101
|
Transformation and Cytotoxicity of Surface-Modified Silver Nanoparticles Undergoing Long-Term Aging. NANOMATERIALS 2020; 10:nano10112255. [PMID: 33203023 PMCID: PMC7697416 DOI: 10.3390/nano10112255] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 11/17/2022]
Abstract
Silver nanoparticles (AgNPs) are constituents of many consumer products, but the future of their production depends on ensuring safety. The stability of AgNPs in various physiological solutions and aging in storage may affect the accuracy of predicted nanoparticle toxicity. The goal of this study was to simulate the transformation of AgNPs in different media representatives to the life cycle in the environment and to identify their toxicity to Hepa1c1c7 cells in a long-term aging process. AgNPs coated with citrate, polyethylene glycol (PEG), polyvinylpyrrolidone (PVP), and branched polyethyleneimine (BPEI) were studied. Our results show that the exposure media had a significant impact on the transformation of AgNPs. Citrate-coated AgNPs showed significant aggregation in phosphate-buffered saline. The aging of AgNPs in optimal storage showed that the charge-stabilized particles (citrate) were more unstable, with significant aggregation and shape changes, than sterically stabilized particles (PEG AgNPs, PVP AgNPs). The BPEI AgNPs showed the highest dissolution of AgNPs, which induced significantly increased toxicity to Hepa1c1c7 cells. Overall, our findings showed that storage and media of AgNPs influenced the transformation of AgNPs and that the resulting changes in the AgNPs’ physicochemical properties influenced their toxicity. Our study contributes to the understanding of AgNPs’ transformations under realistic exposure scenarios and increasing the predictability of risk assessments.
Collapse
|
102
|
Red blood cell-hitchhiking chitosan nanoparticles for prolonged blood circulation time of vitamin K 1. Int J Pharm 2020; 592:120084. [PMID: 33188893 DOI: 10.1016/j.ijpharm.2020.120084] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/13/2020] [Accepted: 11/08/2020] [Indexed: 02/07/2023]
Abstract
Nanocarriers have been extensively applied for intravascular drug delivery. However, rapid clearance from circulation by mononuclear phagocyte system has limited their applications. Erythrocytes carriers are potential solutions to overcome the limitations of nanocarriers and considered to be ideal natural carriers for drug delivery because of their unique properties. The purpose of this work is to combine nanocarriers with erythrocytes carriers for sustained release and prolonged circulation time of vitamin K1. Chitosan nanoparticles loading VK1 (VK-CSNPs) were prepared using ionotropic gelation method, which was optimized using box-behnken design and response surface methodology. VK-CSNPs adsorbed onto red blood cells (RBC-VK-CSNPs) rapidly via electrostatic interactions. The exposure of phosphatidylserine, osmotic fragility and turbulence fragility of RBC loading nanoparticles were investigated to study the toxicity of nanoparticles to erythrocytes. In vivo pharmacokinetic study indicated that Cmax, AUC and MRT of RBC-VK-CSNPs group were remarkably higher than that of VK-CSNPs group. Flow cytometry showed VK-CSNPs steadily retained on the surface of RBC for a long time without affecting the circulation profiles of RBC themselves. The nanoparticles carried on RBC released drug, desorbed and were eliminated in vivo. Therefore, the circulation time of RBC-hitchhiking chitosan nanoparticles was greatly prolonged compared with nanoparticles alone. RBC-hitchhiking could be a valuable hybrid strategy for prolonging the in vivo life of nanocarriers.
Collapse
|
103
|
Breznica P, Koliqi R, Daka A. A review of the current understanding of nanoparticles protein corona composition. Med Pharm Rep 2020; 93:342-350. [PMID: 33225259 PMCID: PMC7664725 DOI: 10.15386/mpr-1756] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/22/2020] [Accepted: 06/30/2020] [Indexed: 12/25/2022] Open
Abstract
Upon entering into the biological environments, the surface of the nanoparticles is immediately coated with proteins and form the so-called a protein corona due to which a nanoparticle changes its “synthetic” identity to a new “biological” identity. Different types of nanoparticles have different protein binding profiles, which is why they have different protein corona composition and therefore it cannot be said that there is a universal protein corona. The composition and amount of protein in the corona depends on the physical and chemical characteristics of the nanoparticles, the type of biological medium and the exposure time. Protein corona increases the diameter but also changes the composition of the surface of the nanoparticles and these changes affect biodistribution, efficacy, and toxicity of the nanoparticles.
Collapse
Affiliation(s)
- Pranvera Breznica
- Department of Pharmaceutical Chemistry, Pharmacy Division, Faculty of Medicine, "Hasan Prishtina" University, Prishtina, Republic of Kosovo
| | - Rozafa Koliqi
- Department of Clinical Pharmacy and Biopharmacy, Pharmacy Division, Faculty of Medicine, "Hasan Prishtina" University, Prishtina, Republic of Kosovo
| | - Arlinda Daka
- Department of Clinical Pharmacy and Biopharmacy, Pharmacy Division, Faculty of Medicine, "Hasan Prishtina" University, Prishtina, Republic of Kosovo
| |
Collapse
|
104
|
Papini E, Tavano R, Mancin F. Opsonins and Dysopsonins of Nanoparticles: Facts, Concepts, and Methodological Guidelines. Front Immunol 2020; 11:567365. [PMID: 33154748 PMCID: PMC7587406 DOI: 10.3389/fimmu.2020.567365] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/25/2020] [Indexed: 11/13/2022] Open
Abstract
Understanding the effects mediated by a set of nanoparticle (NP)-bound host biomolecules, often indicated with the umbrella term of NP corona, is essential in nanomedicine, nanopharmacology, and nanotoxicology. Among the NP-adsorbed proteome, some factors mediate cell binding, endocytosis, and clearing by macrophages and other phagocytes (opsonins), while some others display few affinities for the cell surface (dysopsonins). The functional mapping of opsonins and dysopsonins is instrumental to design long-circulating and nanotoxicologically safe next-generation nanotheranostics. In this review, we critically analyze functional data identifying specific proteins with opsonin or dysopsonin properties. Special attention is dedicated to the following: (1) the simplicity or complexity of the NP proteome and its modulation, (2) the role of specific host proteins in mediating the stealth properties of uncoated or polymer-coated NPs, and (3) the ability of the innate immune system, and, in particular, of the complement proteins, to mediate NP clearance by phagocytes. Emerging species-specific peculiarities, differentiating humans from preclinical animal models (the murine especially), are highlighted throughout this overview. The operative definition of opsonin and dysopsonin and the measurement schemes to assess their in vitro efficacy is critically re-examined. This provides a shared and unbiased approach useful for NP opsonin and dysopsonin systematic identification.
Collapse
Affiliation(s)
- Emanuele Papini
- Department of Biomedical Sciences, University of Padua, Padua, Italy.,Centre for Innovative Biotechnological Research, University of Padua, Padua, Italy
| | - Regina Tavano
- Department of Biomedical Sciences, University of Padua, Padua, Italy.,Centre for Innovative Biotechnological Research, University of Padua, Padua, Italy
| | - Fabrizio Mancin
- Department of Chemical Sciences, University of Padua, Padua, Italy
| |
Collapse
|
105
|
Abstract
Nanomedicine is an interdisciplinary field of research, comprising science, engineering, and medicine. Many are the clinical applications of nanomedicine, such as molecular imaging, medical diagnostics, targeted therapy, and image-guided surgery. Despite major advances during the past 20 years, many efforts must be done to understand the complex behavior of nanoparticles (NPs) under physiological conditions, the kinetic and thermodynamic principles, involved in the rational design of NP. Once administrated in physiological environment, NPs interact with biomolecules and they are surrounded by protein corona (PC) or biocorona. PC can trigger an immune response, affecting NPs toxicity and targeting capacity. This review aims to provide a detailed description of biocorona and of parameters that are able to control PC formation and composition. Indeed, the review provides an overview about the role of PC in the modulation of both cytotoxicity and immune response as well as in the control of targeting capacity.
Collapse
Affiliation(s)
- Elisa Fasoli
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| |
Collapse
|
106
|
Ferreira RS, Lira AL, Sousa AA. Quantitative mechanistic model for ultrasmall nanoparticle-protein interactions. NANOSCALE 2020; 12:19230-19240. [PMID: 32929438 DOI: 10.1039/d0nr04846a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
To date, extensive effort has been devoted toward the characterization of protein interactions with synthetic nanostructures. However, much remains to be understood, particularly concerning microscopic mechanisms of interactions. Here, we have conducted a detailed investigation of the kinetics of nanoparticle-protein complexation to gain deeper insights into the elementary steps and molecular events along the pathway for complex formation. Toward that end, the binding kinetics between p-mercaptobenzoic acid-coated ultrasmall gold nanoparticles (AuMBA) and fluorescently-labeled ubiquitin was investigated at millisecond time resolution using stopped-flow spectroscopy. It was found that both the association and dissociation kinetics consisted of multiple exponential phases, hence suggesting a complex, multi-step reaction mechanism. The results fit into a picture where complexation proceeds through the formation of a weakly-bound first-encounter complex with an apparent binding affinity (KD) of ∼9 μM. Encounter complex formation is followed by unimolecular tightening steps of partial desolvation/ion removal and conformational rearrangement, which, collectively, achieve an almost 100-fold increase in affinity of the final bound state (apparent KD ∼0.1 μM). The final state is found to be weakly stabilized, displaying an average lifetime in the range of seconds. Screening of the electrostatic forces at high ionic strength weakens the AuMBA-ubiquitin interactions by destabilizing the encounter complex, whereas the average lifetime of the final bound state remains largely unchanged. Overall, our rapid kinetics investigation has revealed novel quantitative insights into the molecular-level mechanisms of ultrasmall nanoparticle-protein interactions.
Collapse
Affiliation(s)
- Rodrigo S Ferreira
- Department of Biochemistry, Federal University of São Paulo, São Paulo, SP 04044-020, Brazil.
| | - André L Lira
- Department of Biochemistry, Federal University of São Paulo, São Paulo, SP 04044-020, Brazil.
| | - Alioscka A Sousa
- Department of Biochemistry, Federal University of São Paulo, São Paulo, SP 04044-020, Brazil.
| |
Collapse
|
107
|
Belhadj Z, He B, Fu J, Zhang H, Wang X, Dai W, Zhang Q. Regulating Interactions Between Targeted Nanocarriers and Mononuclear Phagocyte System via an Esomeprazole-Based Preconditioning Strategy. Int J Nanomedicine 2020; 15:6385-6399. [PMID: 32922007 PMCID: PMC7458613 DOI: 10.2147/ijn.s258054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 08/05/2020] [Indexed: 12/14/2022] Open
Abstract
Purpose The mononuclear phagocyte system (MPS) presents a formidable obstacle that hampers the delivery of various nanopreparations to tumors. Therefore, there is an urgent need to improve the off-MPS targeting ability of nanomedicines. In the present study, we present a novel preconditioning strategy to substantially increase the circulation times and tumor targeting of nanoparticles by regulating nanocarrier-MPS interactions. Methods In vitro, the effect of different vacuolar H+-ATPase inhibitors on macrophage uptake of targeted or nontargeted lipid vesicles was evaluated. Specifically, the clinically approved proton-pump inhibitor esomeprazole (ESO) was selected as a preconditioning agent. Then, we further investigated the blocking effect of ESO on the macrophage endocytosis of nanocarriers. In vivo, ESO was first intravenously administered into A549-tumor-bearing nude mice, and 24 h later, the c(RGDm7)-modified vesicles co-loaded with doxorubicin and gefitinib were intravenously injected. Results In vitro, ESO was found to reduce the interactions between macrophages and c(RGDm7)-modified vesicles by interfering with the latter’s lysosomal trafficking. Studies conducted in vivo confirmed that ESO pretreatment greatly decreased the liver and spleen distribution of the targeted vesicles, enhanced their tumor accumulation, and improved the therapeutic outcome of the drug-loaded nanomedicines. Conclusion Our findings indicate that ESO can regulate the nanoparticle-MPS interaction, which provides a feasible option for enhancing the off-MPS targeting of nanomedicines.
Collapse
Affiliation(s)
- Zakia Belhadj
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, People's Republic of China
| | - Bing He
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, People's Republic of China
| | - Jijun Fu
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, People's Republic of China
| | - Hua Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, People's Republic of China
| | - Xueqing Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, People's Republic of China
| | - Wenbing Dai
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, People's Republic of China
| | - Qiang Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, People's Republic of China
| |
Collapse
|
108
|
Brückner M, Simon J, Jiang S, Landfester K, Mailänder V. Preparation of the protein corona: How washing shapes the proteome and influences cellular uptake of nanocarriers. Acta Biomater 2020; 114:333-342. [PMID: 32726673 DOI: 10.1016/j.actbio.2020.07.041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 07/18/2020] [Accepted: 07/21/2020] [Indexed: 12/23/2022]
Abstract
A protein coat, termed the protein corona, assembles around the nanocarriers´ surface once it gets in contact with a biological environment. We show that the media used for the washing of protein corona can be crucial. This is true for the downstream analysis as well as for the pre-coating used in in vitro or in vivo. This has been widely overlooked so far. In this paper we focus on eight different washing media and analyze how they influence the composition of the hard protein corona of several nanocarriers incubated with human blood plasma and serum. SDS-PAGE and LC-MS analysis showed major differences in protein corona profiles when using diverse washing media. While plasma and serum proteins already have different complexities, each washing media changes the composition of proteins detected by downstream methods with different key proteins bound to the nanocarriers´ surface. Furthermore, the protein structure of the most abundant blood proteins incubated in the different media was analyzed with nanoDSF. This also emphasized the importance of the washing media, which had a significant influence on the protein adsorption stability. Lastly, cell uptake experiments for HeLa and RAW 264.7 macrophages also indicated an influence of the washing media. In conclusion, picking a specific washing media is on the one hand an important factor for downstream detection of protein compositions and may on the other hand be used to deliberately tune the protein corona for pre-adsorbed proteins from complex protein compositions. This might further support a guided delivery of the nanocarrier to a desired location within a physiological environment. STATEMENT OF SIGNIFICANCE: The successfully application of nanocarriers as drug delivery vehicles is currently hampered by a limited understanding of the nanocarriers´ behavior in a complex biological environment. Once the nanocarrier comes into contact with blood plasma or serum, biomolecules rapidly adsorb onto their surface, covering the nanocarriers and forming a protein corona, which then dictates their biological identity. Analyzing the composition of this dynamic network of bound molecules, has already been shown to be influenced by various factors. However, the impact of the washing media used for the protein corona preparation has so far been neglected. In the present study, we demonstrate a quantitative influence of the washing media on the composition of the hard corona of different nanocarrier systems, which additionally affects protein stability and cellular uptake behavior.
Collapse
|
109
|
Blokpoel Ferreras LA, Scott D, Vazquez Reina S, Roach P, Torres TE, Goya GF, Shakesheff KM, Dixon JE. Enhanced Cellular Transduction of Nanoparticles Resistant to Rapidly Forming Plasma Protein Coronas. ACTA ACUST UNITED AC 2020; 4:e2000162. [PMID: 32924327 DOI: 10.1002/adbi.202000162] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/06/2020] [Indexed: 12/17/2022]
Abstract
Nanoparticles (NPs) are increasingly being developed as biomedical platforms for drug/nucleic acid delivery and imaging. However, in biological fluids, NPs interact with a wide range of proteins that form a coating known as protein corona. Coronae can critically influence self-interaction and binding of other molecules, which can affect toxicity, promote cell activation, and inhibit general or specific cellular uptake. Glycosaminoglycan (GAG)-binding enhanced transduction (GET) is developed to efficiently deliver a variety of cargoes intracellularly; employing GAG-binding peptides, which promote cell targeting, and cell penetrating peptides (CPPs) which enhance endocytotic cell internalization. Herein, it is demonstrated that GET peptide coatings can mediate sustained intracellular transduction of magnetic NPs (MNPs), even in the presence of serum or plasma. NP colloidal stability, physicochemical properties, toxicity and cellular uptake are investigated. Using label-free snapshot proteomics, time-resolved profiles of human plasma coronas formed on functionalized GET-MNPs demonstrate that coronae quickly form (<1 min), with their composition relatively stable but evolving. Importantly GET-MNPs present a subtly different corona composition to MNPs alone, consistent with GAG-binding activities. Understanding how NPs interact with biological systems and can retain enhanced intracellular transduction will facilitate novel drug delivery approaches for cell-type specific targeting of new nanomaterials.
Collapse
Affiliation(s)
- Lia A Blokpoel Ferreras
- Regenerative Medicine and Cellular Therapies Division, The University of Nottingham Biodiscovery Institute (BDI), School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Daniel Scott
- School of Life Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Saul Vazquez Reina
- School of Veterinary Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Paul Roach
- Department of Chemistry, Loughborough University, Leicestershire, LE11 3TU, UK
| | - Teobaldo E Torres
- Institute of Nanoscience of Aragón, University of Zaragoza, 50009, Zaragoza, Spain
| | - Gerardo F Goya
- Institute of Nanoscience of Aragón, University of Zaragoza, 50009, Zaragoza, Spain
| | - Kevin M Shakesheff
- Regenerative Medicine and Cellular Therapies Division, The University of Nottingham Biodiscovery Institute (BDI), School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - James E Dixon
- Regenerative Medicine and Cellular Therapies Division, The University of Nottingham Biodiscovery Institute (BDI), School of Pharmacy, University of Nottingham, Nottingham, NG7 2RD, UK
| |
Collapse
|
110
|
Mohammad-Beigi H, Hayashi Y, Zeuthen CM, Eskandari H, Scavenius C, Juul-Madsen K, Vorup-Jensen T, Enghild JJ, Sutherland DS. Mapping and identification of soft corona proteins at nanoparticles and their impact on cellular association. Nat Commun 2020; 11:4535. [PMID: 32913217 PMCID: PMC7484794 DOI: 10.1038/s41467-020-18237-7] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 08/12/2020] [Indexed: 12/12/2022] Open
Abstract
The current understanding of the biological identity that nanoparticles may acquire in a given biological milieu is mostly inferred from the hard component of the protein corona (HC). The composition of soft corona (SC) proteins and their biological relevance have remained elusive due to the lack of analytical separation methods. Here, we identify a set of specific corona proteins with weak interactions at silica and polystyrene nanoparticles by using an in situ click-chemistry reaction. We show that these SC proteins are present also in the HC, but are specifically enriched after the capture, suggesting that the main distinction between HC and SC is the differential binding strength of the same proteins. Interestingly, the weakly interacting proteins are revealed as modulators of nanoparticle-cell association mainly through their dynamic nature. We therefore highlight that weak interactions of proteins at nanoparticles should be considered when evaluating nano-bio interfaces.
Collapse
Affiliation(s)
- Hossein Mohammad-Beigi
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
- The Centre for Cellular Signal Patterns (CellPAT), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Yuya Hayashi
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, 8000, Aarhus C, Denmark
| | - Christina Moeslund Zeuthen
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
- The Centre for Cellular Signal Patterns (CellPAT), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Hoda Eskandari
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
- The Centre for Cellular Signal Patterns (CellPAT), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark
| | - Carsten Scavenius
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, 8000, Aarhus C, Denmark
| | - Kristian Juul-Madsen
- Department of Biomedicine, Faculty of Health, Aarhus University, Høegh-Guldbergs Gade 10, 8000 Aarhus C, Denmark
| | - Thomas Vorup-Jensen
- Department of Biomedicine, Faculty of Health, Aarhus University, Høegh-Guldbergs Gade 10, 8000 Aarhus C, Denmark
| | - Jan J Enghild
- Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, 8000, Aarhus C, Denmark
| | - Duncan S Sutherland
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark.
- The Centre for Cellular Signal Patterns (CellPAT), Aarhus University, Gustav Wieds Vej 14, 8000, Aarhus C, Denmark.
| |
Collapse
|
111
|
Awotunde O, Okyem S, Chikoti R, Driskell JD. Role of Free Thiol on Protein Adsorption to Gold Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:9241-9249. [PMID: 32686419 DOI: 10.1021/acs.langmuir.0c01550] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Protein-gold nanoparticle (AuNP) bioconjugates have many potential applications in nanomedicine. A thorough understanding of the interaction between the protein and the AuNP is critical to engineering these functional bioconjugates with desirable properties. In this work, we investigate the role of free thiols presented by the protein on the stability of the protein-AuNP conjugate. Human serum albumin (HSA) was modified with 2-iminothiolane (Traut's reagent) to introduce additional thiols onto the protein surface, and three variants of HSA were synthesized to present 1, 5, and 20 free thiols by controlling the molar excess of the chemical modifier. Protein exchange studies on AuNPs were conducted using these HSA species and an IgG antibody which exhibited 10 free thiols. Antibody-AuNP conjugates were synthesized, purified, and dispersed in solutions containing each of the HSA species. No protein exchange was detected with the HSA or modified HSA containing 5 thiols; however, 85% of the antibody was displaced on the AuNP surface by the extensively thiolated HSA presenting 20 free thiols. Furthermore, the impact of the protein adsorption sequence was probed in which each of the HSA species were preadsorbed onto the AuNP and dispersed in a solution of antibody. The antibody fully displaced the HSA with a single thiol from the AuNP within 3 h, required 24 h to completely displace the modified HSA containing 5 thiols, and was unable to displace the modified HSA containing 20 thiols. These results indicate that the number of Au-S interactions governs the binding interaction between the protein and the AuNP. This work provides further insight into the protein-AuNP binding mechanism and identifies important design principles for engineered proteins to optimize bioconjugates.
Collapse
Affiliation(s)
- Olatunde Awotunde
- Department of Chemistry, Illinois State University, Normal, Illinois 61790, United States
| | - Samuel Okyem
- Department of Chemistry, Illinois State University, Normal, Illinois 61790, United States
| | - Rishika Chikoti
- Department of Chemistry, Illinois State University, Normal, Illinois 61790, United States
| | - Jeremy D Driskell
- Department of Chemistry, Illinois State University, Normal, Illinois 61790, United States
| |
Collapse
|
112
|
Pleskova SN, Bobyk SZ, Fomichev OI, Boryakov AV, Gorshakova EN. Influence of Quantum Dots Protein Crown on the Morphology and Morphometric Characteristics of Lymphocytes. Bull Exp Biol Med 2020; 169:393-397. [PMID: 32748144 DOI: 10.1007/s10517-020-04894-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Indexed: 10/23/2022]
Abstract
The incubation of quantum dots with lymphocytes induced significant changes in all morphometric characteristics of these cells. Protein crown formed on the surface of quantum dots after incubation with the serum consists mainly of transport proteins, immunoglobulins, blood coagulation proteins, and kininogens. Protein crown changes the morphometric characteristics of cells: in the case of incubation with quantum dots that have low-molecular-weight coating, a shift towards control parameters (cells without exposure) was observed; on the contrary, after incubation with quantum dots that have a high-molecular-weight coating, the differences from the control became more pronounced. It can be hypothesized that protein crown provokes autoagression of lymphocytes against each other and against platelets.
Collapse
Affiliation(s)
- S N Pleskova
- Research and Education Center "Physics of Solid-State Nanostructures", National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia.
| | - S Z Bobyk
- Research and Education Center "Physics of Solid-State Nanostructures", National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - O I Fomichev
- Research and Education Center "Physics of Solid-State Nanostructures", National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - A V Boryakov
- Research and Education Center "Physics of Solid-State Nanostructures", National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - E N Gorshakova
- Research and Education Center "Physics of Solid-State Nanostructures", National Research Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia
| |
Collapse
|
113
|
Russo Krauss I, Picariello A, Vitiello G, De Santis A, Koutsioubas A, Houston JE, Fragneto G, Paduano L. Interaction with Human Serum Proteins Reveals Biocompatibility of Phosphocholine-Functionalized SPIONs and Formation of Albumin-Decorated Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:8777-8791. [PMID: 32575987 PMCID: PMC8008447 DOI: 10.1021/acs.langmuir.0c01083] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/23/2020] [Indexed: 05/13/2023]
Abstract
Nanoparticles (NPs) are increasingly exploited as diagnostic and therapeutic devices in medicine. Among them, superparamagnetic nanoparticles (SPIONs) represent very promising tools for magnetic resonance imaging, local heaters for hyperthermia, and nanoplatforms for multimodal imaging and theranostics. However, the use of NPs, including SPIONs, in medicine presents several issues: first, the encounter with the biological world and proteins in particular. Indeed, nanoparticles can suffer from protein adsorption, which can affect NP functionality and biocompatibility. In this respect, we have investigated the interaction of small SPIONs covered by an amphiphilic double layer of oleic acid/oleylamine and 1-octadecanoyl-sn-glycero-3-phosphocholine with two abundant human plasma proteins, human serum albumin (HSA) and human transferrin. By means of spectroscopic and scattering techniques, we analyzed the effect of SPIONs on protein structure and the binding affinities, and only found strong binding in the case of HSA. In no case did SPIONs alter the protein structure significantly. We structurally characterized HSA/SPIONs complexes by means of light and neutron scattering, highlighting the formation of a monolayer of protein molecules on the NP surface. Their interaction with lipid bilayers mimicking biological membranes was investigated by means of neutron reflectivity. We show that HSA/SPIONs do not affect lipid bilayer features and could be further exploited as a nanoplatform for future applications. Overall, our findings point toward a high biocompatibility of phosphocholine-decorated SPIONs and support their use in nanomedicine.
Collapse
Affiliation(s)
- Irene Russo Krauss
- Department
of Chemical Sciences and Department of Chemical, Materials
and Production Engineering, University of
Naples Federico II, Naples, Italy
- CSGI,
Center for Colloid and Surface Science, Sesto Fiorentino (FI), Italy
| | - Alessandra Picariello
- Department
of Chemical Sciences and Department of Chemical, Materials
and Production Engineering, University of
Naples Federico II, Naples, Italy
| | - Giuseppe Vitiello
- Department
of Chemical Sciences and Department of Chemical, Materials
and Production Engineering, University of
Naples Federico II, Naples, Italy
- CSGI,
Center for Colloid and Surface Science, Sesto Fiorentino (FI), Italy
| | - Augusta De Santis
- Department
of Chemical Sciences and Department of Chemical, Materials
and Production Engineering, University of
Naples Federico II, Naples, Italy
- CSGI,
Center for Colloid and Surface Science, Sesto Fiorentino (FI), Italy
| | - Alexandros Koutsioubas
- Jülich
Centre for Neutron Science (JCNS) at Heinz Maier-Leibnitz Zentrum
(MLZ), Forschungszentrum Jülich GmbH, Lichtenbergstrasse 1, 85747 Garching, Germany
| | | | - Giovanna Fragneto
- Institut
Laue-Langevin (ILL), 71 avenue des Martyrs, BP 156, 38042 Grenoble, France
| | - Luigi Paduano
- Department
of Chemical Sciences and Department of Chemical, Materials
and Production Engineering, University of
Naples Federico II, Naples, Italy
- CSGI,
Center for Colloid and Surface Science, Sesto Fiorentino (FI), Italy
| |
Collapse
|
114
|
Hu H, Qi Q, Dong Z, Yu X, Mo Y, Luo J, Wang Y, Du S, Lu Y. Albumin coated trimethyl chitosan-based targeting delivery platform for photothermal/chemo-synergistic cancer therapy. Carbohydr Polym 2020; 241:116335. [DOI: 10.1016/j.carbpol.2020.116335] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 03/23/2020] [Accepted: 04/16/2020] [Indexed: 10/24/2022]
|
115
|
Li Y, Liu Z, Li L, Lian W, He Y, Khalil E, Mäkilä E, Zhang W, Torrieri G, Liu X, Su J, Xiu Y, Fontana F, Salonen J, Hirvonen J, Liu W, Zhang H, Santos HA, Deng X. Tandem-Mass-Tag Based Proteomic Analysis Facilitates Analyzing Critical Factors of Porous Silicon Nanoparticles in Determining Their Biological Responses under Diseased Condition. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001129. [PMID: 32775170 PMCID: PMC7404168 DOI: 10.1002/advs.202001129] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/25/2020] [Indexed: 05/11/2023]
Abstract
The analysis of nanoparticles' biocompatibility and immunogenicity is mostly performed under a healthy condition. However, more clinically relevant evaluation conducted under pathological condition is less known. Here, the immunogenicity and bio-nano interactions of porous silicon nanoparticles (PSi NPs) are evaluated in an acute liver inflammation mice model. Interestingly, a new mechanism in which PSi NPs can remit the hepatocellular damage and inflammation activation in a surface dependent manner through protein corona formation, which perturbs the inflammation by capturing the pro-inflammatory signaling proteins that are inordinately excreted or exposed under pathological condition, is found. This signal sequestration further attenuates the nuclear factor κB pathway activation and cytokines production from macrophages. Hence, the study proposes a potential mechanism for elucidating the altered immunogenicity of nanomaterials under pathological conditions, which might further offer insights to establish harmonized standards for assessing the biosafety of biomaterials in a disease-specific or personalized manner.
Collapse
Affiliation(s)
- Yunzhan Li
- State Key Laboratory of Cellular Stress BiologyInnovation Center for Cell SignalingNetworkSchool of Life SciencesXiamen UniversityFujian361101China
- State‐Province Joint Engineering Laboratory of Targeted Drugs from Natural ProductsSchool of Life SciencesXiamen UniversityFujian361101China
| | - Zehua Liu
- Drug Research programDivision of Pharmaceutical Chemistry and TechnologyDrug Research ProgramFaculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
| | - Li Li
- State Key Laboratory of Cellular Stress BiologyInnovation Center for Cell SignalingNetworkSchool of Life SciencesXiamen UniversityFujian361101China
- State‐Province Joint Engineering Laboratory of Targeted Drugs from Natural ProductsSchool of Life SciencesXiamen UniversityFujian361101China
| | - Wenhua Lian
- State Key Laboratory of Cellular Stress BiologyInnovation Center for Cell SignalingNetworkSchool of Life SciencesXiamen UniversityFujian361101China
- State‐Province Joint Engineering Laboratory of Targeted Drugs from Natural ProductsSchool of Life SciencesXiamen UniversityFujian361101China
| | - Yaohui He
- School of Pharmaceutical SciencesXiamen UniversityFujian361101China
| | - Elbadry Khalil
- Drug Research programDivision of Pharmaceutical Chemistry and TechnologyDrug Research ProgramFaculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
| | - Ermei Mäkilä
- Laboratory of Industrial PhysicsDepartment of PhysicsUniversity of TurkuTurkuFI‐20014Finland
| | - Wenzhong Zhang
- Department of ChemistryUniversity of HelsinkiHelsinkiFI‐00014Finland
| | - Giulia Torrieri
- Drug Research programDivision of Pharmaceutical Chemistry and TechnologyDrug Research ProgramFaculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
| | - Xueyan Liu
- State Key Laboratory of Cellular Stress BiologyInnovation Center for Cell SignalingNetworkSchool of Life SciencesXiamen UniversityFujian361101China
- State‐Province Joint Engineering Laboratory of Targeted Drugs from Natural ProductsSchool of Life SciencesXiamen UniversityFujian361101China
| | - Jingyi Su
- State Key Laboratory of Cellular Stress BiologyInnovation Center for Cell SignalingNetworkSchool of Life SciencesXiamen UniversityFujian361101China
- State‐Province Joint Engineering Laboratory of Targeted Drugs from Natural ProductsSchool of Life SciencesXiamen UniversityFujian361101China
| | - Yuanming Xiu
- State Key Laboratory of Cellular Stress BiologyInnovation Center for Cell SignalingNetworkSchool of Life SciencesXiamen UniversityFujian361101China
- State‐Province Joint Engineering Laboratory of Targeted Drugs from Natural ProductsSchool of Life SciencesXiamen UniversityFujian361101China
| | - Flavia Fontana
- Drug Research programDivision of Pharmaceutical Chemistry and TechnologyDrug Research ProgramFaculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
| | - Jarno Salonen
- Laboratory of Industrial PhysicsDepartment of PhysicsUniversity of TurkuTurkuFI‐20014Finland
| | - Jouni Hirvonen
- Drug Research programDivision of Pharmaceutical Chemistry and TechnologyDrug Research ProgramFaculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
| | - Wen Liu
- School of Pharmaceutical SciencesXiamen UniversityFujian361101China
| | - Hongbo Zhang
- Pharmaceutical Sciences Laboratory and Turku Bioscience CentreAbo Akademi UniversityTurkuFI‐20520Finland
| | - Hélder A. Santos
- Drug Research programDivision of Pharmaceutical Chemistry and TechnologyDrug Research ProgramFaculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
- Helsinki Institute of Life Science (HiLIFE)University of HelsinkiHelsinkiFI‐00014Finland
| | - Xianming Deng
- State Key Laboratory of Cellular Stress BiologyInnovation Center for Cell SignalingNetworkSchool of Life SciencesXiamen UniversityFujian361101China
- State‐Province Joint Engineering Laboratory of Targeted Drugs from Natural ProductsSchool of Life SciencesXiamen UniversityFujian361101China
| |
Collapse
|
116
|
Borowska M, Pawlik E, Jankowski K. Investigation of interaction between biogenic selenium nanoparticles and human serum albumin using microwave plasma optical emission spectrometry operating in a single-particle mode. MONATSHEFTE FUR CHEMIE 2020. [DOI: 10.1007/s00706-020-02663-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Abstract
Characterization of selenium nanoparticles and selenium nanoparticle–human serum albumin conjugates prepared in nanopowder form, their elemental composition, and particle size distribution were investigated with a microwave plasma optical emission spectrometry operating in a single-particle mode. This new analytical technique was used for the first time to examine the molecular interaction between selenium nanoparticles and human serum albumin regarding potential biomedical applications of selenium nanoparticles. Nanopowder sample was introduced to a helium plasma by pneumatic nebulization based on fluidized bed approach and measured with a time resolution of 20 ms. Both selenium nanoparticles and selenium nanoparticle–human serum albumin conjugates were characterized by observation of synchronous signals from different particle components. Plots of the time correlation between Se and C signals for all particles in selenium nanoparticles and selenium nanoparticle–human serum albumin conjugates samples differed from each other in degree of correlation and synchronicity of recorded signals. The interaction between selenium nanoparticles and human serum albumin was confirmed using Bradford assay. For selenium nanoparticles synthesized using yeast cells, the percentage of bound protein was only of 4%, whereas for selenium nanoparticles synthesized using yeast extract as a stabilizing agent it was 16%.
Graphic abstract
Collapse
|
117
|
Li Y, Lee JS. Insights into Characterization Methods and Biomedical Applications of Nanoparticle-Protein Corona. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E3093. [PMID: 32664362 PMCID: PMC7412248 DOI: 10.3390/ma13143093] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/29/2020] [Accepted: 07/07/2020] [Indexed: 02/07/2023]
Abstract
Nanoparticles (NPs) exposed to a biological milieu will strongly interact with proteins, forming "coronas" on the surfaces of the NPs. The protein coronas (PCs) affect the properties of the NPs and provide a new biological identity to the particles in the biological environment. The characterization of NP-PC complexes has attracted enormous research attention, owing to the crucial effects of the properties of an NP-PC on its interactions with living systems, as well as the diverse applications of NP-PC complexes. The analysis of NP-PC complexes without a well-considered approach will inevitably lead to misunderstandings and inappropriate applications of NPs. This review introduces methods for the characterization of NP-PC complexes and investigates their recent applications in biomedicine. Furthermore, the review evaluates these characterization methods based on comprehensive critical views and provides future perspectives regarding the applications of NP-PC complexes.
Collapse
Affiliation(s)
| | - Jae-Seung Lee
- Department of Materials Science and Engineering, Korea University 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea;
| |
Collapse
|
118
|
Tira R, De Cecco E, Rigamonti V, Santambrogio C, Barracchia CG, Munari F, Romeo A, Legname G, Prosperi D, Grandori R, Assfalg M. Dynamic molecular exchange and conformational transitions of alpha-synuclein at the nano-bio interface. Int J Biol Macromol 2020; 154:206-216. [DOI: 10.1016/j.ijbiomac.2020.03.118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/11/2020] [Accepted: 03/13/2020] [Indexed: 10/24/2022]
|
119
|
Novikov DV, Selivanova SG, Krasnogorova NV, Gorshkova EN, Pleskova SN, Novikov VV, Karaulov AV. Serum Protein Corona Abolishes Changes in the Expression of Proinflammatory Genes Induced by Quantum Dots in Human Blood Mononuclear Cell. Bull Exp Biol Med 2020; 169:95-99. [PMID: 32495165 DOI: 10.1007/s10517-020-04832-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Indexed: 10/24/2022]
Abstract
We studied changes in the transcription of genes encoding cytokines (TNF, IL-6, IL-10, and IL-32), cell activation markers (ICAM1, CD38, Fas, and FCGRIII), ROS production catalyst (NOX2), autophagy (Beclin 1, LC3B, and p62) and apoptosis (BAX, BCL2) regulators in peripheral blood mononuclear cells upon contact with quantum dots CdSe/ZnS-MPA and CdSe/CdSeZnS/ZnS-PTVP. Up-regulation of TNF, ICAM1, Fas, p62 mRNA and down-regulation of the FCGRIII and NOX2 mRNA in response to the presence of quantum dots were revealed. The formation of serum protein corona on the surface of quantum dots abolished this effect.
Collapse
Affiliation(s)
- D V Novikov
- N. I. Lobachevsky Nizhny Novgorod National Research State University, Nizhny Novgorod, Russia. .,I. N. Blokhina Nizhny Novgorod Research Institute of Epidemiology and Microbiology, Federal Service for Supervision of Consumer Rights Protection and Human Welfare, Nizhny Novgorod, Russia.
| | - S G Selivanova
- I. N. Blokhina Nizhny Novgorod Research Institute of Epidemiology and Microbiology, Federal Service for Supervision of Consumer Rights Protection and Human Welfare, Nizhny Novgorod, Russia
| | - N V Krasnogorova
- N. I. Lobachevsky Nizhny Novgorod National Research State University, Nizhny Novgorod, Russia
| | - E N Gorshkova
- N. I. Lobachevsky Nizhny Novgorod National Research State University, Nizhny Novgorod, Russia
| | - S N Pleskova
- N. I. Lobachevsky Nizhny Novgorod National Research State University, Nizhny Novgorod, Russia.,R. E. Alekseev Nizhny Novgorod State Technical University, Nizhny Novgorod, Russia
| | - V V Novikov
- N. I. Lobachevsky Nizhny Novgorod National Research State University, Nizhny Novgorod, Russia.,I. N. Blokhina Nizhny Novgorod Research Institute of Epidemiology and Microbiology, Federal Service for Supervision of Consumer Rights Protection and Human Welfare, Nizhny Novgorod, Russia
| | - A V Karaulov
- I. M. Sechenov First Moscow State Medical University, Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| |
Collapse
|
120
|
Büyüktiryaki S, Keçili R, Hussain CM. Functionalized nanomaterials in dispersive solid phase extraction: Advances & prospects. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115893] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
121
|
Amantino CF, de Baptista-Neto Á, Badino AC, Siqueira-Moura MP, Tedesco AC, Primo FL. Anthraquinone encapsulation into polymeric nanocapsules as a new drug from biotechnological origin designed for photodynamic therapy. Photodiagnosis Photodyn Ther 2020; 31:101815. [PMID: 32407889 DOI: 10.1016/j.pdpdt.2020.101815] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/16/2020] [Accepted: 05/04/2020] [Indexed: 12/18/2022]
Abstract
Photodynamic therapy has been applied for the treatment of many diseases, especially skin diseases. However, poor aqueous solubility and toxicity of some photosensitizer drugs are the main disadvantages for their direct clinical applications. Thus, biotechnology and nanotechnology are important tools in the development of new ways of obtaining photoactive compounds that are biocompatible. We investigated the potential of a new nanostructured photosensitizer, an anthraquinone derivative produced by biotechnological process; then we associated nanotechnology to obtain a nanostructured anthraquinone active molecule. For this, it was prepared a classical nanocapsule formulations containing poly(lactide-co-glycolide) (PLGA) coating for encapsulation of anthraquinone derivative. These formulations were characterized by their physicochemical, morphological, photophysical properties, and stability. We performed in vitro biocompatibility and photodynamic activity assays of free and nanostructured anthraquinone. Nanocapsule formulations containing anthraquinone derivative showed a nanometric profile with particle size around 250 nm, negative zeta potential around -30 mV, and partially monodisperse. Besides that, characteristic spherical morphology of nanocapsules and homogeneous particle surface were observed by AFM analyses. The in vitro biocompatibility assay showed absence of cytotoxicity for all tested RD/NC concentrations and also for unloaded/NC in NIH3T3 cells. In vitro photoactivation assay using NIH3T3 cells showed that nanocapsules promoted greater drug uptake by NIH3T3 cells, around of 87%, of cell death compared to free drug showed around 48% of cell death. The anthraquinone derivative showed potential for use in PDT. Besides the association with nanocapsules improved cell uptake of photosensitizer resulting in increased cell death compared to free anthraquinone.
Collapse
Affiliation(s)
- Camila F Amantino
- Department of Engineering of Bioprocess and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University - UNESP, Araraquara, 14800-903, São Paulo, Brazil
| | - Álvaro de Baptista-Neto
- Department of Engineering of Bioprocess and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University - UNESP, Araraquara, 14800-903, São Paulo, Brazil
| | - Alberto C Badino
- Graduate Program of Chemical Engineering, Federal University of São Carlos, São Carlos, 13565-905, São Paulo, Brazil
| | - Marigilson P Siqueira-Moura
- College of Pharmaceutical Sciences, Federal University of Sao Francisco Valley - UNIVASF, Petrolina, 56304-917, Pernambuco, Brazil
| | - Antonio C Tedesco
- Department of Chemistry, Center of Nanotechnology and Tissue Engineering - Photobiology and Photomedicine Research Group, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo - USP, Ribeirão Preto, 14010-100, São Paulo, Brazil
| | - Fernando L Primo
- Department of Engineering of Bioprocess and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University - UNESP, Araraquara, 14800-903, São Paulo, Brazil.
| |
Collapse
|
122
|
Zhang C, Jin Z, Zeng B, Wang W, Palui G, Mattoussi H. Characterizing the Brownian Diffusion of Nanocolloids and Molecular Solutions: Diffusion-Ordered NMR Spectroscopy vs Dynamic Light Scattering. J Phys Chem B 2020; 124:4631-4650. [DOI: 10.1021/acs.jpcb.0c02177] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Chengqi Zhang
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| | - Zhicheng Jin
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| | - Birong Zeng
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| | - Wentao Wang
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| | - Goutam Palui
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| | - Hedi Mattoussi
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| |
Collapse
|
123
|
Liu N, Tang M, Ding J. The interaction between nanoparticles-protein corona complex and cells and its toxic effect on cells. CHEMOSPHERE 2020; 245:125624. [PMID: 31864050 DOI: 10.1016/j.chemosphere.2019.125624] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 12/08/2019] [Accepted: 12/09/2019] [Indexed: 05/23/2023]
Abstract
Once nanoparticles (NPs) contact with the biological fluids, the proteins immediately adsorb onto their surface, forming a layer called protein corona (PC), which bestows the biological identity on NPs. Importantly, the NPs-PC complex is the true identity of NPs in physiological environment. Based on the affinity and the binding and dissociation rate, PC is classified into soft protein corona, hard protein corona, and interfacial protein corona. Especially, the hard PC, a protein layer relatively stable and closer to their surface, plays particularly important role in the biological effects of the complex. However, the abundant corona proteins rarely correspond to the most abundant proteins found in biological fluids. The composition profile, formation and conformational change of PC can be affected by many factors. Here, the influence factors, not only the nature of NPs, but also surface chemistry and biological medium, are discussed. Likewise, the formed PC influences the interaction between NPs and cells, and the associated subsequent cellular uptake and cytotoxicity. The uncontrolled PC formation may induce undesirable and sometimes opposite results: increasing or inhibiting cellular uptake, hindering active targeting or contributing to passive targeting, mitigating or aggravating cytotoxicity, and stimulating or mitigating the immune response. In the present review, we discuss these aspects and hope to provide a valuable reference for controlling protein adsorption, predicting their behavior in vivo experiments and designing lower toxicity and enhanced targeting nanomedical materials for nanomedicine.
Collapse
Affiliation(s)
- Na Liu
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University, 87 Ding Jia Qiao, Nanjing, 210009, PR China.
| | - Meng Tang
- Key Laboratory of Environmental Medicine & Engineering, Ministry of Education, School of Public Health, Southeast University, 87 Ding Jia Qiao, Nanjing, 210009, PR China.
| | - Jiandong Ding
- Department of Cardiology, Zhongda Hospital, Southeast University, 87 Ding Jia Qiao, Nanjing, 210009, PR China.
| |
Collapse
|
124
|
Ovais M, Nethi SK, Ullah S, Ahmad I, Mukherjee S, Chen C. Recent advances in the analysis of nanoparticle-protein coronas. Nanomedicine (Lond) 2020; 15:1037-1061. [DOI: 10.2217/nnm-2019-0381] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In spite of radical advances in nanobiotechnology, the clinical translation of nanoparticle (NP)-based agents is still a major challenge due to various physiological factors that influence their interactions with biological systems. Recent decade witnessed meticulous investigation on protein corona (PC) that is the first surrounds NPs once administered into the body. Formation of PC around NP surface exhibits resilient effects on their circulation, distribution, therapeutic activity, toxicity and other factors. Although enormous literature is available on the role of PC in altering pharmacokinetics and pharmacodynamics of NPs, understanding on its analytical characterization methods still remains shallow. Therefore, the current review summarizes the impact of PC on biological fate of NPs and stressing on analytical methods employed for studying the NP-PC.
Collapse
Affiliation(s)
- Muhammad Ovais
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience & Technology (NCNST), Beijing, 100190, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Susheel Kumar Nethi
- Department of Experimental & Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA
| | - Saleem Ullah
- Department of Environmental Science & Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8503, Japan
| | - Irshad Ahmad
- Department of Life Sciences, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran, 31261, Saudi Arabia
| | - Sudip Mukherjee
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience & Technology (NCNST), Beijing, 100190, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| |
Collapse
|
125
|
Bovine serum albumin conjugation on poly(methyl methacrylate) nanoparticles for targeted drug delivery applications. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101490] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
126
|
Pollok NE, Rabin C, Walgama CT, Smith L, Richards I, Crooks RM. Electrochemical Detection of NT-proBNP Using a Metalloimmunoassay on a Paper Electrode Platform. ACS Sens 2020; 5:853-860. [PMID: 32154707 DOI: 10.1021/acssensors.0c00167] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In this paper, we demonstrate an electrochemical method for detection of the heart failure biomarker, N-terminal prohormone brain natriuretic peptide (NT-proBNP). The approach is based on a paper electrode assembly and a metalloimmunoassay; it is intended for eventual integration into a home-use sensor. Sensing of NT-proBNP relies on the formation of a sandwich immunoassay and electrochemical quantification of silver nanoparticle (AgNP) labels attached to the detection antibodies (Abs). There are four important outcomes reported in this article. First, compared to physisorption of the detection Abs on the AgNP labels, a 27-fold increase in signal is observed when a heterobifunctional cross-linker is used to facilitate this labeling. Second, the assay is selective in that it does not cross-react with other cardiac natriuretic peptides. Third, the assay forms in undiluted human serum (though the electrochemical analysis is carried out in buffer). Finally, and most important, the assay is able to detect NT-proBNP at concentrations between 0.58 and 2.33 nM. This performance approaches the critical NT-proBNP concentration threshold often used by physicians for risk stratification purposes: ∼0.116 nM.
Collapse
Affiliation(s)
- Nicole E. Pollok
- Department of Chemistry, The University of Texas at Austin, 100 E. 24th Street, Stop A1590, Austin, Texas 78712-1224, United States
| | - Charlie Rabin
- Department of Chemistry, The University of Texas at Austin, 100 E. 24th Street, Stop A1590, Austin, Texas 78712-1224, United States
| | - Charuksha T. Walgama
- Department of Chemistry, The University of Texas at Austin, 100 E. 24th Street, Stop A1590, Austin, Texas 78712-1224, United States
| | - Leilani Smith
- Department of Chemistry, The University of Texas at Austin, 100 E. 24th Street, Stop A1590, Austin, Texas 78712-1224, United States
| | - Ian Richards
- Interactives Executive Excellence LLC, Austin, Texas 78733, United States
| | - Richard M. Crooks
- Department of Chemistry, The University of Texas at Austin, 100 E. 24th Street, Stop A1590, Austin, Texas 78712-1224, United States
| |
Collapse
|
127
|
Palanikumar L, Al-Hosani S, Kalmouni M, Nguyen VP, Ali L, Pasricha R, Barrera FN, Magzoub M. pH-responsive high stability polymeric nanoparticles for targeted delivery of anticancer therapeutics. Commun Biol 2020; 3:95. [PMID: 32127636 PMCID: PMC7054360 DOI: 10.1038/s42003-020-0817-4] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 02/10/2020] [Indexed: 01/22/2023] Open
Abstract
The practical application of nanoparticles (NPs) as chemotherapeutic drug delivery systems is often hampered by issues such as poor circulation stability and targeting inefficiency. Here, we have utilized a simple approach to prepare biocompatible and biodegradable pH-responsive hybrid NPs that overcome these issues. The NPs consist of a drug-loaded polylactic-co-glycolic acid (PLGA) core covalently 'wrapped' with a crosslinked bovine serum albumin (BSA) shell designed to minimize interactions with serum proteins and macrophages that inhibit target recognition. The shell is functionalized with the acidity-triggered rational membrane (ATRAM) peptide to facilitate internalization specifically into cancer cells within the acidic tumor microenvironment. Following uptake, the unique intracellular conditions of cancer cells degrade the NPs, thereby releasing the chemotherapeutic cargo. The drug-loaded NPs showed potent anticancer activity in vitro and in vivo while exhibiting no toxicity to healthy tissue. Our results demonstrate that the ATRAM-BSA-PLGA NPs are a promising targeted cancer drug delivery platform.
Collapse
Affiliation(s)
- L Palanikumar
- Biology Program, Division of Science, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Sumaya Al-Hosani
- Biology Program, Division of Science, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Mona Kalmouni
- Biology Program, Division of Science, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Vanessa P Nguyen
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee at Knoxville, Knoxville, TN, USA
| | - Liaqat Ali
- Core Technology Platforms, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Renu Pasricha
- Core Technology Platforms, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Francisco N Barrera
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee at Knoxville, Knoxville, TN, USA
| | - Mazin Magzoub
- Biology Program, Division of Science, New York University Abu Dhabi, Abu Dhabi, UAE.
| |
Collapse
|
128
|
Kari OK, Ndika J, Parkkila P, Louna A, Lajunen T, Puustinen A, Viitala T, Alenius H, Urtti A. In situ analysis of liposome hard and soft protein corona structure and composition in a single label-free workflow. NANOSCALE 2020; 12:1728-1741. [PMID: 31894806 DOI: 10.1039/c9nr08186k] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Methodological constraints have limited our ability to study protein corona formation, slowing nanomedicine development and their successful translation into the clinic. We determined hard and soft corona structural properties along with the corresponding proteomic compositions on liposomes in a label-free workflow: surface plasmon resonance and a custom biosensor for in situ structure determination on liposomes and corona separation, and proteomics using sensitive nanoliquid chromatography tandem mass spectrometry with open-source bioinformatics platforms. Undiluted human plasma under dynamic flow conditions was used for in vivo relevance. Proof-of-concept is presented with a regular liposome formulation and two light-triggered indocyanine green (ICG) liposome formulations in preclinical development. We observed formulation-dependent differences in corona structure (thickness, protein-to-lipid ratio, and surface mass density) and protein enrichment. Liposomal lipids induced the enrichment of stealth-mediating apolipoproteins in the hard coronas regardless of pegylation, and their preferential enrichment in the soft corona of the pegylated liposome formulation with ICG was observed. This suggests that the soft corona of loosely interacting proteins contributes to the stealth properties as a component of the biological identity modulated by nanomaterial surface properties. The workflow addresses significant methodological gaps in biocorona research by providing truly complementary hard and soft corona compositions with corresponding in situ structural parameters for the first time. It has been designed into a convenient and easily reproducible single-experiment format suited for preclinical development of lipid nanomedicines.
Collapse
Affiliation(s)
- Otto K Kari
- Drug Delivery, Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, FI-00014, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Qin M, Zhang J, Li M, Yang D, Liu D, Song S, Fu J, Zhang H, Dai W, Wang X, Wang Y, He B, Zhang Q. Proteomic analysis of intracellular protein corona of nanoparticles elucidates nano-trafficking network and nano-bio interactions. Am J Cancer Res 2020; 10:1213-1229. [PMID: 31938061 PMCID: PMC6956802 DOI: 10.7150/thno.38900] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 11/01/2019] [Indexed: 12/18/2022] Open
Abstract
The merits of nanomedicines are significantly impacted by the surrounding biological environment. Similar to the protein corona generated on the surface of nanoparticles in the circulation system, the intracellular protein corona (IPC) might be formed on nanoparticles when transported inside the cells. However, little is known currently about the formation of IPC and its possible biological influence. Methods: Caco-2 cells, a classical epithelial cell line, were cultured in Transwell plates to form a monolayer. Gold nanoparticles (AuNPs) were prepared as the model nanomedicine due to their excellent stability. Here we focused on identifying IPC formed on the surface of AuNPs during cell transport. The nanoparticles in the basolateral side of the Caco-2 monolayer were collected and analyzed by multiple techniques to verify IPC formation. High-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based proteomics was utilized to analyze the composition of IPC proteins. In particular, we established a dual-filtration strategy to exclude various interference in IPC identification. Based on the subcellular localization of specific IPC proteins, we elicited the nano-trafficking network of AuNPs. The transport pathways of AuNPs identified by proteomic analysis were also verified by various conventional technologies. Finally, we explored the influence of IPC on the uptake and stress response of endothelium. Results: The existence of IPC was demonstrated on the surface of AuNPs, in which 227 proteins were identified. Among them, 40 proteins were finally ascertained as the specific IPC proteins. The subcellular location analysis indicated that these “specific” IPC proteins could back-track the transport pathways of nanoparticles in the epithelial cell monolayer. According to the subcellular distribution of IPC proteins and co-localization, we discovered a new pathway of nanoparticles from endosomes to secretory vesicles which was dominant during the transcytosis. After employing conventional imageology and pharmacology strategies to verify the result of proteomic analysis, we mapped a comprehensive intracellular transport network. Our study also revealed the merits of IPC analysis, which could readily elucidate the molecular mechanisms of transcytosis. Besides, the IPC proteins increased the uptake and stress response of endothelium, which was likely mediated by extracellular matrix and mitochondrion-related IPC proteins. Conclusion: The comprehensive proteomic analysis of IPC enabled tracing of transport pathways in epithelial cells as well as revealing the biological impact of nanoparticles on endothelium.
Collapse
|
130
|
Chakraborty D, Ethiraj KR, Mukherjee A. Understanding the relevance of protein corona in nanoparticle-based therapeutics and diagnostics. RSC Adv 2020; 10:27161-27172. [PMID: 35515780 PMCID: PMC9055466 DOI: 10.1039/d0ra05241h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 07/15/2020] [Indexed: 01/03/2023] Open
Abstract
Over the past few decades, nanoparticle-based therapeutic and diagnostic systems have gained immense recognition. A relative improvement in the status of the global cancer burden has been successful due to the advent of nanoparticle-based formulations. However, exposure of nanoparticles (NPs) to a real-time biological media alters its native identity due to the formation of the biomolecular corona. Such biological interactions hinder the efficiency of the NPs system. The parameters that govern such intricate interaction are generally overlooked while designing nano drugs and delivery systems (nano-DDS). Fabricating nano-DDS with prolonged circulation time, enhanced drug-loading, and release capacity along with efficient clearance, remain the primary concerns associated with cancer therapeutics. This present review firstly aims to summarize the critical aspects that influence protein coronation on therapeutic nanoparticles designed for anti-cancer therapy. The role of protein corona in modifying the overall pharmacodynamics of the nanoparticle-based DDS has been discussed. Further, the studies and patents that extend the concept of protein corona into diagnostics have been elaborated. An understanding of the pros and cons associated with protein coronation would not only help us gain better insights into the fabrication of effective anti-cancer drug-delivery systems but also improve the shortcomings related to the clinical translation of these nanotherapeutics. Protein corona and its applications.![]()
Collapse
Affiliation(s)
| | - K. R. Ethiraj
- School of Advanced Sciences
- Vellore Institute of Technology
- Vellore
- India
| | - Amitava Mukherjee
- Centre for Nanobiotechnology
- Vellore Institute of Technology
- Vellore
- India
| |
Collapse
|
131
|
Goryunov A, Rozhkov S, Rozhkova N. Fatty acid transfer between serum albumins and shungite carbon nanoparticles and its effect on protein aggregation and association. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2019; 49:85-94. [PMID: 31865396 DOI: 10.1007/s00249-019-01414-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 07/10/2019] [Accepted: 12/08/2019] [Indexed: 10/25/2022]
Abstract
The bioactivity of the natural ultrafine carbon form shungite nanocarbon (ShC) is of particular interest both for biomedical applications of such nanomaterials and their negative impact on the aquatic environmental. Here we studied the interaction of serum albumin (SA) with ShC nanoparticles in aqueous dispersion with respect to its structural-dynamic, thermodynamic, and hydrodynamic effects. Electron spin resonance (EPR) with a 5-DOXYL-stearic acid spin probe (5DSA) demonstrates that ShC can affect fatty acid (FA) binding by SA, protein conformation in the stearic FA spin probe binding region, and protein aggregation due to the partial transfer of FA to the ShC nanoparticles. The ratio of SA fractions changes in the presence of ShC in favor of the fraction that is less saturated with FA as shown by differential scanning calorimetry (DSC). The stability of interaction with ShC is significantly higher for aggregates of SA molecules that carry physiological amounts of FA, compared to aggregates of the FA-free protein, as studied by dynamic light scattering (DLS) analysis. Generally, the mixed dispersion of SA and ShC nanoparticles is more homogeneous than the SA solution alone. This is manifested both in the size of the molecular associates and in the microenvironment of the protein-bound FA. The formation of the SA-ShC interface is likely to result in a greater uniformity of the FA binding sites and a decrease in protein fractions and "hot patches" on the protein surface responsible for the supramolecular heterogeneity of the protein in solution.
Collapse
Affiliation(s)
- Andrey Goryunov
- Institute of Biology, Karelian Research Center RAS, Pushkinskaya 11, 185910, Petrozavodsk, Russia
| | - Sergei Rozhkov
- Institute of Biology, Karelian Research Center RAS, Pushkinskaya 11, 185910, Petrozavodsk, Russia.
| | - Natalia Rozhkova
- Institute of Geology, Karelian Research Center RAS, Pushkinskaya 11, 185910, Petrozavodsk, Russia
| |
Collapse
|
132
|
Pollok NE, Rabin C, Smith L, Crooks RM. Orientation-Controlled Bioconjugation of Antibodies to Silver Nanoparticles. Bioconjug Chem 2019; 30:3078-3086. [PMID: 31730333 PMCID: PMC6920564 DOI: 10.1021/acs.bioconjchem.9b00737] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Here we report on the use of heterobifunctional cross-linkers (HBCLs) to control the number, orientation, and activity of immunoglobulin G antibodies (Abs) conjugated to silver nanoparticles (AgNPs). A hydrazone conjugation method resulted in exclusive modification of the polysaccharide chains present on the fragment crystallizable region of the Abs, leaving the antigen-binding regions accessible. Two HBCLs, each having a hydrazide terminal group, were synthesized and tested for effectiveness. The two HBCLs differed in two respects, however: (1) either a thiol or a dithiolane group was used for attachment to the AgNP; and (2) the spacer arm was either a PEG chain or an alkyl chain. Both cross-linkers immobilized 5 ± 1 Abs on the surface of each 20-nm-diameter AgNP. Electrochemical results, obtained using a half-metalloimmunoassay, proved that Abs conjugated to AgNPs via either of the two HBCLs were 4 times more active than those conjugated by the more common physisorption technique. This finding confirmed that the HBCLs exerted orientational control over the Abs. We also demonstrated that the AgNP-HBCL-Ab conjugates were stable and active for at least 2 weeks. Finally, we found that the stability of the HBCLs themselves was related to the nature of their spacer arms. Specifically, the results showed that the HBCL having the alkyl chain is chemically stable for at least 90 days, making it the preferred cross-linker for bioassays.
Collapse
Affiliation(s)
| | | | - Leilani Smith
- Department of Chemistry, The University of Texas at Austin, 100 E. 24th St., Stop A1590, Austin, TX, 78712-1224, U.S.A
| | - Richard M. Crooks
- Department of Chemistry, The University of Texas at Austin, 100 E. 24th St., Stop A1590, Austin, TX, 78712-1224, U.S.A
| |
Collapse
|
133
|
Petry R, Saboia VM, Franqui LS, Holanda CDA, Garcia TR, de Farias MA, de Souza Filho AG, Ferreira OP, Martinez DS, Paula AJ. On the formation of protein corona on colloidal nanoparticles stabilized by depletant polymers. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110080. [DOI: 10.1016/j.msec.2019.110080] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 01/09/2023]
|
134
|
Kobos L, Shannahan J. Biocorona‐induced modifications in engineered nanomaterial–cellular interactions impacting biomedical applications. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 12:e1608. [PMID: 31788989 DOI: 10.1002/wnan.1608] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/18/2019] [Accepted: 09/29/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Lisa Kobos
- School of Health Sciences College of Human and Health Sciences, Purdue University West Lafayette Indiana
| | - Jonathan Shannahan
- School of Health Sciences College of Human and Health Sciences, Purdue University West Lafayette Indiana
| |
Collapse
|
135
|
Mendozza M, Caselli L, Salvatore A, Montis C, Berti D. Nanoparticles and organized lipid assemblies: from interaction to design of hybrid soft devices. SOFT MATTER 2019; 15:8951-8970. [PMID: 31680131 DOI: 10.1039/c9sm01601e] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
This contribution reviews the state of art on hybrid soft matter assemblies composed of inorganic nanoparticles (NP) and lamellar or non-lamellar lipid bilayers. After a short outline of the relevant energetic contributions, we address the interaction of NPs with synthetic lamellar bilayers, meant as cell membrane mimics. We then review the design of hybrid nanostructured materials composed of lipid bilayers and some classes of inorganic NPs, with particular emphasis on the effects on the amphiphilic phase diagram and on the additional properties contributed by the NPs. Then, we present the latest developments on the use of lipid bilayers as coating agents for inorganic NPs. Finally, we remark on the main achievements of the last years and our vision for the development of the field.
Collapse
Affiliation(s)
- Marco Mendozza
- Department of Chemistry "Ugo Schiff", University of Florence, and CSGI (Italian Center for Colloid and Surface Science, Via della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy.
| | - Lucrezia Caselli
- Department of Chemistry "Ugo Schiff", University of Florence, and CSGI (Italian Center for Colloid and Surface Science, Via della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy.
| | - Annalisa Salvatore
- Department of Chemistry "Ugo Schiff", University of Florence, and CSGI (Italian Center for Colloid and Surface Science, Via della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy.
| | - Costanza Montis
- Department of Chemistry "Ugo Schiff", University of Florence, and CSGI (Italian Center for Colloid and Surface Science, Via della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy.
| | - Debora Berti
- Department of Chemistry "Ugo Schiff", University of Florence, and CSGI (Italian Center for Colloid and Surface Science, Via della Lastruccia 3, Sesto Fiorentino, 50019 Firenze, Italy.
| |
Collapse
|
136
|
Mukherjee S, Kotcherlakota R, Haque S, Bhattacharya D, Kumar JM, Chakravarty S, Patra CR. Improved delivery of doxorubicin using rationally designed PEGylated platinum nanoparticles for the treatment of melanoma. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 108:110375. [PMID: 31924026 DOI: 10.1016/j.msec.2019.110375] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 10/23/2019] [Accepted: 10/28/2019] [Indexed: 11/17/2022]
Abstract
Efficient delivery of chemotherapeutic drugs to tumor cells is one of the crucial issues for modern day cancer therapy. In this article, we report the synthesis of poly ethylene glycol (PEG) assisted colloidal platinum nanoparticles (PtNPs) by borohydride reduction method at room temperature. PtNPs are stable at room temperature for more than 2 years and are stable in serum and phosphate buffer (pH = 7.4) solution for one week. PtNPs show biocompatibility in different normal cell lines (in vitro) and chicken egg embryonic model (ex vivo). Further, we designed and fabricated PtNPs-based drug delivery systems (DDS: PtNPs-DOX) using doxorubicin (DOX), a FDA approved anticancer drug. Various analytical techniques were applied to characterize the nanomaterials (PtNPs) and DDS (PtNPs-DOX). This DDS exhibits inhibition of cancer cell (B16F10 and A549) proliferation, observed by different in vitro assays. PtNPs-DOX induces apoptosis in cancer cells observed by annexin-V staining method. Intraperitoneal (IP) administration of PtNPs-DOX shows substantial reduction of tumor growth in subcutaneous murine melanoma tumor model compared to control group with free drug. Up-regulation of tumor suppressor protein p53 and down regulation of SOX2 and Ki-67 proliferation markers in melanoma tumor tissues (as observed by immunofluorescence and western blot analysis) indicates probable molecular mechanism for the anticancer activity of DDS. Considering the in vitro and pre-clinical (in vivo) results in murine melanoma, it is believed that platinum nanoparticle-based drug delivery formulation could be exploited to develop an alternative therapeutic nanomedicine for cancer therapy in the near future.
Collapse
Affiliation(s)
- Sudip Mukherjee
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, 500007, Telangana State, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rajesh Kotcherlakota
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, 500007, Telangana State, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shagufta Haque
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, 500007, Telangana State, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Dwaipayan Bhattacharya
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, 500007, Telangana State, India
| | - Jerald Mahesh Kumar
- CSIR - Centre for Cellular and Molecular Biology, Hyderabad, 500007, Telangana State, India
| | - Sumana Chakravarty
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, 500007, Telangana State, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Chitta Ranjan Patra
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, 500007, Telangana State, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
137
|
Direct quantification of surface coverage of antibody in IgG-Gold nanoparticles conjugates. Talanta 2019; 204:875-881. [DOI: 10.1016/j.talanta.2019.05.104] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/21/2019] [Accepted: 05/27/2019] [Indexed: 12/30/2022]
|
138
|
Lin X, Pan Q, He Y. In situ detection of protein corona on single particle by rotational diffusivity. NANOSCALE 2019; 11:18367-18374. [PMID: 31573584 DOI: 10.1039/c9nr06072c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Since the formation of protein corona inevitably leads to an increase in the particle size, it is important to develop technologies enabling in situ monitoring of the size change of nanoparticles. Traditional diffusion-based methods for particle size measurement focused on the translational diffusion coefficient; however, the detection sensitivity can be improved by determining the rotational diffusion coefficient, which has a cubic dependence on the particle radius. Here, using an optically anisotropic gold nanorod as the rotational probe and using high-speed dark-field microscopy, we can extract the rotational diffusion coefficient of a single nanorod and monitor the size change induced by the formation of protein corona in situ in real time. We successfully determined the thermodynamic parameters for the interactions between AuNRs with BSA and fibrinogen, and also studied corona formation in complex media and with AuNRs with different surface chemistry. This work would provide new avenues for the study of interactions between nanomedicines and proteins.
Collapse
Affiliation(s)
- Xijian Lin
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China.
| | | | | |
Collapse
|
139
|
Yu X, Liu X, Ding W, Wang J, Ruan G. Spontaneous and instant formation of highly stable protein-nanoparticle supraparticle co-assemblies driven by hydrophobic interaction. NANOSCALE ADVANCES 2019; 1:4137-4147. [PMID: 36132103 PMCID: PMC9417729 DOI: 10.1039/c9na00328b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 09/19/2019] [Indexed: 06/15/2023]
Abstract
Recently, supraparticle protein-nanoparticle co-assemblies (or 'supraparticle co-assemblies' for short) have attracted considerable interest due to their fundamental and technological value. However, it remains challenging to form supraparticle co-assemblies with high stability. Here, we show that using hydrophobic interaction, instead of the previously used electrostatic and van der Waals interactions, as the primary driving force can lead to instant formation of exceptionally stable supraparticle co-assemblies with minimal external energy input. Our formation method of supraparticle co-assemblies simply involves mixing globular proteins (e.g., bovine serum albumin) with hydrophobic nanoparticles (e.g., hydrophobic magnetic nanoparticles and hydrophobic quantum dots) without significant energy input (e.g., sonication or stirring). Upon mixing of hydrophobic nanoparticles and proteins, the formation of supraparticle co-assemblies only takes <1 minute. Further incubation of the mixture for several hours results in a gradual increase of the size uniformity of supraparticle co-assemblies. The formed supraparticle co-assemblies have been colloidally stable for 6 months and counting, and can withstand harsh environments such as basic and acidic pH, high temperature, high dilution, and serum. Co-encapsulation of different sizes/types of nanoparticles is found to be feasible and the co-encapsulation number ratio of different nanoparticles is well-controlled by the feeding ratio. Proof-of-concept studies show the potential of the supraparticle co-assemblies for biological imaging, delivery, and modulation. The combination of very rapid formation, minimal energy consumption, highly stable products, and inexpensive raw materials of this hydrophobic interaction-driven process meets many of the main goals of 'ideal' nano-manufacturing. Thus, this process could serve as the foundation of ideal manufacturing of supraparticle co-assemblies.
Collapse
Affiliation(s)
- Xiaoya Yu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University China
- Institute of Materials Engineering, College of Engineering and Applied Sciences, Nanjing University China
- Collaborative Innovation Center of Chemistry for Life Sciences, Nanjing University China
- Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University China
| | - Xiao Liu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University China
- Institute of Materials Engineering, College of Engineering and Applied Sciences, Nanjing University China
- Collaborative Innovation Center of Chemistry for Life Sciences, Nanjing University China
- Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University China
| | - Wanchuan Ding
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University China
- Institute of Materials Engineering, College of Engineering and Applied Sciences, Nanjing University China
- Collaborative Innovation Center of Chemistry for Life Sciences, Nanjing University China
- Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University China
| | - Jun Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University China
- Institute of Materials Engineering, College of Engineering and Applied Sciences, Nanjing University China
- Collaborative Innovation Center of Chemistry for Life Sciences, Nanjing University China
- Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University China
| | - Gang Ruan
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University China
- Institute of Materials Engineering, College of Engineering and Applied Sciences, Nanjing University China
- Collaborative Innovation Center of Chemistry for Life Sciences, Nanjing University China
- Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University China
| |
Collapse
|
140
|
Molecular recognition based rapid diagnosis of immunoglobulins via proteomic profiling of protein-nanoparticle complexes. Int J Biol Macromol 2019; 138:156-167. [DOI: 10.1016/j.ijbiomac.2019.07.079] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 07/11/2019] [Indexed: 01/04/2023]
|
141
|
Yong X, Chen Y, Yu X, Ruan G. Producing protein-nanoparticle co-assembly supraparticles by the interfacial instability process. SOFT MATTER 2019; 15:7420-7428. [PMID: 31468036 DOI: 10.1039/c9sm01277j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Originally discovered in fundamental research of nanomaterial-biomolecule interactions, protein-nanoparticle co-assembly supraparticles (PNCAS) have become an emerging class of nanomaterials with various biological applications. We apply the interfacial instability process, which was originally reported for forming nanoparticles-encapsulated polymeric micelles, to produce PNCAS. By doing so hydrophobic nanoparticles, which are often the product formed from the upstream nanoparticle synthesis step, can be directly used as the raw materials of the production process of PNCAS. On the other hand, we take advantage of the structural features of protein molecules, in comparison with amphiphilic block copolymers, to mitigate two common problems encountered in the original interfacial instability-mediated nanoparticle encapsulation process, namely (1) poor encapsulation number control and (2) inconvenience and high cost to vary the assembly size. Additionally, we achieve semi-continuous and scalable production of PNCAS by combining the electrospray process and the interfacial instability process. We also conduct proof-of-concept studies of biological applications of the PNCAS products.
Collapse
Affiliation(s)
- Xueqing Yong
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, China.
| | | | | | | |
Collapse
|
142
|
Huai Y, Hossen MN, Wilhelm S, Bhattacharya R, Mukherjee P. Nanoparticle Interactions with the Tumor Microenvironment. Bioconjug Chem 2019; 30:2247-2263. [PMID: 31408324 PMCID: PMC6892461 DOI: 10.1021/acs.bioconjchem.9b00448] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Compared to normal tissues, the tumor microenvironment (TME) has a number of aberrant characteristics including hypoxia, acidosis, and vascular abnormalities. Many researchers have sought to exploit these anomalous features of the TME to develop anticancer therapies, and several nanoparticle-based cancer therapeutics have resulted. In this Review, we discuss the composition and pathophysiology of the TME, introduce nanoparticles (NPs) used in cancer therapy, and address the interaction between the TME and NPs. Finally, we outline both the potential problems that affect TME-based nanotherapy and potential strategies to overcome these challenges.
Collapse
Affiliation(s)
- Yanyan Huai
- peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
| | - Md Nazir Hossen
- peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
| | - Stefan Wilhelm
- peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma 73072, United States
| | - Resham Bhattacharya
- peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
| | - Priyabrata Mukherjee
- peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, United States
| |
Collapse
|
143
|
Prorok K, Olk M, Skowicki M, Kowalczyk A, Kotulska A, Lipiński T, Bednarkiewicz A. Near-infrared excited luminescence and in vitro imaging of HeLa cells by using Mn 2+ enhanced Tb 3+ and Yb 3+ cooperative upconversion in NaYF 4 nanocrystals. NANOSCALE ADVANCES 2019; 1:3463-3473. [PMID: 36133550 PMCID: PMC9416878 DOI: 10.1039/c9na00336c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 07/10/2019] [Indexed: 06/16/2023]
Abstract
Advanced biodetection and bioimaging require fluorescent labels which exhibit many, easily distinguishable colors to identify or study numerous biotargets in a single sample. Although numerous different colors have been demonstrated with lanthanide doped nanoparticles, these colors usually originate from various ratios of overlapping multiple emission bands from activators, which severely limits the number of available labels. As a consequence, different lanthanide doped labels cannot be easily distinguished from each other (e.g. Er3+ from Ho3+) in a quantitative way, when such labels are co-localized during microscopy wide-field imaging. It is therefore reasonable to expand the available choice of spectral signatures and not rely on just different colors. Other ions, such as Tb3+ or Eu3+, can offer new possibilities and unique spectral features in upconversion mode in this respect. For example, despite partial overlap with Er3+ or Ho3+ emission spectra, Tb3+ ions display also unique and easily distinguishable spectral features at 580 nm. Unfortunately, in terms of brightness, Tb3+ emission in upconversion mode is typically too weak to be useful. To improve the Tb3+ upconversion emission intensity, a new approach, i.e. Mn2+ co-doping, has been proposed and verified in this work. A versatile optimization of Tb3+, Yb3+ and Mn2+ ion concentrations has been performed based on luminescence spectra and lifetime studies. The most intense emission was achieved for nanoparticles doped with 10% Mn2+ ions, with over 30 times brighter intensity of Tb3+ ions compared to the emission of nanocrystals without the addition of Mn2+ ions. Additionally, as a proof of the concept, the surface of nanoparticles was coated with proteins and conjugated with folic acid, and such biofunctionalized nanoparticles were subsequently used for bioimaging of HeLa cells.
Collapse
Affiliation(s)
- Katarzyna Prorok
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences Okolna 2 50-422 Wroclaw Poland
| | - Michał Olk
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences R. Weigla 12 53-114 Wroclaw Poland
| | - Michał Skowicki
- Lukasiewicz Research Network - PORT Polish Center for Technology Development Stablowicka 147 54-066 Wroclaw Poland
| | - Agnieszka Kowalczyk
- Lukasiewicz Research Network - PORT Polish Center for Technology Development Stablowicka 147 54-066 Wroclaw Poland
| | - Agata Kotulska
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences Okolna 2 50-422 Wroclaw Poland
| | - Tomasz Lipiński
- Lukasiewicz Research Network - PORT Polish Center for Technology Development Stablowicka 147 54-066 Wroclaw Poland
| | - Artur Bednarkiewicz
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences Okolna 2 50-422 Wroclaw Poland
| |
Collapse
|
144
|
Perng W, Palui G, Wang W, Mattoussi H. Elucidating the Role of Surface Coating in the Promotion or Prevention of Protein Corona around Quantum Dots. Bioconjug Chem 2019; 30:2469-2480. [PMID: 31448900 DOI: 10.1021/acs.bioconjchem.9b00549] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nonspecific interactions in biological media can lead to the formation of a protein corona around nanocolloids, which tends to alter their behavior and limit their effectiveness when used as probes for imaging or sensing applications. Yet, understanding the corona buildup has been challenging. We hereby investigate these interactions using luminescent quantum dots (QDs) as a model nanocolloid system, where we carefully vary the nature of the hydrophilic block in the surface coating, while maintaining the same dihydrolipoic acid (DHLA) bidentate coordinating motif. We first use agarose gel electrophoresis to track changes in the mobility shift upon exposure of the QDs to protein-rich media. We find that QDs capped with DHLA (which presents a hydrophobic alkyl chain terminated with a carboxyl group) promote corona formation, in a concentration-dependent manner. However, when a polyethylene glycol block or a zwitterion group is appended onto DHLA, it yields a coating that prevents corona buildup. Our results clearly confirm that nonspecific interactions with protein-rich media are strongly dependent on the nature of the hydrophilic motif used. Additional gel experiments using SDS-PAGE have allowed further characterization of the corona protein, and showed that mainly a soft corona forms around the DHLA-capped QDs. These findings will be highly informative when designing nanocolloids that can find potential use in biological applications.
Collapse
Affiliation(s)
- Woody Perng
- Department of Chemistry and Biochemistry , Florida State University , Tallahassee , Florida 32306 , United States
| | - Goutam Palui
- Department of Chemistry and Biochemistry , Florida State University , Tallahassee , Florida 32306 , United States
| | - Wentao Wang
- Department of Chemistry and Biochemistry , Florida State University , Tallahassee , Florida 32306 , United States
| | - Hedi Mattoussi
- Department of Chemistry and Biochemistry , Florida State University , Tallahassee , Florida 32306 , United States
| |
Collapse
|
145
|
Guindani C, Frey ML, Simon J, Koynov K, Schultze J, Ferreira SRS, Araújo PHH, de Oliveira D, Wurm FR, Mailänder V, Landfester K. Covalently Binding of Bovine Serum Albumin to Unsaturated Poly(Globalide-Co-ε-Caprolactone) Nanoparticles by Thiol-Ene Reactions. Macromol Biosci 2019; 19:e1900145. [PMID: 31490631 DOI: 10.1002/mabi.201900145] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 08/16/2019] [Indexed: 11/08/2022]
Abstract
When nanoparticles (NPs) are introduced to a biological fluid, different proteins (and other biomolecules) rapidly get adsorbed onto their surface, forming a protein corona capable of giving to the NPs a new "identity" and determine their biological fate. Protein-nanoparticle conjugation can be used in order to promote specific interactions between living systems and nanocarriers. Non-covalent conjugates are less stable and more susceptible to desorption in biological media, which makes the development of engineered nanoparticle surfaces by covalent attachment an interesting topic. In this work, the surface of poly(globalide-co-ε-caprolactone) (PGlCL) nanoparticles containing double bonds in the main polymer chain is covalently functionalized with bovine serum albumin (BSA) by thiol-ene chemistry, producing conjugates which are resistant to dissociation. The successful formation of the covalent conjugates is confirmed by flow cytometry (FC) and fluorescence correlation spectroscopy (FCS). Transmission electron microscopy (TEM) allows the visualization of the conjugate formation, and the presence of a protein layer surrounding the NPs can be observed. After conjugation with BSA, NPs present reduced cell uptake by HeLa and macrophage RAW264.7 cells, in comparison to uncoated NP. These results demonstrate that it is possible to produce stable conjugates by covalently binding BSA to PGlCL NP through thiol-ene reaction.
Collapse
Affiliation(s)
- Camila Guindani
- Department of Chemical Engineering and Food Engineering - Federal University of Santa Catarina - EQA/UFSC - C.P. 476, 88040-900, Florianópolis, SC, Brazil.,Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Marie-Luise Frey
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Johanna Simon
- Department of Dermatology - University Medical Center - Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany.,Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Kaloian Koynov
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Jennifer Schultze
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Sandra R S Ferreira
- Department of Chemical Engineering and Food Engineering - Federal University of Santa Catarina - EQA/UFSC - C.P. 476, 88040-900, Florianópolis, SC, Brazil
| | - Pedro H H Araújo
- Department of Chemical Engineering and Food Engineering - Federal University of Santa Catarina - EQA/UFSC - C.P. 476, 88040-900, Florianópolis, SC, Brazil
| | - Débora de Oliveira
- Department of Chemical Engineering and Food Engineering - Federal University of Santa Catarina - EQA/UFSC - C.P. 476, 88040-900, Florianópolis, SC, Brazil
| | - Frederik R Wurm
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Volker Mailänder
- Department of Dermatology - University Medical Center - Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany.,Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Katharina Landfester
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| |
Collapse
|
146
|
Ruiz G, Ryan N, Rutschke K, Awotunde O, Driskell JD. Antibodies Irreversibly Adsorb to Gold Nanoparticles and Resist Displacement by Common Blood Proteins. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:10601-10609. [PMID: 31335148 DOI: 10.1021/acs.langmuir.9b01900] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Gold nanoparticles (AuNPs) functionalized with proteins to impart desirable surface properties have been developed for many nanobiotechnology applications. A strong interaction between the protein and nanoparticle is critical to the formation of a stable conjugate to realize the potential of these emerging technologies. In this work, we examine the robustness of a protein layer adsorbed onto gold nanoparticles while under the stress of a physiological environment that could potentially lead to protein exchange on the nanoparticle surface. The adsorption interaction of common blood plasma proteins (transferrin, human serum albumin, and fibrinogen) and anti-horseradish peroxidase antibody onto AuNPs is investigated by nanoparticle tracking analysis. Our data show that a monolayer of protein is formed at saturation for each protein, and the maximum size increase for the conjugate, relative to the AuNP core, correlates with the protein size. The binding affinity of each protein to the AuNP is extracted from a best fit of the adsorption isotherm to the Hill equation. The antibody displays the greatest affinity (Kd = 15.2 ± 0.8 nM) that is ∼20-65 times stronger than the affinity of the other plasma proteins. Antibody-AuNP conjugates were prepared, purified, and suspended in solutions of blood plasma proteins to evaluate the stability of the antibody layer. An enzyme-mediated assay confirms that the antibody-AuNP interaction is irreversible, and the adsorbed antibody resists displacement by the plasma proteins. This work provides insight into the capabilities and potential limitations of antibody-AuNP-enabled technologies in biological systems.
Collapse
Affiliation(s)
- Guadalupe Ruiz
- Department of Chemistry , Illinois State University , Normal , Illinois 61790 , United States
| | - Nicki Ryan
- Department of Chemistry , Illinois State University , Normal , Illinois 61790 , United States
| | - Kylie Rutschke
- Department of Chemistry , Illinois State University , Normal , Illinois 61790 , United States
| | - Olatunde Awotunde
- Department of Chemistry , Illinois State University , Normal , Illinois 61790 , United States
| | - Jeremy D Driskell
- Department of Chemistry , Illinois State University , Normal , Illinois 61790 , United States
| |
Collapse
|
147
|
Sakhtianchi R, Darvishi B, Mirzaie Z, Dorkoosh F, Shanehsazzadeh S, Dinarvand R. Pegylated magnetic mesoporous silica nanoparticles decorated with AS1411 Aptamer as a targeting delivery system for cytotoxic agents. Pharm Dev Technol 2019; 24:1063-1075. [PMID: 30654677 DOI: 10.1080/10837450.2019.1569678] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Fulfilling the purpose of developing a NP with theragnostic capabilities, the current study describes the synthesis of an aptamer-functionalized PEG-coated SPION/mesoporous silica core-shell nanoparticle for concurrent cancer targeted therapy and magnetic resonance imaging. SPIONs were synthesized according to a thermal decomposition method and served as cores for SPION/mesoporous silica core/shell nanoparticles (MMSNs). Doxorubicin was then successfully loaded in MMSNs which were then coated with di-carboxylic acid functionalized polyethylene glycol (PEG-MMSNs). AS1411 aptamers were at the end covalently attached to NPs (APT-PEG-MMSNs). The mean diameter of synthesized NPs was about 89 nm and doxorubicin encapsulation efficacy was ≈67.47%. Results of MTT based cell cytotoxicity assay demonstrated a significantly higher toxicity profile for APT-PEG-MMSNs against MCF7 cells compared to non-decorated MMSNs, while no significant differences were spotted against NIH-3T3 cells. Meanwhile, formation of protein corona around APT-PEG-MMSNs in biological medium significantly attenuated observed cytotoxicity against MCF7 cell line. Examining NPs uptake by MCF7 cells using confocal laser scanning microscopy also confirmed superiority of APT-PEG-MMSNs over PEG-MMSNs. Finally, APT decorated NPs induced highest signal intensity reduction in T2-weighted images during in vitro MRI assay. In conclusion, developed NPs may serve as promising multifunctional vehicles for simultaneous cancer targeted therapy and MRI imaging.
Collapse
Affiliation(s)
- Ramin Sakhtianchi
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences , Tehran , Iran.,Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences , Tehran , Iran
| | - Behrad Darvishi
- Recombinant Proteins Department, Breast Cancer Research Center, ACECR , Tehran , Iran
| | - Zahra Mirzaie
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences , Tehran , Iran
| | - Farid Dorkoosh
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences , Tehran , Iran
| | - Saeed Shanehsazzadeh
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences , Tehran , Iran
| | - Rassoul Dinarvand
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences , Tehran , Iran.,Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences , Tehran , Iran
| |
Collapse
|
148
|
Cui W, Mu L, Duan X, Pang W, Reed MA. Trapping of sub-100 nm nanoparticles using gigahertz acoustofluidic tweezers for biosensing applications. NANOSCALE 2019; 11:14625-14634. [PMID: 31240289 DOI: 10.1039/c9nr03529j] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this study, we present a nanoscale acoustofluidic trap (AFT) that manipulates nanoparticles in a microfluidic system actuated by a gigahertz acoustic resonator. The AFT generates independent standing closed vortices with high-speed rotation. Via careful design and optimization of geometric confinements, the AFT was able to effectively capture and enrich sub-100 nm nanoparticles with a low power consumption (0.25-5 μW μm-2) and rapid trapping (within 30 s), showing significantly enhanced particle-operating ability as compared to its acoustic and optical counterparts; using specifically functionalized nanoparticles (SFNPs) to selectively capture target molecules from the sample, the AFT led to the molecular concentration enhancement of ∼200 times. We investigated the feasibility of the SFNP-assisted AFT preconcentration method for biosensing applications and successfully demonstrated the capability of this method for the detection of serum prostate-specific antigen (PSA). The AFT was prepared via a fully CMOS-compatible process and thus could be conveniently integrated on a single chip, with potential for "lab-on-a-chip" or point-of-care (POC) nanoparticle-based biosensing applications.
Collapse
Affiliation(s)
- Weiwei Cui
- State Key Laboratory of Precision Measuring Technology & Instruments, College of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China.
| | | | | | | | | |
Collapse
|
149
|
Fluorescence correlation spectroscopy as a tool for the study of the intracellular dynamics and biological fate of protein corona. Biophys Chem 2019; 253:106218. [PMID: 31325709 DOI: 10.1016/j.bpc.2019.106218] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 07/03/2019] [Indexed: 11/20/2022]
Abstract
In biological fluids, nanoparticles (NPs) are in contact with proteins and other biomolecules. Proteins adsorb to NPs and form a coating called a protein corona (PC). The PC is known to greatly affect the interaction of NPs with biological systems. A comprehensive knowledge of the protein nanoparticle interaction is essential to understand the biological fate of NPs and for the design of NPs for biomedicine. Fluorescence correlation spectroscopy (FCS) and fluorescence cross-correlation spectroscopy (FCCS) are sensitive spectroscopy techniques that measure fluorescence intensity fluctuations of single molecules inside a femtoliter confocal volume. Both techniques are suitable for studying the formation of protein corona around NPs and for examining corona stability in situ in biological matrixes. In this review we provide a short description of FCS/FCCS and their application in PC studies, highlighting results from our work about the impact of surface chemistry of NPs on corona formation and NP intracellular fate.
Collapse
|
150
|
Baimanov D, Cai R, Chen C. Understanding the Chemical Nature of Nanoparticle-Protein Interactions. Bioconjug Chem 2019; 30:1923-1937. [PMID: 31259537 DOI: 10.1021/acs.bioconjchem.9b00348] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The formation of a protein corona has been considered a pitfall in the clinical translation of nanomedicines. Hence, interdisciplinary studies on corona characterization are critically essential. A deep understanding of the formation of hard and soft protein coronas upon in vivo administration of nanoparticles is vital. The protein corona gives the nanoplatform a new biological identity. Furthermore, the control of and mechanistic understanding of corona formation as it is regulated by the physicochemical properties of nanoparticles is crucial for developing safe nanomedicines. A growing number of analytical techniques have been developed in the past decade for examining NP-protein interactions, contributing to a better understanding of protein corona formation on the surface of nanoparticles. In this Review, we summarize the latest developments in the in vivo and in vitro study of dynamic protein corona formation. Insights derived from techniques used to visualize, quantify, and define protein coronas, as well as the methods for examining the kinetics and structural changes of coronal proteins, are discussed. The potential challenges and future perspectives in the study of protein corona formation and its effects on biological behavior and applications of therapeutic nanomaterials are also provided.
Collapse
Affiliation(s)
- Didar Baimanov
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Rong Cai
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China.,University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|