101
|
Merzel R, Orr BG, Banaszak Holl MM. Distributions: The Importance of the Chemist's Molecular View for Biological Materials. Biomacromolecules 2018; 19:1469-1484. [PMID: 29663809 PMCID: PMC5954352 DOI: 10.1021/acs.biomac.8b00375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/15/2018] [Indexed: 12/29/2022]
Abstract
Characterization of materials with biological applications and assessment of physiological effects of therapeutic interventions are critical for translating research to the clinic and preventing adverse reactions. Analytical techniques typically used to characterize targeted nanomaterials and tissues rely on bulk measurement. Therefore, the resulting data represent an average structure of the sample, masking stochastic (randomly generated) distributions that are commonly present. In this Perspective, we examine almost 20 years of work our group has done in different fields to characterize and control distributions. We discuss the analytical techniques and statistical methods we use and illustrate how we leverage them in tandem with other bulk techniques. We also discuss the challenges and time investment associated with taking such a detailed view of distributions as well as the risks of not fully appreciating the extent of heterogeneity present in many systems. Through three case studies showcasing our research on conjugated polymers for drug delivery, collagen in bone, and endogenous protein nanoparticles, we discuss how identification and characterization of distributions, i.e., a molecular view of the system, was critical for understanding the observed biological effects. In all three cases, data would have been misinterpreted and insights missed if we had only relied upon spatially averaged data. Finally, we discuss how new techniques are starting to bridge the gap between bulk and molecular level analysis, bringing more opportunity and capacity to the research community to address the challenges of distributions and their roles in biology, chemistry, and the translation of science and engineering to societal challenges.
Collapse
Affiliation(s)
- Rachel
L. Merzel
- Department
of Chemistry and Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Bradford G. Orr
- Department
of Chemistry and Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | | |
Collapse
|
102
|
Wongpinyochit T, Johnston BF, Seib FP. Degradation Behavior of Silk Nanoparticles-Enzyme Responsiveness. ACS Biomater Sci Eng 2018; 4:942-951. [PMID: 33418776 DOI: 10.1021/acsbiomaterials.7b01021] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Silk nanoparticles are viewed as promising vectors for intracellular drug delivery as they can be taken up into cells by endocytosis and trafficked to lysosomes, where lysosomal enzymes and the low pH trigger payload release. However, the subsequent degradation of the silk nanoparticles themselves still requires study. Here, we report the responsiveness of native and PEGylated silk nanoparticles to degradation following exposure to proteolytic enzymes (protease XIV and α-chymotrypsin) and papain, a cysteine protease. Both native and PEGylated silk nanoparticles showed similar degradation behavior over a 20 day exposure period (degradation rate: protease XIV > papain ≫ α-chymotrypsin). Within 1 day, the silk nanoparticles were rapidly degraded by protease XIV, resulting in a ∼50% mass loss, an increase in particle size, and a reduction in the amorphous content of the silk secondary structure. By contrast, 10 days of papain treatment was necessary to observe any significant change in nanoparticle properties, and α-chymotrypsin treatment had no effect on silk nanoparticle characteristics over the 20-day study period. Silk nanoparticles were also exposed ex vivo to mammalian lysosomal enzyme preparations to mimic the complex lysosomal microenvironment. Preliminary results indicated a 45% reduction in the silk nanoparticle size over a 5-day exposure. Overall, the results demonstrate that silk nanoparticles undergo enzymatic degradation, but the extent and kinetics are enzyme-specific.
Collapse
Affiliation(s)
- Thidarat Wongpinyochit
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, U.K
| | - Blair F Johnston
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, U.K
| | - F Philipp Seib
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, U.K.,Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials Dresden, Hohe Strasse 6, 01069 Dresden, Germany
| |
Collapse
|
103
|
Transport mechanism of lipid covered saquinavir pure drug nanoparticles in intestinal epithelium. J Control Release 2018; 269:159-170. [DOI: 10.1016/j.jconrel.2017.11.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 11/04/2017] [Accepted: 11/09/2017] [Indexed: 12/13/2022]
|
104
|
Aichhorn S, Linhardt A, Halfmann A, Nadlinger M, Kirchberger S, Stadler M, Dillinger B, Distel M, Dohnal A, Teasdale I, Schöfberger W. A pH-sensitive Macromolecular Prodrug as TLR7/8 Targeting Immune Response Modifier. Chemistry 2017; 23:17721-17726. [PMID: 28758266 PMCID: PMC5763314 DOI: 10.1002/chem.201702942] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Indexed: 11/09/2022]
Abstract
The chemical synthesis and biological activity of novel functionalized imidazoquinoline derivatives (ImQ) to generate Toll-like receptor (TLR) 7/8 specific prodrugs are presented. In vivo activity of ImQs to induce inflammation was confirmed in zebrafish larvae. After covalent ligation to fully biodegradable polyphosphazenes (ImQ-polymer), the macromolecular prodrugs were designed to undergo intracellular pH-sensitive release of ImQs to induce inflammation through binding to endosomal TLR7/8 (danger signal). We showed ImQ dissociation from prodrugs at a pH 5 pointing towards endosomal prodrug degradability. ImQ-polymers strongly activated ovalbumin-specific T cells in murine splenocytes as shown by increased proliferation and expression of the IL-2 receptor (CD25) on CD8+ T cells accompanied by strong IFN-γ release. ImQ prodrugs presented here are suggested to form the basis of novel nanovaccines, for example, for intravenous or intratumoral cancer immunotherapeutic applications to trigger physiological antitumor immune responses.
Collapse
Affiliation(s)
- Stefan Aichhorn
- Institute of Organic ChemistryJohannes Kepler UniversityAltenberger Straße 694040LinzAustria
| | - Anne Linhardt
- Institute of Polymer ChemistryJohannes Kepler UniversityAltenberger Straße 694040LinzAustria
| | - Angela Halfmann
- Tumorimmunology and Innovative Cancer Models, St. Anna Kinderkrebsforschung e.V. CCRI-Children's Cancer Research InstituteZimmermannplatz 101090ViennaAustria
| | - Markus Nadlinger
- Institute of Organic ChemistryJohannes Kepler UniversityAltenberger Straße 694040LinzAustria
| | - Stefanie Kirchberger
- Tumorimmunology and Innovative Cancer Models, St. Anna Kinderkrebsforschung e.V. CCRI-Children's Cancer Research InstituteZimmermannplatz 101090ViennaAustria
| | - Manuela Stadler
- Tumorimmunology and Innovative Cancer Models, St. Anna Kinderkrebsforschung e.V. CCRI-Children's Cancer Research InstituteZimmermannplatz 101090ViennaAustria
| | - Barbara Dillinger
- Tumorimmunology and Innovative Cancer Models, St. Anna Kinderkrebsforschung e.V. CCRI-Children's Cancer Research InstituteZimmermannplatz 101090ViennaAustria
| | - Martin Distel
- Tumorimmunology and Innovative Cancer Models, St. Anna Kinderkrebsforschung e.V. CCRI-Children's Cancer Research InstituteZimmermannplatz 101090ViennaAustria
| | - Alexander Dohnal
- Tumorimmunology and Innovative Cancer Models, St. Anna Kinderkrebsforschung e.V. CCRI-Children's Cancer Research InstituteZimmermannplatz 101090ViennaAustria
| | - Ian Teasdale
- Institute of Polymer ChemistryJohannes Kepler UniversityAltenberger Straße 694040LinzAustria
| | - Wolfgang Schöfberger
- Institute of Organic ChemistryJohannes Kepler UniversityAltenberger Straße 694040LinzAustria
| |
Collapse
|
105
|
Bire S, Ishac N, Rouleux-Bonnin F. In Vitro Synthesis, Delivery, and Bioavailability of Exogenous mRNA in Gene Transfer Mediated by PiggyBac Transposition. Methods Mol Biol 2017; 1428:187-217. [PMID: 27236801 DOI: 10.1007/978-1-4939-3625-0_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Nowadays, nonviral gene transfer is currently of great importance for introducing exogenous genes into genomes and for ensuring that transgene expression is suitable for therapeutic and bioproduction purposes. The piggyBac transposon-based system is particularly interesting since it is easy to engineer and has a large cargo capacity, up to 100 kb. In its setup, the system requires only the piggyBac transposase protein and the transgene delineated by the two piggyBac-specific inverted terminal repeats. Usually the source of transposase is carried by a DNA plasmid. However, the principal drawback of this method is the lasting presence of the transposase, due to episomal persistence or possible integration of the transposase gene vector into the cell's genome. This can lead to genotoxic effects such as multiple genomic integration events and remobilization of the transposon vector once it has been integrated. One alternative to improve the safety of the system is to deliver the transposase as in vitro-synthesized messenger RNA in order to define a very narrow expression window during which a one-shot transposition process would occur. Issues that can be encountered when working on mRNA cell transfer are related to the quality of the synthetic mRNA, the system used to introduce mRNA into the cells and the bioavailability of the mRNA molecules. Here we describe a method to produce mRNA, verify its quality, determine which transfecting reagents can be used and how this mRNA is available to promote the transposition process in HeLa cells. Additionally, we illustrate this method in stromal mesenchymal cell lines in order to support hematopoiesis.
Collapse
Affiliation(s)
- Solenne Bire
- LBTM, Institute of Biotechnology, UNIL-EPFL, Station 6, Lausanne, 1015, Switzerland
| | - Nicole Ishac
- LNOX, GICC UMR CNRS 7292, UFR de Médecine, Bâtiment Dutrochet, 10 Boulevard Tonnellé, Tours, 37032, France
| | - Florence Rouleux-Bonnin
- LNOX, GICC UMR CNRS 7292, UFR de Médecine, Bâtiment Dutrochet, 10 Boulevard Tonnellé, Tours, 37032, France.
| |
Collapse
|
106
|
Kim J, Sinha S, Solomon M, Perez-Herrero E, Hsu J, Tsinas Z, Muro S. Co-coating of receptor-targeted drug nanocarriers with anti-phagocytic moieties enhances specific tissue uptake versus non-specific phagocytic clearance. Biomaterials 2017; 147:14-25. [PMID: 28923682 PMCID: PMC5667353 DOI: 10.1016/j.biomaterials.2017.08.045] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/11/2017] [Accepted: 08/30/2017] [Indexed: 01/08/2023]
Abstract
Nanocarriers (NCs) help improve the performance of therapeutics, but their removal by phagocytes in the liver, spleen, tissues, etc. diminishes this potential. Although NC functionalization with polyethylene glycol (PEG) lowers interaction with phagocytes, it also reduces interactions with tissue cells. Coating NCs with CD47, a protein expressed by body cells to avoid phagocytic removal, offers an alternative. Previous studies showed that coating CD47 on non-targeted NCs reduces phagocytosis, but whether this alters binding and endocytosis of actively-targeted NCs remains unknown. To evaluate this, we used polymer NCs targeted to ICAM-1, a receptor overexpressed in many diseases. Co-coating of CD47 on anti-ICAM NCs reduced macrophage phagocytosis by ∼50% for up to 24 h, while increasing endothelial-cell targeting by ∼87% over control anti-ICAM/IgG NCs. Anti-ICAM/CD47 NCs were endocytosed via the CAM-mediated pathway with efficiency similar (0.99-fold) to anti-ICAM/IgG NCs. Comparable outcomes were observed for NCs targeted to PECAM-1 or transferrin receptor, suggesting broad applicability. When injected in mice, anti-ICAM/CD47 NCs reduced liver and spleen uptake by ∼30-50% and increased lung targeting by ∼2-fold (∼10-fold over IgG NCs). Therefore, co-coating NCs with CD47 and targeting moieties reduces macrophage phagocytosis and improves targeted uptake. This strategy may significantly improve the efficacy of targeted drug NCs.
Collapse
Affiliation(s)
- Joshua Kim
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States
| | - Sauradeep Sinha
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States
| | - Melani Solomon
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD, United States
| | - Edgar Perez-Herrero
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD, United States
| | - Janet Hsu
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States
| | - Zois Tsinas
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States
| | - Silvia Muro
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, United States; Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD, United States.
| |
Collapse
|
107
|
Huang X, Zheng X, Xu Z, Yi C. ZnO-based nanocarriers for drug delivery application: From passive to smart strategies. Int J Pharm 2017; 534:190-194. [DOI: 10.1016/j.ijpharm.2017.10.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 09/30/2017] [Accepted: 10/03/2017] [Indexed: 01/19/2023]
|
108
|
Dal Magro R, Albertini B, Beretta S, Rigolio R, Donzelli E, Chiorazzi A, Ricci M, Blasi P, Sancini G. Artificial apolipoprotein corona enables nanoparticle brain targeting. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 14:429-438. [PMID: 29157979 DOI: 10.1016/j.nano.2017.11.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/25/2017] [Accepted: 11/06/2017] [Indexed: 12/19/2022]
Abstract
Many potential therapeutic compounds for brain diseases fail to reach their molecular targets due to the impermeability of the blood-brain barrier, limiting their clinical development. Nanotechnology-based approaches might improve compounds pharmacokinetics by enhancing binding to the cerebrovascular endothelium and translocation into the brain. Adsorption of apolipoprotein E4 onto polysorbate 80-stabilized nanoparticles to produce a protein corona allows the specific targeting of cerebrovascular endothelium. This strategy increased nanoparticle translocation into brain parenchyma, and improved brain nanoparticle accumulation 3-fold compared to undecorated particles (119.8 vs 40.5 picomoles). Apolipoprotein decorated nanoparticles have high clinical translational potential and may improve the development of nanotechnology-based medicine for a variety of neurological diseases.
Collapse
Affiliation(s)
- Roberta Dal Magro
- School of Medicine and Surgery, Nanomedicine Center, Neuroscience Center, University of Milano-Bicocca, Monza, Italy
| | - Barbara Albertini
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Silvia Beretta
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Roberta Rigolio
- School of Medicine and Surgery, Neuroscience Center, University of Milano-Bicocca, Monza, Italy
| | - Elisabetta Donzelli
- School of Medicine and Surgery, Neuroscience Center, University of Milano-Bicocca, Monza, Italy
| | - Alessia Chiorazzi
- School of Medicine and Surgery, Neuroscience Center, University of Milano-Bicocca, Monza, Italy
| | - Maurizio Ricci
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Paolo Blasi
- School of Pharmacy, University of Camerino, Camerino, Italy.
| | - Giulio Sancini
- School of Medicine and Surgery, Nanomedicine Center, Neuroscience Center, University of Milano-Bicocca, Monza, Italy
| |
Collapse
|
109
|
Duro-Castano A, Nebot VJ, Niño-Pariente A, Armiñán A, Arroyo-Crespo JJ, Paul A, Feiner-Gracia N, Albertazzi L, Vicent MJ. Capturing "Extraordinary" Soft-Assembled Charge-Like Polypeptides as a Strategy for Nanocarrier Design. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1702888. [PMID: 28834624 DOI: 10.1002/adma.201702888] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/03/2017] [Indexed: 05/24/2023]
Abstract
The rational design of nanomedicines is a challenging task given the complex architectures required for the construction of nanosized carriers with embedded therapeutic properties and the complex interface of these materials with the biological environment. Herein, an unexpected charge-like attraction mechanism of self-assembly for star-shaped polyglutamates in nonsalty aqueous solutions is identified, which matches the ubiquitous "ordinary-extraordinary" phenomenon previously described by physicists. For the first time, a bottom-up methodology for the stabilization of these nanosized soft-assembled star-shaped polyglutamates is also described, enabling the translation of theoretical research into nanomaterials with applicability within the drug-delivery field. Covalent capture of these labile assemblies provides access to unprecedented architectures to be used as nanocarriers. The enhanced in vitro and in vivo properties of these novel nanoconstructs as drug-delivery systems highlight the potential of this approach for tumor-localized as well as lymphotropic delivery.
Collapse
Affiliation(s)
- Aroa Duro-Castano
- Polymer Therapeutics Laboratory, Centro de Investigación Príncipe Felipe, Av Eduardo Primo Yúfera 3, 46012, Valencia, Spain
| | - Vicent J Nebot
- Polymer Therapeutics Laboratory, Centro de Investigación Príncipe Felipe, Av Eduardo Primo Yúfera 3, 46012, Valencia, Spain
| | - Amaya Niño-Pariente
- Polymer Therapeutics Laboratory, Centro de Investigación Príncipe Felipe, Av Eduardo Primo Yúfera 3, 46012, Valencia, Spain
| | - Ana Armiñán
- Polymer Therapeutics Laboratory, Centro de Investigación Príncipe Felipe, Av Eduardo Primo Yúfera 3, 46012, Valencia, Spain
| | - Juan J Arroyo-Crespo
- Polymer Therapeutics Laboratory, Centro de Investigación Príncipe Felipe, Av Eduardo Primo Yúfera 3, 46012, Valencia, Spain
| | - Alison Paul
- School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, UK
| | - Natalia Feiner-Gracia
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Carrer de Baldiri Reixac 15-21, 08028, Barcelona, Spain
| | - Lorenzo Albertazzi
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Carrer de Baldiri Reixac 15-21, 08028, Barcelona, Spain
| | - María J Vicent
- Polymer Therapeutics Laboratory, Centro de Investigación Príncipe Felipe, Av Eduardo Primo Yúfera 3, 46012, Valencia, Spain
| |
Collapse
|
110
|
Li Q, Xia D, Tao J, Shen A, He Y, Gan Y, Wang C. Self-Assembled Core-Shell-Type Lipid-Polymer Hybrid Nanoparticles: Intracellular Trafficking and Relevance for Oral Absorption. J Pharm Sci 2017; 106:3120-3130. [DOI: 10.1016/j.xphs.2017.05.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/30/2017] [Accepted: 05/16/2017] [Indexed: 01/30/2023]
|
111
|
Strategies in the design of gold nanoparticles for intracellular targeting: opportunities and challenges. Ther Deliv 2017; 8:879-897. [DOI: 10.4155/tde-2017-0049] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
With unique physicochemical properties, gold nanoparticles (Au NPs) have demonstrated their potential as drug carriers or therapeutic agents. Effective guidance of Au NPs into specific intracellular destinations becomes increasingly important as we strive to further improve the efficiency of drug delivery and modulate controllable cellular responses. In this review, we summarized recent advances in designing Au NPs with the capabilities of cellular penetration and internalization, endosomal escape, intracellular trafficking and subcellular localization via various approaches including physical injection, tuning the physiochemical parameters of Au NPs, and surface modification with targeting ligands. Strategies for delivering Au NPs to specific subcellular destinations including the nucleus, mitochondria, endoplasmic reticulum, lysosomes are also discussed. Moreover, current challenges associated with intracellular targeting of Au NPs are discussed with future perspectives proposed.
Collapse
|
112
|
Quiñones JP, Brüggemann O, Covas CP, Ossipov DA. Self-assembled hyaluronic acid nanoparticles for controlled release of agrochemicals and diosgenin. Carbohydr Polym 2017; 173:157-169. [DOI: 10.1016/j.carbpol.2017.05.048] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/15/2017] [Accepted: 05/16/2017] [Indexed: 10/19/2022]
|
113
|
Hackl CM, Schoenhacker-Alte B, Klose MHM, Henke H, Legina MS, Jakupec MA, Berger W, Keppler BK, Brüggemann O, Teasdale I, Heffeter P, Kandioller W. Synthesis and in vivo anticancer evaluation of poly(organo)phosphazene-based metallodrug conjugates. Dalton Trans 2017; 46:12114-12124. [PMID: 28862707 DOI: 10.1039/c7dt01767g] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Within this work we aimed to improve the pharmacodynamics and toxicity profile of organoruthenium and -rhodium complexes which had previously been found to be highly potent in vitro but showed unselective activity in vivo. Different organometallic complexes were attached to a degradable poly(organo)phosphazene macromolecule, prepared via controlled polymerization techniques. The conjugation to hydrophilic polymers was designed to increase the aqueous solubility of the typically poorly soluble metal-based half-sandwich compounds with the aim of a controlled, pH-triggered release of the active metallodrug. The synthesized conjugates and their characteristics have been thoroughly studied by means of 31P NMR and UV-Vis spectroscopy, ICP-MS analyses and SEC coupled to ICP-MS. In order to assess their potential as possible anticancer drug candidates, the complexes, as well as their respective macromolecular prodrug formulations were tested against three different cancer cell lines in cell culture. Subsequently, the anticancer activity and organ distribution of the poly(organo)phosphazene drug conjugates were explored in vivo in mice bearing CT-26 colon carcinoma. Our investigations revealed a beneficial influence of this macromolecular prodrug by a significant reduction of adverse effects compared to the free metallodrugs.
Collapse
Affiliation(s)
- Carmen M Hackl
- Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Wien, Austria.
| | - Beatrix Schoenhacker-Alte
- Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Wien, Austria. and Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria. and Research Cluster "Translational Cancer Therapy Research", University of Vienna, Waehringer Str. 42, 1090 Wien, Austria
| | - Matthias H M Klose
- Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Wien, Austria.
| | - Helena Henke
- Institute of Polymer Chemistry, Johannes Kepler University Linz (JKU), Altenberger Straße 69, 4040 Linz, Austria
| | - Maria S Legina
- Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Wien, Austria.
| | - Michael A Jakupec
- Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Wien, Austria. and Research Cluster "Translational Cancer Therapy Research", University of Vienna, Waehringer Str. 42, 1090 Wien, Austria
| | - Walter Berger
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria. and Research Cluster "Translational Cancer Therapy Research", University of Vienna, Waehringer Str. 42, 1090 Wien, Austria
| | - Bernhard K Keppler
- Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Wien, Austria. and Research Cluster "Translational Cancer Therapy Research", University of Vienna, Waehringer Str. 42, 1090 Wien, Austria
| | - Oliver Brüggemann
- Institute of Polymer Chemistry, Johannes Kepler University Linz (JKU), Altenberger Straße 69, 4040 Linz, Austria
| | - Ian Teasdale
- Institute of Polymer Chemistry, Johannes Kepler University Linz (JKU), Altenberger Straße 69, 4040 Linz, Austria
| | - Petra Heffeter
- Institute of Cancer Research and Comprehensive Cancer Center, Department of Medicine I, Medical University of Vienna, Borschkegasse 8a, 1090 Vienna, Austria. and Research Cluster "Translational Cancer Therapy Research", University of Vienna, Waehringer Str. 42, 1090 Wien, Austria
| | - Wolfgang Kandioller
- Institute of Inorganic Chemistry, University of Vienna, Waehringer Str. 42, 1090 Wien, Austria. and Research Cluster "Translational Cancer Therapy Research", University of Vienna, Waehringer Str. 42, 1090 Wien, Austria
| |
Collapse
|
114
|
Fast therapeutic DNA internalization – A high potential transfection system based on a peptide mimicking cationic lipid. Eur J Pharm Biopharm 2017; 118:38-47. [DOI: 10.1016/j.ejpb.2016.12.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 11/21/2016] [Accepted: 12/14/2016] [Indexed: 02/08/2023]
|
115
|
Acar H, Samaeekia R, Schnorenberg MR, Sasmal DK, Huang J, Tirrell MV, LaBelle JL. Cathepsin-Mediated Cleavage of Peptides from Peptide Amphiphiles Leads to Enhanced Intracellular Peptide Accumulation. Bioconjug Chem 2017; 28:2316-2326. [PMID: 28771332 DOI: 10.1021/acs.bioconjchem.7b00364] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Peptides synthesized in the likeness of their native interaction domain(s) are natural choices to target protein-protein interactions (PPIs) due to their fidelity of orthostatic contact points between binding partners. Despite therapeutic promise, intracellular delivery of biofunctional peptides at concentrations necessary for efficacy remains a formidable challenge. Peptide amphiphiles (PAs) provide a facile method of intracellular delivery and stabilization of bioactive peptides. PAs consisting of biofunctional peptide headgroups linked to hydrophobic alkyl lipid-like tails prevent peptide hydrolysis and proteolysis in circulation, and PA monomers are internalized via endocytosis. However, endocytotic sequestration and steric hindrance from the lipid tail are two major mechanisms that limit PA efficacy to target intracellular PPIs. To address these problems, we have constructed a PA platform consisting of cathepsin-B cleavable PAs in which a selective p53-based inhibitory peptide is cleaved from its lipid tail within endosomes, allowing for intracellular peptide accumulation and extracellular recycling of the lipid moiety. We monitor for cleavage and follow individual PA components in real time using a Förster resonance energy transfer (FRET)-based tracking system. Using this platform, we provide a better understanding and quantification of cellular internalization, trafficking, and endosomal cleavage of PAs and of the ultimate fates of each component.
Collapse
Affiliation(s)
- Handan Acar
- Institute for Molecular Engineering, University of Chicago, Eckardt Research Center , 5640 South Ellis Avenue, Chicago, Illinois 60637, United States.,Department of Pediatrics, Section of Hematology/Oncology, University of Chicago , 900 East 57th Street, KCBD 5122, Chicago, Illinois 60637, United States
| | - Ravand Samaeekia
- Institute for Molecular Engineering, University of Chicago, Eckardt Research Center , 5640 South Ellis Avenue, Chicago, Illinois 60637, United States.,Department of Pediatrics, Section of Hematology/Oncology, University of Chicago , 900 East 57th Street, KCBD 5122, Chicago, Illinois 60637, United States
| | - Mathew R Schnorenberg
- Institute for Molecular Engineering, University of Chicago, Eckardt Research Center , 5640 South Ellis Avenue, Chicago, Illinois 60637, United States.,Department of Pediatrics, Section of Hematology/Oncology, University of Chicago , 900 East 57th Street, KCBD 5122, Chicago, Illinois 60637, United States.,Medical Scientist Training Program, University of Chicago , 924 East 57th Street, Suite 104, Chicago, Illinois 60637, United States
| | - Dibyendu K Sasmal
- Institute for Molecular Engineering, University of Chicago, Eckardt Research Center , 5640 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Jun Huang
- Institute for Molecular Engineering, University of Chicago, Eckardt Research Center , 5640 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Matthew V Tirrell
- Institute for Molecular Engineering, University of Chicago, Eckardt Research Center , 5640 South Ellis Avenue, Chicago, Illinois 60637, United States.,Institute for Molecular Engineering, Argonne National Laboratory , 9700 South Cass Avenue, Argonne, Illinois 60639, United States
| | - James L LaBelle
- Department of Pediatrics, Section of Hematology/Oncology, University of Chicago , 900 East 57th Street, KCBD 5122, Chicago, Illinois 60637, United States
| |
Collapse
|
116
|
Totten JD, Wongpinyochit T, Seib FP. Silk nanoparticles: proof of lysosomotropic anticancer drug delivery at single-cell resolution. J Drug Target 2017; 25:865-872. [PMID: 28812388 DOI: 10.1080/1061186x.2017.1363212] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Silk nanoparticles are expected to improve chemotherapeutic drug targeting to solid tumours by exploiting tumour pathophysiology, modifying the cellular pharmacokinetics of the payload and ultimately resulting in trafficking to lysosomes and triggering drug release. However, experimental proof for lysosomotropic drug delivery by silk nanoparticles in live cells is lacking and the importance of lysosomal pH and enzymes controlling drug release is currently unknown. Here, we demonstrate, in live single human breast cancer cells, the role of the lysosomal environment in determining silk nanoparticle-mediated drug release. MCF-7 human breast cancer cells endocytosed and trafficked drug-loaded native and PEGylated silk nanoparticles (∼100 nm in diameter) to lysosomes, with subsequent drug release from the respective carriers and nuclear translocation within 5 h of dosing. A combination of low pH and enzymatic degradation facilitated drug release from the silk nanoparticles; perturbation of the acidic lysosomal pH and inhibition of serine, cysteine and threonine proteases resulted in a 42% ± 2.2% and 33% ± 3% reduction in nuclear-associated drug accumulation for native and PEGylated silk nanoparticles, respectively. Overall, this study demonstrates the importance of lysosomal activity for anticancer drug release from silk nanoparticles, thereby providing direct evidence for lysosomotropic drug delivery in live cells.
Collapse
Affiliation(s)
- John D Totten
- a Strathclyde Institute of Pharmacy and Biomedical Sciences , University of Strathclyde , Glasgow , UK
| | - Thidarat Wongpinyochit
- a Strathclyde Institute of Pharmacy and Biomedical Sciences , University of Strathclyde , Glasgow , UK
| | - F Philipp Seib
- a Strathclyde Institute of Pharmacy and Biomedical Sciences , University of Strathclyde , Glasgow , UK.,b Leibniz Institute of Polymer Research Dresden , Max Bergmann Center of Biomaterials Dresden , Dresden , Germany
| |
Collapse
|
117
|
Duncan R. Polymer therapeutics at a crossroads? Finding the path for improved translation in the twenty-first century. J Drug Target 2017; 25:759-780. [PMID: 28783978 DOI: 10.1080/1061186x.2017.1358729] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Despite the relatively small early investment, first generation 'polymer therapeutics' have been remarkably successful with more than 25 products licenced for human use as polymeric drugs, sequestrants, conjugates, and as an imaging agent. Many exhibit both clinical and commercial success with new concepts already in clinical trials. Nevertheless after four decades of evolution, this field is arriving at an important crossroads. Over the last decade, the landscape has changed rapidly. There are an increasing number of failed clinical trials, the number of 'copy' and 'generic' products is growing (danger of ignoring the biological rationale for design and suppression of innovation), potential drawbacks of PEG are becoming more evident, and the 'nanomedicine' boom has brought danger of loss of scientific focus/hype. Grasping opportunities provided by advances in understanding of the patho-physiology and molecular basis of diseases, new polymer/conjugate synthetic and analytical methods, as well as the large database of clinical experience will surely ensure a successful future for innovative polymer therapeutics. Progress will, however, be in jeopardy if polymer safety is overlooked in respect of the specific route of administration/clinical use, poorly characterised materials/formulations are used to define biological or early clinical properties, and if clinical trial protocols fail to select patients most likely to benefit from these macromolecular therapeutics. Opportunities to improve clinical trial design for polymer-anticancer drug conjugates are discussed. This short personal perspective summarises some of the important challenges facing polymer therapeutics in R&D today, and future opportunities to improve successful translation.
Collapse
Affiliation(s)
- Ruth Duncan
- a Polymer Therapeutics Laboratory , Centro de Investigación Príncipe Felipe , Valencia , Spain.,b Intracellular Delivery Solutions Laboratory, Faculty of Engineering and Science , University of Greenwich , Kent , UK
| |
Collapse
|
118
|
Oliveira JRD, de Jesus Viegas D, Martins APR, Carvalho CAT, Soares CP, Camargo SEA, Jorge AOC, de Oliveira LD. Thymus vulgaris L. extract has antimicrobial and anti-inflammatory effects in the absence of cytotoxicity and genotoxicity. Arch Oral Biol 2017; 82:271-279. [PMID: 28683409 DOI: 10.1016/j.archoralbio.2017.06.031] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 06/23/2017] [Accepted: 06/25/2017] [Indexed: 02/06/2023]
Abstract
OBJECTIVES This study evaluated the biological effects of the T. vulgaris L. extract., such as antimicrobial activity on planktonic cultures and mono- and polymicrobial biofilms, cytotoxicity, anti-inflammatory activity and genotoxicity. METHODS Monomicrobial biofilms of Candida albicans, Staphylococcus aureus, Enterococcus faecalis, Streptococcus mutans and Pseudomonas aeruginosa and polymicrobial biofilms composed by C. albicans with each bacterium were formed for 48h and exposed for 5min to the plant extract. Murine macrophages (RAW 264.7), human gingival fibroblasts (FMM-1), human breast carcinoma cells (MCF-7) and cervical carcinoma cells (HeLa) were also exposed to the plant extract for 5min and the cell viability were analyzed by MTT, neutral red (NR) and crystal violet (CV) assays. Interleukin-1 beta (IL-1β) and tumor necrosis factor alpha (TNF-α) produced by RAW 264.7 was quantified by ELISA, after 24h exposure to the plant extract, both in the absence and presence of lipopolysaccharide (LPS) from Escherichia coli. Genotoxicity of the plant extract was evaluated by micronucleus formation (MN) in 1000 cells. The results were analyzed by T-Test or ANOVA and Tukey's Test (P≤0.05). RESULTS All biofilms showed significant reductions in CFU/mL (colony-forming units per milliliter). Cell viability was above 50% for all cell lines. Anti-inflammatory effect on the synthesis of IL-1β and TNF-α was observed. The MN was similar or lower than the control group in all cells. CONCLUSIONS T. vulgaris L. extract was effective against all biofilms, promoted high cell viability, anti-inflammatory effect and presented no genotoxicity.
Collapse
Affiliation(s)
- Jonatas Rafael de Oliveira
- São Paulo State University (UNESP). Institute of Science and Technology. Department of Biosciences and Oral Diagnosis, São José dos Campos, SP, Brazil.
| | - Daiane de Jesus Viegas
- São Paulo State University (UNESP). Institute of Science and Technology. Department of Biosciences and Oral Diagnosis, São José dos Campos, SP, Brazil
| | - Ana Paula Réquia Martins
- São Paulo State University (UNESP). Institute of Science and Technology. Department of Biosciences and Oral Diagnosis, São José dos Campos, SP, Brazil
| | - Cláudio Antonio Talge Carvalho
- São Paulo State University (UNESP). Institute of Science and Technology. Department of Restorative Dentistry. São José dos Campos, SP, Brazil
| | - Cristina Pacheco Soares
- Universidade do Vale do Paraíba (UNIVAP). Institute of Research and Development. São José dos Campos, SP, Brazil
| | - Samira Esteves Afonso Camargo
- São Paulo State University (UNESP). Institute of Science and Technology. Department of Biosciences and Oral Diagnosis, São José dos Campos, SP, Brazil
| | - Antonio Olavo Cardoso Jorge
- São Paulo State University (UNESP). Institute of Science and Technology. Department of Biosciences and Oral Diagnosis, São José dos Campos, SP, Brazil
| | - Luciane Dias de Oliveira
- São Paulo State University (UNESP). Institute of Science and Technology. Department of Biosciences and Oral Diagnosis, São José dos Campos, SP, Brazil
| |
Collapse
|
119
|
Scipioni L, Gratton E, Diaspro A, Lanzanò L. Phasor Analysis of Local ICS Detects Heterogeneity in Size and Number of Intracellular Vesicles. Biophys J 2017; 111:619-629. [PMID: 27508445 PMCID: PMC4982927 DOI: 10.1016/j.bpj.2016.06.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 06/09/2016] [Accepted: 06/22/2016] [Indexed: 01/28/2023] Open
Abstract
Organelles represent the scale of organization immediately below that of the cell itself, and their composition, size, and number are tailored to their function. Monitoring the size and number of organelles in live cells is relevant for many applications but can be challenging due to their highly heterogeneous properties. Image correlation spectroscopy is a well-established analysis method capable of extracting the average size and number of particles in images. However, when image correlation spectroscopy is applied to a highly heterogeneous system, it can fail to retrieve, from a single correlation function, the characteristic size and the relative amount associated to each subspecies. Here, we describe a fast, unbiased, and fit-free algorithm based on the phasor analysis of multiple local image correlation functions, capable of mapping the sizes of elements contained in a heterogeneous system. The method correctly provides the size and number of separate subspecies, which otherwise would be hidden in the average properties of a single correlation function. We apply the method to quantify the spatial and temporal heterogeneity in the size and number of intracellular vesicles formed after endocytosis in live cells.
Collapse
Affiliation(s)
- Lorenzo Scipioni
- Nanoscopy, Nanophysics, Istituto Italiano di Tecnologia, Genoa, Italy; Department of Computer Science, Bioengineering, Robotics and Systems Engineering, University of Genoa, Genoa, Italy
| | - Enrico Gratton
- Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California, Irvine, Irvine, California
| | - Alberto Diaspro
- Nanoscopy, Nanophysics, Istituto Italiano di Tecnologia, Genoa, Italy; Nikon Imaging Center, Istituto Italiano di Tecnologia, Genoa, Italy; Department of Physics, University of Genoa, Genoa, Italy
| | - Luca Lanzanò
- Nanoscopy, Nanophysics, Istituto Italiano di Tecnologia, Genoa, Italy.
| |
Collapse
|
120
|
A Triple-Fluorophore-Labeled Nucleic Acid pH Nanosensor to Investigate Non-viral Gene Delivery. Mol Ther 2017; 25:1697-1709. [PMID: 28479046 DOI: 10.1016/j.ymthe.2017.04.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 04/06/2017] [Accepted: 04/06/2017] [Indexed: 01/08/2023] Open
Abstract
There is a need for new tools to better quantify intracellular delivery barriers in high-throughput and high-content ways. Here, we synthesized a triple-fluorophore-labeled nucleic acid pH nanosensor for measuring intracellular pH of exogenous DNA at specific time points in a high-throughput manner by flow cytometry following non-viral transfection. By including two pH-sensitive fluorophores and one pH-insensitive fluorophore in the nanosensor, detection of pH was possible over the full physiological range. We further assessed possible correlation between intracellular pH of delivered DNA, cellular uptake of DNA, and DNA reporter gene expression at 24 hr post-transfection for poly-L-lysine and branched polyethylenimine polyplex nanoparticles. While successful transfection was shown to clearly depend on median cellular pH of delivered DNA at the cell population level, surprisingly, on an individual cell basis, there was no significant correlation between intracellular pH and transfection efficacy. To our knowledge, this is the first reported instance of high-throughput single-cell analysis between cellular uptake of DNA, intracellular pH of delivered DNA, and gene expression of the delivered DNA. Using the nanosensor, we demonstrate that the ability of polymeric nanoparticles to avoid an acidic environment is necessary, but not sufficient, for successful transfection.
Collapse
|
121
|
Battistella C, Klok HA. Controlling and Monitoring Intracellular Delivery of Anticancer Polymer Nanomedicines. Macromol Biosci 2017; 17. [DOI: 10.1002/mabi.201700022] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 03/03/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Claudia Battistella
- École Polytechnique Fédérale de Lausanne (EPFL); Institut des Matériaux et Institut des Sciences et Ingénierie Chimiques; Laboratoire des Polymères; Bâtiment MXD; Station 12 CH-1015 Lausanne Switzerland
| | - Harm-Anton Klok
- École Polytechnique Fédérale de Lausanne (EPFL); Institut des Matériaux et Institut des Sciences et Ingénierie Chimiques; Laboratoire des Polymères; Bâtiment MXD; Station 12 CH-1015 Lausanne Switzerland
| |
Collapse
|
122
|
Influence of Defined Hydrophilic Blocks within Oligoaminoamide Copolymers: Compaction versus Shielding of pDNA Nanoparticles. Polymers (Basel) 2017; 9:polym9040142. [PMID: 30970822 PMCID: PMC6432433 DOI: 10.3390/polym9040142] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 04/07/2017] [Accepted: 04/11/2017] [Indexed: 01/07/2023] Open
Abstract
Cationic polymers are promising components of the versatile platform of non-viral nucleic acid (NA) delivery agents. For a successful gene delivery system, these NA vehicles need to comprise several functionalities. This work focuses on the modification of oligoaminoamide carriers with hydrophilic oligomer blocks mediating nanoparticle shielding potential, which is necessary to prevent aggregation or dissociation of NA polyplexes in vitro, and hinder opsonization with blood components in vivo. Herein, the shielding agent polyethylene glycol (PEG) in three defined lengths (12, 24, or 48 oxyethylene repeats) is compared with two peptidic shielding blocks composed of four or eight repeats of sequential proline-alanine-serine (PAS). With both types of shielding agents, we found opposing effects of the length of hydrophilic segments on shielding and compaction of formed plasmid DNA (pDNA) nanoparticles. Two-arm oligoaminoamides with 37 cationizable nitrogens linked to 12 oxyethylene units or four PAS repeats resulted in very compact 40⁻50 nm pDNA nanoparticles, whereas longer shielding molecules destabilize the investigated polyplexes. Thus, the balance between sufficiently shielded but still compact and stable particles can be considered a critical optimization parameter for non-viral nucleic acid vehicles based on hydrophilic-cationic block oligomers.
Collapse
|
123
|
Mathematical Modeling and Experimental Validation of Nanoemulsion-Based Drug Transport across Cellular Barriers. Pharm Res 2017; 34:1416-1427. [PMID: 28389708 DOI: 10.1007/s11095-017-2158-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 04/03/2017] [Indexed: 12/17/2022]
Abstract
PURPOSE Nanoemulsions have shown potential in delivering drug across epithelial and endothelial cell barriers, which express efflux transporters. However, their transport mechanisms are not entirely understood. Our goal was to investigate the cellular permeability of nanoemulsion-encapsulated drugs and apply mathematical modeling to elucidate transport mechanisms and sensitive nanoemulsion attributes. METHODS Transport studies were performed in Caco-2 cells, using fish oil nanoemulsions and a model substrate, rhodamine-123. Permeability data was modeled using a semi-mechanistic approach, capturing the following cellular processes: endocytotic uptake of the nanoemulsion, release of rhodamine-123 from the nanoemulsion, efflux and passive permeability of rhodamine-123 in aqueous solution. RESULTS Nanoemulsions not only improved the permeability of rhodamine-123, but were also less sensitive to efflux transporters. The model captured bidirectional permeability results and identified sensitive processes, such as the release of the nanoemulsion-encapsulated drug and cellular uptake of the nanoemulsion. CONCLUSIONS Mathematical description of cellular processes, improved our understanding of transport mechanisms, such as nanoemulsions don't inhibit efflux to improve drug permeability. Instead, their endocytotic uptake, results in higher intracellular drug concentrations, thereby increasing the concentration gradient and transcellular permeability across biological barriers. Modeling results indicated optimizing nanoemulsion attributes like the droplet size and intracellular drug release rate, may further improve drug permeability.
Collapse
|
124
|
Nagai N. Design of Novel Ophthalmic Formulation Containing Drug Nanoparticles and Its Usefulness as Anti-glaucoma Drugs. YAKUGAKU ZASSHI 2017; 136:1385-1390. [PMID: 27725388 DOI: 10.1248/yakushi.16-00089] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The ophthalmic application of drugs is the primary route of administration for the therapy of glaucoma; however, in traditional formulations, only small amounts of the administered drug penetrate the cornea to reach the desired intraocular tissue due to corneal barriers. Recently, nanoparticulate drug delivery is expected as a technology to overcome the difficulties in delivering drugs across biological barriers (improvement of bioavailability). In this study, we attempted to establish a new method for preparing solid drug nanoparticles by using a bead mill and various additives, and succeeded in preparing a high quality dispersion containing drug nanoparticles. For a more concrete example, a mean particle size of disulfiram (DSF) treated with bead mill is 183 nm. The corneal penetration and corneal residence time of DSF from the ophthalmic dispersion containing DSF nanoparticles were significantly higher than those from a 2-hydroxypropyl-β-cyclodextrin solution containing DSF (DSF solution). It is known that the administration of DSF has intraocular pressure (IOP)-reducing effects. The IOP-reducing effects of the ophthalmic dispersion containing DSF nanoparticles were significantly greater than those of the DSF solution in rabbits (the IOP was enhanced by placing the rabbits in a dark room for 5 h). In addition, the ophthalmic dispersion containing DSF nanoparticles is better tolerated by corneal epithelial cells than DSF solution. It is possible that dispersions containing DSF nanoparticles provide new possibilities for effectively treating glaucoma, and that ocular drug delivery systems using drug nanoparticles may expand their usage for therapy in the ophthalmologic field.
Collapse
|
125
|
The shape effect of magnetic mesoporous silica nanoparticles on endocytosis, biocompatibility and biodistribution. Acta Biomater 2017; 49:531-540. [PMID: 27836804 DOI: 10.1016/j.actbio.2016.11.007] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 11/01/2016] [Accepted: 11/02/2016] [Indexed: 01/26/2023]
Abstract
Although the aspect ratio (AR) play a crucial role in determining biological effects of homogeneous nanomaterials, studies available concerning how the shape contributes to biological effect of heterogeneous nanomaterials is limited. To systematically clarify the shape influence on the endocytosis, biocompatibility and biodistribution of magnetic mesoporous silica nanoparticles (M-MSNPs), three FITC-labeled M-MSNPs with different aspect ratio (AR=1, 2, and 4) were specifically designed and constructed through altering the ratios of CTAB/TEOS in a modified so-gel method. We have demonstrated that long-rod M-MSNP2 possessed higher intracellular internalization amount than the short-rod M-MSNP1 and the sphere-like M-MSNP0 in both cancer cells and normal cells due to the difference in the endocytosis pathways. However, there are no significant shape effects on biocompatibility including cytotoxicity and hemolytic rate. Moreover, biodistribution in HepG2 tumor-bearing mice showed that M-MSNPs administrated intravenously were mainly presented in reticuloendothelial system (RES) organs including liver, spleen and kidney. In particular, sphere-like M-MSNP0 were easily trapped in the liver, while long-rod M-MSP2 exhibited more retention in the spleen. It is worth noting that rod-like M-MSNPs are preferentially accumulated in tumor sites than sphere-like M-MSNPs, indicating an improved drug delivery efficacy in cancer therapy. Our findings may provide useful data for deeply understanding the interaction between the different shapes and biological behavior of M-MSNPs, which is expected to give rise to a new generation of heterogeneous M-MSNPs with significantly enhanced efficacy and safety for the cancer theranostics. STATEMENT OF SIGNIFICANCE In this work, we systematically clarified the shape influence on the endocytosis, biocompatibility and biodistribution of homogeneous nanomaterials. We have demonstrated that rod-like magnetic mesoporous silica nanoparticles (M-MSNPs) were capable of higher intracellular internalization and tumor accumulation than sphere-like M-MSNPs, which was expected to give rise to a new generation of heterogeneous M-MSNPs with significantly enhanced efficacy and safety for the cancer theranostics.
Collapse
|
126
|
Hu M, Zhang J, Ding R, Fu Y, Gong T, Zhang Z. Improved oral bioavailability and therapeutic efficacy of dabigatran etexilate via Soluplus-TPGS binary mixed micelles system. Drug Dev Ind Pharm 2017; 43:687-697. [PMID: 28032534 DOI: 10.1080/03639045.2016.1278015] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The clinical use of dabigatran etexilate (DABE) is limited by its poor absorption and relatively low bioavailability. Our study aimed to explore the potential of a mixed micelle system composed of Soluplus® and D-alpha tocopheryl polyethylene glycol 1000 succinate (TPGS) to improve the oral absorption and bioavailability of DBAE. DBAE was first encapsulated into Soluplus/TPGS mixed micelles by a simple thin film hydration method. The DBAE loaded micelles displayed an average size distribution of around 83.13 nm. The cellular uptake of DBAE loaded micelles in Caco-2 cell monolayer was significantly enhanced by 2-2.6 fold over time as compared with DBAE suspension. Both lipid raft/caveolae and macropinocytosis-mediated the cell uptake of DBAE loaded micelles through P-glycoprotein (P-gp)-independent pathway. Compared with the DBAE suspension, the intestinal absorption of DBAE from DBAE mixed micelles in rats was significantly improved by 8 and 5-fold in ileum at 2 h and 4 h, respectively. Moreover, DBAE mixed micelles were absorbed into systemic circulation via both portal vein and lymphatic pathway. The oral bioavailability of DBAE mixed micelles in rats was 3.37 fold higher than that of DBAE suspension. DBAE mixed micelles exhibited a comparable anti-thrombolytic activity with a thrombosis inhibition rate of 63.18% compared with DBAE suspension in vivo. Thus, our study provides a promising drug delivery system to enhance the oral bioavailability and therapeutic efficacy of DBAE.
Collapse
Affiliation(s)
- Mei Hu
- a Key Laboratory of Drug Targeting and Drug Delivery Systems , Ministry of Education, Sichuan University , Chengdu , China
| | - Jinjie Zhang
- a Key Laboratory of Drug Targeting and Drug Delivery Systems , Ministry of Education, Sichuan University , Chengdu , China
| | - Rui Ding
- b Beijing Institute for Drug Control , Beijing , China
| | - Yao Fu
- a Key Laboratory of Drug Targeting and Drug Delivery Systems , Ministry of Education, Sichuan University , Chengdu , China
| | - Tao Gong
- a Key Laboratory of Drug Targeting and Drug Delivery Systems , Ministry of Education, Sichuan University , Chengdu , China
| | - Zhirong Zhang
- a Key Laboratory of Drug Targeting and Drug Delivery Systems , Ministry of Education, Sichuan University , Chengdu , China
| |
Collapse
|
127
|
|
128
|
Suarato G, Lee SI, Li W, Rao S, Khan T, Meng Y, Shelly M. Micellar nanocomplexes for biomagnetic delivery of intracellular proteins to dictate axon formation during neuronal development. Biomaterials 2017; 112:176-191. [PMID: 27768972 PMCID: PMC5121005 DOI: 10.1016/j.biomaterials.2016.09.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 09/10/2016] [Accepted: 09/26/2016] [Indexed: 12/31/2022]
Abstract
During mammalian embryonic development, neurons polarize to create distinct cellular compartments of axon and dendrite that inherently differ in form and function, providing the foundation for directional signaling in the nervous system. Polarization results from spatio-temporal segregation of specific proteins' activities to discrete regions of the neuron to dictate axonal vs. dendritic fate. We aim to manipulate axon formation by directed subcellular localization of crucial intracellular protein function. Here we report critical steps toward the development of a nanotechnology for localized subcellular introduction and retention of an intracellular kinase, LKB1, crucial regulator of axon formation. This nanotechnology will spatially manipulate LKB1-linked biomagnetic nanocomplexes (LKB1-NCs) in developing rodent neurons in culture and in vivo. We created a supramolecular assembly for LKB1 rapid neuronal uptake and prolonged cytoplasmic stability. LKB1-NCs retained kinase activity and phosphorylated downstream targets. NCs were successfully delivered to cultured embryonic hippocampal neurons, and were stable in the cytoplasm for 2 days, sufficient time for axon formation. Importantly, LKB1-NCs promoted axon formation in these neurons, representing unique proof of concept for the sufficiency of intracellular protein function in dictating a central developmental event. Lastly, we established NC delivery into cortical progenitors in live rat embryonic brain in utero. Our nanotechnology provides a viable platform for spatial manipulation of intracellular protein-activity, to dictate central events during neuronal development.
Collapse
Affiliation(s)
- Giulia Suarato
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - Seong-Il Lee
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, USA
| | - Weiyi Li
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - Sneha Rao
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, USA
| | - Tanvir Khan
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, USA
| | - Yizhi Meng
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY, USA
| | - Maya Shelly
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
129
|
Hao W, Shen Y, Liu D, Shang Y, Zhang J, Xu S, Liu H. Dual-pH-sensitivity and tumour targeting core–shell particles for intracellular drug delivery. RSC Adv 2017. [DOI: 10.1039/c6ra25224a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The principal problem in the area of drug delivery is achieving better selectivity and controllability.
Collapse
Affiliation(s)
- Weiju Hao
- Key Laboratory for Advanced Materials
- College of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai
- China
| | - Yinxing Shen
- Key Laboratory for Advanced Materials
- College of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai
- China
| | - Danyang Liu
- Key Laboratory for Advanced Materials
- College of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai
- China
| | - Yazhuo Shang
- Key Laboratory for Advanced Materials
- College of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai
- China
| | - Junqi Zhang
- Key Laboratory of Medical Molecular Virology
- Ministry of Health and Ministry of Education
- School of Basic Medical Sciences
- Fudan University
- Shanghai 200032
| | - Shouhong Xu
- Key Laboratory for Advanced Materials
- College of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai
- China
| | - Honglai Liu
- Key Laboratory for Advanced Materials
- College of Chemistry and Molecular Engineering
- East China University of Science and Technology
- Shanghai
- China
| |
Collapse
|
130
|
Sneider A, VanDyke D, Paliwal S, Rai P. Remotely Triggered Nano-Theranostics For Cancer Applications. Nanotheranostics 2017; 1:1-22. [PMID: 28191450 PMCID: PMC5298883 DOI: 10.7150/ntno.17109] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 10/16/2016] [Indexed: 01/02/2023] Open
Abstract
Nanotechnology has enabled the development of smart theranostic platforms that can concurrently diagnose disease, start primary treatment, monitor response, and, if required, initiate secondary treatments. Recent in vivo experiments demonstrate the promise of using theranostics in the clinic. In this paper, we review the use of remotely triggered theranostic nanoparticles for cancer applications, focusing heavily on advances in the past five years. Remote triggering mechanisms covered include photodynamic, photothermal, phototriggered chemotherapeutic release, ultrasound, electro-thermal, magneto-thermal, X-ray, and radiofrequency therapies. Each section includes a brief overview of the triggering mechanism and summarizes the variety of nanoparticles employed in each method. Emphasis in each category is placed on nano-theranostics with in vivo success. Some of the nanotheranostic platforms highlighted include photoactivatable multi-inhibitor nanoliposomes, plasmonic nanobubbles, reduced graphene oxide-iron oxide nanoparticles, photoswitching nanoparticles, multispectral optoacoustic tomography using indocyanine green, low temperature sensitive liposomes, and receptor-targeted iron oxide nanoparticles loaded with gemcitabine. The studies reviewed here provide strong evidence that the field of nanotheranostics is rapidly evolving. Such nanoplatforms may soon enable unique advances in the clinical management of cancer. However, reproducibility in the synthesis procedures of such "smart" platforms that lend themselves to easy scale-up in their manufacturing, as well as the development of new and improved models of cancer that are more predictive of human responses, need to happen soon for this field to make a rapid clinical impact.
Collapse
Affiliation(s)
| | | | | | - Prakash Rai
- ✉ Corresponding author: Prakash Rai, Phone 978-934-4971,
| |
Collapse
|
131
|
Biocompatible and target specific hydrophobically modified glycol chitosan nanoparticles. Biointerphases 2016; 11:04B301. [PMID: 27126597 DOI: 10.1116/1.4948265] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cardiovascular disease is the leading cause of death in the United States. Atherosclerosis is a major cause for cardiovascular diseases. Drugs that treat atherosclerosis usually act nonspecifically. To enhance drug delivery specificity, the authors developed a hydrophobically modified glycol chitosan (HGC) nanoparticle that can specifically target activated endothelial cells. The biocompatibility of these nanoparticles toward red blood cells and platelets was evaluated through hemolysis, platelet activation, platelet thrombogenicity, and platelet aggregation assays. The biocompatibility of these nanoparticles toward vascular endothelial cells was evaluated by their effects on endothelial cell growth, metabolic activity, and activation. The results demonstrated that HGC nanoparticles did not cause hemolysis, or affect platelet activation, thrombogenicity, and aggregation capability in vitro. The nanoparticles did not impair vascular endothelial cell growth or metabolic activities in vitro, and did not cause cell activation either. When conjugated with intercellular adhesion molecular 1 antibodies, HGC nanoparticles showed a significantly increased targeting specificity toward activated endothelial cells. These results suggested that HGC nanoparticles are likely compatible toward red blood cells, platelets, and endothelial cells, and they can be potentially used to identify activated endothelial cells at atherosclerotic lesion areas within the vasculature, and deliver therapeutic drugs.
Collapse
|
132
|
Moraes J, Peltier R, Gody G, Blum M, Recalcati S, Klok HA, Perrier S. Influence of Block versus Random Monomer Distribution on the Cellular Uptake of Hydrophilic Copolymers. ACS Macro Lett 2016; 5:1416-1420. [PMID: 35651220 DOI: 10.1021/acsmacrolett.6b00652] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The use of polymers has revolutionized the field of drug delivery in the past two decades. Properties such as polymer size, charge, hydrophilicity, or branching have all been shown to play an important role in the cellular internalization of polymeric systems. In contrast, the fundamental impact of monomer distribution on the resulting biological properties of copolymers remains poorly studied and is always only investigated for biologically active self-assembling polymeric systems. Here, we explore the fundamental influence of monomer distribution on the cellular uptake of nonaggregating and biologically passive copolymers. Reversible addition-fragmentation chain-transfer (RAFT) polymerization was used to prepare precisely defined copolymers of three hydrophilic acrylamide monomers. The cellular internalization of block copolymers was compared with the uptake of a random copolymer where monomers are statistically distributed along the chain. The results demonstrate that monomer distribution in itself has a negligible impact on copolymer uptake.
Collapse
Affiliation(s)
- John Moraes
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux et Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| | - Raoul Peltier
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux et Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| | - Guillaume Gody
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux et Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| | - Muriel Blum
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux et Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| | - Sebastien Recalcati
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux et Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| | - Harm-Anton Klok
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux et Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| | - Sébastien Perrier
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
- Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- École Polytechnique Fédérale de Lausanne (EPFL), Institut des Matériaux et Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères, Bâtiment MXD, Station 12, CH-1015 Lausanne, Switzerland
| |
Collapse
|
133
|
Role of pH-responsiveness in the design of chitosan-based cancer nanotherapeutics: A review. Biointerphases 2016; 11:04B201. [DOI: 10.1116/1.4944661] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
134
|
Sousa F, Sanavio B, Saccani A, Tang Y, Zucca I, Carney TM, Mastropietro A, Jacob Silva PH, Carney RP, Schenk K, Omrani AO, Huang P, Yang L, Rønnow HM, Stellacci F, Krol S. Superparamagnetic Nanoparticles as High Efficiency Magnetic Resonance Imaging T2 Contrast Agent. Bioconjug Chem 2016; 28:161-170. [DOI: 10.1021/acs.bioconjchem.6b00577] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Fernanda Sousa
- Nanomedicine
Laboratory, Fondazione IRCCS Istituto Neurologico Carlo Besta, AMADEOLAB, Via G.A. Amadeo 42, 20133 Milan, Italy
- IFOM The FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Barbara Sanavio
- Nanomedicine
Laboratory, Fondazione IRCCS Istituto Neurologico Carlo Besta, AMADEOLAB, Via G.A. Amadeo 42, 20133 Milan, Italy
| | - Alessandra Saccani
- Nanomedicine
Laboratory, Fondazione IRCCS Istituto Neurologico Carlo Besta, AMADEOLAB, Via G.A. Amadeo 42, 20133 Milan, Italy
| | - Yun Tang
- Institute
of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
- Department
of Chemistry, Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China
| | - Ileana Zucca
- Laboratory
of Experimental Imaging, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy
| | - Tamara M. Carney
- Institute
of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Alfonso Mastropietro
- Laboratory
of Experimental Imaging, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, 20133 Milan, Italy
| | - Paulo H. Jacob Silva
- Institute
of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Randy P. Carney
- Institute
of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Kurt Schenk
- Laboratory
of X-ray Diffraction, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - Arash O. Omrani
- Laboratory
for Quantum Magnetism, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - Ping Huang
- Laboratory
for Quantum Magnetism, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - Lin Yang
- Laboratory
for Quantum Magnetism, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - Henrik M. Rønnow
- Laboratory
for Quantum Magnetism, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - Francesco Stellacci
- Institute
of Materials, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Silke Krol
- Nanomedicine
Laboratory, Fondazione IRCCS Istituto Neurologico Carlo Besta, AMADEOLAB, Via G.A. Amadeo 42, 20133 Milan, Italy
| |
Collapse
|
135
|
Beloqui A, des Rieux A, Préat V. Mechanisms of transport of polymeric and lipidic nanoparticles across the intestinal barrier. Adv Drug Deliv Rev 2016; 106:242-255. [PMID: 27117710 DOI: 10.1016/j.addr.2016.04.014] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 03/27/2016] [Accepted: 04/16/2016] [Indexed: 01/02/2023]
Abstract
Unraveling the mechanisms of nanoparticle transport across the intestinal barrier is essential for designing more efficient nanoparticles for oral administration. The physicochemical parameters of the nanoparticles (e.g., size, surface charge, chemical composition) dictate nanoparticle fate across the intestinal barrier. This review aims to address the most important findings regarding polymeric and lipidic nanoparticle transport across the intestinal barrier, including the evaluation of critical physicochemical parameters of nanoparticles that affect nanocarrier interactions with the intestinal barrier.
Collapse
|
136
|
Fong FY, Oh SS, Hawker CJ, Soh HT. In Vitro Selection of pH-Activated DNA Nanostructures. Angew Chem Int Ed Engl 2016; 55:15258-15262. [PMID: 27809385 DOI: 10.1002/anie.201607540] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/19/2016] [Indexed: 12/21/2022]
Abstract
We report the first in vitro selection of DNA nanostructures that switch their conformation when triggered by change in pH. Previously, most pH-active nanostructures were designed using known pH-active motifs, such as the i-motif or the triplex structure. In contrast, we performed de novo selections starting from a random library and generated nanostructures that can sequester and release Mipomersen, a clinically approved antisense DNA drug, in response to pH change. We demonstrate extraordinary pH-selectivity, releasing up to 714-fold more Mipomersen at pH 5.2 compared to pH 7.5. Interestingly, none of our nanostructures showed significant sequence similarity to known pH-sensitive motifs, suggesting that they may operate via novel structure-switching mechanisms. We believe our selection scheme is general and could be adopted for generating DNA nanostructures for many applications including drug delivery, sensors and pH-active surfaces.
Collapse
Affiliation(s)
- Faye Yi Fong
- Materials Department, University of California at Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Seung Soo Oh
- Materials Department, University of California at Santa Barbara, Santa Barbara, CA, 93106, USA.,Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, South Korea
| | - Craig J Hawker
- Department of Chemistry and Biochemistry, University of California at Santa Barbara, Santa Barbara, CA, 93106, USA
| | - H Tom Soh
- Department of Electrical Engineering and Department of Radiology, Canary Center at Stanford University, 3155 Porter Drive, Stanford, CA, 94305, USA
| |
Collapse
|
137
|
Fong FY, Oh SS, Hawker CJ, Soh HT. In Vitro Selection of pH-Activated DNA Nanostructures. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201607540] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Faye Yi Fong
- Materials Department; University of California at Santa Barbara; Santa Barbara CA 93106 USA
| | - Seung Soo Oh
- Materials Department; University of California at Santa Barbara; Santa Barbara CA 93106 USA
- Department of Materials Science and Engineering; Pohang University of Science and Technology; Pohang, Gyeongbuk 37673 South Korea
| | - Craig J. Hawker
- Department of Chemistry and Biochemistry; University of California at Santa Barbara; Santa Barbara CA 93106 USA
| | - H. Tom Soh
- Department of Electrical Engineering and Department of Radiology; Canary Center at Stanford University; 3155 Porter Drive Stanford CA 94305 USA
| |
Collapse
|
138
|
Kim SE, Zhang L, Ma K, Riegman M, Chen F, Ingold I, Conrad M, Turker MZ, Gao M, Jiang X, Monette S, Pauliah M, Gonen M, Zanzonico P, Quinn T, Wiesner U, Bradbury MS, Overholtzer M. Ultrasmall nanoparticles induce ferroptosis in nutrient-deprived cancer cells and suppress tumour growth. NATURE NANOTECHNOLOGY 2016; 11:977-985. [PMID: 27668796 PMCID: PMC5108575 DOI: 10.1038/nnano.2016.164] [Citation(s) in RCA: 421] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Accepted: 08/05/2016] [Indexed: 04/14/2023]
Abstract
The design of cancer-targeting particles with precisely tuned physicochemical properties may enhance the delivery of therapeutics and access to pharmacological targets. However, a molecular-level understanding of the interactions driving the fate of nanomedicine in biological systems remains elusive. Here, we show that ultrasmall (<10 nm in diameter) poly(ethylene glycol)-coated silica nanoparticles, functionalized with melanoma-targeting peptides, can induce a form of programmed cell death known as ferroptosis in starved cancer cells and cancer-bearing mice. Tumour xenografts in mice intravenously injected with nanoparticles using a high-dose multiple injection scheme exhibit reduced growth or regression, in a manner that is reversed by the pharmacological inhibitor of ferroptosis, liproxstatin-1. These data demonstrate that ferroptosis can be targeted by ultrasmall silica nanoparticles and may have therapeutic potential.
Collapse
Affiliation(s)
- Sung Eun Kim
- Cell Biology Program, Sloan Kettering Institute for Cancer Research, New York, New York 10065, USA
- BCMB Allied Program, Weill Cornell Medical College, New York, New York 10065, USA
| | - Li Zhang
- Department of Radiology, Sloan Kettering Institute for Cancer Research, New York, New York 10065, USA
| | - Kai Ma
- Department of Materials Science &Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Michelle Riegman
- Cell Biology Program, Sloan Kettering Institute for Cancer Research, New York, New York 10065, USA
| | - Feng Chen
- Department of Radiology, Sloan Kettering Institute for Cancer Research, New York, New York 10065, USA
| | - Irina Ingold
- Helmholtz Zentrum München, Institute of Developmental Genetics, 85764 Neuherberg, Germany
| | - Marcus Conrad
- Helmholtz Zentrum München, Institute of Developmental Genetics, 85764 Neuherberg, Germany
| | - Melik Ziya Turker
- Department of Materials Science &Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Minghui Gao
- Cell Biology Program, Sloan Kettering Institute for Cancer Research, New York, New York 10065, USA
| | - Xuejun Jiang
- Cell Biology Program, Sloan Kettering Institute for Cancer Research, New York, New York 10065, USA
- BCMB Allied Program, Weill Cornell Medical College, New York, New York 10065, USA
| | - Sebastien Monette
- Tri-Institutional Laboratory of Comparative Pathology, The Rockefeller University, Sloan Kettering Institute for Cancer Research, Weill Cornell Medical College, New York, New York 10065, USA
| | - Mohan Pauliah
- Department of Radiology, Sloan Kettering Institute for Cancer Research, New York, New York 10065, USA
| | - Mithat Gonen
- Department of Epidemiology and Biostatistics, Sloan Kettering Institute for Cancer Research, New York, New York 10065, USA
| | - Pat Zanzonico
- Department of Medical Physics, Sloan Kettering Institute for Cancer Research, New York, New York 10065, USA
| | - Thomas Quinn
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, USA
| | - Ulrich Wiesner
- Department of Materials Science &Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Michelle S Bradbury
- Department of Radiology, Sloan Kettering Institute for Cancer Research, New York, New York 10065, USA
- Molecular Pharmacology Program, Sloan Kettering Institute for Cancer Research, New York, New York 10065, USA
| | - Michael Overholtzer
- Cell Biology Program, Sloan Kettering Institute for Cancer Research, New York, New York 10065, USA
- BCMB Allied Program, Weill Cornell Medical College, New York, New York 10065, USA
| |
Collapse
|
139
|
Zagorodko O, Arroyo-Crespo JJ, Nebot VJ, Vicent MJ. Polypeptide-Based Conjugates as Therapeutics: Opportunities and Challenges. Macromol Biosci 2016; 17. [DOI: 10.1002/mabi.201600316] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/02/2016] [Indexed: 12/16/2022]
Affiliation(s)
- Oleksandr Zagorodko
- Polymer Therapeutics Laboratory; Centro de Investigación Príncipe Felipe; Valencia 46012 Spain
| | - Juan José Arroyo-Crespo
- Polymer Therapeutics Laboratory; Centro de Investigación Príncipe Felipe; Valencia 46012 Spain
| | - Vicent J. Nebot
- Polymer Therapeutics Laboratory; Centro de Investigación Príncipe Felipe; Valencia 46012 Spain
- Polypeptide Therapeutic Solutions SL; Centro de Investigación Príncipe Felipe; Valencia 46012 Spain
| | - María J. Vicent
- Polymer Therapeutics Laboratory; Centro de Investigación Príncipe Felipe; Valencia 46012 Spain
| |
Collapse
|
140
|
He C, Wang S, Liu M, Zhao C, Xiang S, Zeng Y. Design, synthesis and in vitro evaluation of d-glucose-based cationic glycolipids for gene delivery. Org Biomol Chem 2016; 14:1611-22. [PMID: 26670704 DOI: 10.1039/c5ob02107c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A cationic lipid consists of a hydrophilic headgroup, backbone and hydrophobic tails which have an immense influence on the transfection efficiency of the lipid. In this paper, two novel series of cationic cyclic glycolipids with a quaternary ammonium headgroup and different-length hydrophobic tails (dodecyl, tetradecyl, hexadecyl) have been designed and synthesized for gene delivery. One contains lipids 1-3 with two hydrophobic alkyl chains linked to the glucose ring directly via an ether link. The other contains lipids 4-6 with two hydrophobic chains on the positively charged nitrogen atoms. All of the lipids were characterized for their ability to bind to DNA, size, ζ-potential, and toxicity. Atomic force microscopy showed that the lipids and DNA-lipid complexes were sphere-like forms. The lipids were used to transfer enhanced green fluorescent protein (EGFP-C3) to HEK293 cells without a helper lipid, the results indicated that lipids 4-6 have better transfection efficiency, in particular lipids 5-6 have similar or better efficiency, compared with the commercial transfection reagent lipofectamine 2000.
Collapse
Affiliation(s)
- Chengxi He
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Hunan Normal University, Changsha, Hunan 410081, P. R. China.
| | - Shang Wang
- Key Laboratory of Protein Chemistry and Developmental Biology of State Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, P. R. China
| | - Meiyan Liu
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Hunan Normal University, Changsha, Hunan 410081, P. R. China.
| | - Chunyan Zhao
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Hunan Normal University, Changsha, Hunan 410081, P. R. China.
| | - Shuanglin Xiang
- Key Laboratory of Protein Chemistry and Developmental Biology of State Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, P. R. China
| | - Youlin Zeng
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Hunan Normal University, Changsha, Hunan 410081, P. R. China.
| |
Collapse
|
141
|
Hu X, Dong X, Lu Y, Qi J, Zhao W, Wu W. Bioimaging of nanoparticles: the crucial role of discriminating nanoparticles from free probes. Drug Discov Today 2016; 22:382-387. [PMID: 27742534 DOI: 10.1016/j.drudis.2016.10.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 09/02/2016] [Accepted: 10/03/2016] [Indexed: 12/16/2022]
Abstract
The biological fate of nanocarriers has yet to be fully explored, mainly because of the lack of functional tools like probes to identify integral nanocarriers in the body. Understanding their in vivo fate remains as the bottleneck to the development of nanomedicines. Bioimaging results based on conventional fluorescent or radioactive probes should be judged critically because images merely reflect bulk signals of an admixture of the nanoparticles and free probes. It is crucial to discriminate between nanocarrier-bound and free signals. This review analyzes the state-of-the-art of bioimaging of nanoparticles in vivo and highlights directions for future endeavours.
Collapse
Affiliation(s)
- Xiongwei Hu
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery of MOE and PLA, Shanghai, China; School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiaochun Dong
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery of MOE and PLA, Shanghai, China
| | - Yi Lu
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery of MOE and PLA, Shanghai, China
| | - Jianping Qi
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery of MOE and PLA, Shanghai, China
| | - Weili Zhao
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery of MOE and PLA, Shanghai, China; Key Laboratory for Special Functional Materials of the Ministry of Education, Henan University, Kaifeng, China
| | - Wei Wu
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery of MOE and PLA, Shanghai, China.
| |
Collapse
|
142
|
Serrano D, Manthe RL, Paul E, Chadha R, Muro S. How Carrier Size and Valency Modulate Receptor-Mediated Signaling: Understanding the Link between Binding and Endocytosis of ICAM-1-Targeted Carriers. Biomacromolecules 2016; 17:3127-3137. [PMID: 27585187 PMCID: PMC5831250 DOI: 10.1021/acs.biomac.6b00493] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Targeting of drug carriers to endocytic cell receptors facilitates intracellular drug delivery. Carrier size and number of targeting moieties (valency) influence cell binding and uptake. However, how these parameters influence receptor-mediated cell signaling (the link between binding and uptake) remains uncharacterized. We studied this using polymer carriers of different sizes and valencies, targeted to endothelial intercellular adhesion molecule-1 (ICAM-1), a marker overexpressed in many pathologies. Unexpectedly, induction of cell signals (ceramide and protein kinase C (PKC) enrichment and activation) and uptake, were independent of carrier avidity, total number of carriers bound per cell, cumulative cell surface area occupied by carriers, number of targeting antibodies at the carrier-cell contact, and cumulative receptor engagement by all bound carriers. Instead, "valency density" (number of antibodies per carrier surface area) ruled signaling, and carrier size independently influenced uptake. These results are key to understanding the interplay between carrier design parameters and receptor-mediated signaling conducive to endocytosis, paramount for intracellular drug delivery.
Collapse
Affiliation(s)
- Daniel Serrano
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742-4450, USA
| | - Rachel L. Manthe
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742-4450, USA
| | - Eden Paul
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742-4450, USA
| | - Rishi Chadha
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742-4450, USA
| | - Silvia Muro
- Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742-4450, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742-4450, USA
| |
Collapse
|
143
|
Wongpinyochit T, Johnston BF, Seib FP. Manufacture and Drug Delivery Applications of Silk Nanoparticles. J Vis Exp 2016. [PMID: 27768078 DOI: 10.3791/54669] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Silk is a promising biopolymer for biomedical and pharmaceutical applications due to its outstanding mechanical properties, biocompatibility and biodegradability, as well its ability to protect and subsequently release its payload in response to a trigger. While silk can be formulated into various material formats, silk nanoparticles are emerging as promising drug delivery systems. Therefore, this article covers the procedures for reverse engineering silk cocoons to yield a regenerated silk solution that can be used to generate stable silk nanoparticles. These nanoparticles are subsequently characterized, drug loaded and explored as a potential anticancer drug delivery system. Briefly, silk cocoons are reverse engineered first by degumming the cocoons, followed by silk dissolution and clean up, to yield an aqueous silk solution. Next, the regenerated silk solution is subjected to nanoprecipitation to yield silk nanoparticles - a simple but powerful method that generates uniform nanoparticles. The silk nanoparticles are characterized according to their size, zeta potential, morphology and stability in aqueous media, as well as their ability to entrap a chemotherapeutic payload and kill human breast cancer cells. Overall, the described methodology yields uniform silk nanoparticles that can be readily explored for a myriad of applications, including their use as a potential nanomedicine.
Collapse
Affiliation(s)
| | - Blair F Johnston
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde
| | - F Philipp Seib
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde;
| |
Collapse
|
144
|
Giannotti MI, Abasolo I, Oliva M, Andrade F, García-Aranda N, Melgarejo M, Pulido D, Corchero JL, Fernández Y, Villaverde A, Royo M, García-Parajo MF, Sanz F, Schwartz S. Highly Versatile Polyelectrolyte Complexes for Improving the Enzyme Replacement Therapy of Lysosomal Storage Disorders. ACS APPLIED MATERIALS & INTERFACES 2016; 8:25741-25752. [PMID: 27610822 DOI: 10.1021/acsami.6b08356] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Lysosomal storage disorders are currently treated by enzyme replacement therapy (ERT) through the direct administration of the unprotected recombinant protein to the patients. Herein we present an ionically cross-linked polyelectrolyte complex (PEC) composed of trimethyl chitosan (TMC) and α-galactosidase A (GLA), the defective enzyme in Fabry disease, with the capability of directly targeting endothelial cells by incorporating peptide ligands containing the RGD sequence. We assessed the physicochemical properties, cytotoxicity, and hemocompatibility of RGD-targeted and untargeted PECs, the uptake by endothelial cells and the intracellular activity of PECs in cell culture models of Fabry disease. Moreover, we also explored the effect of different freeze-drying procedures in the overall activity of the PECs. Our results indicate that the use of integrin-binding RGD moiety within the PEC increases their uptake and the efficacy of the GLA enzyme, while the freeze-drying allows the activity of the therapeutic protein to remain intact. Overall, these results highlight the potential of TMC-based PECs as a highly versatile and feasible drug delivery system for improving the ERT of lysosomal storage disorders.
Collapse
Affiliation(s)
- Marina I Giannotti
- Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , 28029 Madrid, Spain
- Nanoprobes & Nanoswitches, Institute for Bioengineering of Catalonia (IBEC) , Baldiri Reixac 10, 08028 Barcelona, Spain
- Physical Chemistry Department, Universitat de Barcelona , 08028 Barcelona, Spain
| | - Ibane Abasolo
- Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , 28029 Madrid, Spain
- CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona , 08035 Barcelona, Spain
| | - Mireia Oliva
- Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , 28029 Madrid, Spain
- Nanoprobes & Nanoswitches, Institute for Bioengineering of Catalonia (IBEC) , Baldiri Reixac 10, 08028 Barcelona, Spain
- Pharmacy and Pharmaceutical Technology Department, Universitat de Barcelona , 08028 Barcelona, Spain
| | - Fernanda Andrade
- Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , 28029 Madrid, Spain
- Nanoprobes & Nanoswitches, Institute for Bioengineering of Catalonia (IBEC) , Baldiri Reixac 10, 08028 Barcelona, Spain
- Pharmacy and Pharmaceutical Technology Department, Universitat de Barcelona , 08028 Barcelona, Spain
- Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Porto , 4050-313 Porto, Portugal
| | - Natalia García-Aranda
- Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , 28029 Madrid, Spain
- CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona , 08035 Barcelona, Spain
| | - Marta Melgarejo
- Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , 28029 Madrid, Spain
- Combinatorial Chemistry Unit, Barcelona Science Park , Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Daniel Pulido
- Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , 28029 Madrid, Spain
- Combinatorial Chemistry Unit, Barcelona Science Park , Baldiri Reixac 10, 08028 Barcelona, Spain
| | - José L Corchero
- Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , 28029 Madrid, Spain
- Institut de Biotecnologia i de Biomedicina and Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona , Bellaterra, 08193 Cerdanyola del Vallès, Spain
| | - Yolanda Fernández
- Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , 28029 Madrid, Spain
- CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona , 08035 Barcelona, Spain
| | - Antonio Villaverde
- Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , 28029 Madrid, Spain
- Institut de Biotecnologia i de Biomedicina and Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona , Bellaterra, 08193 Cerdanyola del Vallès, Spain
| | - Miriam Royo
- Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , 28029 Madrid, Spain
- Combinatorial Chemistry Unit, Barcelona Science Park , Baldiri Reixac 10, 08028 Barcelona, Spain
| | - María F García-Parajo
- Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology , ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Fausto Sanz
- Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , 28029 Madrid, Spain
- Nanoprobes & Nanoswitches, Institute for Bioengineering of Catalonia (IBEC) , Baldiri Reixac 10, 08028 Barcelona, Spain
- Physical Chemistry Department, Universitat de Barcelona , 08028 Barcelona, Spain
| | - Simó Schwartz
- Centro de Investigación Biomédica en Red-Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , 28029 Madrid, Spain
- CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona , 08035 Barcelona, Spain
| |
Collapse
|
145
|
Cationic carbon quantum dots derived from alginate for gene delivery: One-step synthesis and cellular uptake. Acta Biomater 2016; 42:209-219. [PMID: 27321673 DOI: 10.1016/j.actbio.2016.06.021] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 05/27/2016] [Accepted: 06/15/2016] [Indexed: 11/20/2022]
Abstract
UNLABELLED Carbon quantum dots (CQDs), unlike semiconductor quantum dots, possess fine biocompatibility, excellent upconversion properties, high photostability and low toxicity. Here, we report multifunctional CQDs which were developed using alginate, 3% hydrogen peroxide and double distilled water through a facile, eco-friendly and inexpensive one-step hydrothermal carbonization route. In this reaction, the alginate served as both the carbon source and the cationization agent. The resulting CQDs exhibited strong and stable fluorescence with water-dispersible and positively-charged properties which could serve as an excellent DNA condensation. As non-viral gene vector being used for the first time, the CQDs showed considerably high transfection efficiency (comparable to Lipofectamine2000 and significantly higher than PEI, p<0.05) and negligible toxicity. The photoluminescence properties of CQDs also permitted easy tracking of the cellular-uptake. The findings showed that both caveolae- and clathrin-mediated endocytosis pathways were involved in the internalization process of CQDs/pDNA complexes. Taken together, the alginate-derived photoluminescent CQDs hold great potential in biomedical applications due to their dual role as efficient non-viral gene vectors and bioimaging probes. STATEMENT OF SIGNIFICANCE This manuscript describes a facile and simple one-step hydrothermal carbonization route for preparing optically tunable photoluminescent carbon quantum dots (CQDs) from a novel raw material, alginate. These CQDs enjoy low cytotoxicity, positive zeta potential, excellent ability to condense macromolecular DNA, and most importantly, notably high transfection efficiency. The interesting finding is that the negatively-charged alginate can convert into positively charged CQDs without adding any cationic reagents. The significance of this study is that the cationic carbon quantum dots play dual roles as both non-viral gene vectors and bioimaging probes at the same time, which are most desirable in many fields of applications such as gene therapy, drug delivery, and bioimaging.
Collapse
|
146
|
Shorter SA, Gollings AS, Gorringe-Pattrick MAM, Coakley JE, Dyer PDR, Richardson SCW. The potential of toxin-based drug delivery systems for enhanced nucleic acid therapeutic delivery. Expert Opin Drug Deliv 2016; 14:685-696. [DOI: 10.1080/17425247.2016.1227781] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
147
|
Fang Y, Xue J, Ke L, Liu Y, Shi K. Polymeric lipid vesicles with pH-responsive turning on-off membrane for programed delivery of insulin in GI tract. Drug Deliv 2016; 23:3582-3593. [PMID: 27685178 DOI: 10.1080/10717544.2016.1212440] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
A kind of polymeric lipid vesicles (PLVs) with pH-responsive turning on-off membrane for programed delivery of insulin in gastrointestinal (GI) tract was developed, which was self-assembled from the grafted amphipathic polymer of N-tocopheryl-N'-succinyl-ɛ-poly-l-lysine (TP/SC-g-PLL). By controlling the grafting ratio of hydrophobic alkane and ionizable carboxyl branches, the permeability of membrane was adjustable and thus allowing insulin release in a GI-pH dependent manner. The effects of grafting degree of substitution (DS) on the pH-responsive behavior of the formed vesicles were confirmed by critical aggregation concentration determination, morphology and size characterization. Their transepithelial permeability across the GI tract was proved by both confocal visualization in vitro model of Caco-2 cellular monolayer and in vivo hypoglycemic study in diabetic rats. Accordingly, the work described here indicated that the self-assembled PLVs could be a promising candidate for improving the GI delivery of hydrophilic biomacromolecule agents.
Collapse
Affiliation(s)
- Yan Fang
- a Department of Pharmaceutics , School of Pharmaceutical Science, Shenyang Pharmaceutical University , Shenyang , China
| | - Jianxiu Xue
- a Department of Pharmaceutics , School of Pharmaceutical Science, Shenyang Pharmaceutical University , Shenyang , China
| | - Liyuan Ke
- a Department of Pharmaceutics , School of Pharmaceutical Science, Shenyang Pharmaceutical University , Shenyang , China
| | - Yang Liu
- a Department of Pharmaceutics , School of Pharmaceutical Science, Shenyang Pharmaceutical University , Shenyang , China
| | - Kai Shi
- a Department of Pharmaceutics , School of Pharmaceutical Science, Shenyang Pharmaceutical University , Shenyang , China
| |
Collapse
|
148
|
Ghaffarian R, Roki N, Abouzeid A, Vreeland W, Muro S. Intra- and trans-cellular delivery of enzymes by direct conjugation with non-multivalent anti-ICAM molecules. J Control Release 2016; 238:221-230. [PMID: 27473764 DOI: 10.1016/j.jconrel.2016.07.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 07/16/2016] [Accepted: 07/25/2016] [Indexed: 12/27/2022]
Abstract
Intercellular adhesion molecule 1 (ICAM-1) is a cell-surface protein overexpressed in many diseases and explored for endocytosis and transcytosis of drug delivery systems. All previous evidence demonstrating ICAM-1-mediated transport of therapeutics into or across cells was obtained using nanocarriers or conjugates coupled to multiple copies of anti-ICAM antibodies or peptides. Yet, transport of therapeutics linked to non-multivalent anti-ICAM ligands has never been shown, since multivalency was believed to be necessary to induce transport. Our goal was to explore whether non-multivalent binding to ICAM-1 could drive endocytosis and/or transcytosis of model cargo in different cell types. We found that anti-ICAM was specifically internalized by all tested ICAM-1-expressing cells, including epithelial, fibroblast and neuroblastoma cells, primary or established cell lines. Uptake was inhibited at 4°C and in the presence of an inhibitor of the ICAM-1-associated pathway, rather than inhibitors of the clathrin or caveolar routes. We observed minimal transport of anti-ICAM to lysosomes, yet prominent and specific transcytosis across epithelial monolayers. Finally, we coupled a model cargo (the enzyme horseradish peroxidase (HRP)) to anti-ICAM and separated a 1:2 antibody:enzyme conjugate for non-multivalent ICAM-1 targeting. Similar to anti-ICAM, anti-ICAM-HRP was specifically internalized and transported across cells, which rendered intra- and trans-cellular enzyme activity. Therefore, non-multivalent ICAM-1 targeting also provides transport of cargoes into and across cells, representing a new alternative for future therapeutic applications via this route.
Collapse
Affiliation(s)
- Rasa Ghaffarian
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Niksa Roki
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA
| | - Abraham Abouzeid
- National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Wyatt Vreeland
- National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Silvia Muro
- Fischell Department of Bioengineering, University of Maryland, College Park, MD, USA; Institute of Bioscience & Biotechnology Research, University of Maryland, College Park, MD, USA.
| |
Collapse
|
149
|
Yu F, Li J, Xie Y, Sleightholm RL, Oupický D. Polymeric chloroquine as an inhibitor of cancer cell migration and experimental lung metastasis. J Control Release 2016; 244:347-356. [PMID: 27473763 DOI: 10.1016/j.jconrel.2016.07.040] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/18/2016] [Accepted: 07/25/2016] [Indexed: 01/16/2023]
Abstract
Chloroquine (CQ) is a widely used antimalarial drug with emerging potential in anticancer therapies due to its apparent inhibitory effects on CXCR4 chemokine receptor, autophagy, and cholesterol metabolism. This study reports on polymeric CQ (pCQ) as a macromolecular drug with antimetastatic activity. The pCQ polymers were synthesized by copolymerization of methacryloylated hydroxy-CQ (HCQ) and N-(2-hydroxypropyl)methacrylamide (HPMA). The results show that pCQ is significantly more effective in inhibiting cancer cell migration and invasion when compared with the parent HCQ. The proposed mechanism of action at least partially relies on the ability of pCQ to inhibit cell migration mediated by the CXCR4/CXCL12 pathway. The pCQ also demonstrates superior inhibitory activity over HCQ when tested in a mouse model of experimental lung metastasis. Lastly, pCQ shows the ability to efficiently translocate to the cytoplasm while exhibiting lower cytotoxicity than HCQ. Overall, this study supports pCQ as a promising polymeric drug platform suitable for use in combination antimetastatic strategies and potential use in cytoplasmic drug delivery.
Collapse
Affiliation(s)
- Fei Yu
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jing Li
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Ying Xie
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Richard L Sleightholm
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - David Oupický
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA; Department of Pharmaceutical Sciences, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
150
|
Abd Ellah NH, Abouelmagd SA. Surface functionalization of polymeric nanoparticles for tumor drug delivery: approaches and challenges. Expert Opin Drug Deliv 2016; 14:201-214. [DOI: 10.1080/17425247.2016.1213238] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Noura H. Abd Ellah
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Sara A. Abouelmagd
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| |
Collapse
|