101
|
Hiragond CB, Powar NS, Lee J, In SI. Single-Atom Catalysts (SACs) for Photocatalytic CO 2 Reduction with H 2 O: Activity, Product Selectivity, Stability, and Surface Chemistry. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201428. [PMID: 35695355 DOI: 10.1002/smll.202201428] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/14/2022] [Indexed: 06/15/2023]
Abstract
In recent years, single-atom catalysts (SACs) have attracted the interest of researchers owing to their suitability for various catalytic applications. For instance, their optoelectronic features, site-specific activity, and cost-effectiveness make SACs ideal for photocatalytic CO2 reduction. The activity, product selectivity, and photostability of SACs depend on various factors such as the nature of the metal/support material, the interaction between the metal atoms and support, light-harvesting ability, charge separation behavior, CO2 adsorption ability, active sites, and defects. Consequently, it is necessary to investigate these factors in depth to elucidate the working principle(s) of SACs for catalytic applications. Herein, the recent progress in the development of SACs for photocatalytic CO2 reduction with H2 O is reviewed. First, a brief overview of CO2 photoreduction and SACs for CO2 conversion is provided. Several synthesis strategies and useful techniques for characterizing SACs employed in heterogeneous catalysis are then described. Next, the challenges of SACs for photocatalytic CO2 reduction and related optimization strategies, in terms of activity, product selectivity, and stability, are explored. The progress in the development of noble metal- and transition metal-based SACs and dual-SACs for photocatalytic CO2 reduction is discussed. Finally, the prospects of SACs for CO2 reduction are considered.
Collapse
Affiliation(s)
- Chaitanya B Hiragond
- Department of Energy Science & Engineering, DGIST, 333 Techno Jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988, Republic of Korea
| | - Niket S Powar
- Department of Energy Science & Engineering, DGIST, 333 Techno Jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988, Republic of Korea
| | - Junho Lee
- Department of Energy Science & Engineering, DGIST, 333 Techno Jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988, Republic of Korea
| | - Su-Il In
- Department of Energy Science & Engineering, DGIST, 333 Techno Jungang-daero, Hyeonpung-eup, Dalseong-gun, Daegu, 42988, Republic of Korea
| |
Collapse
|
102
|
Kumar P, Al-Attas TA, Hu J, Kibria MG. Single Atom Catalysts for Selective Methane Oxidation to Oxygenates. ACS NANO 2022; 16:8557-8618. [PMID: 35638813 DOI: 10.1021/acsnano.2c02464] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Direct conversion of methane (CH4) to C1-2 liquid oxygenates is a captivating approach to lock carbons in transportable value-added chemicals, while reducing global warming. Existing approaches utilizing the transformation of CH4 to liquid fuel via tandemized steam methane reforming and the Fischer-Tropsch synthesis are energy and capital intensive. Chemocatalytic partial oxidation of methane remains challenging due to the negligible electron affinity, poor C-H bond polarizability, and high activation energy barrier. Transition-metal and stoichiometric catalysts utilizing harsh oxidants and reaction conditions perform poorly with randomized product distribution. Paradoxically, the catalysts which are active enough to break C-H also promote overoxidation, resulting in CO2 generation and reduced carbon balance. Developing catalysts which can break C-H bonds of methane to selectively make useful chemicals at mild conditions is vital to commercialization. Single atom catalysts (SACs) with specifically coordinated metal centers on active support have displayed intrigued reactivity and selectivity for methane oxidation. SACs can significantly reduce the activation energy due to induced electrostatic polarization of the C-H bond to facilitate the accelerated reaction rate at the low reaction temperature. The distinct metal-support interaction can stabilize the intermediate and prevent the overoxidation of the reaction products. The present review accounts for recent progress in the field of SACs for the selective oxidation of CH4 to C1-2 oxygenates. The chemical nature of catalytic sites, effects of metal-support interaction, and stabilization of intermediate species on catalysts to minimize overoxidation are thoroughly discussed with a forward-looking perspective to improve the catalytic performance.
Collapse
Affiliation(s)
- Pawan Kumar
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Tareq A Al-Attas
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Jinguang Hu
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Md Golam Kibria
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
103
|
Gu R, Meng D, She M, Wang Y, Yang H, Guo X, Xue N, Ding W. Appropriate aggregation is needed for highly active Pt/Al 2O 3 to enable hydrogenation of chlorinated nitrobenzene. Chem Commun (Camb) 2022; 58:7630-7633. [PMID: 35713001 DOI: 10.1039/d2cc00940d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The atomic dispersion of a noble metal with a reducible support has been reported to be beneficial for catalytic hydrogenation reactions. Conversely, we found that Pt particles (3-5 nm) could be obtained on the non-reducible support Al2O3 by weakening the interaction between the metal and support using oleic acid, and the turnover frequency of catalyzing the hydrogenation of chlorinated nitrobenzene could reach 3700 h-1, which is three orders of magnitude higher than that of atomic platinum species.
Collapse
Affiliation(s)
- Rongtian Gu
- Key Lab of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Deming Meng
- Key Lab of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Minyi She
- Key Lab of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Yibo Wang
- Key Lab of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Hua Yang
- Key Lab of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Xiangke Guo
- Key Lab of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Nianhua Xue
- Key Lab of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Weiping Ding
- Key Lab of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
104
|
Kumar A, Dutta S, Kim S, Kwon T, Patil SS, Kumari N, Jeevanandham S, Lee IS. Solid-State Reaction Synthesis of Nanoscale Materials: Strategies and Applications. Chem Rev 2022; 122:12748-12863. [PMID: 35715344 DOI: 10.1021/acs.chemrev.1c00637] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nanomaterials (NMs) with unique structures and compositions can give rise to exotic physicochemical properties and applications. Despite the advancement in solution-based methods, scalable access to a wide range of crystal phases and intricate compositions is still challenging. Solid-state reaction (SSR) syntheses have high potential owing to their flexibility toward multielemental phases under feasibly high temperatures and solvent-free conditions as well as their scalability and simplicity. Controlling the nanoscale features through SSRs demands a strategic nanospace-confinement approach due to the risk of heat-induced reshaping and sintering. Here, we describe advanced SSR strategies for NM synthesis, focusing on mechanistic insights, novel nanoscale phenomena, and underlying principles using a series of examples under different categories. After introducing the history of classical SSRs, key theories, and definitions central to the topic, we categorize various modern SSR strategies based on the surrounding solid-state media used for nanostructure growth, conversion, and migration under nanospace or dimensional confinement. This comprehensive review will advance the quest for new materials design, synthesis, and applications.
Collapse
Affiliation(s)
- Amit Kumar
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Soumen Dutta
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Seonock Kim
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Taewan Kwon
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Santosh S Patil
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Nitee Kumari
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Sampathkumar Jeevanandham
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - In Su Lee
- Creative Research Initiative Center for Nanospace-confined Chemical Reactions (NCCR) and Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea.,Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Seoul 03722, Korea
| |
Collapse
|
105
|
Effect of TiO 2 Calcination Pretreatment on the Performance of Pt/TiO 2 Catalyst for CO Oxidation. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123875. [PMID: 35744997 PMCID: PMC9227817 DOI: 10.3390/molecules27123875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 11/19/2022]
Abstract
In order to improve the CO catalytic oxidation performance of a Pt/TiO2 catalyst, a series of Pt/TiO2 catalysts were prepared via an impregnation method in this study, and various characterization methods were used to explore the effect of TiO2 calcination pretreatment on the CO catalytic oxidation performance of the catalysts. The results revealed that Pt/TiO2 (700 °C) prepared by TiO2 after calcination pretreatment at 700 °C exhibits a superior CO oxidation activity at low temperatures. After calcination pretreatment, the catalyst exhibited a suitable specific surface area and pore structure, which is beneficial to the diffusion of reactants and reaction products. At the same time, the proportion of adsorbed oxygen on the catalyst surface was increased, which promoted the oxidation of CO. After calcination pretreatment, the adsorption capacity of the catalyst for CO and CO2 decreased, which was beneficial for the simultaneous inhibition of the CO self-poisoning of Pt sites. In addition, the Pt species exhibited a higher degree of dispersion and a smaller particle size, thereby increasing the CO oxidation activity of the Pt/TiO2 (700 °C) catalyst.
Collapse
|
106
|
Muravev V, Simons JFM, Parastaev A, Verheijen MA, Struijs JJC, Kosinov N, Hensen EJM. Operando Spectroscopy Unveils the Catalytic Role of Different Palladium Oxidation States in CO Oxidation on Pd/CeO
2
Catalysts. Angew Chem Int Ed Engl 2022; 61:e202200434. [PMID: 35303388 PMCID: PMC9325467 DOI: 10.1002/anie.202200434] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Indexed: 11/18/2022]
Abstract
Aiming at knowledge‐driven design of novel metal–ceria catalysts for automotive exhaust abatement, current efforts mostly pertain to the synthesis and understanding of well‐defined systems. In contrast, technical catalysts are often heterogeneous in their metal speciation. Here, we unveiled rich structural dynamics of a conventional impregnated Pd/CeO2 catalyst during CO oxidation. In situ X‐ray photoelectron spectroscopy and operando X‐ray absorption spectroscopy revealed the presence of metallic and oxidic Pd states during the reaction. Using transient operando infrared spectroscopy, we probed the nature and reactivity of the surface intermediates involved in CO oxidation. We found that while low‐temperature activity is associated with sub‐oxidized and interfacial Pd sites, the reaction at elevated temperatures involves metallic Pd. These results highlight the utility of the multi‐technique operando approach for establishing structure–activity relationships of technical catalysts.
Collapse
Affiliation(s)
- Valery Muravev
- Laboratory of Inorganic Materials and Catalysis Department of Chemical Engineering and Chemistry Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - Jérôme F. M. Simons
- Laboratory of Inorganic Materials and Catalysis Department of Chemical Engineering and Chemistry Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - Alexander Parastaev
- Laboratory of Inorganic Materials and Catalysis Department of Chemical Engineering and Chemistry Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - Marcel A. Verheijen
- Department of Applied Physics Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
- Eurofins Material Science Netherlands BV 5656AE Eindhoven The Netherlands
| | - Job J. C. Struijs
- Laboratory of Inorganic Materials and Catalysis Department of Chemical Engineering and Chemistry Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - Nikolay Kosinov
- Laboratory of Inorganic Materials and Catalysis Department of Chemical Engineering and Chemistry Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
| | - Emiel J. M. Hensen
- Laboratory of Inorganic Materials and Catalysis Department of Chemical Engineering and Chemistry Eindhoven University of Technology P.O. Box 513 5600 MB Eindhoven The Netherlands
| |
Collapse
|
107
|
Fan J, Zhao Y, Du H, Zheng L, Gao M, Li D, Feng J. Light-Induced Structural Dynamic Evolution of Pt Single Atoms for Highly Efficient Photocatalytic CO 2 Reduction. ACS APPLIED MATERIALS & INTERFACES 2022; 14:26752-26765. [PMID: 35666270 DOI: 10.1021/acsami.2c04794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Revealing the structural evolution of the real active site during photocatalysis is very important for understanding the catalytic mechanism, but it remains a great challenge. By employing single atoms (SAs) as the mechanism research platform, we investigated the variation of the SA structure under light and the corresponding reaction pathway controlment mechanism. In particular, taking the defect anchoring strategy, Pt SAs are anchored on the metal ion vacancy-rich ZnNiTi layered double hydroxide-etched (ZnNiTi-LDHs-E) support. It is proved by CO-Fourier transform infrared and X-ray absorption fine structure characterization methods that the Pt SAs could gain photoelectrons to form cationic Pt(IV), electron-rich Pt(II), and near-neutral Ptδ+ species at different light intensities. By in situ inducing the above different Pt SAs in photocatalytic CO2 reduction, a dramatic product distribution is observed: (1) under weak light, Pt(IV) SAs cannot activate CO, so CO cannot be further transformed into hydrocarbons; (2) under the moderate light, electron-rich Pt(II) SAs could cooperate with adjacent LDH surface sites (Ni2+/Ti4+) to open up the C-C coupling route for C2H6 generation; and (3) Pt SAs in the state of near-neutral Ptδ+ could directly hydrogenate CO into CH4. This work reveals the structural evolution of Pt SAs in photocatalysis and the corresponding effect on catalytic performance, which provides a new idea for the construction of highly efficient photocatalysts.
Collapse
Affiliation(s)
- Jiaxuan Fan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029 Beijing, China
- Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, 100029 Beijing, China
| | - Yin Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029 Beijing, China
| | - Haoxuan Du
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029 Beijing, China
| | - Lirong Zheng
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Mingyu Gao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029 Beijing, China
- Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, 100029 Beijing, China
| | - Dianqing Li
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029 Beijing, China
- Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, 100029 Beijing, China
| | - Junting Feng
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 100029 Beijing, China
- Beijing Engineering Center for Hierarchical Catalysts, Beijing University of Chemical Technology, 100029 Beijing, China
| |
Collapse
|
108
|
The effect of coordination environment on the activity and selectivity of single-atom catalysts. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214493] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
109
|
Pan Y, Xu L, He W, Li H, Chen W, Sun Z. Optimizing the synergy between alloy and alloy-oxide interface for CO oxidation in bimetallic catalysts. NANOSCALE 2022; 14:7303-7313. [PMID: 35532914 DOI: 10.1039/d2nr01171a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Creating synergetic metal-oxide interfaces is a promising strategy to promote the catalytic performance of heterogeneous catalysts. However, this strategy has been mainly applied to monometallic catalysts, while scarcely applied to alloy catalysts. In this work, we present a comprehensive study on the synergetic alloy-oxide interfaces in the bimetallic Pt-Co/Al2O3 catalysts for CO oxidation. A series of Pt1Cox/Al2O3 catalysts with various Co/Pt molar ratios with x ranging from 0.5 to 3.8 was synthesized via a facile wet-chemistry strategy. Among them, the Pt1Co0.5/Al2O3 catalyst exhibits the best catalytic performance for CO oxidation, with the lowest CO complete conversion temperature of -10 °C and the highest mass specific rate of 2.61 (mol CO) h-1 (g Pt)-1. From in situ X-ray absorption fine structure and diffuse reflectance infrared Fourier-transform spectroscopy studies, the superior catalytic performance of Pt1Co0.5/Al2O3 originates from the optimal length of the three-dimensional alloy-oxide perimeter sites. We further extended this strategy to other bimetallic systems of Pt-Fe and Pt-Ni, which also show similar structural properties and remarkable promotional effects on the catalytic activity.
Collapse
Affiliation(s)
- Ya Pan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China.
| | - Liuxin Xu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China.
| | - Wenxue He
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China.
| | - Hongmei Li
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China.
| | - Wei Chen
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China.
| | - Zhihu Sun
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P. R. China.
| |
Collapse
|
110
|
Jiang Z, Tian M, Jing M, Chai S, Jian Y, Chen C, Douthwaite M, Zheng L, Ma M, Song W, Liu J, Yu J, He C. Modulating the Electronic Metal‐Support Interactions in Single‐Atom Pt
1
−CuO Catalyst for Boosting Acetone Oxidation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Zeyu Jiang
- State Key Laboratory of Multiphase Flow in Power Engineering Xi'an Jiaotong University Xi'an 710049 Shaanxi P. R. China
- Department of Chemistry National University of Singapore Singapore 117543 Singapore
| | - Mingjiao Tian
- State Key Laboratory of Multiphase Flow in Power Engineering Xi'an Jiaotong University Xi'an 710049 Shaanxi P. R. China
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry China University of Geosciences Wuhan 430074 P. R. China
| | - Meizan Jing
- State Key Laboratory of Heavy Oil Processing China University of Petroleum Beijing 102249 P. R. China
| | - Shouning Chai
- State Key Laboratory of Multiphase Flow in Power Engineering Xi'an Jiaotong University Xi'an 710049 Shaanxi P. R. China
| | - Yanfei Jian
- State Key Laboratory of Multiphase Flow in Power Engineering Xi'an Jiaotong University Xi'an 710049 Shaanxi P. R. China
| | - Changwei Chen
- State Key Laboratory of Multiphase Flow in Power Engineering Xi'an Jiaotong University Xi'an 710049 Shaanxi P. R. China
| | - Mark Douthwaite
- Max Planck-Cardiff Centre on the Fundamentals of Heterogeneous Catalysis School of Chemistry Cardiff University Cardiff CF10 3AT UK
| | - Lirong Zheng
- Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Mudi Ma
- State Key Laboratory of Multiphase Flow in Power Engineering Xi'an Jiaotong University Xi'an 710049 Shaanxi P. R. China
| | - Weiyu Song
- State Key Laboratory of Heavy Oil Processing China University of Petroleum Beijing 102249 P. R. China
| | - Jian Liu
- State Key Laboratory of Heavy Oil Processing China University of Petroleum Beijing 102249 P. R. China
| | - Jiaguo Yu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry China University of Geosciences Wuhan 430074 P. R. China
| | - Chi He
- State Key Laboratory of Multiphase Flow in Power Engineering Xi'an Jiaotong University Xi'an 710049 Shaanxi P. R. China
- National Engineering Laboratory for VOCs Pollution Control Material & Technology University of Chinese Academy of Sciences Beijing 101408 P. R. China
| |
Collapse
|
111
|
Guo Y, Huang Y, Zeng B, Han B, Akri M, Shi M, Zhao Y, Li Q, Su Y, Li L, Jiang Q, Cui YT, Li L, Li R, Qiao B, Zhang T. Photo-thermo semi-hydrogenation of acetylene on Pd 1/TiO 2 single-atom catalyst. Nat Commun 2022; 13:2648. [PMID: 35551203 PMCID: PMC9098498 DOI: 10.1038/s41467-022-30291-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 04/12/2022] [Indexed: 11/16/2022] Open
Abstract
Semi-hydrogenation of acetylene in excess ethylene is a key industrial process for ethylene purification. Supported Pd catalysts have attracted most attention due to their superior intrinsic activity but often suffer from low selectivity. Pd single-atom catalysts (SACs) are promising to significantly improve the selectivity, but the activity needs to be improved and the feasible preparation of Pd SACs remains a grand challenge. Here, we report a simple strategy to construct Pd1/TiO2 SACs by selectively encapsulating the co-existed small amount of Pd nanoclusters/nanoparticles based on their different strong metal-support interaction (SMSI) occurrence conditions. In addition, photo-thermo catalysis has been applied to this process where a much-improved catalytic activity was obtained. Detailed characterization combined with DFT calculation suggests that photo-induced electrons transferred from TiO2 to the adjacent Pd atoms facilitate the activation of acetylene. This work offers an opportunity to develop highly stable Pd SACs for efficient catalytic semi-hydrogenation process. Semi-hydrogenation of acetylene in excess ethylene is a key industrial process for ethylene purification. Here the authors develop highly stable Pd1/TiO2 single-atom catalyst for photo-thermo semi-hydrogenation of acetylene.
Collapse
Affiliation(s)
- Yalin Guo
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yike Huang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Bin Zeng
- University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Bing Han
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Mohcin Akri
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Ming Shi
- University of Chinese Academy of Sciences, Beijing, China.,State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yue Zhao
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Qinghe Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yang Su
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Lin Li
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Qike Jiang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yi-Tao Cui
- SANKA High Technology Co. Ltd. 90-1, Tatsuno, Hyogo, Japan
| | - Lei Li
- Synchrotron Radiation Research Center, Hyogo Science and Technology Association, Hyogo, Japan
| | - Rengui Li
- State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| | - Botao Qiao
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| | - Tao Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| |
Collapse
|
112
|
Gomez LA, Bababrik R, Komarneni MR, Marlowe J, Salavati-fard T, D’Amico AD, Wang B, Christopher P, Crossley SP. Selective Reduction of Carboxylic Acids to Aldehydes with Promoted MoO 3 Catalysts. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Laura A. Gomez
- School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Reda Bababrik
- School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Mallikharjuna R. Komarneni
- School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Justin Marlowe
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Taha Salavati-fard
- School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Andrew D. D’Amico
- School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Bin Wang
- School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Phillip Christopher
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Steven P. Crossley
- School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, Oklahoma 73019, United States
| |
Collapse
|
113
|
Abstract
A large signal of gas-phase CO overlapping with those of adsorbates is often present when investigating catalysts by operando diffuse reflectance FT-IR spectroscopy. Physically removing CO(g) from the IR cell may lead to a fast decay of adsorbate signals. Our work shows that carbonyls adsorbed on metallic Pt sites fully vanished in less than 10 min at 30 °C upon removing CO(g) when redox supports were used. In contrast, a broad band assigned to CO adsorbed on oxidized Pt sites was stable. It was concluded that physically removing CO(g) at room temperature during IR analyses will most likely lead to changes in the distribution of CO(ads) and a misrepresentation of the Pt site speciation, misguiding the development of efficient low-temperature CO oxidation catalysts. A tentative representation of the nature of the Pt phases present depending on the feed composition is also proposed.
Collapse
|
114
|
Wan W, Geiger J, Berdunov N, Lopez Luna M, Chee SW, Daelman N, López N, Shaikhutdinov S, Roldan Cuenya B. Highly Stable and Reactive Platinum Single Atoms on Oxygen Plasma-Functionalized CeO 2 Surfaces: Nanostructuring and Peroxo Effects. Angew Chem Int Ed Engl 2022; 61:e202112640. [PMID: 35243735 PMCID: PMC9315031 DOI: 10.1002/anie.202112640] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Indexed: 12/12/2022]
Abstract
Atomically dispersed precious metals on oxide supports have recently become increasingly interesting catalytic materials. Nonetheless, their non-trivial preparation and limited thermal and environmental stability constitutes an issue for their potential applications. Here we demonstrate that an oxygen plasma pre-treatment of the ceria (CeO2 ) surface serves to anchor Pt single atoms, making them active and resistant towards sintering in the CO oxidation reaction. Through a combination of experimental results obtained on well-defined CeO2 films and theory, we show that the O2 plasma causes surface nanostructuring and the formation of surface peroxo (O2 2- ) species, favoring the uniform and dense distribution of isolated strongly bonded Pt2+ atoms. The promotional effect of the plasma treatment was further demonstrated on powder Pt/CeO2 catalysts. We believe that plasma functionalization can be applied to other metal/oxide systems to achieve tunable and stable catalysts with a high density of active sites.
Collapse
Affiliation(s)
- Weiming Wan
- Department of Interface ScienceFritz Haber InstituteFaradayweg 4–614195BerlinGermany
| | - Julian Geiger
- Institute of Chemical Research of CataloniaThe Barcelona Institute of Science and Technology Institution43007TarragonaSpain
| | - Nikolay Berdunov
- Department of Interface ScienceFritz Haber InstituteFaradayweg 4–614195BerlinGermany
| | - Mauricio Lopez Luna
- Department of Interface ScienceFritz Haber InstituteFaradayweg 4–614195BerlinGermany
| | - See Wee Chee
- Department of Interface ScienceFritz Haber InstituteFaradayweg 4–614195BerlinGermany
| | - Nathan Daelman
- Institute of Chemical Research of CataloniaThe Barcelona Institute of Science and Technology Institution43007TarragonaSpain
| | - Núria López
- Institute of Chemical Research of CataloniaThe Barcelona Institute of Science and Technology Institution43007TarragonaSpain
| | - Shamil Shaikhutdinov
- Department of Interface ScienceFritz Haber InstituteFaradayweg 4–614195BerlinGermany
| | - Beatriz Roldan Cuenya
- Department of Interface ScienceFritz Haber InstituteFaradayweg 4–614195BerlinGermany
| |
Collapse
|
115
|
Flower-like Co3O4 Catalysts for Efficient Catalytic Oxidation of Multi-Pollutants from Diesel Exhaust. Catalysts 2022. [DOI: 10.3390/catal12050527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Nowadays, the oxidation activity at the low-temperature regime for Co3O4 catalysts needs to be improved to meet the stringent regulation of multi-pollutant diesel exhaust. Herein, nanoflower-like Co3O4 diesel oxide catalysts (DOCs) were fabricated with the addition of a low-content Pt to trigger better catalytic activities for oxidizing multi-pollutants (CO, C3H6, and NO) emissions by taking advantage of the strong-metal supporting interaction. Compared to the conventional DOCs based on Pt/Al2O3, the as-synthesized Pt/Co3O4 catalysts not only exhibited better multi-pollutants oxidation activities at the low temperature but also obtained better resistance toward NO inhibition. Moreover, Pt/Co3O4 catalysts showed exceptional hydrothermal durability throughout long-term tests in the presence of water vapor. According to the XPS and H2-TPR results, Pt promoted low-temperature catalytic activity by increasing the active surface oxygen species and reducibility due to the robust synergistic interaction between metallic Pt and supporting Co3O4. Meanwhile, TGA curves confirmed the Pt atoms that facilitated the desorption of surface-active oxygen and hydroxyl radicals in a low-temperature regime. Furthermore, instead of probing the intermediates during CO and C3H6 oxidation for Pt/Co3O4 catalysts, which included carbonates, formate, and acetate species, in situ DRIFTs experiments also revealed C3H6 oxidation mainly took place over metallic Pt sites.
Collapse
|
116
|
Ghosh S, Acharyya SS, Yoshida Y, Kaneko T, Iwasawa Y, Sasaki T. Nontraditional Aldol Condensation Performance of Highly Efficient and Reusable Cs + Single Sites in β-Zeolite Channels. ACS APPLIED MATERIALS & INTERFACES 2022; 14:18464-18475. [PMID: 35426658 DOI: 10.1021/acsami.2c01312] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Aldol reactions (self- and cross-aldol condensations) for conjugated enone synthesis were efficiently performed on large-sized Cs+ single sites (1 wt %) confined in β-zeolite channels in toluene, which showed the highest level of catalytic aldol condensation activity among reported zeolite catalysts. In general, aldol condensation reactions for C-C bond synthesis can proceed by acids (e.g., H+), bases (e.g., OH-), enolate species, and acidic or basic solid catalysts. However, the Cs+ single site/β sample without significant acid-base property showed unprecedented, efficient, and reusable catalysis for self-aldol and cross-aldol condensations. Intrinsically inactive Cs+ single sites due to the noble-gas electronic structure were transformed to active Cs+ single sites in β-zeolite channels. Cs+/β has many advantages such as broad substrate scope, eco-friendliness, high product selectivity and yield, and simple work-up procedure. Thus, the Cs+ single site/β provides an attractive and useful methodology for practical C-C bond synthesis. On the basis of the Cs+/β characterization by X-ray photoelectron spectroscopy (XPS), in situ X-ray absorption fine structure (XAFS) (X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS)), and temperature-programmed desorption (TPD), density functional theory (DFT) calculations of the self- and cross-aldol condensation reaction pathways involving the transition states on the Cs+ single site in β-zeolite channel revealed nontraditional concerted interligand bond rearrangement mechanisms.
Collapse
Affiliation(s)
- Shilpi Ghosh
- Innovation Research Center for Fuel Cells, The University of Electro-Communications, Chofu, Tokyo 182-8585, Japan
- Graduate School of Informatics and Engineering, The University of Electro-Communications, Chofu, Tokyo 182-8585, Japan
| | - Shankha S Acharyya
- Innovation Research Center for Fuel Cells, The University of Electro-Communications, Chofu, Tokyo 182-8585, Japan
- Graduate School of Informatics and Engineering, The University of Electro-Communications, Chofu, Tokyo 182-8585, Japan
| | - Yusuke Yoshida
- Innovation Research Center for Fuel Cells, The University of Electro-Communications, Chofu, Tokyo 182-8585, Japan
| | - Takuma Kaneko
- Innovation Research Center for Fuel Cells, The University of Electro-Communications, Chofu, Tokyo 182-8585, Japan
| | - Yasuhiro Iwasawa
- Innovation Research Center for Fuel Cells, The University of Electro-Communications, Chofu, Tokyo 182-8585, Japan
- Graduate School of Informatics and Engineering, The University of Electro-Communications, Chofu, Tokyo 182-8585, Japan
| | - Takehiko Sasaki
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8561, Japan
| |
Collapse
|
117
|
Wang C, Wang Z, Mao S, Chen Z, Wang Y. Coordination environment of active sites and their effect on catalytic performance of heterogeneous catalysts. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)63924-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
118
|
Yan B, He Y, Yang G. Nanoscale Self-Wetting Driven Monatomization of Ag Nanoparticle for Excellent Photocatalytic Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107840. [PMID: 35199465 DOI: 10.1002/smll.202107840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Metal nanoparticles (NPs) with <10 nm have demonstrated many novel applications including surprisingly low melting point, astonishing liquid-like pseudoelasticity, and outstanding hydrogen evolution performance. Here, a nanoscale self-wetting driven monatomization of Ag NPs with <5 nm on carbon nitride (CN) to fabricate Ag single-atom catalyst (Ag1 /CN SAC) is demonstrated, and a thermodynamic approach to elucidate Ag NPs decomposing into single atoms is established. Dynamic dispersion process of Ag NPs into atoms on CN is recorded using in situ AC-HADDF-TEM techniques. Density functional theory calculations and molecular dynamics simulations suggest that the spontaneous dispersion origins from the nanoscale self-wetting effect in thermodynamics. In atomic scale, the driving force of self-wetting derived from the balance between cohesive energy of Ag NPs and excess energy of Ag atoms in CN vacations. The fabricated Ag1 /CN SAC proved a higher efficiency for photocatalytic hydrogen evolution activity (3690 μmmol g-1 h-1 ) than Pt nanoparticles on CN (3192 μmmol g-1 h-1 ). This spontaneous monatomization resulting from the interaction between metal NPs and substrate provides a simple method to prepare SACs with a high active photocatalytic hydrogen evolution.
Collapse
Affiliation(s)
- Bo Yan
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Physics, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510275, P. R. China
| | - Yan He
- College of Science, Guangdong University of Petrochemical Technology, Maoming, Guangdong, 525000, P. R. China
| | - Guowei Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Physics, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510275, P. R. China
| |
Collapse
|
119
|
Feng Y, Wang C, Cui P, Li C, Zhang B, Gan L, Zhang S, Zhang X, Zhou X, Sun Z, Wang K, Duan Y, Li H, Zhou K, Huang H, Li A, Zhuang C, Wang L, Zhang Z, Han X. Ultrahigh Photocatalytic CO 2 Reduction Efficiency and Selectivity Manipulation by Single-Tungsten-Atom Oxide at the Atomic Step of TiO 2. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109074. [PMID: 35226767 DOI: 10.1002/adma.202109074] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/18/2022] [Indexed: 06/14/2023]
Abstract
The photocatalytic CO2 reduction reaction is a sustainable route to the direct conversion of greenhouse gases into chemicals without additional energy consumption. Given the vast amount of greenhouse gas, numerous efforts have been devoted to developing inorganic photocatalysts, e.g., titanium dioxide (TiO2 ), due to their stability, low cost, and environmentally friendly properties. However, a more efficient TiO2 photocatalyst without noble metals is highly desirable for CO2 reduction, and it is both difficult and urgent to produce selectively valuable compounds. Here, a novel "single-atom site at the atomic step" strategy is developed by anchoring a single tungsten (W) atom site with oxygen-coordination at the intrinsic steps of classic TiO2 nanoparticles. The composition of active sites for CO2 reduction can be controlled by tuning the additional W5+ to form W5+ -O-Ti3+ sites, resulting in both significant CO2 reduction efficiency with 60.6 μmol g- 1 h- 1 and selectivity for methane (CH4 ) over carbon monoxide (CO), which exceeds those of pristine TiO2 by more than one order of magnitude. The mechanism relies on the accurate control of the single-atom sites at step with 22.8% coverage of surface sites and the subsequent excellent electron-hole separation along with the favorable adsorption-desorption of intermediates at the sites.
Collapse
Affiliation(s)
- Yibo Feng
- Faculty of Materials and Manufacturing, Beijing Key Lab of Microstructure and Properties of Advanced Materials, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Cong Wang
- Faculty of Materials and Manufacturing, Beijing Key Lab of Microstructure and Properties of Advanced Materials, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Peixin Cui
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, Jiangsu, 210008, P. R. China
| | - Chong Li
- School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450001, China
| | - Bin Zhang
- College of Physics and Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 400044, P. R. China
- Analytical and Testing Center, Chongqing University, Chongqing, 401331, China
| | - Liyong Gan
- College of Physics and Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 400044, P. R. China
- Analytical and Testing Center, Chongqing University, Chongqing, 401331, China
| | - Shengbai Zhang
- Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Xiaoxian Zhang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing, 100044, China
| | - Xiaoyuan Zhou
- College of Physics and Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 400044, P. R. China
- Analytical and Testing Center, Chongqing University, Chongqing, 401331, China
| | - Zhiming Sun
- Faculty of Materials and Manufacturing, Beijing Key Lab of Microstructure and Properties of Advanced Materials, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Kaiwen Wang
- Faculty of Materials and Manufacturing, Beijing Key Lab of Microstructure and Properties of Advanced Materials, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Youyu Duan
- College of Physics and Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 400044, P. R. China
- Analytical and Testing Center, Chongqing University, Chongqing, 401331, China
| | - Hui Li
- Faculty of Materials and Manufacturing, Beijing Key Lab of Microstructure and Properties of Advanced Materials, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Kai Zhou
- College of Physics and Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 400044, P. R. China
- Analytical and Testing Center, Chongqing University, Chongqing, 401331, China
| | - Hongwei Huang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, China
| | - Ang Li
- Faculty of Materials and Manufacturing, Beijing Key Lab of Microstructure and Properties of Advanced Materials, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Chunqiang Zhuang
- Faculty of Materials and Manufacturing, Beijing Key Lab of Microstructure and Properties of Advanced Materials, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Lihua Wang
- Faculty of Materials and Manufacturing, Beijing Key Lab of Microstructure and Properties of Advanced Materials, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Ze Zhang
- Department of Material Science, Zhejiang University, Hangzhou, 310008, China
| | - Xiaodong Han
- Faculty of Materials and Manufacturing, Beijing Key Lab of Microstructure and Properties of Advanced Materials, Beijing University of Technology, Beijing, 100124, P. R. China
| |
Collapse
|
120
|
Mitchell S, Parés F, Faust Akl D, Collins SM, Kepaptsoglou DM, Ramasse QM, Garcia-Gasulla D, Pérez-Ramírez J, López N. Automated Image Analysis for Single-Atom Detection in Catalytic Materials by Transmission Electron Microscopy. J Am Chem Soc 2022; 144:8018-8029. [PMID: 35333043 DOI: 10.1021/jacs.1c12466] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Single-atom catalytic sites may have existed in all supported transition metal catalysts since their first application. Yet, interest in the design of single-atom heterogeneous catalysts (SACs) only really grew when advances in transmission electron microscopy (TEM) permitted direct confirmation of metal site isolation. While atomic-resolution imaging remains a central characterization tool, poor statistical significance, reproducibility, and interoperability limit its scope for deriving robust characteristics about these frontier catalytic materials. Here, we introduce a customized deep-learning method for automated atom detection in image analysis, a rate-limiting step toward high-throughput TEM. Platinum atoms stabilized on a functionalized carbon support with a challenging irregular three-dimensional morphology serve as a practically relevant test system with promising scope in thermo- and electrochemical applications. The model detects over 20,000 atomic positions for the statistical analysis of important properties for establishing structure-performance relations over nanostructured catalysts, like the surface density, proximity, clustering extent, and dispersion uniformity of supported metal species. Good performance obtained on direct application of the model to an iron SAC based on carbon nitride demonstrates its generalizability for single-atom detection on carbon-related materials. The approach establishes a route to integrate artificial intelligence into routine TEM workflows. It accelerates image processing times by orders of magnitude and reduces human bias by providing an uncertainty analysis that is not readily quantifiable in manual atom identification, improving standardization and scalability.
Collapse
Affiliation(s)
- Sharon Mitchell
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| | - Ferran Parés
- Barcelona Supercomputing Center (BSC), Plaça d'Eusebi Güell 1-3, 08034 Barcelona, Spain
| | - Dario Faust Akl
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| | - Sean M Collins
- School of Chemical and Process Engineering and School of Chemistry, University of Leeds, Leeds LS2 9JT, U.K
| | - Demie M Kepaptsoglou
- SuperSTEM Laboratory, SciTech Daresbury Campus, Daresbury WA4 4AD, U.K.,Department of Physics, University of York, Heslington, York YO10 5DD, U.K
| | - Quentin M Ramasse
- SuperSTEM Laboratory, SciTech Daresbury Campus, Daresbury WA4 4AD, U.K.,School of Chemical and Process Engineering and School of Physics, University of Leeds, Leeds LS2 9JT, U.K
| | - Dario Garcia-Gasulla
- Barcelona Supercomputing Center (BSC), Plaça d'Eusebi Güell 1-3, 08034 Barcelona, Spain
| | - Javier Pérez-Ramírez
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Vladimir-Prelog-Weg 1, 8093 Zurich, Switzerland
| | - Núria López
- Institute of Chemical Research of Catalonia and The Barcelona Institute of Science and Technology, 43007 Tarragona, Spain
| |
Collapse
|
121
|
Xiang J, Su Y, Zhang L, Hong S, Wang Z, Han D, Gu F. Atomically Dispersed Pt on Three-Dimensional Ordered Macroporous SnO 2 for Highly Sensitive and Highly Selective Detection of Triethylamine at a Low Working Temperature. ACS APPLIED MATERIALS & INTERFACES 2022; 14:13440-13449. [PMID: 35275487 DOI: 10.1021/acsami.1c20347] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Triethylamine (TEA) is a widely used volatile organic chemical, which is harmful and can cause headache, dizziness, and respiratory discomfort. Developing an efficient sensor to detect trace amounts of TEA is significant for industrial and healthcare monitoring. In this work, SnO2 with a three-dimensional ordered macroporous structure (3DOM) was prepared through a polymethylmethacrylate sphere template route. The TEA sensing performance of the 3DOM SnO2 was enhanced through Pt loading. Aberration-corrected high-angle annular dark-field scanning transmission electron microscopy images and X-ray absorption fine-structure analysis indicate that Pt on the 3DOM 0.20% Pt/SnO2 surface mainly exists in the state of atomic dispersion, which results in more active sites, higher Hall mobility and active oxygen contents, and lower response energy barriers. The 0.20% Pt/SnO2 sensor has a low operating temperature of 80 °C and a low limit of detection (0.32 ppb). Because of the uniform adsorption of TEA on the atomically dispersed Pt, the 3DOM Pt/SnO2 sensor exhibits high selectivity.
Collapse
Affiliation(s)
- Junjie Xiang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ying Su
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lanlan Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Song Hong
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhihua Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dongmei Han
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fubo Gu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
122
|
Muravev V, Simons JF, Parastaev A, Verheijen MA, Struijs JJ, Kosinov N, Hensen E. Operando Spectroscopy Unveils the Catalytic Role of Different Palladium Oxidation States in CO oxidation on Pd/CeO2 catalysts. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Valery Muravev
- Technische Universiteit Eindhoven Chemical Engineering and Chemistry NETHERLANDS
| | - Jérôme F.M. Simons
- TU/e: Technische Universiteit Eindhoven Chemical Engineering and Chemistry NETHERLANDS
| | - Alexander Parastaev
- TU/e: Technische Universiteit Eindhoven Chemical Engineering and Chemistry NETHERLANDS
| | | | - Job J.C. Struijs
- TU/e: Technische Universiteit Eindhoven Chemical Engineering and Chemistry NETHERLANDS
| | - Nikolay Kosinov
- TU/e: Technische Universiteit Eindhoven Chemical Engineering and Chemistry NETHERLANDS
| | - Emiel Hensen
- Department of Chemical Engineering Eindhoven University of Technology Schuit Institute of Catalysis PO Box 513 5600 MB Eindhoven NETHERLANDS
| |
Collapse
|
123
|
Gawish MA, Drmosh QA, Onaizi SA. Single Atom Catalysts: An Overview of the Coordination and Interactions with Metallic Supports. CHEM REC 2022; 22:e202100328. [PMID: 35263021 DOI: 10.1002/tcr.202100328] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 02/22/2022] [Accepted: 02/22/2022] [Indexed: 11/10/2022]
Abstract
Catalyst utilization is a key economic factor in heterogeneous catalysis, particularly, when noble metals are used as the active phase. A huge saving on catalyst cost can be achieved with developing a single atomic layer of the active catalyst on a given cheap support. Besides the economic benefit, single atom catalysts (SACs) have also shown superior activity and selectivity relative to catalytic particles or nanoparticles; yet they are prone to aggregation and deactivation. The development of effective, stable, and commercially viable SACs is still a huge challenge. One of the remaining key obstacles is the ability to easily and effectively tune SACs-support interactions and coordination in a way that enables the production of robust, stable, and versatile SACs. Accordingly, the coordination and interactions between metallic supports and SACs and their impacts on SACs stability and activity are reviewed in this article.
Collapse
Affiliation(s)
- Monaf Abdalmajid Gawish
- Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran, 31216, Saudi Arabia
| | - Q A Drmosh
- Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran, 31216, Saudi Arabia
| | - Sagheer A Onaizi
- Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran, 31216, Saudi Arabia.,Interdisciplinary Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran, 31216, Saudi Arabia
| |
Collapse
|
124
|
Zhang X, Li Z, Pei W, Li G, Liu W, Du P, Wang Z, Qin Z, Qi H, Liu X, Zhou S, Zhao J, Yang B, Shen W. Crystal-Phase-Mediated Restructuring of Pt on TiO 2 with Tunable Reactivity: Redispersion versus Reshaping. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05695] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Xiaoben Zhang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhimin Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Pei
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China
| | - Gao Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Liu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Pengfei Du
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen Wang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China
| | - Zhaoxian Qin
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haifeng Qi
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiaoyan Liu
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Si Zhou
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China
| | - Jijun Zhao
- Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China
| | - Bing Yang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Wenjie Shen
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
125
|
Shaikhutdinov S, Wan W, Geiger J, Berdunov N, Lopez Luna M, Chee SW, Daelman N, López N, Cuenya BR. Highly Stable and Reactive Platinum Single Atoms on Oxygen Plasma‐Functionalized CeO2 Surfaces: Nanostructuring and Peroxo Effects. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | - Weiming Wan
- Fritz-Haber-Institut der Max-Planck-Gesellschaft Interface Science GERMANY
| | - Julian Geiger
- Institute of Chemical Research of Catalonia: Institut Catala d'Investigacio Quimica Not available SPAIN
| | - Nikolay Berdunov
- Fritz-Haber-Institut der Max-Planck-Gesellschaft Interface Science GERMANY
| | - Mauricio Lopez Luna
- Fritz-Haber-Institut der MPG Berlin: Fritz-Haber-Institut der Max-Planck-Gesellschaft Interface Science 14195 Berlin GERMANY
| | - See Wee Chee
- Fritz-Haber-Institut der Max-Planck-Gesellschaft Interface Science GERMANY
| | - Nathan Daelman
- Institute of Chemical Research of Catalonia: Institut Catala d'Investigacio Quimica Not available SPAIN
| | - Núria López
- Institute of Chemical Research of Catalonia: Institut Catala d'Investigacio Quimica Not available SPAIN
| | | |
Collapse
|
126
|
Zaera F. Designing Sites in Heterogeneous Catalysis: Are We Reaching Selectivities Competitive With Those of Homogeneous Catalysts? Chem Rev 2022; 122:8594-8757. [PMID: 35240777 DOI: 10.1021/acs.chemrev.1c00905] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A critical review of different prominent nanotechnologies adapted to catalysis is provided, with focus on how they contribute to the improvement of selectivity in heterogeneous catalysis. Ways to modify catalytic sites range from the use of the reversible or irreversible adsorption of molecular modifiers to the immobilization or tethering of homogeneous catalysts and the development of well-defined catalytic sites on solid surfaces. The latter covers methods for the dispersion of single-atom sites within solid supports as well as the use of complex nanostructures, and it includes the post-modification of materials via processes such as silylation and atomic layer deposition. All these methodologies exhibit both advantages and limitations, but all offer new avenues for the design of catalysts for specific applications. Because of the high cost of most nanotechnologies and the fact that the resulting materials may exhibit limited thermal or chemical stability, they may be best aimed at improving the selective synthesis of high value-added chemicals, to be incorporated in organic synthesis schemes, but other applications are being explored as well to address problems in energy production, for instance, and to design greener chemical processes. The details of each of these approaches are discussed, and representative examples are provided. We conclude with some general remarks on the future of this field.
Collapse
Affiliation(s)
- Francisco Zaera
- Department of Chemistry and UCR Center for Catalysis, University of California, Riverside, California 92521, United States
| |
Collapse
|
127
|
Xu Q, Guo C, Li B, Zhang Z, Qiu Y, Tian S, Zheng L, Gu L, Yan W, Wang D, Zhang J. Al 3+ Dopants Induced Mg 2+ Vacancies Stabilizing Single-Atom Cu Catalyst for Efficient Free-Radical Hydrophosphinylation of Alkenes. J Am Chem Soc 2022; 144:4321-4326. [PMID: 35235317 DOI: 10.1021/jacs.2c01456] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Utilizing heterogeneous catalysts to overcome obstacles for homogeneous reactions is fascinating but very challenging owing to the difficult fabrication of such catalysts based on the character of target reactions. Herein, we report a Al3+ doping strategy to construct single-atom Cu on MgO nanosheets (Cu1/MgO(Al)) for boosting the free-radical hydrophosphinylation of alkenes. Al3+ dopants in MgO bring about abundant Mg2+ vacancies for stabilizing dense independent Cu atoms (6.3 wt %), while aggregated Cu nanoparticles are formed without Al3+ dopants (Cu/MgO). Cu1/MgO(Al) exhibits preeminent activity and durability in the hydrophosphinylation of various alkenes with great anti-Markovnikov selectivity (99%). The turnover frequency (TOF) value reaches up to 1272 h-1, exceeding those of Cu/MgO by ∼6-fold and of traditional homogeneous catalysts drastically. Further experimental and theoretical studies disclose that the prominent performance of Cu1/MgO(Al) derives from the accelerated initiating step of phosphinoyl radical triggered by individual Cu atoms.
Collapse
Affiliation(s)
- Qi Xu
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Chenxi Guo
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Beibei Li
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zedong Zhang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yajun Qiu
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Shubo Tian
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Gu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Wensheng Yan
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, 230029 Hefei, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jian Zhang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China
| |
Collapse
|
128
|
Zhang Y, Chen J, Liu Z. Selective catalytic reduction of NOx by hydrogen over PtIr/TiO2 catalyst. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
129
|
Yoo M, Kang E, Ha H, Yun J, Choi H, Lee JH, Kim TJ, Min J, Choi JS, Lee KS, Jung N, Kim S, Kim C, Yu YS, Kim HY. Interspersing CeO x Clusters to the Pt-TiO 2 Interfaces for Catalytic Promotion of TiO 2-Supported Pt Nanoparticles. J Phys Chem Lett 2022; 13:1719-1725. [PMID: 35156829 DOI: 10.1021/acs.jpclett.2c00080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We propose an interface-engineered oxide-supported Pt nanoparticle-based catalyst with improved low-temperature activity toward CO oxidation. By wet-impregnating 1 wt % Ce on TiO2, we synthesized hybrid oxide support of CeOx-TiO2, in which dense CeOx clusters formed on the surface of TiO2. Then, the Pt/CeOx-TiO2 catalyst was synthesized by impregnating 2 wt % Pt on the CeOx-TiO2 supporting oxide. Pt-CeOx-TiO2 triphase interfaces were eventually formed upon impregnation of Pt on CeOx-TiO2. The Pt-CeOx-TiO2 interfaces open up the interface-mediated Mars-van Krevelen CO oxidation pathway, thus providing additional interfacial reaction sites for CO oxidation. Consequently, the specific reaction rate of Pt/CeOx-TiO2 for CO oxidation was increased by 3.2 times compared with that of Pt/TiO2 at 140 °C. Our results demonstrate a widely applicable and straightforward method of catalytic activation of the interfaces between metal nanoparticles and supporting oxides, which enabled fine-tuning of the catalytic performance of oxide-supported metal nanoparticle classes of heterogeneous catalysts.
Collapse
Affiliation(s)
- Mi Yoo
- Department of Materials Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Eunji Kang
- Department of Materials Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hyunwoo Ha
- Department of Materials Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jieun Yun
- Department of Materials Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hyuk Choi
- Department of Materials Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Ju Hyeok Lee
- Department of Materials Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Tae Jun Kim
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jiho Min
- Graduate School of Energy Science and Technology (GEST), Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jin-Seok Choi
- KAIST Analysis Center for Research Advancement, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34144, Republic of Korea
| | - Kug-Seung Lee
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Namgee Jung
- Graduate School of Energy Science and Technology (GEST), Chungnam National University, Daejeon 34134, Republic of Korea
| | - Sungtak Kim
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Chunjoong Kim
- Department of Materials Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Young-Sang Yu
- Department of Physics, Chungbuk National University, Cheongju 28644, Republic of Korea
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Hyun You Kim
- Department of Materials Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
130
|
Lai XM, Xiao Q, Ma C, Wang WW, Jia CJ. Heterostructured Ceria-Titania-Supported Platinum Catalysts for the Water Gas Shift Reaction. ACS APPLIED MATERIALS & INTERFACES 2022; 14:8575-8586. [PMID: 35124965 DOI: 10.1021/acsami.1c22795] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The water gas shift (WGS) reaction is a key process in the industrial hydrogen production and the development and application of the proton exchange membrane fuel cell. Metal oxide-supported highly dispersed Pt has been proved as an efficient catalyst for the WGS reaction. In this work, a series of supported 0.5Pt/xCe-10Ti (x = 1, 3, or 5) catalysts with different Ce/Ti molar ratios were prepared by a simple deposition-precipitation method. Compared with single TiO2- or CeO2-supported Pt catalysts, it was found that the 0.5Pt/3Ce-10Ti catalyst showed an obvious advantage in activity for the WGS reaction. In this catalyst, dispersed CeO2 nanoparticles were supported on the TiO2 sheets, and Pt single atoms and nanoparticles were located on CeO2 and at the boundary of TiO2 and CeO2, respectively. It found that the reduction ability of the supported Pt catalyst was remarkably improved; meanwhile, the adsorption strength of CO on the surface of 0.5Pt/3Ce-10Ti was moderate. The heterostructured CeO2-TiO2 support gave an effective regulation on the Pt status and further influenced the CO adsorption ability, inducing excellent WGS reaction activity. This work provides a reference for the development and application of heterostructured materials in heterogeneous catalysis.
Collapse
Affiliation(s)
- Xiao-Meng Lai
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Qi Xiao
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Chao Ma
- College of Materials Science and Engineering, Hunan University, Changsha 410082, People's Republic of China
| | - Wei-Wei Wang
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Chun-Jiang Jia
- Key Laboratory for Colloid and Interface Chemistry, Key Laboratory of Special Aggregated Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| |
Collapse
|
131
|
Fan J, Sun Y, Fu M, Li J, Ye D. Modulate the metal support interactions to optimize the surface-interface features of Pt/CeO 2 catalysts for enhancing the toluene oxidation. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127505. [PMID: 34736184 DOI: 10.1016/j.jhazmat.2021.127505] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/27/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
Metal support interactions modulation is one of the effective strategies to enhance the catalytic performance. Herein, we reported that modulating metal support interactions by switching the strength (CO, H2, NH3) and temperature (200, 300, 400 °C) of reducing gases is a facile way to improve the catalytic performance of Pt/CeO2 for toluene oxidation. The distinct reduction treatments will stepwise enhance the reducibility, ratio of Pt0 and oxygen vacancy concentration, which dominated the activity. The metal support interactions modulation can significantly affect toluene deep oxidation (from benzoate to formate or monodentate carbonate) via enhancing the mobility of surface/lattice oxygen and activation ability towards O2 molecules, since the main activation sites for O2 molecules expand from Pt0 sites to oxygen vacancies and Pt0 sites with temperature increasing.
Collapse
Affiliation(s)
- Jie Fan
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Yuhang Sun
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Mingli Fu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control (SCUT), Guangzhou 510006, China; National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangzhou 510006, China
| | - Jiaqi Li
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
| | - Daiqi Ye
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control (SCUT), Guangzhou 510006, China; National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangzhou 510006, China.
| |
Collapse
|
132
|
Maurer F, Beck A, Jelic J, Wang W, Mangold S, Stehle M, Wang D, Dolcet P, Gänzler AM, Kübel C, Studt F, Casapu M, Grunwaldt JD. Surface Noble Metal Concentration on Ceria as a Key Descriptor for Efficient Catalytic CO Oxidation. ACS Catal 2022. [DOI: 10.1021/acscatal.1c04565] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Florian Maurer
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstraße 20, 76131 Karlsruhe, Germany
| | - Arik Beck
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstraße 20, 76131 Karlsruhe, Germany
| | - Jelena Jelic
- Institute of Catalysis Research and Technology (IKFT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Wu Wang
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Stefan Mangold
- Institute for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Matthias Stehle
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstraße 20, 76131 Karlsruhe, Germany
| | - Di Wang
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Paolo Dolcet
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstraße 20, 76131 Karlsruhe, Germany
| | - Andreas M. Gänzler
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstraße 20, 76131 Karlsruhe, Germany
| | - Christian Kübel
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Felix Studt
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstraße 20, 76131 Karlsruhe, Germany
- Institute of Catalysis Research and Technology (IKFT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Maria Casapu
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstraße 20, 76131 Karlsruhe, Germany
| | - Jan-Dierk Grunwaldt
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstraße 20, 76131 Karlsruhe, Germany
- Institute of Catalysis Research and Technology (IKFT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
133
|
Liu L, Das S, Zhang Z, Kawi S. Nonoxidative Coupling of Methane over Ceria-Supported Single-Atom Pt Catalysts in DBD Plasma. ACS APPLIED MATERIALS & INTERFACES 2022; 14:5363-5375. [PMID: 35072474 DOI: 10.1021/acsami.1c21550] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Plasma-catalytic direct nonoxidative coupling of methane (NCM) into C2 hydrocarbons was investigated over ceria-supported atomically dispersed Pt (Pt/CeO2-SAC) and nanoparticle Pt (Pt/CeO2-NP) catalysts in dielectric barrier discharge (DBD) plasma. Nonthermal plasma facilitated C-H bond dissociation in CH4 at low temperatures (<150 °C) and atmospheric pressure. The presence of Pt/CeO2 catalysts in plasma further enhanced CH4 conversion and C2 hydrocarbon selectivity by enabling the conversion of vibrationally excited methane species with high internal energy on active Pt sites. Noticeably, the Pt/CeO2-SAC catalyst displayed a more remarkable performance, with a CH4 conversion of 39% and a C2 selectivity of 54% at 54 W. The enhanced CH4 conversion was attributed to abundant coordinatively unsaturated Pt sites in Pt/CeO2-SAC, which were more active for C-H bond scission. Meanwhile, isolated Pt atoms in Pt/CeO2-SAC promoted C2 hydrocarbon formation by hindering the unselective formation of coke from deep dehydrogenation of CHx• intermediates and higher hydrocarbons from oligomerization reactions.
Collapse
Affiliation(s)
- Lina Liu
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore 117585
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Sonali Das
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore 117585
| | - Zhikun Zhang
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore 117585
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Sibudjing Kawi
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore 117585
| |
Collapse
|
134
|
|
135
|
Dong J, Li D, Zhang Y, Chang P, Jin Q. Insights into the CeO2 facet-depended performance of propane oxidation over Pt-CeO2 catalysts. J Catal 2022. [DOI: 10.1016/j.jcat.2022.01.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
136
|
Hai X, Xi S, Mitchell S, Harrath K, Xu H, Akl DF, Kong D, Li J, Li Z, Sun T, Yang H, Cui Y, Su C, Zhao X, Li J, Pérez-Ramírez J, Lu J. Scalable two-step annealing method for preparing ultra-high-density single-atom catalyst libraries. NATURE NANOTECHNOLOGY 2022; 17:174-181. [PMID: 34824400 DOI: 10.1038/s41565-021-01022-y] [Citation(s) in RCA: 169] [Impact Index Per Article: 56.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 09/29/2021] [Indexed: 05/15/2023]
Abstract
The stabilization of transition metals as isolated centres with high areal density on suitably tailored carriers is crucial for maximizing the industrial potential of single-atom heterogeneous catalysts. However, achieving single-atom dispersions at metal contents above 2 wt% remains challenging. Here we introduce a versatile approach combining impregnation and two-step annealing to synthesize ultra-high-density single-atom catalysts with metal contents up to 23 wt% for 15 metals on chemically distinct carriers. Translation to a standardized, automated protocol demonstrates the robustness of our method and provides a path to explore virtually unlimited libraries of mono- or multimetallic catalysts. At the molecular level, characterization of the synthesis mechanism through experiments and simulations shows that controlling the bonding of metal precursors with the carrier via stepwise ligand removal prevents their thermally induced aggregation into nanoparticles. The drastically enhanced reactivity with increasing metal content exemplifies the need to optimize the surface metal density for a given application. Moreover, the loading-dependent site-specific activity observed in three distinct catalytic systems reflects the well-known complexity in heterogeneous catalyst design, which now can be tackled with a library of single-atom catalysts with widely tunable metal loadings.
Collapse
Affiliation(s)
- Xiao Hai
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Shibo Xi
- Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research, Singapore, Singapore
| | - Sharon Mitchell
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Karim Harrath
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, China
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing, China
| | - Haomin Xu
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Dario Faust Akl
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland
| | - Debin Kong
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Jing Li
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Zejun Li
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Tao Sun
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Huimin Yang
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Yige Cui
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Chenliang Su
- SZU-NUS Collaborative Center and International Collaborative Laboratory of 2D Materials for Optoelectronic Science & Technology of Ministry of Education, Engineering Technology Research Center for 2D Materials Information Functional Devices and Systems of Guangdong Province, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, China
| | - Xiaoxu Zhao
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore.
| | - Jun Li
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, China.
- Department of Chemistry and Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Tsinghua University, Beijing, China.
| | - Javier Pérez-Ramírez
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland.
| | - Jiong Lu
- Department of Chemistry, National University of Singapore, Singapore, Singapore.
- Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, Singapore, Singapore.
- Institute for Functional Intelligent Materials, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
137
|
Sui J, Liu H, Hu S, Sun K, Wan G, Zhou H, Zheng X, Jiang HL. A General Strategy to Immobilize Single-Atom Catalysts in Metal-Organic Frameworks for Enhanced Photocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109203. [PMID: 34883530 DOI: 10.1002/adma.202109203] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/07/2021] [Indexed: 06/13/2023]
Abstract
Single-atom catalysts (SACs) are witnessing rapid development due to their high activity and selectivity toward diverse reactions. However, it remains a grand challenge in the general synthesis of SACs, particularly featuring an identical chemical microenvironment and on the same support. Herein, a universal synthetic protocol is developed to immobilize SACs in metal-organic frameworks (MOFs). Significantly, by means of SnO2 as a mediator or adaptor, not only different single-atom metal sites, such as Pt, Cu, and Ni, etc., can be installed, but also the MOF supports can be changed (for example, UiO-66-NH2 , PCN-222, and DUT-67) to afford M1 /SnO2 /MOF architecture. Taking UiO-66-NH2 as a representative, the Pt1 /SnO2 /MOF exhibits approximately five times higher activity toward photocatalytic H2 production than the corresponding Pt nanoparticles (≈2.5 nm) stabilized by SnO2 /UiO-66-NH2 . Remarkably, despite featuring identical parameters in the chemical microenvironment and support in M1 /SnO2 /UiO-66-NH2 , the Pt1 catalyst possesses a hydrogen evolution rate of 2167 µmol g-1 h-1 , superior to the Cu1 and Ni1 counterparts, which is attributed to the differentiated hydrogen binding free energies, as supported by density-functional theory (DFT) calculations. This is thought to be the first report on a universal approach toward the stabilization of SACs with identical chemical microenvironment on an identical support.
Collapse
Affiliation(s)
- Jianfei Sui
- College of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Hang Liu
- College of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Shaojin Hu
- College of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Kang Sun
- College of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Gang Wan
- Department of Mechanical Engineering and Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Hua Zhou
- X-ray Science Division, Advanced Photon Source Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Xiao Zheng
- College of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Hai-Long Jiang
- College of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
138
|
Bac S, Mallikarjun Sharada S. CO Oxidation with Atomically Dispersed Catalysts: Insights from the Energetic Span Model. ACS Catal 2022. [DOI: 10.1021/acscatal.1c04299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Selin Bac
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
| | - Shaama Mallikarjun Sharada
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
- Department of Chemistry, University of Southern California, Los Angeles California 90089, United States
| |
Collapse
|
139
|
Beniya A, Miwa K, Hirata H, Watanabe Y, Higashi S. Insight for Designing Mass-Efficient Metal-Oxide-Supported Heterogeneous Catalyst from the Identification of the Catalytically Active Edge Sites Using Isotopically Labeled 13CO and 18O2. ACS Catal 2022. [DOI: 10.1021/acscatal.1c03948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Atsushi Beniya
- Toyota Central R&D Labs, Inc., 41-1 Yokomichi, Nagakute, Aichi 480-1192, Japan
| | - Kazutoshi Miwa
- Toyota Central R&D Labs, Inc., 41-1 Yokomichi, Nagakute, Aichi 480-1192, Japan
| | - Hirohito Hirata
- Toyota Motor Corporation, 1200 Mishuku, Susono, Shizuoka 410-1193, Japan
| | - Yoshihide Watanabe
- Toyota Central R&D Labs, Inc., 41-1 Yokomichi, Nagakute, Aichi 480-1192, Japan
| | - Shougo Higashi
- Toyota Central R&D Labs, Inc., 41-1 Yokomichi, Nagakute, Aichi 480-1192, Japan
| |
Collapse
|
140
|
Dynamic Pt Coordination in Dilute AgPt Alloy Nanoparticle Catalysts Under Reactive Environments. Top Catal 2022. [DOI: 10.1007/s11244-021-01545-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
141
|
Yang B, Wang Y, Li L, Gao B, Zhang L, Guo L. Probing the morphological effects of ReOx/CeO2 catalysts on the CO2 hydrogenation reaction. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02096j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The proposed reaction mechanism of different morphological CeO2 supported Re catalysts for CO2 hydrogenation.
Collapse
Affiliation(s)
- Bin Yang
- School of Chemistry and Material Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Yifu Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Longtai Li
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Biao Gao
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Lingxia Zhang
- School of Chemistry and Material Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China
| | - Limin Guo
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| |
Collapse
|
142
|
Li H, Liang C, Liu K, Hou G, Bai S, Zhang ZC. Bi/Trinuclear Pt1&2Cu Clusters Assembly from Isolated Metal Atoms. Chem Commun (Camb) 2022; 58:4176-4179. [DOI: 10.1039/d1cc06838e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a facile strategy in synthesizing uniform heterometallic bi/tri-atom clusters starting from mono-metallic atoms in liquid phase. Specifically, Pt1&2Cu bi/tri-atoms are prepared by reducing CuCl2 at preformed Pt1 atoms...
Collapse
|
143
|
Wang L, Huang Z, Guo S, Wu X, Shen H, Zhao H, Jing G. Computationally assisted, surface energy-driven synthesis of Mn-doped Co3O4 fibers with high percentage of reactive facets and enhanced activity for preferential oxidation of CO in H2. J Catal 2022. [DOI: 10.1016/j.jcat.2022.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
144
|
Wang Y, Lee S, Zhou J, Fu J, Foucher A, Stach E, Ma L, Marinkovic N, Ehrlich S, Zheng W, Vlachos DG. Higher loadings of Pt single atoms and clusters over reducible metal oxides: application to C–O bond activation. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00193d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We develop higher loadings of isolated noble metal atoms and clusters on a metal oxide via redistribution.
Collapse
Affiliation(s)
- Yunzhu Wang
- Catalysis Center for Energy Innovation, University of Delaware, Newark, DE 19716, USA
| | - Seungyeon Lee
- Catalysis Center for Energy Innovation, University of Delaware, Newark, DE 19716, USA
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Jiahua Zhou
- Catalysis Center for Energy Innovation, University of Delaware, Newark, DE 19716, USA
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Jiayi Fu
- Catalysis Center for Energy Innovation, University of Delaware, Newark, DE 19716, USA
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Alexandre Foucher
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Eric Stach
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lu Ma
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Nebojsa Marinkovic
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Steven Ehrlich
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Weiqing Zheng
- Catalysis Center for Energy Innovation, University of Delaware, Newark, DE 19716, USA
| | - Dionisios G. Vlachos
- Catalysis Center for Energy Innovation, University of Delaware, Newark, DE 19716, USA
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
145
|
Gao F, Liu A, Tan W, Hu B, Gong R, Cheng X, Liu F, Chen G, Dong L. Boosting the catalytic performance of single-atom catalysts by tuning surface lattice expanding confinement. Chem Commun (Camb) 2022; 58:7984-7987. [DOI: 10.1039/d2cc02671f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We report that Pt single atoms embedded on a disordered TiO2 surface have a weaker affinity for CO than those supported on a perfect TiO2 surface, thus generating much better CO oxidation activity.
Collapse
Affiliation(s)
- Fei Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Annai Liu
- Institute of Engineering Technology, Sinopec Catalyst Co. Ltd., Sinopec Group, 13 Xingguang 5th Avenue, Beijing 101111, P. R. China
| | - Wei Tan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Bing Hu
- Institute for Catalysis, Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo, Hokkaido 001-0021, Japan
| | - Ruihan Gong
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xing Cheng
- College of Environmental and Energy Engineering, Beijing University of Technology, Pingle yuan 100, Beijing 100124, P. R. China
| | - Fudong Liu
- Department of Civil, Environmental, and Construction Engineering, Catalysis Cluster for Renewable Energy and Chemical Transformations (REACT), NanoScience Technology Center (NSTC), University of Central Florida, Orlando, FL 32816, USA
| | - Ge Chen
- College of Environmental and Energy Engineering, Beijing University of Technology, Pingle yuan 100, Beijing 100124, P. R. China
| | - Lin Dong
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
146
|
|
147
|
|
148
|
Affiliation(s)
- Tao Zhang
- CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
149
|
Jiang D, Yao Y, Li T, Wan G, Pereira‐Hernández XI, Lu Y, Tian J, Khivantsev K, Engelhard MH, Sun C, García‐Vargas CE, Hoffman AS, Bare SR, Datye AK, Hu L, Wang Y. Tailoring the Local Environment of Platinum in Single‐Atom Pt
1
/CeO
2
Catalysts for Robust Low‐Temperature CO Oxidation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Dong Jiang
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering Washington State University Pullman WA 99164 USA
| | - Yonggang Yao
- Department of Materials Science and Engineering University of Maryland College Park MD 20742 USA
- Current address: State Key Laboratory of Materials Processing and Die & Mould Technology School of Materials Science and Engineering Huazhong University of Science and Technology Wuhan 430074 China
| | - Tangyuan Li
- Department of Materials Science and Engineering University of Maryland College Park MD 20742 USA
| | - Gang Wan
- Stanford Synchrotron Radiation Lightsource SLAC National Accelerator Laboratory Menlo Park CA 94025 USA
| | - Xavier Isidro Pereira‐Hernández
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering Washington State University Pullman WA 99164 USA
| | - Yubing Lu
- Institute for Integrated Catalysis Pacific Northwest National Laboratory Richland WA 99354 USA
| | - Jinshu Tian
- Institute for Integrated Catalysis Pacific Northwest National Laboratory Richland WA 99354 USA
| | - Konstantin Khivantsev
- Institute for Integrated Catalysis Pacific Northwest National Laboratory Richland WA 99354 USA
| | - Mark H. Engelhard
- Institute for Integrated Catalysis Pacific Northwest National Laboratory Richland WA 99354 USA
| | - Chengjun Sun
- X-ray Science Division Advanced Photon Source Argonne National Laboratory Lemont IL 60439 USA
| | - Carlos E. García‐Vargas
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering Washington State University Pullman WA 99164 USA
| | - Adam S. Hoffman
- Stanford Synchrotron Radiation Lightsource SLAC National Accelerator Laboratory Menlo Park CA 94025 USA
| | - Simon R. Bare
- Stanford Synchrotron Radiation Lightsource SLAC National Accelerator Laboratory Menlo Park CA 94025 USA
| | - Abhaya K. Datye
- Department of Chemical and Biological Engineering and Center for Micro-Engineered Materials University of New Mexico Albuquerque NM 87131 USA
| | - Liangbing Hu
- Department of Materials Science and Engineering University of Maryland College Park MD 20742 USA
| | - Yong Wang
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering Washington State University Pullman WA 99164 USA
- Institute for Integrated Catalysis Pacific Northwest National Laboratory Richland WA 99354 USA
| |
Collapse
|
150
|
Wang X, Yunping T, Fang G. Advances of single-atom catalysts for applications in persulfate-based advanced oxidation technologies. Curr Opin Chem Eng 2021. [DOI: 10.1016/j.coche.2021.100757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|