiation, so as to facilitate tumor cell ablation. More importantly, FIP-99mTc not only played an active role in suppressing cancer growth in metastatic lymph nodes with high efficiency but also could effectively prevent further lung metastasis after resection of the primary tumor. This study proposes a simple but effective theranostic approach toward lymph node metastasis.
Collapse
Affiliation(s)
- Wu Cai
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
- Department of Radiology, The First Affiliated Hospital of Soochow University, Institute of Medical Imaging, Soochow University, Suzhou 215006, China
| | - Guohua Fan
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Hui Zhou
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Lei Chen
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Jianxian Ge
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Baoxing Huang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Dandan Zhou
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Jianfeng Zeng
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Qingqing Miao
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou 215123, China
| | - Chunhong Hu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Institute of Medical Imaging, Soochow University, Suzhou 215006, China
| |
Collapse
|
128
|
Li S, Chen H, Liu H, Liu L, Yuan Y, Mao C, Zhang W, Zhang X, Guo W, Lee CS, Liang XJ. In Vivo Real-Time Pharmaceutical Evaluations of Near-Infrared II Fluorescent Nanomedicine Bound Polyethylene Glycol Ligands for Tumor Photothermal Ablation. ACS NANO 2020; 14:13681-13690. [PMID: 32926626 DOI: 10.1021/acsnano.0c05885] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Pharmaceutical evaluations of nanomedicines are of great significance for their further launch into industry and clinic. Near-infrared (NIR) fluorescence imaging plays essential roles in preclinical drug development by providing important insights into the biodistributions of drugs in vivo with deep tissue penetration and high spatiotemporal resolution. However, NIR-II fluorescence imaging has rarely been exploited for in vivo real-time pharmaceutical evaluations of nanomedicine. Herein, we developed a highly emissive NIR-II luminophore to establish a versatile nanoplatform to noninvasively monitor the in vivo metabolism of nanomedicines bound various polyethylene glycol (PEG) ligands in a real-time manner. An alternative D-A-D conjugated oligomer (DTTB) was synthesized to achieve NIR-II emission peaked at ∼1050 nm with high fluorescence QYs of 13.4% and a large absorption coefficient. By anchoring with the DTTB molecule, intrinsically fluorescent micelles were fabricated and bound with PEG ligands at various chain lengths. In vivo NIR-II fluorescence and photoacoustic imaging results revealed that an appropriate PEG chain length could effectively contribute to the longer blood circulation and better tumor targeting. In vivo therapeutic experiments also confirmed the optimized nanomedicines have efficient photothermal elimination of tumors and good biosafety. This work offered an alternative highly fluorescent NIR-II material and demonstrated a promising approach for real-time pharmaceutical evaluation of nanomedicine in vivo.
Collapse
Affiliation(s)
- Shengliang Li
- Translational Medicine Center, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, P. R. China
- Center of Super-Diamond and Advanced Films (COSDAF) Department of Chemistry, City University of Hong Kong, Hong Kong, SAR, P. R. China
| | - Haoting Chen
- Translational Medicine Center, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, P. R. China
- Center of Super-Diamond and Advanced Films (COSDAF) Department of Chemistry, City University of Hong Kong, Hong Kong, SAR, P. R. China
| | - Haile Liu
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology School of Science, Tianjin University, Tianjin, 300354, P. R. China
| | - Lu Liu
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P. R. China
| | - Yuan Yuan
- Translational Medicine Center, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, P. R. China
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P. R. China
| | - Cong Mao
- Translational Medicine Center, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, P. R. China
| | - Wei Zhang
- Translational Medicine R&D Center, Institute of Biomedical and Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Xiaodong Zhang
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology School of Science, Tianjin University, Tianjin, 300354, P. R. China
| | - Weisheng Guo
- Translational Medicine Center, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, P. R. China
| | - Chun-Sing Lee
- Center of Super-Diamond and Advanced Films (COSDAF) Department of Chemistry, City University of Hong Kong, Hong Kong, SAR, P. R. China
| | - Xing-Jie Liang
- Translational Medicine Center, Key Laboratory of Molecular Target & Clinical Pharmacology, School of Pharmaceutical Sciences & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, P. R. China
- Chinese Academy of Sciences (CAS) Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P. R. China
| |
Collapse
|
129
|
Liu S, Chen R, Zhang J, Li Y, He M, Fan X, Zhang H, Lu X, Kwok RTK, Lin H, Lam JWY, Qian J, Tang BZ. Incorporation of Planar Blocks into Twisted Skeletons: Boosting Brightness of Fluorophores for Bioimaging beyond 1500 Nanometer. ACS NANO 2020; 14:14228-14239. [PMID: 33001627 DOI: 10.1021/acsnano.0c07527] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The brightness of organic fluorescence materials determines their resolution and sensitivity in fluorescence display and detection. However, strategies to effectively enhance the brightness are still scarce. Conventional planar π-conjugated molecules display excellent photophysical properties as isolated species but suffer from aggregation-caused quenching effect when aggregated owing to the cofacial π-π interactions. In contrast, twisted molecules show high photoluminescence quantum yield (ΦPL) in aggregate while at the cost of absorption due to the breakage in conjugation. Therefore, it is challenging to integrate the strong absorption and high solid-state ΦPL, which are two main indicators of brightness, into one molecule. Herein, we propose a molecular design strategy to boost the brightness through the incorporation of planar blocks into twisted skeletons. As a proof-of-concept, twisted small-molecule TT3-oCB with larger π-conjugated dithieno[3,2-b:2',3'-d]thiophene unit displays superb brightness at the NIR-IIb (1500-1700 nm) than that of TT1-oCB and TT2-oCB with smaller thiophene and thienothiophene unit, respectively. Whole-body angiography using TT3-oCB nanoparticles presents an apparent vessel width of 0.29 mm. Improved NIR-IIb image resolution is achieved for femoral vessels with an apparent width of only 0.04 mm. High-magnification through-skull microscopic NIR-IIb imaging of cerebral vasculature gives an apparent width of ∼3.3 μm. Moreover, the deeply located internal organ such as bladder is identified with high clarity. The present molecular design philosophy embodies a platform for further development of in vivo bioimaging.
Collapse
Affiliation(s)
- Shunjie Liu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, and Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong China
| | - Runze Chen
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310058, China
| | - Jianquan Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, and Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong China
| | - Yuanyuan Li
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, and Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong China
| | - Mubin He
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310058, China
| | - Xiaoxiao Fan
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, China
| | - Haoke Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, and Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong China
| | - Xuefeng Lu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, and Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong China
| | - Ryan T K Kwok
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, and Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong China
| | - Hui Lin
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310000, China
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, and Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong China
| | - Jun Qian
- State Key Laboratory of Modern Optical Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou 310058, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, and Division of Biomedical Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong China
- Center for Aggregation-Induced Emission, SCUT-HKUST Joint Research Institute, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing first RD, South Area, Hi-tech Park, Nanshan, Shenzhen 518057, China
| |
Collapse
|