101
|
Qu T, Li Z, Zhao S, Li A, Qin X. A metabonomic analysis reveals novel regulatory mechanism of Huangqi injection on leucopenia mice. Immunopharmacol Immunotoxicol 2016; 38:113-23. [DOI: 10.3109/08923973.2015.1128950] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
102
|
Zhang X, Diao R, Zhu X, Li Z, Cai Z. Metabolic characterization of asthenozoospermia using nontargeted seminal plasma metabolomics. Clin Chim Acta 2015; 450:254-61. [DOI: 10.1016/j.cca.2015.09.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 08/27/2015] [Accepted: 09/01/2015] [Indexed: 12/26/2022]
|
103
|
Chen JL, Shi BY, Xiang H, Hou WJ, Qin XM, Tian JS, Du GH. (1)H NMR-based metabolic profiling of liver in chronic unpredictable mild stress rats with genipin treatment. J Pharm Biomed Anal 2015. [PMID: 26204246 DOI: 10.1016/j.jpba.2015.07.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Genipin, a hydrolyzed metabolite of geniposide extracted from the fruit of Gardenia jasminoides Ellis, has shown promise in alleviating depressive symptoms, however, the antidepressant mechanism of genipin remains unclear and incomprehensive. In this study, the metabolic profiles of aqueous and lipophilic extracts in liver of the chronic unpredictable mild stress (CUMS)-induced rat with genipin treatment were investigated using proton nuclear magnetic resonance ((1)H NMR) spectroscopy coupled with multivariate data analysis. Significant differences in the metabolic profiles of rats in the CUMS model group (MS) and the control group (NS) were observed with metabolic effects including decreasing in choline, glycerol and glycogen, increasing in lactate, alanine and succinate, and a disordered lipid metabolism, while the moderate dose (50mg/kg) of genipin could significantly regulate the concentrations of glycerol, lactate, alanine, succinate and the lipid to their normal levels. These biomakers were involved in metabolism pathways such as glycolysis/gluconeogensis, tricarboxylic acid (TCA) cycle and lipid metabolism, which may be helpful for understanding of antidepressant mechanism of genipin.
Collapse
Affiliation(s)
- Jian-Li Chen
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan 030006, PR China
| | - Bi-Yun Shi
- Departments of Chemistry, University of Louisville, Louisville, KY 40292, USA
| | - Huan Xiang
- Physical Education Departments of Shanxi University, Taiyuan 030006, PR China
| | - Wen-Jing Hou
- Department of Pharmacy, Beijing Charity Hospital of China Rehabilitation Research Center, Beijing 100068, PR China
| | - Xue-Mei Qin
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan 030006, PR China
| | - Jun-Sheng Tian
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan 030006, PR China.
| | - Guan-Hua Du
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan 030006, PR China; Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China.
| |
Collapse
|
104
|
Zhang L, Hatzakis E, Nichols RG, Hao R, Correll J, Smith PB, Chiaro CR, Perdew GH, Patterson AD. Metabolomics Reveals that Aryl Hydrocarbon Receptor Activation by Environmental Chemicals Induces Systemic Metabolic Dysfunction in Mice. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:8067-77. [PMID: 26023891 PMCID: PMC4890155 DOI: 10.1021/acs.est.5b01389] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Environmental exposure to dioxins and dioxin-like compounds poses a significant health risk for human health. Developing a better understanding of the mechanisms of toxicity through activation of the aryl hydrocarbon receptor (AHR) is likely to improve the reliability of risk assessment. In this study, the AHR-dependent metabolic response of mice exposed to 2,3,7,8-tetrachlorodibenzofuran (TCDF) was assessed using global (1)H nuclear magnetic resonance (NMR)-based metabolomics and targeted metabolite profiling of extracts obtained from serum and liver. (1)H NMR analyses revealed that TCDF exposure suppressed gluconeogenesis and glycogenolysis, stimulated lipogenesis, and triggered inflammatory gene expression in an Ahr-dependent manner. Targeted analyses using gas chromatography coupled with mass spectrometry showed TCDF treatment altered the ratio of unsaturated/saturated fatty acids. Consistent with this observation, an increase in hepatic expression of stearoyl coenzyme A desaturase 1 was observed. In addition, TCDF exposure resulted in inhibition of de novo fatty acid biosynthesis manifested by down-regulation of acetyl-CoA, malonyl-CoA, and palmitoyl-CoA metabolites and related mRNA levels. In contrast, no significant changes in the levels of glucose and lipid were observed in serum and liver obtained from Ahr-null mice following TCDF treatment, thus strongly supporting the important role of the AHR in mediating the metabolic effects seen following TCDF exposure.
Collapse
Affiliation(s)
- Limin Zhang
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences (CAS), Wuhan 430071, China
| | - Emmanuel Hatzakis
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Robert G. Nichols
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Ruixin Hao
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Jared Correll
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Philip B. Smith
- Metabolomics Facility, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Christopher R. Chiaro
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Gary H. Perdew
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Andrew D. Patterson
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| |
Collapse
|
105
|
Zhang L, Nichols RG, Correll J, Murray IA, Tanaka N, Smith PB, Hubbard TD, Sebastian A, Albert I, Hatzakis E, Gonzalez FJ, Perdew GH, Patterson AD. Persistent Organic Pollutants Modify Gut Microbiota-Host Metabolic Homeostasis in Mice Through Aryl Hydrocarbon Receptor Activation. ENVIRONMENTAL HEALTH PERSPECTIVES 2015; 123:679-88. [PMID: 25768209 PMCID: PMC4492271 DOI: 10.1289/ehp.1409055] [Citation(s) in RCA: 240] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 03/09/2015] [Indexed: 05/04/2023]
Abstract
BACKGROUND Alteration of the gut microbiota through diet and environmental contaminants may disturb physiological homeostasis, leading to various diseases including obesity and type 2 diabetes. Because most exposure to environmentally persistent organic pollutants (POPs) occurs through the diet, the host gastrointestinal tract and commensal gut microbiota are likely to be exposed to POPs. OBJECTIVES We examined the effect of 2,3,7,8-tetrachlorodibenzofuran (TCDF), a persistent environmental contaminant, on gut microbiota and host metabolism, and we examined correlations between gut microbiota composition and signaling pathways. METHODS Six-week-old male wild-type and Ahr-/- mice on the C57BL/6J background were treated with 24 μg/kg TCDF in the diet for 5 days. We used 16S rRNA gene sequencing, 1H nuclear magnetic resonance (NMR) metabolomics, targeted ultra-performance liquid chromatography coupled with triplequadrupole mass spectrometry, and biochemical assays to determine the microbiota compositions and the physiological and metabolic effects of TCDF. RESULTS Dietary TCDF altered the gut microbiota by shifting the ratio of Firmicutes to Bacteroidetes. TCDF-treated mouse cecal contents were enriched with Butyrivibrio spp. but depleted in Oscillobacter spp. compared with vehicle-treated mice. These changes in the gut microbiota were associated with altered bile acid metabolism. Further, dietary TCDF inhibited the farnesoid X receptor (FXR) signaling pathway, triggered significant inflammation and host metabolic disorders as a result of activation of bacterial fermentation, and altered hepatic lipogenesis, gluconeogenesis, and glycogenolysis in an AHR-dependent manner. CONCLUSION These findings provide new insights into the biochemical consequences of TCDF exposure involving the alteration of the gut microbiota, modulation of nuclear receptor signaling, and disruption of host metabolism.
Collapse
Affiliation(s)
- Limin Zhang
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Willebrords J, Pereira IVA, Maes M, Crespo Yanguas S, Colle I, Van Den Bossche B, Da Silva TC, de Oliveira CPMS, Andraus W, Alves VA, Cogliati B, Vinken M. Strategies, models and biomarkers in experimental non-alcoholic fatty liver disease research. Prog Lipid Res 2015; 59:106-25. [PMID: 26073454 DOI: 10.1016/j.plipres.2015.05.002] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 05/13/2015] [Accepted: 05/13/2015] [Indexed: 12/12/2022]
Abstract
Non-alcoholic fatty liver disease encompasses a spectrum of liver diseases, including simple steatosis, steatohepatitis, liver fibrosis and cirrhosis and hepatocellular carcinoma. Non-alcoholic fatty liver disease is currently the most dominant chronic liver disease in Western countries due to the fact that hepatic steatosis is associated with insulin resistance, type 2 diabetes mellitus, obesity, metabolic syndrome and drug-induced injury. A variety of chemicals, mainly drugs, and diets is known to cause hepatic steatosis in humans and rodents. Experimental non-alcoholic fatty liver disease models rely on the application of a diet or the administration of drugs to laboratory animals or the exposure of hepatic cell lines to these drugs. More recently, genetically modified rodents or zebrafish have been introduced as non-alcoholic fatty liver disease models. Considerable interest now lies in the discovery and development of novel non-invasive biomarkers of non-alcoholic fatty liver disease, with specific focus on hepatic steatosis. Experimental diagnostic biomarkers of non-alcoholic fatty liver disease, such as (epi)genetic parameters and '-omics'-based read-outs are still in their infancy, but show great promise. In this paper, the array of tools and models for the study of liver steatosis is discussed. Furthermore, the current state-of-art regarding experimental biomarkers such as epigenetic, genetic, transcriptomic, proteomic and metabonomic biomarkers will be reviewed.
Collapse
Affiliation(s)
- Joost Willebrords
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.
| | - Isabel Veloso Alves Pereira
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, São Paulo, Brazil.
| | - Michaël Maes
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.
| | - Sara Crespo Yanguas
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.
| | - Isabelle Colle
- Department of Hepatology and Gastroenterology, Algemeen Stedelijk Ziekenhuis Campus Aalst, Merestraat 80, 9300 Aalst, Belgium.
| | - Bert Van Den Bossche
- Department of Abdominal Surgery and Hepato-Pancreatico-Biliary Surgery, Algemeen Stedelijk Ziekenhuis Campus Aalst, Merestraat 80, 9300 Aalst, Belgium.
| | - Tereza Cristina Da Silva
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, São Paulo, Brazil.
| | | | - Wellington Andraus
- Department of Gastroenterology, University of São Paulo School of Medicine, Av. Dr. Arnaldo, 455, São Paulo, Brazil.
| | - Venâncio Avancini Alves
- Laboratory of Medical Investigation, Department of Pathology, University of São Paulo School of Medicine, Av. Dr. Arnaldo, 455, São Paulo, Brazil.
| | - Bruno Cogliati
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, São Paulo, Brazil.
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.
| |
Collapse
|
107
|
Zhou L, Li H, Hao F, Li N, Liu X, Wang G, Wang Y, Tang H. Developmental Changes for the Hemolymph Metabolome of Silkworm (Bombyx mori L.). J Proteome Res 2015; 14:2331-47. [PMID: 25825269 DOI: 10.1021/acs.jproteome.5b00159] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Silkworm (Bombyx mori) is a lepidopteran-holometabolic model organism. To understand its developmental biochemistry, we characterized the larval hemolymph metabonome from the third instar to prepupa stage using (1)H NMR spectroscopy whilst hemolymph fatty acid composition using GC-FID/MS. We unambiguously assigned more than 60 metabolites, among which tyrosine-o-β-glucuronide, mesaconate, homocarnosine, and picolinate were reported for the first time from the silkworm hemolymph. Phosphorylcholine was the most abundant metabolite in all developmental stages with exception for the periods before the third and fourth molting. We also found obvious developmental dependence for the hemolymph metabonome involving multiple pathways including protein biosyntheses, glycolysis, TCA cycle, the metabolisms of choline amino acids, fatty acids, purines, and pyrimidines. Most hemolymph amino acids had two elevations during the feeding period of the fourth instar and prepupa stage. Trehalose was the major blood sugar before day 8 of the fifth instar, whereas glucose became the major blood sugar after spinning. C16:0, C18:0 and its unsaturated forms were dominant fatty acids in hemolymph. The developmental changes of hemolymph metabonome were associated with dietary nutrient intakes, biosyntheses of cell membrane, pigments, proteins, and energy metabolism. These findings offered essential biochemistry information in terms of the dynamic metabolic changes during silkworm development.
Collapse
Affiliation(s)
- Lihong Zhou
- †College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.,‡Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.,¶College of Life Sciences, Jianghan University, Wuhan 430056, China
| | - Huihui Li
- ‡Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Fuhua Hao
- ‡Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Ning Li
- ‡Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Xin Liu
- †College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Guoliang Wang
- ¶College of Life Sciences, Jianghan University, Wuhan 430056, China
| | - Yulan Wang
- ‡Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.,⊥Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310058, China
| | - Huiru Tang
- ‡Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China.,§State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Metabonomics and Systems Biology Laboratory, School of Life Sciences, Fudan University, Shanghai 200433, China
| |
Collapse
|
108
|
Li D, Zhang L, Dong F, Liu Y, Li N, Li H, Lei H, Hao F, Wang Y, Zhu Y, Tang H. Metabonomic Changes Associated with Atherosclerosis Progression for LDLR(-/-) Mice. J Proteome Res 2015; 14:2237-54. [PMID: 25784267 DOI: 10.1021/acs.jproteome.5b00032] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Atherosclerosis resulting from hyperlipidemia causes many serious cardiovascular diseases. To understand the systems changes associated with pathogenesis and progression of atherosclerosis, we comprehensively analyzed the dynamic metabonomic changes in multiple biological matrices of LDLR(-/-) mice using NMR and GC-FID/MS with gene expression, clinical chemistry, and histopathological data as well. We found that 12 week "Western-type" diet (WD) treatment caused obvious aortic lesions, macrophage infiltration, and collagen level elevation in LDLR(-/-) mice accompanied by up-regulation of inflammatory factors including aortic ICAM-1, MCP-1, iNOS, MMP2, and hepatic TNFα and IL-1β. The WD-induced atherosclerosis progression was accompanied by metabonomic changes in multiple matrices including biofluids (plasma, urine) and (liver, kidney, myocardial) tissues involving multiple metabolic pathways. These included disruption of cholesterol homeostasis, disturbance of biosynthesis of amino acids and proteins, altered gut microbiota functions together with metabolisms of vitamin-B3, choline, purines, and pyrimidines. WD treatment caused down-regulation of SCD1 and promoted oxidative stress reflected by urinary allantoin elevation and decreases in hepatic PUFA-to-MUFA ratio. When switching to normal diet, atherosclerotic LDLR(-/-) mice reprogrammed their metabolisms and reversed the atherosclerosis-associated metabonomic changes to a large extent, although aortic lesions, inflammation parameters, macrophage infiltration, and collagen content were only partially alleviated. We concluded that metabolisms of fatty acids and vitamin-B3 together with gut microbiota played crucially important roles in atherosclerosis development. These findings offered essential biochemistry details of the diet-induced atherosclerosis and demonstrated effectiveness of the integrated metabonomic analysis of multiple biological matrices for understanding the molecular aspects of cardiovascular diseases.
Collapse
Affiliation(s)
- Dan Li
- †Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing 100191, China
| | - Lulu Zhang
- ‡CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, University of Chinese Academy of Sciences, Wuhan, 430071, China
| | - Fangcong Dong
- ‡CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, University of Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yan Liu
- †Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing 100191, China
| | - Ning Li
- ‡CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, University of Chinese Academy of Sciences, Wuhan, 430071, China
| | - Huihui Li
- ‡CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, University of Chinese Academy of Sciences, Wuhan, 430071, China
| | - Hehua Lei
- ‡CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, University of Chinese Academy of Sciences, Wuhan, 430071, China
| | - Fuhua Hao
- ‡CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, University of Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yulan Wang
- ‡CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, University of Chinese Academy of Sciences, Wuhan, 430071, China.,∥Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310058, China
| | - Yi Zhu
- †Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing 100191, China.,⊥Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin 300070, China
| | - Huiru Tang
- ‡CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, University of Chinese Academy of Sciences, Wuhan, 430071, China.,§State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, Metabonomics and Systems Biology Laboratory, School of Life Sciences, Fudan University, Shanghai 200433, China
| |
Collapse
|
109
|
Li N, Zhang L, An Y, Zhang L, Song Y, Wang Y, Tang H. Antagonist of prostaglandin E2 receptor 4 induces metabolic alterations in liver of mice. J Proteome Res 2015; 14:1566-73. [PMID: 25669961 DOI: 10.1021/pr501236y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Prostaglandin E2 receptor 4 (EP4) is one of the receptors for prostaglandin E2 and plays important roles in various biological functions. EP4 antagonists have been used as anti-inflammatory drugs. To investigate the effects of an EP4 antagonist (L-161982) on the endogenous metabolism in a holistic manner, we employed a mouse model, and obtained metabolic and transcriptomic profiles of multiple biological matrixes, including serum, liver, and urine of mice with and without EP4 antagonist (L-161982) exposure. We found that this EP4 antagonist caused significant changes in fatty acid metabolism, choline metabolism, and nucleotide metabolism. EP4 antagonist exposure also induced oxidative stress to mice. Our research is the first of its kind to report information on the alteration of metabolism associated with an EP4 antagonist. This information could further our understanding of current and new biological functions of EP4.
Collapse
Affiliation(s)
- Ning Li
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Centre for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, University of Chinese Academy of Sciences , Wuhan, 430071, P. R. China
| | | | | | | | | | | | | |
Collapse
|
110
|
Wan Q, Wu G, He Q, Tang H, Wang Y. The toxicity of acute exposure to T-2 toxin evaluated by the metabonomics technique. MOLECULAR BIOSYSTEMS 2015; 11:882-91. [PMID: 25588579 DOI: 10.1039/c4mb00622d] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
T-2 toxin is a common contaminant in grains and animal feedstuff, which becomes an increasing threat to human and animal health due to its high toxicity. Investigating the systemic effects of T-2 toxin is important to evaluate the toxicity and facilitate the assessment of food safety. In our investigation, rats were treated with a single dose of T-2 toxin at dosage levels of 0, 0.5, 2.0 and 4.0 mg kg(-1) body weight via gavage. The metabolic profiles of body fluids and multiple organs were obtained by NMR spectroscopy and analyzed by multivariate data analysis methods. The results showed that low and moderate doses of T-2 toxin only influenced the urinary metabonomes, while a high dose of T-2 toxin induced metabolic alterations in urine and multiple organs. These changes included alterations in the levels of membrane metabolites, TCA cycle intermediates, a range of amino acids, nucleosides and nucleotides. T-2 toxin exposure impaired spleen function, causing immunotoxicity, and inhibited protein and DNA biosynthesis. In addition, T-2 toxin also caused oxidative stress and disturbance in energy metabolism and gut microbiome. Our work provided a comprehensive insight into T-2 toxicity and revealed the great potential of metabonomics in assessing the impact of a toxic compound.
Collapse
Affiliation(s)
- Qianfen Wan
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, P. R. China.
| | | | | | | | | |
Collapse
|
111
|
Wang Z, Ma J, Zhang M, Wen C, Huang X, Sun F, Wang S, Hu L, Lin G, Wang X. Serum Metabolomics in Rats after Acute Paraquat Poisoning. Biol Pharm Bull 2015; 38:1049-53. [DOI: 10.1248/bpb.b15-00147] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Zhiyi Wang
- The Second Affiliated Hospital & Yuying Children’s Hospital, Wenzhou Medical University
| | - Jianshe Ma
- Function Experiment Teaching Center, Wenzhou Medical University
| | - Meiling Zhang
- Analytical and Testing Center, Wenzhou Medical University
| | - Congcong Wen
- Analytical and Testing Center, Wenzhou Medical University
| | - Xueli Huang
- Analytical and Testing Center, Wenzhou Medical University
| | - Fa Sun
- Analytical and Testing Center, Wenzhou Medical University
| | - Shuanghu Wang
- The Laboratory of Clinical Pharmacy, People’s Hospital of Lishui City
| | - Lufeng Hu
- Department of Clinical Pharmacy, The First Affiliated Hospital of Wenzhou Medical University
| | - Guanyang Lin
- Department of Clinical Pharmacy, The First Affiliated Hospital of Wenzhou Medical University
| | - Xianqin Wang
- Analytical and Testing Center, Wenzhou Medical University
| |
Collapse
|
112
|
Yang Y, Wang Y, Zhang J, Han Z, Chen A, Pan S, Liang S, Wang S. System responses to chronic cold stress probed via1H NMR spectroscopy in plasma and urine matrices. MOLECULAR BIOSYSTEMS 2015; 11:1425-33. [DOI: 10.1039/c5mb00033e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The metabolic pathways in plasma and urine revealed the biochemical changes under chronic cold stress from a systematic and holistic view.
Collapse
Affiliation(s)
- Yongxia Yang
- School of Basic Courses
- Guangdong Pharmaceutical University
- Guangzhou
- P. R. China
| | - Yaling Wang
- School of Basic Courses
- Guangdong Pharmaceutical University
- Guangzhou
- P. R. China
- School of Traditional Chinese Medicine
| | - Jingli Zhang
- School of Basic Courses
- Guangdong Pharmaceutical University
- Guangzhou
- P. R. China
| | - Zhihui Han
- School of Basic Courses
- Guangdong Pharmaceutical University
- Guangzhou
- P. R. China
- School of Traditional Chinese Medicine
| | - Ali Chen
- School of Medicine and Chemical Industry
- Guangdong Pharmaceutical University
- Guangzhou
- P. R. China
| | - Sina Pan
- School of Basic Courses
- Guangdong Pharmaceutical University
- Guangzhou
- P. R. China
- School of Traditional Chinese Medicine
| | - Shengwang Liang
- School of Traditional Chinese Medicine
- Guangdong Pharmaceutical University
- Guangzhou
- P. R. China
| | - Shumei Wang
- School of Traditional Chinese Medicine
- Guangdong Pharmaceutical University
- Guangzhou
- P. R. China
| |
Collapse
|
113
|
Jiang C, Xie C, Li F, Zhang L, Nichols RG, Krausz KW, Cai J, Qi Y, Fang ZZ, Takahashi S, Tanaka N, Desai D, Amin SG, Albert I, Patterson AD, Gonzalez FJ. Intestinal farnesoid X receptor signaling promotes nonalcoholic fatty liver disease. J Clin Invest 2014; 125:386-402. [PMID: 25500885 DOI: 10.1172/jci76738] [Citation(s) in RCA: 507] [Impact Index Per Article: 46.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 11/06/2014] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a major worldwide health problem. Recent studies suggest that the gut microbiota influences NAFLD pathogenesis. Here, a murine model of high-fat diet-induced (HFD-induced) NAFLD was used, and the effects of alterations in the gut microbiota on NAFLD were determined. Mice treated with antibiotics or tempol exhibited altered bile acid composition, with a notable increase in conjugated bile acid metabolites that inhibited intestinal farnesoid X receptor (FXR) signaling. Compared with control mice, animals with intestine-specific Fxr disruption had reduced hepatic triglyceride accumulation in response to a HFD. The decrease in hepatic triglyceride accumulation was mainly due to fewer circulating ceramides, which was in part the result of lower expression of ceramide synthesis genes. The reduction of ceramide levels in the ileum and serum in tempol- or antibiotic-treated mice fed a HFD resulted in downregulation of hepatic SREBP1C and decreased de novo lipogenesis. Administration of C16:0 ceramide to antibiotic-treated mice fed a HFD reversed hepatic steatosis. These studies demonstrate that inhibition of an intestinal FXR/ceramide axis mediates gut microbiota-associated NAFLD development, linking the microbiome, nuclear receptor signaling, and NAFLD. This work suggests that inhibition of intestinal FXR is a potential therapeutic target for NAFLD treatment.
Collapse
|
114
|
Xia K, He X, Dai Q, Cheng WH, Qi X, Guo M, Luo Y, Huang K, Zhao C, Xu W. Discovery of systematic responses and potential biomarkers induced by ochratoxin A using metabolomics. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2014; 31:1904-13. [PMID: 25255040 DOI: 10.1080/19440049.2014.957249] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ochratoxin A (OTA) is known to be nephrotoxic and hepatotoxic in rodents when exposed orally. To understand the systematic responses to OTA exposure, GC-MS- and (1)H-NMR-based metabolomic techniques together with histopathological assessments were applied to analyse the urine and plasma of OTA-exposed rats. It was found that OTA exposure caused significant elevation of amino acids (alanine, glycine, leucine etc.), pentose (ribose, glucitol, xylitol etc.) and nucleic acid metabolites (pseudouridine, adenosine, uridine). Moreover, myo-inositol, trimethylamine-oxide (TMAO), pseudouridine and leucine were identified as potential biomarkers for OTA toxicity. The primary pathways included the pentose phosphate pathway (PPP), the Krebs cycle (TCA), the creatine pathway and gluconeogenesis. The activated PPP was attributed to the high requirements for nicotinamide adenine dinucleotide phosphate (NADPH), which is involved in OTA metabolism through cytochrome P450. The elevated gluconeogenesis and TCA suggest that energy metabolism was involved. The up-regulated synthesis of creatinine reveals the elevated catabolism of proteins. These findings provide an overview of systematic responses to OTA exposure and metabolomic insight into the toxicological mechanism of OTA.
Collapse
Affiliation(s)
- Kai Xia
- a Laboratory of Food Safety and Molecular Biology, College of Food Science and Nutritional Engineering , China Agricultural University , Beijing , China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Tawa GJ, AbdulHameed MDM, Yu X, Kumar K, Ippolito DL, Lewis JA, Stallings JD, Wallqvist A. Characterization of chemically induced liver injuries using gene co-expression modules. PLoS One 2014; 9:e107230. [PMID: 25226513 PMCID: PMC4165895 DOI: 10.1371/journal.pone.0107230] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 08/06/2014] [Indexed: 12/19/2022] Open
Abstract
Liver injuries due to ingestion or exposure to chemicals and industrial toxicants pose a serious health risk that may be hard to assess due to a lack of non-invasive diagnostic tests. Mapping chemical injuries to organ-specific damage and clinical outcomes via biomarkers or biomarker panels will provide the foundation for highly specific and robust diagnostic tests. Here, we have used DrugMatrix, a toxicogenomics database containing organ-specific gene expression data matched to dose-dependent chemical exposures and adverse clinical pathology assessments in Sprague Dawley rats, to identify groups of co-expressed genes (modules) specific to injury endpoints in the liver. We identified 78 such gene co-expression modules associated with 25 diverse injury endpoints categorized from clinical pathology, organ weight changes, and histopathology. Using gene expression data associated with an injury condition, we showed that these modules exhibited different patterns of activation characteristic of each injury. We further showed that specific module genes mapped to 1) known biochemical pathways associated with liver injuries and 2) clinically used diagnostic tests for liver fibrosis. As such, the gene modules have characteristics of both generalized and specific toxic response pathways. Using these results, we proposed three gene signature sets characteristic of liver fibrosis, steatosis, and general liver injury based on genes from the co-expression modules. Out of all 92 identified genes, 18 (20%) genes have well-documented relationships with liver disease, whereas the rest are novel and have not previously been associated with liver disease. In conclusion, identifying gene co-expression modules associated with chemically induced liver injuries aids in generating testable hypotheses and has the potential to identify putative biomarkers of adverse health effects.
Collapse
Affiliation(s)
- Gregory J. Tawa
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland, United States of America
- * E-mail: (AW); (GJT)
| | - Mohamed Diwan M. AbdulHameed
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland, United States of America
| | - Xueping Yu
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland, United States of America
| | - Kamal Kumar
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland, United States of America
| | - Danielle L. Ippolito
- U.S. Army Center for Environmental Health Research, Fort Detrick, Maryland, United States of America
| | - John A. Lewis
- U.S. Army Center for Environmental Health Research, Fort Detrick, Maryland, United States of America
| | - Jonathan D. Stallings
- U.S. Army Center for Environmental Health Research, Fort Detrick, Maryland, United States of America
| | - Anders Wallqvist
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, Maryland, United States of America
- * E-mail: (AW); (GJT)
| |
Collapse
|
116
|
Jiang L, Zhao X, Huang C, Lei H, Tang H, Wang Y. Dynamic changes in metabolic profiles of rats subchronically exposed to mequindox. ACTA ACUST UNITED AC 2014; 10:2914-22. [DOI: 10.1039/c4mb00218k] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
117
|
Chao J, Huo TI, Cheng HY, Tsai JC, Liao JW, Lee MS, Qin XM, Hsieh MT, Pao LH, Peng WH. Gallic acid ameliorated impaired glucose and lipid homeostasis in high fat diet-induced NAFLD mice. PLoS One 2014; 9:e96969. [PMID: 24918580 PMCID: PMC4053315 DOI: 10.1371/journal.pone.0096969] [Citation(s) in RCA: 124] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Accepted: 02/07/2014] [Indexed: 12/19/2022] Open
Abstract
Gallic acid (GA), a naturally abundant plant phenolic compound in vegetables and fruits, has been shown to have potent anti-oxidative and anti-obesity activity. However, the effects of GA on nonalcoholic fatty liver disease (NAFLD) are poorly understood. In this study, we investigated the beneficial effects of GA administration on nutritional hepatosteatosis model by a more “holistic view” approach, namely 1H NMR-based metabolomics, in order to prove efficacy and to obtain information that might lead to a better understanding of the mode of action of GA. Male C57BL/6 mice were placed for 16 weeks on either a normal chow diet, a high fat diet (HFD, 60%), or a high fat diet supplemented with GA (50 and 100 mg/kg/day, orally). Liver histopathology and serum biochemical examinations indicated that the daily administration of GA protects against hepatic steatosis, obesity, hypercholesterolemia, and insulin resistance among the HFD-induced NAFLD mice. In addition, partial least squares discriminant analysis scores plots demonstrated that the cluster of HFD fed mice is clearly separated from the normal group mice plots, indicating that the metabolic characteristics of these two groups are distinctively different. Specifically, the GA-treated mice are located closer to the normal group of mice, indicating that the HFD-induced disturbances to the metabolic profile were partially reversed by GA treatment. Our results show that the hepatoprotective effect of GA occurs in part through a reversing of the HFD caused disturbances to a range of metabolic pathways, including lipid metabolism, glucose metabolism (glycolysis and gluconeogenesis), amino acids metabolism, choline metabolism and gut-microbiota-associated metabolism. Taken together, this study suggested that a 1H NMR-based metabolomics approach is a useful platform for natural product functional evaluation. The selected metabolites are potentially useful as preventive action biomarkers and could also be used to help our further understanding of the effect of GA in hepatosteatosis mice.
Collapse
Affiliation(s)
- Jung Chao
- Institute of Pharmacology, College of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Teh-Ia Huo
- Institute of Pharmacology, College of Medicine, National Yang-Ming University, Taipei, Taiwan
- Department of Oncology and Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Hao-Yuan Cheng
- Department of Nursing, Chung Jen College of Nursing, Health Sciences and Management, Chia-Yi, Taiwan
| | - Jen-Chieh Tsai
- Department of Health and Nutrition Biotechnology, College of Health Science, Asia University, Taichung, Taiwan
- Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan
| | - Jiunn-Wang Liao
- Graduate Institute of Veterinary Pathology, National Chung Hsing University, Taichung, Taiwan
| | - Meng-Shiou Lee
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Pharmacy, China Medical University, Taichung, Taiwan
| | - Xue-Mei Qin
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan, China
| | - Ming-Tsuen Hsieh
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Pharmacy, China Medical University, Taichung, Taiwan
| | - Li-Heng Pao
- Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
- School of Pharmacy, National Defense Medical Center, Taipei, Taiwan
- * E-mail: (WHP); (LHP)
| | - Wen-Huang Peng
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, College of Pharmacy, China Medical University, Taichung, Taiwan
- * E-mail: (WHP); (LHP)
| |
Collapse
|
118
|
Xu W, Wang H, Chen G, Li W, Xiang R, Zhang X, Pei Y. A metabolic profiling analysis of the acute toxicological effects of the realgar (As₂S₂) combined with other herbs in Niuhuang Jiedu Tablet using ¹H NMR spectroscopy. JOURNAL OF ETHNOPHARMACOLOGY 2014; 153:771-781. [PMID: 24685585 DOI: 10.1016/j.jep.2014.03.050] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 02/17/2014] [Accepted: 03/18/2014] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Niuhuang Jiedu Tablet (NJT), composed of Realgar (As₂S₂), Bovis Calculus Artificialis, Borneolum Synthcticum, Gypsum Fibrosum, Rhei Radix et Rhizoma (RR), Scutellariae Radix (SR), Platycodonis Radix (PR) and Glycyrrhizae Radix et Rhizoma (GR), is an effective formula of traditional Chinese medicine (TCM) used in treating acute tonsillitis, pharyngitis, periodontitis and mouth ulcer. In the formula, significant level of realgar (As₂S₂) as a potentially toxic element is contained. In our pervious experiments, NJT was significantly less toxic than realgar (As₂S₂), and the material bases of toxicity alleviation effect to realgar (As₂S₂) were RR, SR, PR and GR. However, the toxicity alleviation effect of each above mentioned four herbs to realgar (As₂S₂) and their synergistic detoxification effects to realgar (As₂S₂) were still obscure. MATERIALS AND METHODS Male Wistar rats were divided into 11 groups: control, group R (treated with Realgar), group RRSPG (treated with Realgar, RR, SR, PR and GR), group RRSP (treated with Realgar, RR, SR and PR), group RRSG (treated with Realgar, RR, SR and GR), group RRPG (treated with Realgar, RR, PR and GR), group RSPG (treated with Realgar, SR, PR and GR), group RR (treated with Realgar and RR), group RS (treated with Realgar and SR), group RP (treated with Realgar and PR) and group RG (treated with Realgar and GR). Based on (1)H NMR spectra of urine and serum from rats, PCA and PLS-DA were performed to identify different metabolic profiles. Liver and kidney histopathology examinations and serum clinical chemistry analysis were also performed. RESULTS The metabolic profiles of groups RR, RS, RP and RG were similar to those of group R, while the metabolic profiles of groups RRSPG, RRSP, RRSG, RRPG and RSPG were almost in line with those of control group. Statistics results were confirmed by the histopathological examination and biochemical assay. CONCLUSION The present work suggested that the toxicity alleviation effects of RR, SR, PR and GR to realgar (As₂S₂) were not obvious when combined with realgar (As₂S₂) respectively, but they had synergistic detoxification effects on realgar (As₂S₂) mutually.
Collapse
Affiliation(s)
- Wenfeng Xu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China; Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang 110016, PR China
| | - Haifeng Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China; Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang 110016, PR China
| | - Gang Chen
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China; Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang 110016, PR China
| | - Wen Li
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Rongwu Xiang
- Mathematics Teaching & Research Section, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Xiaoli Zhang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China; Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang 110016, PR China
| | - Yuehu Pei
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China; Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang 110016, PR China.
| |
Collapse
|
119
|
Wu Q, Zhang H, Dong X, Chen XF, Zhu ZY, Hong ZY, Chai YF. UPLC-Q-TOF/MS based metabolomic profiling of serum and urine of hyperlipidemic rats induced by high fat diet. J Pharm Anal 2014; 4:360-367. [PMID: 29403901 PMCID: PMC5761356 DOI: 10.1016/j.jpha.2014.04.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 04/04/2014] [Accepted: 04/25/2014] [Indexed: 01/01/2023] Open
Abstract
Hyperlipidemia is considered to be a high lipid level in blood, can induce metabolic disorders and dysfunctions of the body, and results in some severe complications. Therefore, hunting for some metabolite markers and clarifying the metabolic pathways in vivo will be an important strategy in the treatment and prevention of hyperlipidemia. In this study, a rat model of hyperlipidemia was constructed according to histopathological data and biochemical parameters, and the metabolites of serum and urine were analyzed by UPLC-Q-TOF/MS. Combining pattern recognition and statistical analysis, 19 candidate biomarkers were screened and identified. These changed metabolites indicated that during the development and progression of hyperlipidemia, energy metabolism, lipid metabolism, amino acid metabolism and nucleotide metabolism were mainly disturbed, which are reported to be closely related to diabetes, cardiovascular diseases, etc. This study demonstrated that a UPLC-Q-TOF/MS based metabolomic approach is useful to profile the alternation of endogenous metabolites of hyperlipidemia.
Collapse
Affiliation(s)
- Qiong Wu
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Hai Zhang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Xin Dong
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Xiao-Fei Chen
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Zhen-Yu Zhu
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Zhan-Ying Hong
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Yi-Feng Chai
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
120
|
Conotte R, Colet JM. A metabonomic evaluation of the monocrotaline-induced sinusoidal obstruction syndrome (SOS) in rats. Toxicol Appl Pharmacol 2014; 276:147-56. [DOI: 10.1016/j.taap.2014.02.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 01/31/2014] [Accepted: 02/12/2014] [Indexed: 12/20/2022]
|
121
|
Dynamic metabolic and transcriptional profiling of Rhodococcus sp. strain YYL during the degradation of tetrahydrofuran. Appl Environ Microbiol 2014; 80:2656-64. [PMID: 24532074 DOI: 10.1128/aem.04131-13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Although tetrahydrofuran-degrading Rhodococcus sp. strain YYL possesses tetrahydrofuran (THF) degradation genes similar to those of other tetrahydrofuran-degrading bacteria, a much higher degradation efficiency has been observed in strain YYL. In this study, nuclear magnetic resonance (NMR)-based metabolomics analyses were performed to explore the metabolic profiling response of strain YYL to exposure to THF. Exposure to THF slightly influenced the metabolome of strain YYL when yeast extract was present in the medium. The metabolic profile of strain YYL over time was also investigated using THF as the sole carbon source to identify the metabolites associated with high-efficiency THF degradation. Lactate, alanine, glutarate, glutamate, glutamine, succinate, lysine, trehalose, trimethylamine-N-oxide (TMAO), NAD(+), and CTP were significantly altered over time in strain YYL grown in 20 mM THF. Real-time quantitative PCR (RT-qPCR) revealed changes in the transcriptional expression levels of 15 genes involved in THF degradation, suggesting that strain YYL could accumulate several disturbances in osmoregulation (trehalose, glutamate, glutamine, etc.), with reduced glycolysis levels, an accelerated tricarboxylic acid cycle, and enhanced protein synthesis. The findings obtained through (1)H NMR metabolomics analyses and the transcriptional expression of the corresponding genes are complementary for exploring the dynamic metabolic profile in organisms.
Collapse
|
122
|
Deficient glutathione in the pathophysiology of mycotoxin-related illness. Toxins (Basel) 2014; 6:608-23. [PMID: 24517907 PMCID: PMC3942754 DOI: 10.3390/toxins6020608] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 01/21/2014] [Accepted: 01/23/2014] [Indexed: 12/27/2022] Open
Abstract
Evidence for the role of oxidative stress in the pathophysiology of mycotoxin-related illness is increasing. The glutathione antioxidant and detoxification systems play a major role in the antioxidant function of cells. Exposure to mycotoxins in humans requires the production of glutathione on an “as needed” basis. Research suggests that mycotoxins can decrease the formation of glutathione due to decreased gene expression of the enzymes needed to form glutathione. Mycotoxin-related compromise of glutathione production can result in an excess of oxidative stress that leads to tissue damage and systemic illness. The review discusses the mechanisms by which mycotoxin-related deficiency of glutathione may lead to both acute and chronic illnesses.
Collapse
|
123
|
Li X, Zhang F, Wang D, Li Z, Qin X, Du G. NMR-based metabonomic and quantitative real-time PCR in the profiling of metabolic changes in carbon tetrachloride-induced rat liver injury. J Pharm Biomed Anal 2014; 89:42-9. [DOI: 10.1016/j.jpba.2013.10.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 10/08/2013] [Accepted: 10/12/2013] [Indexed: 01/11/2023]
|
124
|
Zhang L, Wang Y, Xu Y, Lei H, Zhao Y, Li H, Lin X, Chen G, Tang H. Metabonomic analysis reveals efficient ameliorating effects of acupoint stimulations on the menopause-caused alterations in mammalian metabolism. Sci Rep 2014; 4:3641. [PMID: 24407431 PMCID: PMC5378040 DOI: 10.1038/srep03641] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 11/28/2013] [Indexed: 02/02/2023] Open
Abstract
Acupoint stimulations are effective in ameliorating symptoms of menopause which is an unavoidable ageing consequence for women. To understand the mechanistic aspects of such treatments, we systematically analyzed the effects of acupoint laser-irradiation and catgut-embedding on the ovariectomy-induced rat metabolic changes using NMR and GC-FID/MS methods. Results showed that ovariectomization (OVX) caused comprehensive metabolic changes in lipid peroxidation, glycolysis, TCA cycle, choline and amino acid metabolisms. Both acupoint laser-irradiation and catgut-embedding ameliorated the OVX-caused metabonomic changes more effectively than hormone replacement therapy (HRT) with nilestriol. Such effects of acupoint stimulations were highlighted in alleviating lipid peroxidation, restoring glucose homeostasis and partial reversion of the OVX-altered amino acid metabolism. These findings provided new insights into the menopause effects on mammalian biochemistry and beneficial effects of acupoint stimulations in comparison with HRT, demonstrating metabonomics as a powerful approach for potential applications in disease prognosis and developments of effective therapies.
Collapse
Affiliation(s)
- Limin Zhang
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Biospectroscopy and Metabonomics Centre, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yulan Wang
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Biospectroscopy and Metabonomics Centre, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
| | - Yunxiang Xu
- Clinical Medical College of Acupuncture and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510405, P. R. China
| | - Hehua Lei
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Biospectroscopy and Metabonomics Centre, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Ying Zhao
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Biospectroscopy and Metabonomics Centre, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Huihui Li
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Biospectroscopy and Metabonomics Centre, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Xiaosheng Lin
- Affiliated BaoAn TCM Hospital, Guangzhou University of Chinese Medicine, Shenzhen, 518101, China
| | - Guizhen Chen
- Affiliated BaoAn TCM Hospital, Guangzhou University of Chinese Medicine, Shenzhen, 518101, China
| | - Huiru Tang
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Biospectroscopy and Metabonomics Centre, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
- State Key Laboratory of Genetic Engineering, Biospectroscopy and Metabolomics, School of Life Sciences, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
125
|
Wu X, Li N, Li H, Tang H. An optimized method for NMR-based plant seed metabolomic analysis with maximized polar metabolite extraction efficiency, signal-to-noise ratio, and chemical shift consistency. Analyst 2014; 139:1769-78. [DOI: 10.1039/c3an02100a] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An optimized method for NMR-based plant seed metabolomic analysis was established with extraction solvent, cell-breaking method and extract-to-buffer ratio.
Collapse
Affiliation(s)
- Xiangyu Wu
- Key Laboratory of Magnetic Resonance in Biological Systems
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics
- Wuhan Centre for Magnetic Resonance
- Wuhan Institute of Physics and Mathematics
- University of Chinese Academy of Sciences
| | - Ning Li
- Key Laboratory of Magnetic Resonance in Biological Systems
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics
- Wuhan Centre for Magnetic Resonance
- Wuhan Institute of Physics and Mathematics
- University of Chinese Academy of Sciences
| | - Hongde Li
- Key Laboratory of Magnetic Resonance in Biological Systems
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics
- Wuhan Centre for Magnetic Resonance
- Wuhan Institute of Physics and Mathematics
- University of Chinese Academy of Sciences
| | - Huiru Tang
- Key Laboratory of Magnetic Resonance in Biological Systems
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics
- Wuhan Centre for Magnetic Resonance
- Wuhan Institute of Physics and Mathematics
- University of Chinese Academy of Sciences
| |
Collapse
|
126
|
Liu G, Yan T, Wang J, Huang Z, Chen X, Jia G, Wu C, Zhao H, Xue B, Xiao L, Tang J. Biological system responses to zearalenone mycotoxin exposure by integrated metabolomic studies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:11212-11221. [PMID: 24164354 DOI: 10.1021/jf403401v] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
This study aims to investigate the effect of zearalenone supplementation on rat metabolism. Rats received biweekly intragastric administration of zearalenone mycotoxin (3 mg/kg body weight) for 2 weeks. Urine and plasma samples after zearalenone administration were analyzed by NMR-based metabolomics. Zearalenone exposure significantly elevated the plasma levels of glucose, lactate, N-acetyl glycoprotein, O-acetyl glycoprotein, and propionate but reduced the plasma levels of tyrosine, branched-chain amino acids, and choline metabolites. Zearalenone supplementation decreased the urine levels of butyrate, lactate, and nicotinate. However, it increased the urine levels of allantoin, choline, and N-methylnicotinamide at 0-8 h after the last zearalenone administration and those of 1-methylhistidine, acetoacetate, acetone, and indoxyl sulfate at 8-24 h after the last zearalenone administration. These results suggest that zearalenone exposure can cause oxidative stress and change common systemic metabolic processes, including cell membrane metabolism, protein biosynthesis, glycolysis, and gut microbiota metabolism.
Collapse
Affiliation(s)
- Guangmang Liu
- Institute of Animal Nutrition, Sichuan Agricultural University , Chengdu 611130, Sichuan, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
127
|
Man S, Fan W, Gao W, Li Y, Wang Y, Liu Z, Li H. Anti-fibrosis and anti-cirrhosis effects of Rhizoma paridis saponins on diethylnitrosamine induced rats. JOURNAL OF ETHNOPHARMACOLOGY 2013; 151:407-412. [PMID: 24212073 DOI: 10.1016/j.jep.2013.10.051] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 10/21/2013] [Accepted: 10/24/2013] [Indexed: 06/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Paris polyphylla var. yunnanensis as a traditional Chinese medicine has been used in the treatment of liver disease for thousands of years. Rhizoma paridis saponins (RPS), as the main active components of Paris polyphylla, have been used to treat liver injury. Anti-cirrhosis effect of Rhizoma paridis saponins (RPS) has not been known. MATERIALS AND METHODS We analyzed diethylnitrosamine (DEN)-induced metabonomic changes in multiple biological matrices (plasma and urine) of rats by using (1)H-NMR spectroscopy together with clinical biochemistry assessments, oxidative stress test and DNA fragmentation assay. RESULTS Mechanisms of RPS that participated in the inhibition of the fibrotic process included anti-oxidant, anti-apoptosis, and metabolic disturbance such as decreasing lipid oxidation, regulation of TCA cycle, carbohydrate, and amino acid metabolisms in DEN-induced liver tissues. CONCLUSIONS Integrated NMR analysis of serum and urine samples, together with traditional clinical biochemical assays provided a holistic method for elucidating mechanisms of potential anti-fibrotic agent, RPS.
Collapse
Affiliation(s)
- Shuli Man
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China; Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Wei Fan
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China; Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Wenyuan Gao
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China; Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Yuanyuan Li
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China; Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yan Wang
- Key Laboratory of Industrial Microbiology, Ministry of Education, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China; Tianjin Key Laboratory of Industry Microbiology, College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Zhen Liu
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Hongfa Li
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
128
|
Jetten M, Kleinjans J, Claessen S, Chesné C, van Delft J. Baseline and genotoxic compound induced gene expression profiles in HepG2 and HepaRG compared to primary human hepatocytes. Toxicol In Vitro 2013; 27:2031-40. [DOI: 10.1016/j.tiv.2013.07.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 07/12/2013] [Accepted: 07/22/2013] [Indexed: 12/31/2022]
|
129
|
Tian JS, Shi BY, Xiang H, Gao S, Qin XM, Du GH. 1H-NMR-based metabonomic studies on the anti-depressant effect of genipin in the chronic unpredictable mild stress rat model. PLoS One 2013; 8:e75721. [PMID: 24058700 PMCID: PMC3776757 DOI: 10.1371/journal.pone.0075721] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 08/16/2013] [Indexed: 11/23/2022] Open
Abstract
The purpose of this work was to investigate the anti-depressant effect of genipin and its mechanisms using (1)H-NMR spectroscopy and multivariate data analysis on a chronic unpredictable mild stress (CUMS) rat model. Rat serum and urine were analyzed by nuclear magnetic resonance (NMR)-based metabonomics after oral administration of either genipin or saline for 2 weeks. Significant differences in the metabolic profile of the CUMS-treated group and the control group were observed, which were consistent with the results of behavioral tests. Metabolic effects of CUMS included decreases in serum trimetlylamine oxide (TMAO) and β-hydroxybutyric acid (β-HB), and increases in lipid, lactate, alanine and N-acetyl-glycoproteins. In urine, decreases in creatinine and betaine were observed, while citrate, trimethylamine (TMA) and dimethylamine were increased. These changes suggest that depression may be associated with gut microbes, energy metabolism and glycometabolism. Genipin showed the best anti-depressive effects at a dose of 100 mg/kg in rats. These results indicate that metabonomic approaches could be powerful tools for the investigation of the biochemical changes in pathological conditions or drug treatment.
Collapse
Affiliation(s)
- Jun-Sheng Tian
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan, P. R. China
| | - Bi-Yun Shi
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan, P. R. China
| | - Huan Xiang
- Physical Education Departments of Shanxi University, Taiyuan, P. R. China
| | - Shan Gao
- Research Center of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, P. R. China
| | - Xue-Mei Qin
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan, P. R. China
| | - Guan-Hua Du
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, Taiyuan, P. R. China
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P. R. China
| |
Collapse
|
130
|
Ye Y, Zhang L, Yang R, Luo Q, Chen H, Yan X, Tang H. Metabolic phenotypes associated with high-temperature tolerance of Porphyra haitanensis strains. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:8356-8363. [PMID: 23898950 DOI: 10.1021/jf402749a] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Colored mutants of Porphyra haitanensis have superior production and quality characteristics, with two mutants, Shengfu 1 (SF-1) and Shengfu 2 (SF-2), having good high-temperature tolerances. To understand the molecular aspects of high-temperature tolerance, this study comprehensively investigated the metabolic differences between the high-temperature tolerant strains and wild type. Nuclear magnetic resonance (NMR) methods identified 35 algal metabolites, including sugars, amino acids, carboxylic acids, aldehydes, amines, and nucleotides. The results indicated that the high-temperature tolerant strains had significantly different metabolic phenotypes from the wild type. The high-temperature tolerant mutants had significantly higher levels in a set of osmolytes consisting of betaine, taurine, laminitol, and isofloridoside than the wild type, indicating the particular importance of efficient osmoregulation for high-temperature resistance. These findings provided essential metabolic information about high-temperature adaptation for P. haitanensis and demonstrated NMR-based metabolomics as a useful tool for understanding the metabolic features related to resistance to stressors.
Collapse
Affiliation(s)
- Yangfang Ye
- CAS Key Laboratory of Magnetic Resonance in Biological Systems, Centre for Biospectroscopy and Metabonomics, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences , Wuhan 430071, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
131
|
Mohd Redzwan S, Rosita J, Mohd Sokhini AM, Nurul 'Aqilah AR, Wang JS, Kang MS, Zuraini A. Detection of serum AFB1-lysine adduct in Malaysia and its association with liver and kidney functions. Int J Hyg Environ Health 2013; 217:443-51. [PMID: 24095591 DOI: 10.1016/j.ijheh.2013.08.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 08/24/2013] [Accepted: 08/25/2013] [Indexed: 12/20/2022]
Abstract
Aflatoxin is ubiquitously found in many foodstuffs and produced by Aspergillus species of fungi. Of many aflatoxin metabolites, AFB1 is classified by the International Agency for Research on Cancer (IARC) as group one carcinogen and linked to the development of hepatocellular carcinoma (HCC). The study on molecular biomarker of aflatoxin provides a better assessment on the extent of human exposure to aflatoxin. In Malaysia, the occurrences of aflatoxin-contaminated foods have been documented, but there is a lack of data on human exposure to aflatoxin. Hence, this study investigated the occurrence of AFB1-lysine adduct in serum samples and its association with liver and kidney functions. 5ml fasting blood samples were collected from seventy-one subjects (n=71) for the measurement of AFB1-lysine adduct, albumin, total bilirubin, AST (aspartate aminotransferase), ALT (alanine transaminase), ALP (alkaline phosphatase), GGT (gamma-glutamyl transpeptidase), creatinine and BUN (blood urea nitrogen). The AFB1-lysine adduct was detected in all serum samples (100% detection rate) with a mean of 6.85±3.20pg/mg albumin (range: 1.13-18.85pg/mg albumin). Male subjects (mean: 8.03±3.41pg/mg albumin) had significantly higher adduct levels than female subjects (mean: 5.64±2.46pg/mg albumin) (p<0.01). It was noteworthy that subjects with adduct levels greater than average (>6.85pg/mg albumin) had significantly elevated level of total bilirubin (p<0.01), GGT (p<0.05) and creatinine (p<0.01). Nevertheless, only the level of total bilirubin, (r=0.347, p-value=0.003) and creatinine (r=0.318, p-value=0.007) showed significant and positive correlation with the level of AFB1-lysine adduct. This study provides a valuable insight on human exposure to aflatoxin in Malaysia. Given that aflatoxin can pose serious problem to the health, intervention strategies should be implemented to limit/reduce human exposure to aflatoxin. Besides, a study with a big sample size should be warranted in order to assess aflatoxin exposure in the general population of Malaysia.
Collapse
Affiliation(s)
- S Mohd Redzwan
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Jamaluddin Rosita
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - A M Mohd Sokhini
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - A R Nurul 'Aqilah
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Jia-Sheng Wang
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens 30602, GA, USA
| | - Min-Su Kang
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens 30602, GA, USA
| | - Ahmad Zuraini
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
132
|
An Y, Xu W, Li H, Lei H, Zhang L, Hao F, Duan Y, Yan X, Zhao Y, Wu J, Wang Y, Tang H. High-fat diet induces dynamic metabolic alterations in multiple biological matrices of rats. J Proteome Res 2013; 12:3755-68. [PMID: 23746045 DOI: 10.1021/pr400398b] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Obesity is a condition resulting from the interactions of individual biology and environmental factors causing multiple complications. To understand the system's metabolic changes associated with the obesity development and progression, we systematically analyzed the dynamic metabonomic changes induced by a high-fat diet (HFD) in multiple biological matrices of rats using NMR and GC-FID/MS techniques. Clinical chemistry and histopathological data were obtained as complementary information. We found that HFD intakes caused systematic metabolic changes in blood plasma, liver, and urine samples involving multiple metabolic pathways including glycolysis, TCA cycle, and gut microbiota functions together with the metabolisms of fatty acids, amino acids, choline, B-vitamins, purines, and pyrimidines. The HFD-induced metabolic variations were detectable in rat urine a week after HFD intake and showed clear dependence on the intake duration. B-vitamins and gut microbiota played important roles in the obesity development and progression together with changes in TCA cycle intermediates (citrate, α-ketoglutarate, succinate, and fumarate). 83-day HFD intakes caused significant metabolic alterations in rat liver highlighted with the enhancements in lipogenesis, lipid accumulation and lipid oxidation, suppression of glycolysis, up-regulation of gluconeogenesis and glycogenesis together with altered metabolisms of choline, amino acids and nucleotides. HFD intakes reduced the PUFA-to-MUFA ratio in both plasma and liver, indicating the HFD-induced oxidative stress. These findings provided essential biochemistry information about the dynamic metabolic responses to the development and progression of HFD-induced obesity. This study also demonstrated the combined metabonomic analysis of multiple biological matrices as a powerful approach for understanding the molecular basis of pathogenesis and disease progression.
Collapse
Affiliation(s)
- Yanpeng An
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Zhang L, Wang L, Hu Y, Liu Z, Tian Y, Wu X, Zhao Y, Tang H, Chen C, Wang Y. Selective metabolic effects of gold nanorods on normal and cancer cells and their application in anticancer drug screening. Biomaterials 2013; 34:7117-26. [PMID: 23787109 DOI: 10.1016/j.biomaterials.2013.05.043] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 05/22/2013] [Indexed: 01/16/2023]
Abstract
Cetyltrimethylammonim bromide coated gold nanorods (Au NRs) has a potential to become anti-cancer nano-drugs. Previously, the comparative responses of human alveolar adenocarcinoma epithelial cells (A549) and normal bronchial epithelial cells (16HBE) exposed to Au NRs have been characterized. It has been shown that Au NRs are translocated from the lysosome to the mitochondria in A549 cells but not in normal 16HBE cell lines. However, the molecular information during this cellular translocation remains largely undetermined. Here, we have used a metabonomic technique to comparatively analyze the time-dependent metabolic changes in Au NRs-induced A549 and 16HBE. We found that Au NRs exposure caused a disruption in the intracellular environment of both A549 and 16HBE cells, which metabolically manifested in the reduction of lactate levels in both cell lines. In addition, Au NRs induced oxidative stress in both cells lines. However, the 16HBE cells are more able to offset the oxidative stress than the A549 cells; this is because de novo GSH synthesis is triggered in Au NRs treated 16HBE cells but not in A549 cells, and the conversion of GSH to GSSG is more profound in 16HBE cells compared to A549 cells. The severe oxidative stress induces damage to mitochondria in A549 cells, leading to cell death, which is evident in the marked reduction in the levels of nucleosides and nucleotides. Furthermore, significantly elevated levels of amino acids are likely due to stress hormones being produced in Au NRs treated cells. These findings provide comprehensive molecular information on the distinctive intracellular localization, cellular uptake and translocation of Au NRs in normal and tumor cells, highlighting the value of metabonomics in assessing biological effects of nano-drugs.
Collapse
Affiliation(s)
- Limin Zhang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences (CAS), Wuhan 430071, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
134
|
A review of the mechanism of injury and treatment approaches for illness resulting from exposure to water-damaged buildings, mold, and mycotoxins. ScientificWorldJournal 2013; 2013:767482. [PMID: 23710148 PMCID: PMC3654247 DOI: 10.1155/2013/767482] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 02/10/2013] [Indexed: 12/21/2022] Open
Abstract
Physicians are increasingly being asked to diagnose and treat people made ill by exposure to water-damaged environments, mold, and mycotoxins. In addition to avoidance of further exposure to these environments and to items contaminated by these environments, a number of approaches have been used to help persons affected by exposure to restore their health. Illness results from a combination of factors present in water-damaged indoor environments including, mold spores and hyphal fragments, mycotoxins, bacteria, bacterial endotoxins, and cell wall components as well as other factors. Mechanisms of illness include inflammation, oxidative stress, toxicity, infection, allergy, and irritant effects of exposure. This paper reviews the scientific literature as it relates to commonly used treatments such as glutathione, antioxidants, antifungals, and sequestering agents such as Cholestyramine, charcoal, clay and chlorella, antioxidants, probiotics, and induced sweating.
Collapse
|
135
|
Zhang F, Wang D, Li X, Li Z, Chao J, Qin X. Metabolomic study of the fever model induced by baker's yeast and the antipyretic effects of aspirin in rats using nuclear magnetic resonance and gas chromatography-mass spectrometry. J Pharm Biomed Anal 2013; 81-82:168-77. [PMID: 23670098 DOI: 10.1016/j.jpba.2013.04.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 04/01/2013] [Accepted: 04/06/2013] [Indexed: 11/28/2022]
Abstract
A metabolomic investigation of baker's yeast-induced fever in rats was carried out. Plasma derived from Sprague-Dawley rats treated by subcutaneous administration of 20% (w/v) baker's yeast was analyzed using gas chromatography-mass spectrometry (GC-MS) and nuclear magnetic resonance (NMR). Statistical data analysis using t-test and orthogonal partial least-squares discriminant analysis revealed many significant changes in the metabolic data in the plasma of the fever group. Clear separation was achieved between the fever and control groups. Seventeen marked metabolites were found in the fever group. The metabolites, which include amino acids, carbohydrate, organic acids, and fatty acids, mostly contributed to the discrimination of plasma samples from the control and fever groups. These results suggested that fever may involve in the perturbation of amino acid metabolism coupled with energy metabolism, lipid metabolism, and glycometabolism. After determining the antipyretic effects of aspirin on the fever group, four metabolites in the fever rat plasma were found to be signally regulated and recognized as potential biomarkers, including 3-hydroxybutyric acid, gamma-aminobutyric acid, glucose, and linoleic acid. The metabolic relationships that possibly exist between these potential biomarkers were speculated, and the mechanism of baker's yeast-induced fever was illustrated based on the metabolic relationships. This study found that metabolomic approaches such as GC-MS and NMR could be used as potential powerful tools to investigate the biochemical changes and mechanisms in certain pathological states at the metabolism level.
Collapse
Affiliation(s)
- Fusheng Zhang
- Modern Research Center for Traditional Chinese Medicine of Shanxi University, No. 92, Wucheng Road, Taiyuan 030006, Shanxi, PR China
| | | | | | | | | | | |
Collapse
|
136
|
Lu X, Hu B, Shao L, Tian Y, Jin T, Jin Y, Ji S, Fan X. Integrated analysis of transcriptomics and metabonomics profiles in aflatoxin B1-induced hepatotoxicity in rat. Food Chem Toxicol 2013; 55:444-55. [PMID: 23385219 DOI: 10.1016/j.fct.2013.01.020] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 01/10/2013] [Accepted: 01/15/2013] [Indexed: 10/27/2022]
Abstract
The aim of this work was to identify mechanisms and potential biomarkers for predicting the development and progression of aflatoxin B1 (AFB1)-induced acute hepatotoxicity. In this study, microarray analysis and metabolites profiles were used to identify shifts in gene expression and metabolite levels associated with the affected physiological processes of rats treated with AFB1. Histopathological examinations and serum biochemical analysis were simultaneously performed; the results indicated that hepatotoxicity occurred in higher dosage groups. However, gene expression analysis and metabolite profiles are more sensitive than general toxicity studies for detecting AFB1-induced acute hepatotoxicity as the patterns of low-dose AFB1-treated rats in these two technique platforms were more similar to the rats in higher dosage groups than to the control rats. Integrated analysis of the results from general toxicity studies, transcriptomics and metabonomics profiles suggested that p53 signaling pathway induced by oxidative damage was the crucial step in AFB1-induced acute hepatotoxicity, whereas gluconeogenesis and lipid metabolism disorder were found to be the major metabolic effects after acute AFB1 exposure. The genes and metabolites significantly affected in common in rat liver or serum of three doses AFB1 treatments served as potential biomarkers for detecting AFB1-induced acute hepatotoxicity.
Collapse
Affiliation(s)
- Xiaoyan Lu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | | | | | | | | | | | | | | |
Collapse
|
137
|
Zhang X, Shen J, Cao B, Xu L, Zhao T, Liu X, Zhang H. Metabolomic investigation of Arthus reaction in a rat model using proton nuclear magnetic resonance (1H NMR) spectroscopy and rapid resolution liquid chromatography (RRLC). MOLECULAR BIOSYSTEMS 2013; 9:1423-35. [DOI: 10.1039/c3mb25412g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
138
|
Shi X, Xiao C, Wang Y, Tang H. Gallic Acid Intake Induces Alterations to Systems Metabolism in Rats. J Proteome Res 2012; 12:991-1006. [DOI: 10.1021/pr301041k] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Xiaohuo Shi
- Key Laboratory
of Magnetic Resonance
in Biological Systems, State Key Laboratory of Magnetic Resonance
and Atomic and Molecular Physics, Centre for Biospectroscpoy and Metabonomics,
Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic
of China
| | - Chaoni Xiao
- College of Life Sciences, Northwest University, Xi’an 710069, People's
Republic of China
| | - Yulan Wang
- Key Laboratory
of Magnetic Resonance
in Biological Systems, State Key Laboratory of Magnetic Resonance
and Atomic and Molecular Physics, Centre for Biospectroscpoy and Metabonomics,
Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
| | - Huiru Tang
- Key Laboratory
of Magnetic Resonance
in Biological Systems, State Key Laboratory of Magnetic Resonance
and Atomic and Molecular Physics, Centre for Biospectroscpoy and Metabonomics,
Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
| |
Collapse
|
139
|
Huang C, Lei H, Zhao X, Tang H, Wang Y. Metabolic influence of acute cyadox exposure on Kunming mice. J Proteome Res 2012; 12:537-45. [PMID: 23234330 DOI: 10.1021/pr301033a] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Cyadox is an antibiotic drug and has the potential to be used as a feedstuff additive in promoting the growth of animals. However, the toxicity of cyadox should be fully assessed before application, and this has prompted the current investigation on the metabolic responses of mice to cyadox exposure, using a metabonomic technique. Three groups of Kunming mice were respectively given a single dose of cyadox at three different concentrations (100, 650, and 4000 mg/kg body weight) via gavage. We present here the metabolic alterations of urine, plasma, liver, and renal medulla extracts induced by cyadox exposure. The metabolic alterations induced by cyadox exposure are dose-dependent, and metabolic recovery is achieved only for low and moderate levels of cyadox exposure during the experimental period. Cyadox exposure resulted in a disturbance of gut microbiota, which is manifested in depleted levels of urinary hippurate, trimethylamine-N-oxide (TMAO), dimethylamine (DMA), and trimethylamine (TMA). In addition, mice exposed to cyadox at high levels caused accumulations of amino acids and depletions of nucleotides in the liver. Furthermore, marked elevations of nucleotides and a range of organic osmolytes, such as myo-inositol, choline, and glycerophosphocholine (GPC), and decreased levels of amino acids are observed in the renal medulla of cyadox-exposed mice. These results suggest that cyadox exposure causes inhibition of amino acid metabolism in the liver and disturbance of gut microbiota community, influencing osmolytic homeostasis and nucleic acids synthesis in both the liver and the kidney. Our work provides a comprehensive view of the toxicological effects of cyadox, which is important in animal and human food safety.
Collapse
Affiliation(s)
- Chongyang Huang
- Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
| | | | | | | | | |
Collapse
|
140
|
Dong F, Wang B, Zhang L, Tang H, Li J, Wang Y. Metabolic response to Klebsiella pneumoniae infection in an experimental rat model. PLoS One 2012; 7:e51060. [PMID: 23226457 PMCID: PMC3511377 DOI: 10.1371/journal.pone.0051060] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 10/29/2012] [Indexed: 01/04/2023] Open
Abstract
Bacteremia, the presence of viable bacteria in the blood stream, is often associated with several clinical conditions. Bacteremia can lead to multiple organ failure if managed incorrectly, which makes providing suitable nutritional support vital for reducing bacteremia-associated mortality. In order to provide such information, we investigated the metabolic consequences of a Klebsiella pneumoniae (K. pneumoniae) infection in vivo by employing a combination of (1)H nuclear magnetic resonance spectroscopy and multivariate data analysis. K. pneumoniae was intravenously infused in rats; urine and plasma samples were collected at different time intervals. We found that K. pneumoniae-induced bacteremia stimulated glycolysis and the tricarboxylic acid cycle and also promoted oxidation of fatty acids and creatine phosphate to facilitate the energy-demanding host response. In addition, K. pneumoniae bacteremia also induced anti-endotoxin, anti-inflammatory and anti-oxidization responses in the host. Furthermore, bacteremia could cause a disturbance in the gut microbiotal functions as suggested by alterations in a range of amines and bacteria-host co-metabolites. Our results suggest that supplementation with glucose and a high-fat and choline-rich diet could ameliorate the burdens associated with bacteremia. Our research provides underlying pathological processes of bacteremia and a better understanding of the clinical and biochemical manifestations of bacteremia.
Collapse
Affiliation(s)
- Fangcong Dong
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, P. R. China
- Graduate School of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Bin Wang
- Research Institute of General Surgery, Jinling Hospital, Nanjing, Jiangsu, People’s Republic of China
| | - Lulu Zhang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, P. R. China
- Graduate School of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Huiru Tang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, P. R. China
| | - Jieshou Li
- Research Institute of General Surgery, Jinling Hospital, Nanjing, Jiangsu, People’s Republic of China
| | - Yulan Wang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, P. R. China
| |
Collapse
|
141
|
Zhao XJ, Hao F, Huang C, Rantalainen M, Lei H, Tang H, Wang Y. Systems responses of rats to mequindox revealed by metabolic and transcriptomic profiling. J Proteome Res 2012; 11:4712-21. [PMID: 22845897 DOI: 10.1021/pr300533a] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Mequindox is used as an antibiotic drug in livestock; however, its toxicity remains largely unclear. Previously, we investigated metabolic responses of mice to mequindox exposure. In order to evaluate dependences of animal species in response to mequindox insult, we present the metabolic consequences of mequindox exposure in a rat model, by employing the combination of metabonomics and transcriptomics. Metabolic profiling of urine revealed that metabolic recovery is achieved for rats exposed to a low or moderate dose of mequindox, whereas high levels of mequindox exposure trigger liver dysfunction, causing no such recovery. We found that mequindox exposure causes suppression of the tricarboxylic acid cycle and stimulation of glycolysis, which is in contrast to a mouse model previously investigated. In addition, mequindox dosage induces promotion of β-oxidation of fatty acids, which was confirmed by elevated expressions of acox1, hsd17b2, and cpt1a in liver. Furthermore, altered levels of N-methylnicotinate, 1-methylnicotinamide, and glutathione disulfide highlighted the promotion of vitamin B3 antioxidative cycle in rats exposed to mequindox. Moreover, mequindox exposure altered levels of gut microbiotal related co-metabolites, suggesting a perturbation of the gut microflora of the host. Our work provides a comprehensive view of the toxicological effects of mequindox, which is important in the usage of mequindox in animal and human food safety.
Collapse
Affiliation(s)
- Xiu-Ju Zhao
- Wuhan Center of Magnetic Resonance, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences , Wuhan 430071, P. R. China
| | | | | | | | | | | | | |
Collapse
|
142
|
Li J, Huang C, Zheng D, Wang Y, Yuan Z. CcpA-Mediated Enhancement of Sugar and Amino Acid Metabolism in Lysinibacillus sphaericus by NMR-Based Metabolomics. J Proteome Res 2012; 11:4654-61. [DOI: 10.1021/pr300469v] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jing Li
- Center for Applied and Environmental
Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, People’s Republic
of China
- Graduate School of the Chinese Academy of Sciences, Beijing 100039,
People’s Republic of China
| | - Chongyang Huang
- Wuhan Center of
Magnetic Resonance,
State Key Laboratory of Magnetic Resonance and Atomic and Molecular
Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, People’s
Republic of China
- Graduate School of the Chinese Academy of Sciences, Beijing 100039,
People’s Republic of China
| | - Dasheng Zheng
- Center for Applied and Environmental
Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, People’s Republic
of China
| | - Yulan Wang
- Wuhan Center of
Magnetic Resonance,
State Key Laboratory of Magnetic Resonance and Atomic and Molecular
Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, People’s
Republic of China
| | - Zhiming Yuan
- Center for Applied and Environmental
Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, People’s Republic
of China
| |
Collapse
|
143
|
Jiang L, Huang J, Wang Y, Tang H. Eliminating the dication-induced intersample chemical-shift variations for NMR-based biofluid metabonomic analysis. Analyst 2012; 137:4209-19. [PMID: 22858594 DOI: 10.1039/c2an35392j] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
NMR-based urinary metabonomic analysis is an essential aspect of systems biology for understanding mammalian physiology and pathophysiology though intersample chemical-shift variations can cause serious problems. Here, we report two optimized and validated methods to eliminate such variations resulting from intersample differences in pH and dication concentration. We found that the Ca(2+) concentration was 7.41 ± 3.48, 1.03 ± 0.34 and 0.87 ± 0.52 mM whereas the Mg(2+) concentration was 3.02 ± 1.41, 2.65 ± 1.20 and 0.80 ± 0.59 mM in rat, mouse and human urine samples, respectively; urinary Ca-EDTA, Mg-EDTA and free EDTA had spin-lattice relaxation time values (600.13 MHz) of 0.38, 0.41 and 0.55 s, respectively. We also found that the combined treatments with potassium fluoride, phosphate buffer and a small amount of K(3)EDTA eliminated intersample chemical-shift variations for all metabolites. EDTA treatment followed with phosphate buffer also achieved similar results although resonances from EDTA and its complexes obscured some metabolite signals. We systematically optimized the amount of additives for rat, mouse and human urine samples taking into consideration the pH control, signal-to-noise ratio and intersample uniformity for metabolite chemical-shifts. Based on thorough validation, we established some optimized procedures for rat, mouse and human urine, respectively. By eliminating both pH and dication effects, these methods enable the reduction of intersample chemical-shift variations to 1.5 Hz for all metabolites. The methods will offer ensured data quality for high-throughput, especially robotic urinary metabonomics studies with no need for peak alignments or corrections.
Collapse
Affiliation(s)
- Limiao Jiang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Center for Biospectroscopy and Metabonomics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, PR China
| | | | | | | |
Collapse
|
144
|
Ye Y, Wang X, Zhang L, Lu Z, Yan X. Unraveling the concentration-dependent metabolic response of Pseudomonas sp. HF-1 to nicotine stress by ¹H NMR-based metabolomics. ECOTOXICOLOGY (LONDON, ENGLAND) 2012; 21:1314-1324. [PMID: 22437205 DOI: 10.1007/s10646-012-0885-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/07/2012] [Indexed: 05/31/2023]
Abstract
Nicotine can cause oxidative damage to organisms; however, some bacteria, for example Pseudomonas sp. HF-1, are resistant to such oxidative stress. In the present study, we analyzed the concentration-dependent metabolic response of Pseudomonas sp. HF-1 to nicotine stress using ¹H NMR spectroscopy coupled with multivariate data analysis. We found that the dominant metabolites in Pseudomonas sp. HF-1 were eight aliphatic organic acids, six amino acids, three sugars and 11 nucleotides. After 18 h of cultivation, 1 g/L nicotine caused significant elevation of sugar (glucose, trehalose and maltose), succinate and nucleic acid metabolites (cytidine, 5'-CMP, guanine 2',3'-cyclic phosphate and adenosine 2',3'-cyclic phosphate), but decrease of glutamate, putrescine, pyrimidine, 2-propanol, diethyl ether and acetamide levels. Similar metabolomic changes were induced by 2 g/L nicotine, except that no significant change in trehalose, 5'-UMP levels and diethyl ether were found. However, 3 g/L nicotine led to a significant elevation in the two sugars (trehalose and maltose) levels and decrease in the levels of glutamate, putrescine, pyrimidine and 2-propanol. Our findings indicated that nicotine resulted in the enhanced nucleotide biosynthesis, decreased glucose catabolism, elevated succinate accumulation, severe disturbance in osmoregulation and complex antioxidant strategy. And a further increase of nicotine level was a critical threshold value that triggered the change of metabolic flow in Pseudomonas sp. HF-1. These findings revealed the comprehensive insights into the metabolic response of nicotine-degrading bacteria to nicotine-induced oxidative toxicity.
Collapse
Affiliation(s)
- Yangfang Ye
- School of Marine Science, Ningbo University, 818 Fenghua Road, Ningbo 315211, China
| | | | | | | | | |
Collapse
|
145
|
Jiang L, Huang J, Wang Y, Tang H. Metabonomic Analysis Reveals the CCl4-Induced Systems Alterations for Multiple Rat Organs. J Proteome Res 2012; 11:3848-59. [DOI: 10.1021/pr3003529] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Limiao Jiang
- State Key Laboratory of Magnetic
Resonance and Atomic and Molecular Physics, Centre for Biospectroscopy
and Metabonomics, Wuhan Centre for Magnetic Resonance, Wuhan Institute
of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, P. R. China
- Graduate University of the Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jing Huang
- State Key Laboratory of Magnetic
Resonance and Atomic and Molecular Physics, Centre for Biospectroscopy
and Metabonomics, Wuhan Centre for Magnetic Resonance, Wuhan Institute
of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Yulan Wang
- State Key Laboratory of Magnetic
Resonance and Atomic and Molecular Physics, Centre for Biospectroscopy
and Metabonomics, Wuhan Centre for Magnetic Resonance, Wuhan Institute
of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Huiru Tang
- State Key Laboratory of Magnetic
Resonance and Atomic and Molecular Physics, Centre for Biospectroscopy
and Metabonomics, Wuhan Centre for Magnetic Resonance, Wuhan Institute
of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| |
Collapse
|
146
|
Ye Y, Zhang L, Hao F, Zhang J, Wang Y, Tang H. Global metabolomic responses of Escherichia coli to heat stress. J Proteome Res 2012; 11:2559-66. [PMID: 22369756 DOI: 10.1021/pr3000128] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Microbial metabolomic analysis is essential for understanding responses of microorganisms to heat stress. To understand the comprehensive metabolic responses of Escherichia coli to continuous heat stress, we characterized the metabolomic variations induced by heat stress using NMR spectroscopy in combination with multivariate data analysis. We detected 15 amino acids, 10 nucleotides, 9 aliphatic organic acids, 7 amines, glucose and its derivative glucosylglyceric acid, and methanol in the E. coli extracts. Glucosylglyceric acid was reported for the first time in E. coli. We found that heat stress was an important factor influencing the metabolic state and growth process, mainly via suppressing energy associated metabolism, reducing nucleotide biosynthesis, altering amino acid metabolism and promoting osmotic regulation. Moreover, metabolic perturbation was aggravated during heat stress. However, a sign of recovery to control levels was observed after the removal of heat stress. These findings enhanced our understanding of the metabolic responses of E. coli to heat stress and demonstrated the effectiveness of the NMR-based metabolomics approach to study such a complex system.
Collapse
Affiliation(s)
- Yangfang Ye
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Centre for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, PR China
| | | | | | | | | | | |
Collapse
|
147
|
Yang M, Wang S, Hao F, Li Y, Tang H, Shi X. NMR analysis of the rat neurochemical changes induced by middle cerebral artery occlusion. Talanta 2011; 88:136-44. [PMID: 22265479 DOI: 10.1016/j.talanta.2011.10.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 10/09/2011] [Accepted: 10/16/2011] [Indexed: 11/26/2022]
Abstract
Stroke is a leading cause of death and disability, affecting millions of people worldwide with almost 80% of them as ischemic stroke and understanding the multiple mechanisms underlying cerebral ischemia is essential for development of effective treatments. To understand metabolic changes induced by focal brain ischemia, we conducted a comparative analysis of metabolic composition of cerebral tissue from rats with sham-operation and middle cerebral artery occlusion (MCAO) using high-resolution nuclear magnetic resonance (NMR) spectroscopy. More than 40 metabolites were assigned including organic acids, amino acids, carbohydrates, choline, pyrimidine and purine metabolites. Our results showed that MCAO led to significant level decreases for glutamate, glutamine, aspartate, γ-aminobutyrate (GABA), taurine, malate, fumarate, acetate, phosphocreatine, and purine and pyrimidine metabolites such as inosine, hypoxanthine, xanthine, uracil and UDP/UTP, together with significant level increases for glucose in focal brain tissue extracts. This demonstrated that experimental ischemic stroke in rats caused extensive perturbation in tricarboxylic acid cycle, GABA shunt, and metabolisms of choline and nucleic acids. These findings provided essential information for our understandings of MCAO-caused biochemical alterations and demonstrated the metabolite composition analysis as a useful tool for understanding the neurochemistry of stroke.
Collapse
Affiliation(s)
- Mingxing Yang
- First Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| | | | | | | | | | | |
Collapse
|
148
|
Zhao XJ, Huang C, Lei H, Nie X, Tang H, Wang Y. Dynamic Metabolic Response of Mice to Acute Mequindox Exposure. J Proteome Res 2011; 10:5183-90. [DOI: 10.1021/pr2006457] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Xiu-Ju Zhao
- Wuhan Center of Magnetic Resonance, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
- Graduate School of the Chinese Academy of Sciences, Beijing 100049
| | - Chongyang Huang
- Wuhan Center of Magnetic Resonance, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
- Graduate School of the Chinese Academy of Sciences, Beijing 100049
| | - Hehua Lei
- Wuhan Center of Magnetic Resonance, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
| | - Xiu Nie
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
| | - Huiru Tang
- Wuhan Center of Magnetic Resonance, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
| | - Yulan Wang
- Wuhan Center of Magnetic Resonance, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, People's Republic of China
| |
Collapse
|