101
|
Luy JN, Tonner R. Complementary Base Lowers the Barrier in SuFEx Click Chemistry for Primary Amine Nucleophiles. ACS OMEGA 2020; 5:31432-31439. [PMID: 33324855 PMCID: PMC7726939 DOI: 10.1021/acsomega.0c05049] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 10/27/2020] [Indexed: 05/31/2023]
Abstract
The sulfur(VI) fluoride exchange (SuFEx) reaction is an emerging scheme for connecting molecular building blocks. Due to its broad functional group tolerance and rather stable resulting linkage, it is seeing rapid adoption in various fields of chemistry. Still, to date the reaction mechanism is poorly understood, which hampers further development. Here, we show that the mechanism of the SuFEx reaction for the prototypical example of methanesulfonyl fluoride reacting with methylamine can be understood as an SN2-type reaction. By analyzing the reaction path with the help of density functional theory in vacuo and under consideration of solvent and co-reactant influence, we identify the often used complementary base as a crucial ingredient to lower the reaction barrier significantly by increasing the nucleophilicity of the primary amine. With the help of energy decomposition analysis at the transition state structures, we quantify the underlying stereoelectronic effects and propose new avenues for experimental exploration of the potential of SuFEx chemistry.
Collapse
Affiliation(s)
- Jan-Niclas Luy
- Institut für Physikalische
und Theoretische Chemie, Fakultät für Chemie und Pharmazie, Universität Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Ralf Tonner
- Institut für Physikalische
und Theoretische Chemie, Fakultät für Chemie und Pharmazie, Universität Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| |
Collapse
|
102
|
Zhao Q, Guo G, Zhu W, Zhu L, Da Y, Han Y, Xu H, Wu S, Cheng Y, Zhou Y, Cai X, Jiang X. Suzuki Cross-Coupling Reaction with Genetically Encoded Fluorosulfates for Fluorogenic Protein Labeling. Chemistry 2020; 26:15938-15943. [PMID: 32776653 DOI: 10.1002/chem.202002037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 07/24/2020] [Indexed: 11/09/2022]
Abstract
A palladium-catalyzed cross-coupling reaction with aryl halide functionalities has recently emerged as a valuable tool for protein modification. Herein, a new fluorogenic modification methodology for proteins, with genetically encoded fluorosulfate-l-tyrosine, which exhibits high efficiency and biocompatibility in bacterial cells as well as in aqueous medium, is described. Furthermore, the cross-coupling of 4-cyanophenylboronic acid on green fluorescent protein was shown to possess a unique fluorogenic property, which could open up the possibility of a responsive "off/on" switch with great potential to enable spectroscopic imaging of proteins with minimal background noise. Taken together, a convenient and efficient catalytic system has been developed that may provide broad utilities in protein visualization and live-cell imaging.
Collapse
Affiliation(s)
- Qian Zhao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P.R. China
| | - Guoying Guo
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P.R. China
| | - Weiwei Zhu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P.R. China
| | - Liping Zhu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, P.R. China
| | - Yifan Da
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P.R. China
| | - Ying Han
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P.R. China
| | - Hongjiao Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P.R. China
| | - Shuohan Wu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P.R. China
| | - Yaping Cheng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P.R. China
| | - Yani Zhou
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, P.R. China
| | - Xiaoqing Cai
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P.R. China
| | - Xianxing Jiang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, P.R. China
| |
Collapse
|
103
|
Hira J, Uddin MJ, Haugland MM, Lentz CS. From Differential Stains to Next Generation Physiology: Chemical Probes to Visualize Bacterial Cell Structure and Physiology. Molecules 2020; 25:E4949. [PMID: 33114655 PMCID: PMC7663024 DOI: 10.3390/molecules25214949] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 12/16/2022] Open
Abstract
Chemical probes have been instrumental in microbiology since its birth as a discipline in the 19th century when chemical dyes were used to visualize structural features of bacterial cells for the first time. In this review article we will illustrate the evolving design of chemical probes in modern chemical biology and their diverse applications in bacterial imaging and phenotypic analysis. We will introduce and discuss a variety of different probe types including fluorogenic substrates and activity-based probes that visualize metabolic and specific enzyme activities, metabolic labeling strategies to visualize structural features of bacterial cells, antibiotic-based probes as well as fluorescent conjugates to probe biomolecular uptake pathways.
Collapse
Affiliation(s)
- Jonathan Hira
- Research Group for Host-Microbe Interactions, Department of Medical Biology and Centre for New Antibacterial Strategies (CANS), UiT—The Arctic University of Norway, 9019 Tromsø, Norway; (J.H.); (M.J.U.)
| | - Md. Jalal Uddin
- Research Group for Host-Microbe Interactions, Department of Medical Biology and Centre for New Antibacterial Strategies (CANS), UiT—The Arctic University of Norway, 9019 Tromsø, Norway; (J.H.); (M.J.U.)
| | - Marius M. Haugland
- Department of Chemistry and Centre for New Antibacterial Strategies (CANS), UiT—The Arctic University of Norway, 9019 Tromsø, Norway;
| | - Christian S. Lentz
- Research Group for Host-Microbe Interactions, Department of Medical Biology and Centre for New Antibacterial Strategies (CANS), UiT—The Arctic University of Norway, 9019 Tromsø, Norway; (J.H.); (M.J.U.)
| |
Collapse
|
104
|
Liu J, Cheng R, Van Eps N, Wang N, Morizumi T, Ou WL, Klauser PC, Rozovsky S, Ernst OP, Wang L. Genetically Encoded Quinone Methides Enabling Rapid, Site-Specific, and Photocontrolled Protein Modification with Amine Reagents. J Am Chem Soc 2020; 142:17057-17068. [PMID: 32915556 DOI: 10.1021/jacs.0c06820] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Site-specific modification of proteins with functional molecules provides powerful tools for researching and engineering proteins. Here we report a new chemical conjugation method which photocages highly reactive but chemically selective moieties, enabling the use of protein-inert amines for selective protein modification. New amino acids FnbY and FmnbY, bearing photocaged quinone methides (QMs), were genetically incorporated into proteins. Upon light activation, they generated highly reactive QM, which rapidly reacted with amine derivatives. This method features a rare combination of desired properties including fast kinetics, small and stable linkage, compatibility with low temperature, photocontrollability, and widely available reagents. Moreover, labeling via FnbY occurs on the β-carbon, affording the shortest linkage to protein backbone which is essential for advanced studies involving orientation and distance. We installed various functionalities onto proteins and attached a spin label as close as possible to the protein backbone, achieving high resolution in double electron-electron paramagnetic resonance distance measurements.
Collapse
Affiliation(s)
- Jun Liu
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California San Francisco, 555 Mission Bay Blvd. South, San Francisco, California 94158, United States
| | - Rujin Cheng
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Ned Van Eps
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Nanxi Wang
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California San Francisco, 555 Mission Bay Blvd. South, San Francisco, California 94158, United States
| | - Takefumi Morizumi
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Wei-Lin Ou
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Paul C Klauser
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California San Francisco, 555 Mission Bay Blvd. South, San Francisco, California 94158, United States
| | - Sharon Rozovsky
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Oliver P Ernst
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Lei Wang
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California San Francisco, 555 Mission Bay Blvd. South, San Francisco, California 94158, United States
| |
Collapse
|
105
|
Alvarez Dorta D, Deniaud D, Mével M, Gouin SG. Tyrosine Conjugation Methods for Protein Labelling. Chemistry 2020; 26:14257-14269. [DOI: 10.1002/chem.202001992] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/09/2020] [Indexed: 12/23/2022]
Affiliation(s)
| | - David Deniaud
- CNRS, CEISAM UMR, 6230 Université de Nantes 44000 Nantes France
| | - Mathieu Mével
- CHU de Nantes, INSERM UMR 1089 Université de Nantes 44200 Nantes France
| | | |
Collapse
|
106
|
Krauskopf K, Lang K. Increasing the chemical space of proteins in living cells via genetic code expansion. Curr Opin Chem Biol 2020; 58:112-120. [PMID: 32911429 DOI: 10.1016/j.cbpa.2020.07.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/20/2020] [Accepted: 07/27/2020] [Indexed: 01/30/2023]
Abstract
In recent years it has become possible to genetically encode an expanded set of designer amino acids with tailored chemical and physical properties (dubbed unnatural amino acids, UAAs) into proteins in living cells by expanding the genetic code. Together with developments in chemistries that are amenable to and selective within physiological settings, these strategies have started to have a big impact on biological studies, as they enable exciting in cellulo applications. Here we highlight recent advances to covalently stabilize transient protein-protein interactions and capture enzyme substrate-complexes in living cells using proximity-triggered and residue-selective photo-induced crosslinking approaches. Furthermore, we describe recent efforts in controlling enzyme activity with photocaged UAAs and in extending their application to a variety of enzymatic scaffolds. In addition, we discuss the site-specific incorporation of UAAs mimicking post-translational modifications (PTMs) and approaches to generate natively-linked ubiquitin-protein conjugates to probe the role of PTMs in modulating complex cellular networks.
Collapse
Affiliation(s)
- Kristina Krauskopf
- Center for Integrated Protein Science Munich (CIPSM), Department of Chemistry, Group of Synthetic Biochemistry, Technical University of Munich, Institute for Advanced Study, Lichtenbergstr. 4, 85748, Garching, Germany
| | - Kathrin Lang
- Center for Integrated Protein Science Munich (CIPSM), Department of Chemistry, Group of Synthetic Biochemistry, Technical University of Munich, Institute for Advanced Study, Lichtenbergstr. 4, 85748, Garching, Germany.
| |
Collapse
|
107
|
Gurjar J, Fokin VV. Sulfuryl Fluoride Mediated Synthesis of Amides and Amidines from Ketoximes via Beckmann Rearrangement. Chemistry 2020; 26:10402-10405. [PMID: 31997464 DOI: 10.1002/chem.201905358] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/20/2020] [Indexed: 12/26/2022]
Abstract
A metal-free and redox-neutral method for Beckmann rearrangement employing inexpensive and readily available SO2 F2 gas is described. The reported transformation proceeds at ambient temperature and is compatible with a wide range of sterically and electronically diverse aromatic, heteroaromatic, aliphatic and lignin-like oximes providing amides in good to excellent yields. The reaction proceeds through the formation of an imidoyl fluoride intermediate that can also be used for the synthesis of amidines.
Collapse
Affiliation(s)
- Jitendra Gurjar
- University of Southern California, The Bridge@USC and Loker Hydrocarbon Research Institute, 1002 Childs Way, Los Angeles, CA, 90089-3502, USA
| | - Valery V Fokin
- University of Southern California, The Bridge@USC and Loker Hydrocarbon Research Institute, 1002 Childs Way, Los Angeles, CA, 90089-3502, USA
| |
Collapse
|
108
|
Li S, Yang B, Kobayashi T, Yu B, Liu J, Wang L. Genetically encoding thyronine for fluorescent detection of peroxynitrite. Bioorg Med Chem 2020; 28:115665. [PMID: 32828428 DOI: 10.1016/j.bmc.2020.115665] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/13/2020] [Accepted: 07/22/2020] [Indexed: 11/17/2022]
Abstract
Peroxynitrite is a highly reactive oxidant effecting cell signaling and cell death. Here we report a fluorescent protein probe to selectively detect peroxynitrite. A novel unnatural amino acid, thyronine (Thy), was genetically encoded in E. coli and mammalian cells by evolving an orthogonal tRNAPyl/ThyRS pair. Incorporation of Thy into the chromophore of sfGFP or cpsGFP afforded a virtually non-fluorescent reporter. Upon treatment with peroxynitrite, Thy was converted into tyrosine via O-dearylation, regenerating GFP fluorescence in a time- and concentration-dependent manner. Genetically encoded thyronine may also be valuable for other redox applications.
Collapse
Affiliation(s)
- Shanshan Li
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California San Francisco, 555 Mission Bay Boulevard South, San Francisco, CA 94158, United States
| | - Bing Yang
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California San Francisco, 555 Mission Bay Boulevard South, San Francisco, CA 94158, United States
| | - Tomonori Kobayashi
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California San Francisco, 555 Mission Bay Boulevard South, San Francisco, CA 94158, United States
| | - Bingchen Yu
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California San Francisco, 555 Mission Bay Boulevard South, San Francisco, CA 94158, United States
| | - Jun Liu
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California San Francisco, 555 Mission Bay Boulevard South, San Francisco, CA 94158, United States
| | - Lei Wang
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California San Francisco, 555 Mission Bay Boulevard South, San Francisco, CA 94158, United States.
| |
Collapse
|
109
|
Li C, Zheng Y, Rakesh KP, Qin HL. But-3-ene-1,3-disulfonyl difluoride (BDF): a highly selective SuFEx clickable hub for the quick assembly of sultam-containing aliphatic sulfonyl fluorides. Chem Commun (Camb) 2020; 56:8075-8078. [PMID: 32542267 DOI: 10.1039/d0cc03248d] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A versatile selectively addressable SuFEx click chemistry hub, but-3-ene-1,3-disulfonyl difluoride (BDF) was designed and synthesized through head-to-tail dimerization of ethenesulfonyl fluoride (ESF). BDF possesses three active sites to selectively participate in the construction of 4-membered, 5-membered and 6-membered cyclic sulfonamide (sultams) bearing aliphatic sulfonyl fluoride moieties for further manipulations in a fast, efficient and practical manner.
Collapse
Affiliation(s)
- Chen Li
- State Key Laboratory of Silicate Materials for Architectures, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, China.
| | - Yujie Zheng
- State Key Laboratory of Silicate Materials for Architectures, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, China.
| | - K P Rakesh
- State Key Laboratory of Silicate Materials for Architectures, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, China.
| | - Hua-Li Qin
- State Key Laboratory of Silicate Materials for Architectures, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, China.
| |
Collapse
|
110
|
Nguyen SS, Prescher JA. Developing bioorthogonal probes to span a spectrum of reactivities. Nat Rev Chem 2020; 4:476-489. [PMID: 34291176 DOI: 10.1038/s41570-020-0205-0] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Bioorthogonal chemistries enable researchers to interrogate biomolecules in living systems. These reactions are highly selective and biocompatible and can be performed in many complex environments. However, like any organic transformation, there is no perfect bioorthogonal reaction. Choosing the "best fit" for a desired application is critical. Correspondingly, there must be a variety of chemistries-spanning a spectrum of rates and other features-to choose from. Over the past few years, significant strides have been made towards not only expanding the number of bioorthogonal chemistries, but also fine-tuning existing reactions for particular applications. In this Review, we highlight recent advances in bioorthogonal reaction development, focusing on how physical organic chemistry principles have guided probe design. The continued expansion of this toolset will provide more precisely tuned reagents for manipulating bonds in distinct environments.
Collapse
Affiliation(s)
- Sean S Nguyen
- Departments of Chemistry, University of California, Irvine, California 92697, United States
| | - Jennifer A Prescher
- Departments of Chemistry, University of California, Irvine, California 92697, United States.,Molecular Biology & Biochemistry, University of California, Irvine, California 92697, United States.,Pharmaceutical Sciences, University of California, Irvine, California 92697, United States
| |
Collapse
|
111
|
Zhang G, Cui Y, Zhao Y, Cui Y, Bao S, Ding C. A Practical Approach to Ureas and Thiocarbamates: SO
2
F
2
‐Promoted Lossen Rearrangement of Hydroxamic Acid. ChemistrySelect 2020. [DOI: 10.1002/slct.202002270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Guofu Zhang
- College of Chemical EngineeringZhejiang University of Technology Hangzhou 310014 P. R. China
| | - Yin Cui
- College of Chemical EngineeringZhejiang University of Technology Hangzhou 310014 P. R. China
| | - Yiyong Zhao
- Zhejiang Emission Trading Center Hangzhou 310012 P. R. China
| | - Yunqiang Cui
- Zhejiang Yuntao Biotechnology Co., Ltd Shaoxing 312369 P. R. China
| | - Shenxiao Bao
- Hangzhou Sandun Middle School Hangzhou 310030 P. R. China
| | - Chengrong Ding
- College of Chemical EngineeringZhejiang University of Technology Hangzhou 310014 P. R. China
| |
Collapse
|
112
|
Zhang X, Fang W, Lekkala R, Tang W, Qin H. An Easy, General and Practical Method for the Construction of Alkyl Sulfonyl Fluorides. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000515] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xu Zhang
- State Key Laboratory of Silicate Materials for Architecturesand School of ChemistryChemical Engineering and Life ScienceWuhan University of Technology 205 Luoshi Road Wuhan 430070 People's Republic of China
| | - Wan‐Yin Fang
- State Key Laboratory of Silicate Materials for Architecturesand School of ChemistryChemical Engineering and Life ScienceWuhan University of Technology 205 Luoshi Road Wuhan 430070 People's Republic of China
| | - Ravindar Lekkala
- State Key Laboratory of Silicate Materials for Architecturesand School of ChemistryChemical Engineering and Life ScienceWuhan University of Technology 205 Luoshi Road Wuhan 430070 People's Republic of China
| | - Wenjian Tang
- School of PharmacyAnhui Province Key Laboratory of Major Autoimmune DiseasesAnhui Medical University Hefei 230032 People's Republic of China
| | - Hua‐Li Qin
- State Key Laboratory of Silicate Materials for Architecturesand School of ChemistryChemical Engineering and Life ScienceWuhan University of Technology 205 Luoshi Road Wuhan 430070 People's Republic of China
| |
Collapse
|
113
|
Developing Covalent Protein Drugs via Proximity-Enabled Reactive Therapeutics. Cell 2020; 182:85-97.e16. [DOI: 10.1016/j.cell.2020.05.028] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 04/20/2020] [Accepted: 05/15/2020] [Indexed: 01/21/2023]
|
114
|
Kwon YD, Jeon MH, Park NK, Seo JK, Son J, Ryu YH, Hong SY, Chun JH. Synthesis of 18F-Labeled Aryl Fluorosulfates via Nucleophilic Radiofluorination. Org Lett 2020; 22:5511-5516. [PMID: 32589035 DOI: 10.1021/acs.orglett.0c01868] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sulfuryl fluoride gas is a key reagent for SO2F transfer. However, conventional SO2F transfer reactions have limited 18F-radiochemistry translation, due to the inaccessibility of gaseous [18F]SO2F2. Herein, we report the first SO2F2-free synthesis of aryl [18F]fluorosulfates from both phenolic and isolated aryl imidazylate precursors with cyclotron-produced 18F-. The radiochemical yields ranged from moderate to good with excellent functional group tolerance. The reliability of our approach was validated by the automated radiosynthesis of 4-acetamidophenyl [18F]fluorosulfate.
Collapse
Affiliation(s)
- Young-Do Kwon
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Min Ho Jeon
- Department of Chemistry, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Nam Kyu Park
- Department of Chemistry, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jeong Kon Seo
- UNIST Central Research Facility, Ulsan 44919, Republic of Korea
| | - Jeongmin Son
- Department of Nuclear Medicine, Yonsei University Health System, Seoul 03722, Republic of Korea
| | - Young Hoon Ryu
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.,Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06273, Republic of Korea
| | - Sung You Hong
- Department of Chemistry, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Joong-Hyun Chun
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| |
Collapse
|
115
|
Dik DA, Zhang N, Chen JS, Webb B, Schultz PG. Semisynthesis of a Bacterium with Non-canonical Cell-Wall Cross-Links. J Am Chem Soc 2020; 142:10910-10913. [PMID: 32510943 DOI: 10.1021/jacs.0c02956] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The cell wall is an elaborate framework of peptidoglycan that serves to protect the bacterium against osmotic challenge. This exoskeleton is composed of repeating saccharides covalently cross-linked by peptide stems. The general structure of the cell wall is widely conserved across diverse Gram-negative bacteria. To begin to explore the biological consequence of introducing non-canonical cross-links into the cell wall of Escherichia coli, we generated a bacterium where up to 31% of the cell-wall cross-links are formed by a non-enzymatic reaction between a sulfonyl fluoride and an amino group. Bacteria with these non-canonical cell-wall cross-links achieve a high optical density in culture, divide and elongate successfully, and display no loss of outer membrane integrity. This work represents a first step in the design of bacteria with non-canonical "synthetic" cell walls.
Collapse
Affiliation(s)
- David A Dik
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Nan Zhang
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Jason S Chen
- Automated Synthesis Facility, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Bill Webb
- Center for Metabolomics and Mass Spectrometry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Peter G Schultz
- Department of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
116
|
Kitamura S, Zheng Q, Woehl JL, Solania A, Chen E, Dillon N, Hull MV, Kotaniguchi M, Cappiello JR, Kitamura S, Nizet V, Sharpless KB, Wolan DW. Sulfur(VI) Fluoride Exchange (SuFEx)-Enabled High-Throughput Medicinal Chemistry. J Am Chem Soc 2020; 142:10899-10904. [PMID: 32479075 DOI: 10.1021/jacs.9b13652] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Optimization of small-molecule probes or drugs is a synthetically lengthy, challenging, and resource-intensive process. Lack of automation and reliance on skilled medicinal chemists is cumbersome in both academic and industrial settings. Here, we demonstrate a high-throughput hit-to-lead process based on the biocompatible sulfur(VI) fluoride exchange (SuFEx) click chemistry. A high-throughput screening hit benzyl (cyanomethyl)carbamate (Ki = 8 μM) against a bacterial cysteine protease SpeB was modified with a SuFExable iminosulfur oxydifluoride [RN═S(O)F2] motif, rapidly diversified into 460 analogs in overnight reactions, and the products were directly screened to yield drug-like inhibitors with 480-fold higher potency (Ki = 18 nM). We showed that the improved molecule is active in a bacteria-host coculture. Since this SuFEx linkage reaction succeeds on picomole scale for direct screening, we anticipate our methodology can accelerate the development of robust biological probes and drug candidates.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Miyako Kotaniguchi
- Laboratory of Advanced Food Process Engineering, Osaka Prefecture University, 1-2, Gakuen-cho, Nakaku, Sakai, Osaka 599-8570, Japan
| | | | - Shinichi Kitamura
- Laboratory of Advanced Food Process Engineering, Osaka Prefecture University, 1-2, Gakuen-cho, Nakaku, Sakai, Osaka 599-8570, Japan
| | | | | | | |
Collapse
|
117
|
Zhao Y, Wei J, Ge S, Zhang G, Ding C. SO 2F 2-Mediated one-pot cascade process for transformation of aldehydes (RCHO) to cyanamides (RNHCN). RSC Adv 2020; 10:17288-17292. [PMID: 35521444 PMCID: PMC9053412 DOI: 10.1039/d0ra02631j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 04/21/2020] [Indexed: 12/13/2022] Open
Abstract
A simple, mild and practical cascade process for the direct conversion of aldehydes to cyanamides was developed featuring a wide substrate scope and great functional group tolerability. This method allows for transformations of readily available, inexpensive, and abundant aldehydes to highly valuable cyanamides in a pot, atom, and step-economical manner with a green nitrogen source. This protocol will serve as a robust tool for the installation of the cyanamide moiety in various complicated molecules.
Collapse
Affiliation(s)
- Yiyong Zhao
- College of Chemical Engineering, Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Junjie Wei
- Zhejiang Emission Trading Center Hangzhou 310014 People's Republic of China
| | - Shuting Ge
- College of Chemical Engineering, Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Guofu Zhang
- College of Chemical Engineering, Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| | - Chengrong Ding
- College of Chemical Engineering, Zhejiang University of Technology Hangzhou 310014 People's Republic of China
| |
Collapse
|
118
|
Wang N, Wang L. Acid-brightening fluorescent protein (abFP) for imaging acidic vesicles and organelles. Methods Enzymol 2020; 639:167-189. [PMID: 32475400 DOI: 10.1016/bs.mie.2020.04.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Acidic organelles and vesicles, such as endosomes, lysosomes, autophagosomes, trans-Golgi network, and synaptic vesicles, are known to play important roles in a broad range of cellular events. To facilitate studying these multifunctional systems, we describe here an acid-brightening fluorescent protein (abFP), which fluoresces strongly at acidic pH, but is almost nonfluorescent at or above physiological pH, making it well suited for imaging molecules residing in acidic microenvironment in live cells. Specifically, a quinoline-containing unnatural amino acid Qui is incorporated into the chromophore of EGFP via genetic code expansion to generate the abFP. When being exposed to acidic environment, protonation of Qui results in a cationic chromophore and fluorescence increase. Protocols are presented to express abFP in E. coli and mammalian cells, and to fluorescently image the endocytosis of δ opioid receptor-abFP fusion protein in mammalian cells. This strategy may be similarly applicable to other fluorescent proteins to enable acidic imaging.
Collapse
Affiliation(s)
- Nanxi Wang
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, United States
| | - Lei Wang
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, United States.
| |
Collapse
|
119
|
Cheng M, Guo C, Gross ML. The Application of Fluorine-Containing Reagents in Structural Proteomics. Angew Chem Int Ed Engl 2020; 59:5880-5889. [PMID: 31588625 PMCID: PMC7485648 DOI: 10.1002/anie.201907662] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Indexed: 01/01/2023]
Abstract
Structural proteomics refers to large-scale mapping of protein structures in order to understand the relationship between protein sequence, structure, and function. Chemical labeling, in combination with mass-spectrometry (MS) analysis, have emerged as powerful tools to enable a broad range of biological applications in structural proteomics. The key to success is a biocompatible reagent that modifies a protein without affecting its high-order structure. Fluorine, well-known to exert profound effects on the physical and chemical properties of reagents, should have an impact on structural proteomics. In this Minireview, we describe several fluorine-containing reagents that can be applied in structural proteomics. We organize their applications around four MS-based techniques: a) affinity labeling, b) activity-based protein profiling (ABPP), c) protein footprinting, and d) protein cross-linking. Our aim is to provide an overview of the research, development, and application of fluorine-containing reagents in protein structural studies.
Collapse
Affiliation(s)
- Ming Cheng
- Department of Chemistry, Washington University in St Louis, St Louis, MO 63130
| | - Chunyang Guo
- Department of Chemistry, Washington University in St Louis, St Louis, MO 63130
| | - Michael L Gross
- Department of Chemistry, Washington University in St Louis, St Louis, MO 63130
| |
Collapse
|
120
|
Affiliation(s)
- Long Xu
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular SynthesisShanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling‐Ling Road Shanghai 200032 China
| | - Jiajia Dong
- Key Laboratory of Organofluorine Chemistry, Center for Excellence in Molecular SynthesisShanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Ling‐Ling Road Shanghai 200032 China
| |
Collapse
|
121
|
Liu Y, Yu D, Guo Y, Xiao JC, Chen QY, Liu C. Arenesulfonyl Fluoride Synthesis via Copper-Catalyzed Fluorosulfonylation of Arenediazonium Salts. Org Lett 2020; 22:2281-2286. [PMID: 32115957 DOI: 10.1021/acs.orglett.0c00484] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We report herein a general and practical copper-catalyzed fluorosulfonylation reaction of a wide range of abundant arenediazonium salts to smoothly prepare various arenesulfonyl fluorides using the 1,4-diazabicyclo[2.2.2]octane-bis(sulfur dioxide) adduct as a convenient sulfonyl source in combination with KHF2 as an ideal fluorine source and without the need for additional oxidants. Interestingly, the electronic character of the arene ring in the starting arenediazonium salts has a significant impact on the reaction mechanistic pathway.
Collapse
Affiliation(s)
- Yongan Liu
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Donghai Yu
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yong Guo
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Ji-Chang Xiao
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Qing-Yun Chen
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Chao Liu
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, 100 Haiquan Road, Shanghai 201418, China.,Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
122
|
Dalton SE, Campos S. Covalent Small Molecules as Enabling Platforms for Drug Discovery. Chembiochem 2020; 21:1080-1100. [DOI: 10.1002/cbic.201900674] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Samuel E. Dalton
- Astex Pharmaceuticals 436 Cambridge Science Park Milton Road Cambridge CB4 0QA UK
| | - Sebastien Campos
- PharmaronDrug Discovery Services Europe Hertford Road Hoddesdon Hertfordshire EN11 9BU UK
| |
Collapse
|
123
|
Functionalization of amino acids with aryl fluorosulfate for prodrug construction by SuFEx chemistry. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.130926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
124
|
|
125
|
Jones LH, Kelly JW. Structure-based design and analysis of SuFEx chemical probes. RSC Med Chem 2020; 11:10-17. [PMID: 33479601 DOI: 10.1039/c9md00542k] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022] Open
Abstract
The discerning reactivity of sulfur(vi)-fluoride exchange (SuFEx) chemistry has enabled the context-specific labeling of protein binding sites by chemical probes that incorporate these versatile warheads. Emerging information from protein-probe structures and proteomic mapping experiments is helping advance our understanding of the protein microenvironment that dictates the reactivity of targetable amino acid residues. This review explores these new findings that should influence the future rational design of SuFEx probes for a multitude of applications in chemical biology and drug discovery.
Collapse
Affiliation(s)
- Lyn H Jones
- Center for Protein Degradation , Dana-Farber Cancer Institute , 360 Longwood Avenue , Boston , MA 02215 , USA .
| | - Jeffery W Kelly
- Departments of Chemistry and Molecular Medicine , The Scripps Research Institute , La Jolla , CA , USA
| |
Collapse
|
126
|
Moku B, Fang WY, Leng J, Li L, Zha GF, Rakesh KP, Qin HL. Rh-Catalyzed Highly Enantioselective Synthesis of Aliphatic Sulfonyl Fluorides. iScience 2019; 21:695-705. [PMID: 31733515 PMCID: PMC6889689 DOI: 10.1016/j.isci.2019.10.051] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 10/14/2019] [Accepted: 10/24/2019] [Indexed: 11/25/2022] Open
Abstract
Rh-catalyzed, highly enantioselective (up to 99.8% ee) synthesis of aliphatic sulfonyl fluorides was accomplished. This protocol provides a portal to a class of novel 2-aryl substituted chiral sulfonyl fluorides, which are otherwise extremely difficult to access. This asymmetric synthesis has the feature of mild conditions, excellent functional group compatibility, and wide substrate scope (51 examples) generating a wide array of structurally unique chiral β-arylated sulfonyl fluorides for sulfur(VI) fluoride exchange (SuFEx) click reaction and drug discovery.
Collapse
Affiliation(s)
- Balakrishna Moku
- State Key Laboratory of Silicate Materials for Architectures, and School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, P. R. China
| | - Wan-Yin Fang
- State Key Laboratory of Silicate Materials for Architectures, and School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, P. R. China
| | - Jing Leng
- State Key Laboratory of Silicate Materials for Architectures, and School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, P. R. China
| | - Linxian Li
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institute, Hong Kong, China
| | - Gao-Feng Zha
- State Key Laboratory of Silicate Materials for Architectures, and School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, P. R. China; Ming Wai Lau Centre for Reparative Medicine, Karolinska Institute, Hong Kong, China
| | - K P Rakesh
- State Key Laboratory of Silicate Materials for Architectures, and School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, P. R. China
| | - Hua-Li Qin
- State Key Laboratory of Silicate Materials for Architectures, and School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, P. R. China.
| |
Collapse
|
127
|
Zhang S, Xiong H, Lu F, Ma F, Gu Y, Ma P, Xu H, Yang G. Synthesis of N-Acyl Sulfamates from Fluorosulfonates and Potassium Trimethylsilyloxyl Imidates. J Org Chem 2019; 84:15380-15388. [DOI: 10.1021/acs.joc.9b02394] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
128
|
Wang XS, Chen PC, Hampton JT, Tharp JM, Reed CA, Das SK, Wang D, Hayatshahi HS, Shen Y, Liu J, Liu WR. A Genetically Encoded, Phage‐Displayed Cyclic‐Peptide Library. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908713] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
| | | | - J. Trae Hampton
- Department of Chemistry Texas A&M University College Station TX 77843-3255 USA
| | - Jeffery M. Tharp
- Department of Chemistry Texas A&M University College Station TX 77843-3255 USA
| | - Catrina A. Reed
- Department of Chemistry Texas A&M University College Station TX 77843-3255 USA
| | - Sukant K. Das
- Department of Chemistry Texas A&M University College Station TX 77843-3255 USA
| | - Duen‐Shian Wang
- Department of Pharmaceutical Sciences UNT Health Science Center Fort Worth TX 76107 USA
| | - Hamed S. Hayatshahi
- Department of Pharmaceutical Sciences UNT Health Science Center Fort Worth TX 76107 USA
| | - Yang Shen
- Department of Electrical and Computer Engineering Texas A&M University College Station TX 77843-3218 USA
| | - Jin Liu
- Department of Pharmaceutical Sciences UNT Health Science Center Fort Worth TX 76107 USA
| | - Wenshe Ray Liu
- Department of Chemistry Texas A&M University College Station TX 77843-3255 USA
| |
Collapse
|
129
|
Wang XS, Chen PHC, Hampton JT, Tharp JM, Reed CA, Das SK, Wang DS, Hayatshahi HS, Shen Y, Liu J, Liu WR. A Genetically Encoded, Phage-Displayed Cyclic-Peptide Library. Angew Chem Int Ed Engl 2019; 58:15904-15909. [PMID: 31398275 PMCID: PMC6803038 DOI: 10.1002/anie.201908713] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Indexed: 11/10/2022]
Abstract
Superior to linear peptides in biological activities, cyclic peptides are considered to have great potential as therapeutic agents. To identify cyclic-peptide ligands for therapeutic targets, phage-displayed peptide libraries in which cyclization is achieved by the covalent conjugation of cysteines have been widely used. To resolve drawbacks related to cysteine conjugation, we have invented a phage-display technique in which its displayed peptides are cyclized through a proximity-driven Michael addition reaction between a cysteine and an amber-codon-encoded Nϵ -acryloyl-lysine (AcrK). Using a randomized 6-mer library in which peptides were cyclized at two ends through a cysteine-AcrK linker, we demonstrated the successful selection of potent ligands for TEV protease and HDAC8. All selected cyclic peptide ligands showed 4- to 6-fold stronger affinity to their protein targets than their linear counterparts. We believe this approach will find broad applications in drug discovery.
Collapse
Affiliation(s)
- Xiaoshan Shayna Wang
- Department of Chemistry, Texas A&M University, College Station, TX, 77843-3255, USA
| | - Peng-Hsun Chase Chen
- Department of Chemistry, Texas A&M University, College Station, TX, 77843-3255, USA
| | - J Trae Hampton
- Department of Chemistry, Texas A&M University, College Station, TX, 77843-3255, USA
| | - Jeffery M Tharp
- Department of Chemistry, Texas A&M University, College Station, TX, 77843-3255, USA
| | - Catrina A Reed
- Department of Chemistry, Texas A&M University, College Station, TX, 77843-3255, USA
| | - Sukant K Das
- Department of Chemistry, Texas A&M University, College Station, TX, 77843-3255, USA
| | - Duen-Shian Wang
- Department of Pharmaceutical Sciences, UNT Health Science Center, Fort Worth, TX, 76107, USA
| | - Hamed S Hayatshahi
- Department of Pharmaceutical Sciences, UNT Health Science Center, Fort Worth, TX, 76107, USA
| | - Yang Shen
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, 77843-3218, USA
| | - Jin Liu
- Department of Pharmaceutical Sciences, UNT Health Science Center, Fort Worth, TX, 76107, USA
| | - Wenshe Ray Liu
- Department of Chemistry, Texas A&M University, College Station, TX, 77843-3255, USA
| |
Collapse
|
130
|
Moku B, Fang WY, Leng J, Kantchev EAB, Qin HL. Rh(I)–Diene-Catalyzed Addition of (Hetero)aryl Functionality to 1,3-Dienylsulfonyl Fluorides Achieving Exclusive Regioselectivity and High Enantioselectivity: Generality and Mechanism. ACS Catal 2019. [DOI: 10.1021/acscatal.9b03640] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Balakrishna Moku
- State Key Laboratory of Silicate Materials for Architectures; and School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, China
| | - Wan-Yin Fang
- State Key Laboratory of Silicate Materials for Architectures; and School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, China
| | - Jing Leng
- State Key Laboratory of Silicate Materials for Architectures; and School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, China
| | - Eric Assen B. Kantchev
- State Key Laboratory of Silicate Materials for Architectures; and School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, China
| | - Hua-Li Qin
- State Key Laboratory of Silicate Materials for Architectures; and School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, 205 Luoshi Road, Wuhan 430070, China
| |
Collapse
|
131
|
Zhang G, Zhao Y, Ding C. A cascade process for directly converting nitriles (RCN) to cyanamides (RNHCN) via SO 2F 2-activated Tiemann rearrangement. Org Biomol Chem 2019; 17:7684-7688. [PMID: 31393502 DOI: 10.1039/c9ob01547g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A simple, mild and practical process for the direct conversion of nitriles to cyanamides was newly discovered and exhibited a wide substrate scope as well as great functional group-tolerability (36 examples). In this efficient strategy, the in situ generated amidoximes obtained from the reaction of nitriles with hydroxylamine subsequently underwent Tiemann rearrangement, producing the corresponding cyanamides with great isolated yields under SO2F2. Additionally, the control experiments reportedly shed light on the tentative mechanism involved in the formation and elimination of the key intermediate: a sulfonyl ester.
Collapse
Affiliation(s)
- Guofu Zhang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Yiyong Zhao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Chengrong Ding
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| |
Collapse
|
132
|
SuFEx-enabled, agnostic discovery of covalent inhibitors of human neutrophil elastase. Proc Natl Acad Sci U S A 2019; 116:18808-18814. [PMID: 31484779 DOI: 10.1073/pnas.1909972116] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Sulfur fluoride exchange (SuFEx) has emerged as the new generation of click chemistry. We report here a SuFEx-enabled, agnostic approach for the discovery and optimization of covalent inhibitors of human neutrophil elastase (hNE). Evaluation of our ever-growing collection of SuFExable compounds toward various biological assays unexpectedly revealed a selective and covalent hNE inhibitor: benzene-1,2-disulfonyl fluoride. Synthetic derivatization of the initial hit led to a more potent agent, 2-(fluorosulfonyl)phenyl fluorosulfate with IC50 0.24 μM and greater than 833-fold selectivity over the homologous neutrophil serine protease, cathepsin G. The optimized, yet simple benzenoid probe only modified active hNE and not its denatured form.
Collapse
|
133
|
Xu R, Xu T, Yang M, Cao T, Liao S. A rapid access to aliphatic sulfonyl fluorides. Nat Commun 2019; 10:3752. [PMID: 31434898 PMCID: PMC6704106 DOI: 10.1038/s41467-019-11805-6] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 08/06/2019] [Indexed: 01/12/2023] Open
Abstract
The past few years have witnessed a fast-growing research interest on the study of sulfonyl fluorides as reactive probes in chemical biology and molecular pharmacology, which raises an urgent need for the development of effective synthetic methods to expand the toolkit. Herein, we present the invention of a facile and general approach for the synthesis of aliphatic sulfonyl fluorides via visible-light-mediated decarboxylative fluorosulfonylethylation. The method is based on abundant carboxylic acid feed stock, applicable to various alkyl carboxylic acids including primary, secondary, and tertiary acids, and is also suitable for the modification of natural products like amino acids, peptides, as well as drugs, forging a rapid, metal-free approach to build sulfonyl fluoride compound libraries of considerable structural diversity. Further diversification of the SO2F-containing products is also demonstrated, which allows for access to a range of pharmaceutically important motifs such as sultam, sulfonate, and sulfonamide. Sulfonyl fluorides are important probes in chemical biology and molecular pharmacology. Here, the authors report a mild visible light-mediated decarboxylative fluorosulfonylethylation for the synthesis of aliphatic sulfonyl fluorides from a wide range of carboxylic acids, including natural products and drug derivatives.
Collapse
Affiliation(s)
- Ruting Xu
- Key Laboratory for Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Tianxiao Xu
- Key Laboratory for Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Mingcheng Yang
- Key Laboratory for Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Tianpeng Cao
- Key Laboratory for Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, 350116, China
| | - Saihu Liao
- Key Laboratory for Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou, 350116, China.
| |
Collapse
|
134
|
Won Y, Pagar AD, Patil MD, Dawson PE, Yun H. Recent Advances in Enzyme Engineering through Incorporation of Unnatural Amino Acids. BIOTECHNOL BIOPROC E 2019. [DOI: 10.1007/s12257-019-0163-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
135
|
A SO2F2 mediated mild, practical, and gram-scale dehydroxylative transforming primary alcohols to quaternary ammonium salts. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
136
|
Zhang G, Zhao Y, Xuan L, Ding C. SO2
F2
-Activated Efficient Beckmann Rearrangement of Ketoximes for Accessing Amides and Lactams. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900844] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Guofu Zhang
- College of Chemical Engineering; Zhejiang University of Technology; 310014 Hangzhou P. R. China
| | - Yiyong Zhao
- College of Chemical Engineering; Zhejiang University of Technology; 310014 Hangzhou P. R. China
| | - Lidi Xuan
- College of Chemical Engineering; Zhejiang University of Technology; 310014 Hangzhou P. R. China
| | - Chengrong Ding
- College of Chemical Engineering; Zhejiang University of Technology; 310014 Hangzhou P. R. China
| |
Collapse
|
137
|
Nödling AR, Spear LA, Williams TL, Luk LYP, Tsai YH. Using genetically incorporated unnatural amino acids to control protein functions in mammalian cells. Essays Biochem 2019; 63:237-266. [PMID: 31092687 PMCID: PMC6610526 DOI: 10.1042/ebc20180042] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 03/14/2019] [Accepted: 03/19/2019] [Indexed: 02/07/2023]
Abstract
Genetic code expansion allows unnatural (non-canonical) amino acid incorporation into proteins of interest by repurposing the cellular translation machinery. The development of this technique has enabled site-specific incorporation of many structurally and chemically diverse amino acids, facilitating a plethora of applications, including protein imaging, engineering, mechanistic and structural investigations, and functional regulation. Particularly, genetic code expansion provides great tools to study mammalian proteins, of which dysregulations often have important implications in health. In recent years, a series of methods has been developed to modulate protein function through genetically incorporated unnatural amino acids. In this review, we will first discuss the basic concept of genetic code expansion and give an up-to-date list of amino acids that can be incorporated into proteins in mammalian cells. We then focus on the use of unnatural amino acids to activate, inhibit, or reversibly modulate protein function by translational, optical or chemical control. The features of each approach will also be highlighted.
Collapse
Affiliation(s)
| | - Luke A Spear
- School of Chemistry, Cardiff University, Cardiff, Wales, United Kingdom
| | - Thomas L Williams
- School of Chemistry, Cardiff University, Cardiff, Wales, United Kingdom
| | - Louis Y P Luk
- School of Chemistry, Cardiff University, Cardiff, Wales, United Kingdom
| | - Yu-Hsuan Tsai
- School of Chemistry, Cardiff University, Cardiff, Wales, United Kingdom
| |
Collapse
|
138
|
Liu J, Li S, Aslam NA, Zheng F, Yang B, Cheng R, Wang N, Rozovsky S, Wang PG, Wang Q, Wang L. Genetically Encoding Photocaged Quinone Methide to Multitarget Protein Residues Covalently in Vivo. J Am Chem Soc 2019; 141:9458-9462. [PMID: 31184146 DOI: 10.1021/jacs.9b01738] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Genetically introducing covalent bonds into proteins in vivo with residue specificity is affording innovative ways for protein research and engineering, yet latent bioreactive unnatural amino acids (Uaas) genetically encoded to date react with one to few natural residues only, limiting the variety of proteins and the scope of applications amenable to this technology. Here we report the genetic encoding of (2 R)-2-amino-3-fluoro-3-(4-((2-nitrobenzyl)oxy) phenyl) propanoic acid (FnbY) in Escherichia coli and mammalian cells. Upon photoactivation, FnbY generated a reactive quinone methide (QM), which selectively reacted with nine natural amino acid residues placed in proximity in proteins directly in live cells. In addition to Cys, Lys, His, and Tyr, photoactivated FnbY also reacted with Trp, Met, Arg, Asn, and Gln, which are inaccessible with existing latent bioreactive Uaas. FnbY thus dramatically expanded the number of residues for covalent targeting in vivo. QM has longer half-life than the intermediates of conventional photo-cross-linking Uaas, and FnbY exhibited cross-linking efficiency higher than p-azido-phenylalanine. The photoactivatable and multitargeting reactivity of FnbY with selectivity toward nucleophilic residues will be valuable for addressing diverse proteins and broadening the scope of applications through exploiting covalent bonding in vivo for chemical biology, biotherapeutics, and protein engineering.
Collapse
Affiliation(s)
- Jun Liu
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute , University of California San Francisco , 555 Mission Bay Boulevard South , San Francisco , California 94158 , United States
| | - Shanshan Li
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute , University of California San Francisco , 555 Mission Bay Boulevard South , San Francisco , California 94158 , United States.,Department of Chemistry and Center for Therapeutics and Diagnostics , Georgia State University , Atlanta , Georgia 30302 , United States
| | - Nayyar A Aslam
- Hangzhou Research Institute of Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Hangzhou 310018 , China
| | - Feng Zheng
- Hangzhou Research Institute of Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Hangzhou 310018 , China
| | - Bing Yang
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute , University of California San Francisco , 555 Mission Bay Boulevard South , San Francisco , California 94158 , United States
| | - Rujin Cheng
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States
| | - Nanxi Wang
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute , University of California San Francisco , 555 Mission Bay Boulevard South , San Francisco , California 94158 , United States
| | - Sharon Rozovsky
- Department of Chemistry and Biochemistry , University of Delaware , Newark , Delaware 19716 , United States
| | - Peng G Wang
- Department of Chemistry and Center for Therapeutics and Diagnostics , Georgia State University , Atlanta , Georgia 30302 , United States
| | - Qian Wang
- Hangzhou Research Institute of Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Hangzhou 310018 , China
| | - Lei Wang
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute , University of California San Francisco , 555 Mission Bay Boulevard South , San Francisco , California 94158 , United States
| |
Collapse
|
139
|
St Amant AH, Huang F, Lin J, Rickert K, Oganesyan V, Lemen D, Mao S, Harper J, Marelli M, Wu H, Gao C, Read de Alaniz J, Christie RJ. A Diene-Containing Noncanonical Amino Acid Enables Dual Functionality in Proteins: Rapid Diels-Alder Reaction with Maleimide or Proximity-Based Dimerization. Angew Chem Int Ed Engl 2019; 58:8489-8493. [PMID: 31018033 DOI: 10.1002/anie.201903494] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Indexed: 12/19/2022]
Abstract
Here, we describe a diene-containing noncanonical amino acid (ncAA) capable of undergoing fast and selective normal electron-demand Diels-Alder (DA) reactions following its incorporation into antibodies. A cyclopentadiene derivative of lysine (CpHK) served as the reactive handle for DA transformations and the substrate for genetic incorporation. CpHK incorporated into antibodies with high efficiency and was available for maleimide conjugation or self-reaction depending on position in the amino acid sequence. CpHK at position K274 reacted with the maleimide drug-linker AZ1508 at a rate of ≈79 m-1 s-1 to produce functional antibody-drug conjugates (ADCs) in a one-step process. Incorporation of CpHK at position S239 resulted in dimerization, which covalently linked antibody heavy chains together. The diene ncAA described here is capable of producing therapeutic protein conjugates with clinically validated and widely available maleimide compounds, while also enabling proximity-based stapling through a DA dimerization reaction.
Collapse
Affiliation(s)
- Andre H St Amant
- Department of Chemistry and Biochemistry, University of California - Santa Barbara, Santa Barbara, California, 93106, USA
| | - Fengying Huang
- Antibody Discovery and Protein Engineering Department, AstraZeneca Biopharmaceuticals R&D, One MedImmune Way, Gaithersburg, MD, 20878, USA
| | - Jia Lin
- Antibody Discovery and Protein Engineering Department, AstraZeneca Biopharmaceuticals R&D, One MedImmune Way, Gaithersburg, MD, 20878, USA
| | - Keith Rickert
- Antibody Discovery and Protein Engineering Department, AstraZeneca Biopharmaceuticals R&D, One MedImmune Way, Gaithersburg, MD, 20878, USA
| | - Vaheh Oganesyan
- Antibody Discovery and Protein Engineering Department, AstraZeneca Biopharmaceuticals R&D, One MedImmune Way, Gaithersburg, MD, 20878, USA
| | - Daniel Lemen
- Antibody Discovery and Protein Engineering Department, AstraZeneca Biopharmaceuticals R&D, One MedImmune Way, Gaithersburg, MD, 20878, USA
| | - Shenlan Mao
- AstraZeneca Oncology R&D, One MedImmune Way, Gaithersburg, MD, 20878, USA
| | - Jay Harper
- AstraZeneca Oncology R&D, One MedImmune Way, Gaithersburg, MD, 20878, USA
| | - Marcello Marelli
- Antibody Discovery and Protein Engineering Department, AstraZeneca Biopharmaceuticals R&D, One MedImmune Way, Gaithersburg, MD, 20878, USA
| | - Herren Wu
- Antibody Discovery and Protein Engineering Department, AstraZeneca Biopharmaceuticals R&D, One MedImmune Way, Gaithersburg, MD, 20878, USA
| | - Changshou Gao
- Antibody Discovery and Protein Engineering Department, AstraZeneca Biopharmaceuticals R&D, One MedImmune Way, Gaithersburg, MD, 20878, USA
| | - Javier Read de Alaniz
- Department of Chemistry and Biochemistry, University of California - Santa Barbara, Santa Barbara, California, 93106, USA
| | - R James Christie
- Antibody Discovery and Protein Engineering Department, AstraZeneca Biopharmaceuticals R&D, One MedImmune Way, Gaithersburg, MD, 20878, USA
| |
Collapse
|
140
|
St. Amant AH, Huang F, Lin J, Rickert K, Oganesyan V, Lemen D, Mao S, Harper J, Marelli M, Wu H, Gao C, Read de Alaniz J, Christie RJ. A Diene‐Containing Noncanonical Amino Acid Enables Dual Functionality in Proteins: Rapid Diels–Alder Reaction with Maleimide or Proximity‐Based Dimerization. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201903494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Andre H. St. Amant
- Department of Chemistry and BiochemistryUniversity of California – Santa Barbara Santa Barbara California 93106 USA
| | - Fengying Huang
- Antibody Discovery and Protein Engineering DepartmentAstraZeneca Biopharmaceuticals R&D One MedImmune Way Gaithersburg MD 20878 USA
| | - Jia Lin
- Antibody Discovery and Protein Engineering DepartmentAstraZeneca Biopharmaceuticals R&D One MedImmune Way Gaithersburg MD 20878 USA
| | - Keith Rickert
- Antibody Discovery and Protein Engineering DepartmentAstraZeneca Biopharmaceuticals R&D One MedImmune Way Gaithersburg MD 20878 USA
| | - Vaheh Oganesyan
- Antibody Discovery and Protein Engineering DepartmentAstraZeneca Biopharmaceuticals R&D One MedImmune Way Gaithersburg MD 20878 USA
| | - Daniel Lemen
- Antibody Discovery and Protein Engineering DepartmentAstraZeneca Biopharmaceuticals R&D One MedImmune Way Gaithersburg MD 20878 USA
| | - Shenlan Mao
- AstraZeneca Oncology R&D One MedImmune Way Gaithersburg MD 20878 USA
| | - Jay Harper
- AstraZeneca Oncology R&D One MedImmune Way Gaithersburg MD 20878 USA
| | - Marcello Marelli
- Antibody Discovery and Protein Engineering DepartmentAstraZeneca Biopharmaceuticals R&D One MedImmune Way Gaithersburg MD 20878 USA
| | - Herren Wu
- Antibody Discovery and Protein Engineering DepartmentAstraZeneca Biopharmaceuticals R&D One MedImmune Way Gaithersburg MD 20878 USA
| | - Changshou Gao
- Antibody Discovery and Protein Engineering DepartmentAstraZeneca Biopharmaceuticals R&D One MedImmune Way Gaithersburg MD 20878 USA
| | - Javier Read de Alaniz
- Department of Chemistry and BiochemistryUniversity of California – Santa Barbara Santa Barbara California 93106 USA
| | - R. James Christie
- Antibody Discovery and Protein Engineering DepartmentAstraZeneca Biopharmaceuticals R&D One MedImmune Way Gaithersburg MD 20878 USA
| |
Collapse
|
141
|
Jiang Y, Sun B, Fang WY, Qin HL. A Transition-Metal-Free One-Pot Cascade Process for Transformation of Primary Alcohols (RCH2
OH) to Nitriles (RCN) Mediated by SO2
F2. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900478] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Ying Jiang
- State Key Laboratory of Silicate Materials for Architectures; and School of Chemistry; Chemical Engineering and Life Science; Wuhan University of Technology; 205 Luoshi Road 430070 Wuhan P. R. China
| | - Bing Sun
- State Key Laboratory of Silicate Materials for Architectures; and School of Chemistry; Chemical Engineering and Life Science; Wuhan University of Technology; 205 Luoshi Road 430070 Wuhan P. R. China
| | - Wan-Yin Fang
- State Key Laboratory of Silicate Materials for Architectures; and School of Chemistry; Chemical Engineering and Life Science; Wuhan University of Technology; 205 Luoshi Road 430070 Wuhan P. R. China
| | - Hua-Li Qin
- State Key Laboratory of Silicate Materials for Architectures; and School of Chemistry; Chemical Engineering and Life Science; Wuhan University of Technology; 205 Luoshi Road 430070 Wuhan P. R. China
| |
Collapse
|
142
|
Yang B, Wang N, Schnier PD, Zheng F, Zhu H, Polizzi NF, Ittuveetil A, Saikam V, DeGrado WF, Wang Q, Wang PG, Wang L. Genetically Introducing Biochemically Reactive Amino Acids Dehydroalanine and Dehydrobutyrine in Proteins. J Am Chem Soc 2019; 141:7698-7703. [PMID: 31038942 DOI: 10.1021/jacs.9b02611] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Expansion of the genetic code with unnatural amino acids (Uaas) has significantly increased the chemical space available to proteins for exploitation. Due to the inherent limitation of translational machinery and the required compatibility with biological settings, function groups introduced via Uaas to date are restricted to chemically inert, bioorthogonal, or latent bioreactive groups. To break this barrier, here we report a new strategy enabling the specific incorporation of biochemically reactive amino acids into proteins. A latent bioreactive amino acid is genetically encoded at a position proximal to the target natural amino acid; they react via proximity-enabled reactivity, selectively converting the latter into a reactive residue in situ. Using this Genetically Encoded Chemical COnversion (GECCO) strategy and harnessing the sulfur-fluoride exchange (SuFEx) reaction between fluorosulfate-l-tyrosine and serine or threonine, we site-specifically generated the reactive dehydroalanine and dehydrobutyrine into proteins. GECCO works both inter- and intramolecularly, and is compatible with various proteins. We further labeled the resultant dehydroalanine-containing protein with thiol-saccharide to generate glycoprotein mimetics. GECCO represents a new solution for selectively introducing biochemically reactive amino acids into proteins and is expected to open new avenues for exploiting chemistry in live systems for biological research and engineering.
Collapse
Affiliation(s)
| | | | | | - Feng Zheng
- Hangzhou Research Institute of Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Hangzhou 310018 , China
| | - He Zhu
- Department of Chemistry and Center for Therapeutics and Diagnostics , Georgia State University , Atlanta , Georgia 30302 , United States
| | | | - Avinash Ittuveetil
- Department of Chemistry and Center for Therapeutics and Diagnostics , Georgia State University , Atlanta , Georgia 30302 , United States
| | - Varma Saikam
- Department of Chemistry and Center for Therapeutics and Diagnostics , Georgia State University , Atlanta , Georgia 30302 , United States
| | | | - Qian Wang
- Hangzhou Research Institute of Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Hangzhou 310018 , China
| | - Peng G Wang
- Department of Chemistry and Center for Therapeutics and Diagnostics , Georgia State University , Atlanta , Georgia 30302 , United States
| | | |
Collapse
|
143
|
Rezhdo A, Islam M, Huang M, Van Deventer JA. Future prospects for noncanonical amino acids in biological therapeutics. Curr Opin Biotechnol 2019; 60:168-178. [PMID: 30974337 DOI: 10.1016/j.copbio.2019.02.020] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 02/22/2019] [Indexed: 12/12/2022]
Abstract
There is growing evidence that noncanonical amino acids (ncAAs) can be utilized in the creation of biological therapeutics ranging from protein conjugates to cell-based therapies. However, when does genetically encoding ncAAs yield biologics with unique properties compared to other approaches? In this review, we attempt to answer this question in the broader context of therapeutic development, emphasizing advances within the past two years. In several areas, ncAAs add valuable routes to therapeutically relevant entities, but application-specific needs ultimately determine whether ncAA-mediated or alternative solutions are preferred. Looking forward, using ncAAs to perform 'protein medicinal chemistry,' in which atomic-level changes to proteins dramatically enhance therapeutic properties, is a promising emerging area. Further upgrades to the performance of ncAA incorporation technologies will be essential to realizing the full potential of ncAAs in biological therapeutics.
Collapse
Affiliation(s)
- Arlinda Rezhdo
- Chemical and Biological Engineering Department, Tufts University, Medford, MA 02155, United States
| | - Mariha Islam
- Chemical and Biological Engineering Department, Tufts University, Medford, MA 02155, United States
| | - Manjie Huang
- Chemical and Biological Engineering Department, Tufts University, Medford, MA 02155, United States
| | - James A Van Deventer
- Chemical and Biological Engineering Department, Tufts University, Medford, MA 02155, United States; Biomedical Engineering Department, Tufts University, Medford, MA 02155, United States.
| |
Collapse
|
144
|
Fang WY, Qin HL. Cascade Process for Direct Transformation of Aldehydes (RCHO) to Nitriles (RCN) Using Inorganic Reagents NH 2OH/Na 2CO 3/SO 2F 2 in DMSO. J Org Chem 2019; 84:5803-5812. [PMID: 30868885 DOI: 10.1021/acs.joc.8b03164] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A simple, mild, and practical process for direct conversion of aldehydes to nitriles was developed feathering a wide substrate scope and great functional group tolerability (52 examples, over 90% yield in most cases) using inorganic reagents (NH2OH/Na2CO3/SO2F2) in DMSO. This method allows for transformations of readily available, inexpensive, and abundant aldehydes to highly valuable nitriles in a pot, atom, and step-economical manner without transition metals. This protocol will serve as a robust tool for the installation of cyano-moieties to complicated molecules.
Collapse
Affiliation(s)
- Wan-Yin Fang
- State Key Laboratory of Silicate Materials for Architectures and School of Chemistry, Chemical Engineering, and Life Science , Wuhan University of Technology , 205 Luoshi Road , Wuhan 430070 , P. R. China
| | - Hua-Li Qin
- State Key Laboratory of Silicate Materials for Architectures and School of Chemistry, Chemical Engineering, and Life Science , Wuhan University of Technology , 205 Luoshi Road , Wuhan 430070 , P. R. China
| |
Collapse
|
145
|
Jin X, Park OJ, Hong SH. Incorporation of non-standard amino acids into proteins: challenges, recent achievements, and emerging applications. Appl Microbiol Biotechnol 2019; 103:2947-2958. [PMID: 30790000 PMCID: PMC6449208 DOI: 10.1007/s00253-019-09690-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 02/07/2019] [Accepted: 02/08/2019] [Indexed: 12/19/2022]
Abstract
The natural genetic code only allows for 20 standard amino acids in protein translation, but genetic code reprogramming enables the incorporation of non-standard amino acids (NSAAs). Proteins containing NSAAs provide enhanced or novel properties and open diverse applications. With increased attention to the recent advancements in synthetic biology, various improved and novel methods have been developed to incorporate single and multiple distinct NSAAs into proteins. However, various challenges remain in regard to NSAA incorporation, such as low yield and misincorporation. In this review, we summarize the recent efforts to improve NSAA incorporation by utilizing orthogonal translational system optimization, cell-free protein synthesis, genomically recoded organisms, artificial codon boxes, quadruplet codons, and orthogonal ribosomes, before closing with a discussion of the emerging applications of NSAA incorporation.
Collapse
Affiliation(s)
- Xing Jin
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL, 60616, USA
| | - Oh-Jin Park
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL, 60616, USA
- Department of Biological and Chemical Engineering, Yanbian University of Science and Technology, Yanji, Jilin, People's Republic of China
| | - Seok Hoon Hong
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, Chicago, IL, 60616, USA.
| |
Collapse
|
146
|
Gehringer M, Laufer SA. Emerging and Re-Emerging Warheads for Targeted Covalent Inhibitors: Applications in Medicinal Chemistry and Chemical Biology. J Med Chem 2019; 62:5673-5724. [PMID: 30565923 DOI: 10.1021/acs.jmedchem.8b01153] [Citation(s) in RCA: 402] [Impact Index Per Article: 80.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Targeted covalent inhibitors (TCIs) are designed to bind poorly conserved amino acids by means of reactive groups, the so-called warheads. Currently, targeting noncatalytic cysteine residues with acrylamides and other α,β-unsaturated carbonyl compounds is the predominant strategy in TCI development. The recent ascent of covalent drugs has stimulated considerable efforts to characterize alternative warheads for the covalent-reversible and irreversible engagement of noncatalytic cysteine residues as well as other amino acids. This Perspective article provides an overview of warheads-beyond α,β-unsaturated amides-recently used in the design of targeted covalent ligands. Promising reactive groups that have not yet demonstrated their utility in TCI development are also highlighted. Special emphasis is placed on the discussion of reactivity and of case studies illustrating applications in medicinal chemistry and chemical biology.
Collapse
Affiliation(s)
- Matthias Gehringer
- Department of Pharmaceutical/Medicinal Chemistry , Eberhard Karls University Tübingen , Auf der Morgenstelle 8 , 72076 Tübingen , Germany
| | - Stefan A Laufer
- Department of Pharmaceutical/Medicinal Chemistry , Eberhard Karls University Tübingen , Auf der Morgenstelle 8 , 72076 Tübingen , Germany
| |
Collapse
|
147
|
Lekkala R, Lekkala R, Moku B, Rakesh KP, Qin HL. Applications of sulfuryl fluoride (SO2F2) in chemical transformations. Org Chem Front 2019. [DOI: 10.1039/c9qo00747d] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A number of novel methodologies concerning the chemical, biological and medicinal applications of sulfuryl fluoride (SO2F2) gas have dramatically improved year by year.
Collapse
Affiliation(s)
- Ravindar Lekkala
- State Key Laboratory of Silicate Materials for Architectures
- and School of Chemistry
- Chemical Engineering and Life Science
- Wuhan University of Technology
- Wuhan
| | - Revathi Lekkala
- State Key Laboratory of Silicate Materials for Architectures
- and School of Chemistry
- Chemical Engineering and Life Science
- Wuhan University of Technology
- Wuhan
| | - Balakrishna Moku
- State Key Laboratory of Silicate Materials for Architectures
- and School of Chemistry
- Chemical Engineering and Life Science
- Wuhan University of Technology
- Wuhan
| | - K. P. Rakesh
- State Key Laboratory of Silicate Materials for Architectures
- and School of Chemistry
- Chemical Engineering and Life Science
- Wuhan University of Technology
- Wuhan
| | - Hua-Li Qin
- State Key Laboratory of Silicate Materials for Architectures
- and School of Chemistry
- Chemical Engineering and Life Science
- Wuhan University of Technology
- Wuhan
| |
Collapse
|
148
|
Barrow AS, Smedley CJ, Zheng Q, Li S, Dong J, Moses JE. The growing applications of SuFEx click chemistry. Chem Soc Rev 2019; 48:4731-4758. [DOI: 10.1039/c8cs00960k] [Citation(s) in RCA: 181] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
SuFEx (Sulfur Fluoride Exchange) is a modular, next generation family of click reactions, geared towards the rapid and reliable assembly of functional molecules.
Collapse
Affiliation(s)
- A. S. Barrow
- La Trobe Institute for Molecular Science
- La Trobe University
- Melbourne
- Australia
| | - C. J. Smedley
- La Trobe Institute for Molecular Science
- La Trobe University
- Melbourne
- Australia
| | - Q. Zheng
- Department of Chemistry
- The Scripps Research Institute
- La Jolla
- USA
| | - S. Li
- School of Chemistry
- Sun Yat-Sen University
- Guangzhou 510275
- P. R. China
| | - J. Dong
- Key Laboratory of Organofluorine Chemistry
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- University of Chinese Academy of Sciences
- Chinese Academy of Sciences
| | - J. E. Moses
- La Trobe Institute for Molecular Science
- La Trobe University
- Melbourne
- Australia
| |
Collapse
|
149
|
Leng J, Qin HL. SO2F2 mediated transformation of pyrazolones into pyrazolyl fluorosulfates. Org Biomol Chem 2019; 17:5001-5008. [DOI: 10.1039/c9ob00903e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The construction of a class of novel N-heterocyclic molecules containing both pyrazole and fluorosulfate functionalities was achieved through the reactions of pyrazolones with SO2F2 in good to excellent yields.
Collapse
Affiliation(s)
- Jing Leng
- State Key Laboratory of Silicate Materials for Architectures
- and School of Chemistry
- Chemical Engineering and Life Science
- Wuhan University of Technology
- Wuhan
| | - Hua-Li Qin
- State Key Laboratory of Silicate Materials for Architectures
- and School of Chemistry
- Chemical Engineering and Life Science
- Wuhan University of Technology
- Wuhan
| |
Collapse
|
150
|
Genetically encoding photoswitchable click amino acids for general optical control of conformation and function of proteins. Methods Enzymol 2019; 624:249-264. [PMID: 31370932 PMCID: PMC6684330 DOI: 10.1016/bs.mie.2019.04.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Over the past decade, photoswitchable molecules have been emerging as attractive tools for investigating biological processes with spatiotemporal resolution in a minimally invasive fashion. Photoswitches built on light-sensitive proteins or domains have significantly advanced neuronal and cellular studies. To install photosensitivity to general proteins and to enable high specificity for modulation, photoswitchable click amino acids (PSCaas) based on azobenzene have been developed and recently genetically incorporated into proteins via the expansion of the genetic code. PSCaas allow targeting selected sites in a protein for high specificity and are generally applicable to various proteins. In addition, PSCaas contain a click functional group, which selectively reacts with an appropriately positioned cysteine forming a photocontrollable bridge on the protein in situ. The photocontrollable bridge enables reversible modulation of the secondary structure of the spanned region and thus the function of the protein. In this chapter we describe the design and genetic encoding of PSCaa. Protocols are presented for incorporating PSCaa into a model protein calmodulin to build the bridge followed by photocontrol of calmodulin's conformation and binding function.
Collapse
|