101
|
Kuchařová M, Hronek M, Rybáková K, Zadák Z, Štětina R, Josková V, Patková A. Comet assay and its use for evaluating oxidative DNA damage in some pathological states. Physiol Res 2019; 68:1-15. [DOI: 10.33549/physiolres.933901] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The comet assay, or single-cell gel electrophoresis (SCGE), is a sensitive, rapid, relatively simple and inexpensive method for detecting DNA strand breaks in individual cells. It is used in a broad variety of applications and as a tool to investigate DNA damage and repair. The sensitivity and specificity of the assay are greatly enhanced if the DNA incubated with an enzyme, whichrecognizes a specific kind of DNA damage. This damage induced by oxidative stress plays a pivotal role in many diseases and in aging. This article is a critical review of the possible application of the comet assay in some pathological states in clinical practice. Most of the studies relate to evaluating the response of an organism to chemotherapy or radiotherapy with statistically significant evidence of DNA damage in patients. Other useful applications have been demonstrated for patients with heart or neurodegenerative diseases. Only a few studies have been published on the use of this method in critically ill patients, although its use would be appropriate. There are also other scenarios where the comet assay could prove to be very useful in the future, such as in predicting the likelihood of certain pathological conditions.
Collapse
Affiliation(s)
- M. Kuchařová
- Department of Biophysics and Physical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Czech Republic
| | - M. Hronek
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Czech Republic
| | - K. Rybáková
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Czech Republic
| | - Z. Zadák
- Department of Research and Development, University Hospital Hradec Králové, Czech Republic
| | - R. Štětina
- Department of Research and Development, University Hospital Hradec Králové, Czech Republic
| | - V. Josková
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Czech Republic
| | - A. Patková
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Czech Republic
| |
Collapse
|
102
|
Rai P, Sobol RW. Mechanisms of MTH1 inhibition-induced DNA strand breaks: The slippery slope from the oxidized nucleotide pool to genotoxic damage. DNA Repair (Amst) 2019; 77:18-26. [PMID: 30852368 DOI: 10.1016/j.dnarep.2019.03.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 12/14/2022]
Abstract
Unlike normal tissues, tumor cells possess a propensity for genomic instability, resulting from elevated oxidant levels produced by oncogenic signaling and aberrant cellular metabolism. Thus, targeting mechanisms that protect cancer cells from the tumor-inhibitory consequences of their redox imbalance and spontaneous DNA-damaging events is expected to have broad-spectrum efficacy and a high therapeutic index. One critical mechanism for tumor cell protection from oxidant stress is the hydrolysis of oxidized nucleotides. Human MutT homolog 1 (MTH1), the mammalian nudix (nucleoside diphosphate X) pyrophosphatase (NUDT1), protects tumor cells from oxidative stress-induced genomic DNA damage by cleansing the nucleotide pool of oxidized purine nucleotides. Depletion or pharmacologic inhibition of MTH1 results in genomic DNA strand breaks in many cancer cells. However, the mechanisms underlying how oxidized nucleotides, thought mainly to be mutagenic rather than genotoxic, induce DNA strand breaks are largely unknown. Given the recent therapeutic interest in targeting MTH1, a better understanding of such mechanisms is crucial to its successful translation into the clinic and in identifying the molecular contexts under which its inhibition is likely to be beneficial. Here we provide a comprehensive perspective on MTH1 function and its importance in protecting genome integrity, in the context of tumor-associated oxidative stress and the mechanisms that likely lead to irreparable DNA strand breaks as a result of MTH1 inhibition.
Collapse
Affiliation(s)
- Priyamvada Rai
- Department of Medicine/Division of Medical Oncology, University of Miami Miller School of Medicine, Miami, FL, 33136, United States; Sylvester Comprehensive Cancer Center, Miami, FL, 33136, United States.
| | - Robert W Sobol
- Mitchell Cancer Institute, University of South Alabama, 1660 Springhill Avenue, Mobile, AL, 36604, United States.
| |
Collapse
|
103
|
Structural characterization of corn silk polysaccharides and its effect in H2O2 induced oxidative damage in L6 skeletal muscle cells. Carbohydr Polym 2019; 208:161-167. [DOI: 10.1016/j.carbpol.2018.12.049] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/12/2018] [Accepted: 12/17/2018] [Indexed: 11/21/2022]
|
104
|
Bielskutė S, Plavec J, Podbevšek P. Impact of Oxidative Lesions on the Human Telomeric G-Quadruplex. J Am Chem Soc 2019; 141:2594-2603. [PMID: 30657306 PMCID: PMC6727377 DOI: 10.1021/jacs.8b12748] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
![]()
Telomere
attrition is closely associated with cell aging and exposure
to reactive oxygen species (ROS). While oxidation products of nucleotides
have been studied extensively in the past, the underlying secondary/tertiary
structural changes in DNA remain poorly understood. In this work,
we systematically probed guanine positions in the human telomeric
oligonucleotide sequence (hTel) by substitutions with the major product
of ROS, 8-oxo-7,8-dihydroguanine (oxoG), and evaluated
the G-quadruplex forming ability of such oligonucleotides. Due to
reduced hydrogen-bonding capability caused by oxoG, a loss
of G-quadruplex structure was observed for most oligonucleotides containing
oxidative lesions. However, some positions in the hTel sequence were
found to tolerate substitutions with oxoG. Due to oxoG’s preference for the syn conformation, distinct responses were observed when replacing guanines
with different glycosidic conformations. Accommodation of oxoG at sites originally in syn or anti in nonsubstituted hTel G-quadruplex requires a minor structural
rearrangement or a major conformational shift, respectively. The system
responds by retaining or switching to a fold where oxoG
is in syn conformation. Most importantly, these G-quadruplex
structures are still stable at physiological temperatures and should
be considered detrimental in higher-order telomere structures.
Collapse
Affiliation(s)
- Stasė Bielskutė
- Slovenian NMR Center , National Institute of Chemistry , Hajdrihova 19 , SI-1000 Ljubljana , Slovenia
| | - Janez Plavec
- Slovenian NMR Center , National Institute of Chemistry , Hajdrihova 19 , SI-1000 Ljubljana , Slovenia.,EN-FIST Center of Excellence , Trg OF 13 , SI-1000 Ljubljana , Slovenia.,Faculty of Chemistry and Chemical Technology , University of Ljubljana , Večna pot 113 , SI-1000 Ljubljana , Slovenia
| | - Peter Podbevšek
- Slovenian NMR Center , National Institute of Chemistry , Hajdrihova 19 , SI-1000 Ljubljana , Slovenia.,EN-FIST Center of Excellence , Trg OF 13 , SI-1000 Ljubljana , Slovenia
| |
Collapse
|
105
|
Moreno NC, Garcia CCM, Munford V, Rocha CRR, Pelegrini AL, Corradi C, Sarasin A, Menck CFM. The key role of UVA-light induced oxidative stress in human Xeroderma Pigmentosum Variant cells. Free Radic Biol Med 2019; 131:432-442. [PMID: 30553972 DOI: 10.1016/j.freeradbiomed.2018.12.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 12/08/2018] [Accepted: 12/12/2018] [Indexed: 01/11/2023]
Abstract
The UVA component of sunlight induces DNA damage, which are basically responsible for skin cancer formation. Xeroderma Pigmentosum Variant (XP-V) patients are defective in the DNA polymerase pol eta that promotes translesion synthesis after sunlight-induced DNA damage, implying in a clinical phenotype of increased frequency of skin cancer. However, the role of UVA-light in the carcinogenesis of these patients is not completely understood. The goal of this work was to characterize UVA-induced DNA damage and the consequences to XP-V cells, compared to complemented cells. DNA damage were induced in both cells by UVA, but lesion removal was particularly affected in XP-V cells, possibly due to the oxidation of DNA repair proteins, as indicated by the increase of carbonylated proteins. Moreover, UVA irradiation promoted replication fork stalling and cell cycle arrest in the S-phase for XP-V cells. Interestingly, when cells were treated with the antioxidant N-acetylcysteine, all these deleterious effects were consistently reverted, revealing the role of oxidative stress in these processes. Together, these results strongly indicate the crucial role of oxidative stress in UVA-induced cytotoxicity and are of interest for the protection of XP-V patients.
Collapse
Affiliation(s)
- Natália Cestari Moreno
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | | | - Veridiana Munford
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | | | - Alessandra Luiza Pelegrini
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Camila Corradi
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Alain Sarasin
- Laboratory of Genetic Instability and Oncogenesis, UMR8200 CNRS, University Paris-Sud, Institut Gustave Roussy, Villejuif, France
| | | |
Collapse
|
106
|
Hebert SP, Schlegel HB. Computational Study of the pH-Dependent Competition between Carbonate and Thymine Addition to the Guanine Radical. Chem Res Toxicol 2019; 32:195-210. [PMID: 30592213 DOI: 10.1021/acs.chemrestox.8b00302] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
When oligonucleotides are oxidized by carbonate radical, thymine and carbonate can add to guanine radical, yielding either a guanine-thymine cross-link product (G∧T) or 8-oxo-7,8-dehydroguanine (8oxoG) and its further oxidation products such as spiroiminodihydantoin (Sp) and guanidinohydantoin (Gh). The ratio of thymine addition to carbonate addition depends strongly on the pH. Details of the mechanism have been explored by density functional calculations using the ωB97XD/6-31+G(d,p) level of theory with the SMD implicit solvation method, augmented with a few explicit waters. Free energies of intermediates and transition states in aqueous solution have been calculated along the pathways for addition of thymine, CO32-/HCO3- and carbonate radical to guanine radical. The pH dependence was examined by using appropriate explicit proton donors/acceptors as computational models for buffers at pH 2.5, 7, and 10. Deprotonation of thymine is required for nucleophilic addition at C8 of guanine radical, and thus is favored at higher pH. The barrier for carbonate radical addition is lower than for bicarbonate or carbonate dianion addition; however, for low concentrations of carbonate radical, the reaction may proceed by addition of bicarbonate/carbonate dianion to guanine radical. Thymine and bicarbonate/carbonate dianion addition are followed by oxidation by O2, loss of a proton from C8 and decarboxylation of the carbonate adduct. At pH 2.5, guanine radical cation can be formed by oxidization with sulfate radical. Water addition to guanine radical cation is the preferred path for forming 8oxoG at pH 2.5.
Collapse
Affiliation(s)
- Sebastien P Hebert
- Department of Chemistry , Wayne State University , Detroit , Michigan 48202 , United States
| | - H Bernhard Schlegel
- Department of Chemistry , Wayne State University , Detroit , Michigan 48202 , United States
| |
Collapse
|
107
|
Blumhardt P, Stein J, Mücksch J, Stehr F, Bauer J, Jungmann R, Schwille P. Photo-Induced Depletion of Binding Sites in DNA-PAINT Microscopy. Molecules 2018; 23:molecules23123165. [PMID: 30513691 PMCID: PMC6321339 DOI: 10.3390/molecules23123165] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/26/2018] [Accepted: 11/29/2018] [Indexed: 11/25/2022] Open
Abstract
The limited photon budget of fluorescent dyes is the main limitation for localization precision in localization-based super-resolution microscopy. Points accumulation for imaging in nanoscale topography (PAINT)-based techniques use the reversible binding of fluorophores and can sample a single binding site multiple times, thus elegantly circumventing the photon budget limitation. With DNA-based PAINT (DNA-PAINT), resolutions down to a few nanometers have been reached on DNA-origami nanostructures. However, for long acquisition times, we find a photo-induced depletion of binding sites in DNA-PAINT microscopy that ultimately limits the quality of the rendered images. Here we systematically investigate the loss of binding sites in DNA-PAINT imaging and support the observations with measurements of DNA hybridization kinetics via surface-integrated fluorescence correlation spectroscopy (SI-FCS). We do not only show that the depletion of binding sites is clearly photo-induced, but also provide evidence that it is mainly caused by dye-induced generation of reactive oxygen species (ROS). We evaluate two possible strategies to reduce the depletion of binding sites: By addition of oxygen scavenging reagents, and by the positioning of the fluorescent dye at a larger distance from the binding site.
Collapse
Affiliation(s)
- Philipp Blumhardt
- Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| | - Johannes Stein
- Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| | - Jonas Mücksch
- Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| | - Florian Stehr
- Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| | - Julian Bauer
- Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| | - Ralf Jungmann
- Molecular Imaging and Bionanotechnology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
- Department of Physics and Center for Nanoscience, Ludwig Maximilian University, Geschwister-Scholl-Platz 1, 80539 Munich, Germany.
| | - Petra Schwille
- Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| |
Collapse
|
108
|
Shih YM, Cooke MS, Pan CH, Chao MR, Hu CW. Clinical relevance of guanine-derived urinary biomarkers of oxidative stress, determined by LC-MS/MS. Redox Biol 2018; 20:556-565. [PMID: 30508700 PMCID: PMC6279954 DOI: 10.1016/j.redox.2018.11.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/18/2018] [Accepted: 11/23/2018] [Indexed: 12/13/2022] Open
Abstract
A reliable and fast liquid chromatography-tandem mass spectrometry method has been developed for the simultaneous determination of three oxidized nucleic acid damage products in urine, 8-oxoguanine (8-oxoGua), 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) and 8-oxo-7,8-dihydroguanosine (8-oxoGuo). We applied this method to assess the effect of various urine workup procedures on the urinary concentrations of the oxidized nucleic acid products. Our results showed that frozen urine samples must be warmed (i.e., to 37 °C) to re-dissolve any precipitates prior to analysis. We showed that common workup procedures, such as thawing at room temperature or dilution with deionized water, are not capable of releasing fully the oxidized nucleic acid products from the precipitates, and result in significant underestimation (up to ~ 100% for 8-oxoGua, ~ 86% for both 8-oxodGuo and 8-oxoGuo). With this method, we further assessed and compared the ability of the three oxidized nucleic acid products, as well as malondialdehyde (MDA, a product of lipid peroxidation), to biomonitor oxidative stress in vivo. We measured a total of 315 urine samples from subjects with burdens of oxidative stress from low to high, including healthy subjects, patients with chronic obstructive pulmonary disease (COPD), and patients on mechanical ventilation (MV). The results showed that both the MV and COPD patients had significantly higher urinary levels of 8-oxoGua, 8-oxodGuo, and 8-oxoGuo (P < 0.001), but lower MDA levels, compared to healthy controls. Receiver operating characteristic curve analysis revealed that urinary 8-oxoGuo is the most sensitive biomarker for oxidative stress with area under the curve (AUC) of 0.91, followed by 8-oxodGuo (AUC: 0.80) and 8-oxoGua (AUC: 0.76). Interestingly, MDA with AUC of 0.34 failed to discriminate the patients from healthy controls. Emerging evidence suggests a potential clinical utility for the measurement of urinary 8-oxoGuo, and to a lesser extent 8-oxodGuo, which is strongly supported by our findings.
Collapse
Affiliation(s)
- Ying-Ming Shih
- Department of Public Health, Chung Shan Medical University, Taichung 402, Taiwan; Division of Chest Medicine, Department of Internal Medicine, Changhua Christian Hospital, Changhua 500, Taiwan
| | - Marcus S Cooke
- Oxidative Stress Group, Department of Environmental Health Sciences, and Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| | - Chih-Hong Pan
- Institute of Labor, Occupational Safety and Health, Ministry of Labor, New Taipei City 221, Taiwan
| | - Mu-Rong Chao
- Department of Occupational Safety and Health, Chung Shan Medical University, Taichung 402, Taiwan.
| | - Chiung-Wen Hu
- Department of Public Health, Chung Shan Medical University, Taichung 402, Taiwan; Department of Family and Community Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan.
| |
Collapse
|
109
|
Bai J, Zhang Y, Xi Z, Greenberg MM, Zhou C. Oxidation of 8-Oxo-7,8-dihydro-2'-deoxyguanosine Leads to Substantial DNA-Histone Cross-Links within Nucleosome Core Particles. Chem Res Toxicol 2018; 31:1364-1372. [PMID: 30412392 DOI: 10.1021/acs.chemrestox.8b00244] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
8-Oxo-7,8-dihydro-2'-deoxyguanosine(8-oxodGuo) is a common primary product of cellular oxidative DNA damage. 8-OxodGuo is more readily oxidized than 2'-deoxyguanosine (dG); a two-electron oxidation generates a highly reactive intermediate (OGox), which forms covalent adducts with nucleophiles, including OH-, free amines, and the side chains of amino acids such as lysine. We determined here that K3Fe(CN)6 oxidation of 8-oxodGuo in nucleosome core particles (NCPs) produces high yields, quantitative (i.e., 100%) in some cases, of DNA-protein cross-links (DPCs). The efficiency of DPC formation was closely related to 8-oxodGuo base pairing and location within the NCP and was only slightly decreased by adding the DNA-protective polyamine spermine to the system. Using NCPs that contained histone mutants, we determined that DPCs result predominantly from OGox trapping by the N-terminal histone amine. The DPCs were stable under physiological conditions and therefore could have important biological consequences. For instance, the essentially quantitative yield of DPCs at some positions within NCPs would reduce the yield of the mutagenic DNA lesions spiroiminodihydantoin and guanidinohydantoin produced from the common intermediate OGox, which in turn would affect mutation signatures of oxidative stress in a position-dependent manner. In summary, our findings indicate that site-specific incorporation of 8-oxodGuo into NCPs, followed by its oxidation, leads to DPCs with an efficiency depending on 8-oxodGuo location and orientation. Given that 8-oxodGuo formation is widespread in genomic DNA and that DPC formation is highly efficient, DPCs may occur in eukaryotic cells and may affect several important biological processes.
Collapse
Affiliation(s)
- Jing Bai
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry , Nankai University , Tianjin 300071 , China
| | - Yingqian Zhang
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry , Nankai University , Tianjin 300071 , China
| | - Zhen Xi
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry , Nankai University , Tianjin 300071 , China
| | - Marc M Greenberg
- Department of Chemistry , Johns Hopkins University , 3400 N. Charles Street , Baltimore , Maryland 21218 , United States
| | - Chuanzheng Zhou
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry , Nankai University , Tianjin 300071 , China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300071 , China
| |
Collapse
|
110
|
Lu W, Sun Y, Tsai M, Zhou W, Liu J. Singlet O 2 Oxidation of a Deprotonated Guanine-Cytosine Base Pair and Its Entangling with Intra-Base-Pair Proton Transfer. Chemphyschem 2018; 19:2645-2654. [PMID: 30047606 DOI: 10.1002/cphc.201800643] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Indexed: 12/24/2022]
Abstract
We report an experimental and computational study on the 1 O2 oxidation of gas-phase deprotonated guanine-cytosine base pair [G ⋅ C-H]- that is composed of 9HG ⋅ [C-H]- and 7HG ⋅ [C-H]- (pairing 9H- or 7H-guanine with N1-deprotonated cytosine), and 9HG ⋅ [C-H]- _PT and 7HG ⋅ [C-H]- _PT (formed by intra-base-pair proton transfer from the N1 of guanine to the N3 of [C-H]- ). The conformer-averaged reaction product ions and cross section were measured over a center-of-mass collision energy range from 0.1 to 0.5 eV using a guided-ion-beam tandem mass spectrometer. To explore conformation-specific reactivity, collision dynamics of 1 O2 with each of the four [G ⋅ C-H]- conformers was simulated at B3LYP/6-31G(d). Trajectories showed that the 1 O2 oxidation of the base pair entangles with intra-base-pair proton transfer, and prefers to occur in a collision when the base pair adopts a proton-transferred structure; trajectories also indicate that the 9HG-containing base pair favors stepwise formation of 4,8-endoperoxide of guanine, whereas the 7HG-containing base pair prefers concerted formation of guanine 5,8-endoperoxide. Using trajectory results as a guide, potential energy surfaces (PESs) along all possible reaction pathways were established using the approximately spin-projected ωB97XD/6-311++G(d,p)//B3LYP/6-311++G(d,p) method. PESs have not only rationalized trajectory findings but provided more accurate energetics and indicated that the proton-transferred base-pair conformers have lower activation barriers for oxidation than their non-proton-transferred counterparts.
Collapse
Affiliation(s)
- Wenchao Lu
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, NY, 11367, USA.,Ph.D. Program in Chemistry, the, Graduate Center of the City University of New York, 365 5th Ave., New York, NY, 10016, USA
| | - Yan Sun
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, NY, 11367, USA.,Ph.D. Program in Chemistry, the, Graduate Center of the City University of New York, 365 5th Ave., New York, NY, 10016, USA
| | - Midas Tsai
- Department of Natural Sciences, LaGuardia Community College, 31-10 Thomson Ave., Long Island City, NY, 11101, USA
| | - Wenjing Zhou
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, NY, 11367, USA
| | - Jianbo Liu
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, NY, 11367, USA.,Ph.D. Program in Chemistry, the, Graduate Center of the City University of New York, 365 5th Ave., New York, NY, 10016, USA
| |
Collapse
|
111
|
Singh A, Mohammad Arif S, Biak Sang P, Varshney U, Vijayan M. Structural insights into the specificity and catalytic mechanism of mycobacterial nucleotide pool sanitizing enzyme MutT2. J Struct Biol 2018; 204:449-456. [PMID: 30312643 DOI: 10.1016/j.jsb.2018.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 10/04/2018] [Accepted: 10/07/2018] [Indexed: 12/29/2022]
Abstract
Mis-incorporation of modified nucleotides, such as 5-methyl-dCTP or 8-oxo-dGTP, in DNA can be detrimental to genomic integrity. MutT proteins are sanitization enzymes which function by hydrolyzing such nucleotides and regulating the pool of free nucleotides in the cytoplasm. Mycobacterial genomes have a set of four MutT homologs, namely, MutT1, MutT2, MutT3 and MutT4. Mycobacterial MutT2 hydrolyzes 5 m-dCTP and 8-oxo-dGTP to their respective monophosphate products. Additionally, it can hydrolyze canonical nucleotides dCTP and CTP, with a suggested role in sustaining their optimal levels in the nucleotide pool. The structures of M. smegmatis MutT2 and its complexes with cytosine derivatives have been determined at resolutions ranging from 1.10 Å to 1.73 Å. The apo enzyme and its complexes with products (dCMP, CMP and 5 m-dCMP) crystallize in space group P21212, while those involving substrates (dCTP, CTP and 5 m-dCTP) crystallize in space group P21. The molecule takes an α/β/α sandwich fold arrangement, as observed in other MutT homologs. The nucleoside moiety of the ligands is similarly located in all the complexes, while the location of the remaining tail exhibits variability. This is the first report of a MutT2-type protein in complex with ligands. A critical interaction involving Asp116 confers the specificity of the enzyme towards cytosine moieties. A conserved set of enzyme-ligand interactions along with concerted movements of important water molecules provide insights into the mechanism of action.
Collapse
Affiliation(s)
- Amandeep Singh
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | | | - Pau Biak Sang
- Dept. of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - Umesh Varshney
- Dept. of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India
| | - M Vijayan
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
112
|
Carrillo-Ibarra S, Miranda-Díaz AG, Sifuentes-Franco S, Cardona-Muñoz EG, Rodríguez-Carrizalez AD, Villegas-Rivera G, Román-Pintos LM. Effect of statins on oxidative DNA damage in diabetic polyneuropathy. J Circ Biomark 2018; 7:1849454418804099. [PMID: 30302131 PMCID: PMC6170961 DOI: 10.1177/1849454418804099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 09/10/2018] [Indexed: 12/22/2022] Open
Abstract
Oxidative stress induces nerve damage in type 2 diabetes mellitus and leads to diabetic polyneuropathy (DPN) and can affect the DNA and antioxidant status. Statins have pleiotropic, protective effects on the peripheral nerves of patients with diabetes. The aim of this study was to determine the effects of ezetimibe/simvastatin and rosuvastatin on DNA damage in patients with DPN. This randomized, double-blind, placebo-controlled, clinical trial comprised outpatients from Guadalajara, Mexico. The inclusion criteria were either gender, age 35–80 years, type 2 diabetes, glycated hemoglobin ≤10%, diabetic polyneuropathy stage 1/2, and signed informed consent. Patients who were taking antioxidant therapy or statins, had hypersensitivity to drugs, experienced organ failure, were pregnant or breastfeeding, or had other types of neuropathy were excluded. We assigned patients to placebo, ezetimibe/simvastatin 10/20 mg, or rosuvastatin 20 mg, and the primary outcomes were 8-hydroxy-2′-deoxyguanosine (8-OHdG) for DNA damage, 8-oxoguanine-DNA-N-glycosilase (hOGG1) for DNA repair, and superoxide dismutase (SOD). Seventy-four patients were recruited. Nine patients were included as negative controls. There were no differences in 8-OHdG between the healthy subjects (4.68 [3.53–6.38] ng/mL) and the DPN patients (4.51 [1.22–9.84] ng/mL), whereas the hOGG1 level was 0.39 (0.37–0.42) ng/mL in the healthy subjects and 0.41 (0.38–0.54) ng/mL in patients with DPN at baseline (p = 0.01). SOD decreased significantly in patients with DPN (5.35 [0.01–17.90] U/mL) compared with the healthy subjects (9.81 [8.66–12.61] U/mL) at baseline (p < 0.001). No significant changes in DNA biomarkers were observed in any group between baseline and final levels. We noted a rise in hOGG1 in patients with DPN, without modifications after treatment. There was a slight, albeit insignificant, increase in SOD in patients who were on statins.
Collapse
Affiliation(s)
- Sandra Carrillo-Ibarra
- Departament of Physiology, Institute of Clinical and Experimental Therapeutics, University Health Sciences Centre, University of Guadalajara, Guadalajara, Jalisco, México
| | - Alejandra Guillermina Miranda-Díaz
- Departament of Physiology, Institute of Clinical and Experimental Therapeutics, University Health Sciences Centre, University of Guadalajara, Guadalajara, Jalisco, México
| | - Sonia Sifuentes-Franco
- Departament of Physiology, Institute of Clinical and Experimental Therapeutics, University Health Sciences Centre, University of Guadalajara, Guadalajara, Jalisco, México
| | - Ernesto Germán Cardona-Muñoz
- Departament of Physiology, Institute of Clinical and Experimental Therapeutics, University Health Sciences Centre, University of Guadalajara, Guadalajara, Jalisco, México
| | - Adolfo Daniel Rodríguez-Carrizalez
- Departament of Physiology, Institute of Clinical and Experimental Therapeutics, University Health Sciences Centre, University of Guadalajara, Guadalajara, Jalisco, México
| | - Geannyne Villegas-Rivera
- Department of Health-Disease Sciences as an Individual Process, Tonala University Centre, University of Guadalajara, Jalisco, México
| | - Luis Miguel Román-Pintos
- Department of Health-Disease Sciences as an Individual Process, Tonala University Centre, University of Guadalajara, Jalisco, México
| |
Collapse
|
113
|
Gruber CC, Walker GC. Incomplete base excision repair contributes to cell death from antibiotics and other stresses. DNA Repair (Amst) 2018; 71:108-117. [PMID: 30181041 DOI: 10.1016/j.dnarep.2018.08.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Numerous lethal stresses in bacteria including antibiotics, thymineless death, and MalE-LacZ expression trigger an increase in the production of reactive oxygen species. This results in the oxidation of the nucleotide pool by radicals produced by Fenton chemistry. Following the incorporation of these oxidized nucleotides into the genome, the cell's unsuccessful attempt to repair these lesions through base excision repair (BER) contributes causally to the lethality of these stresses. We review the evidence for this phenomenon of incomplete BER-mediated cell death and discuss how better understanding this pathway could contribute to the development of new antibiotics.
Collapse
Affiliation(s)
- Charley C Gruber
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States
| | - Graham C Walker
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, United States.
| |
Collapse
|
114
|
Gurunathan S, Kang MH, Kim JH. Combination Effect of Silver Nanoparticles and Histone Deacetylases Inhibitor in Human Alveolar Basal Epithelial Cells. Molecules 2018; 23:molecules23082046. [PMID: 30111752 PMCID: PMC6222610 DOI: 10.3390/molecules23082046] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/09/2018] [Accepted: 08/10/2018] [Indexed: 01/15/2023] Open
Abstract
Although many treatment strategies have been reported for lung disease, the mechanism of combination therapy using silver nanoparticles (AgNPs) and histone deacetylases inhibitors (HDACi) remains unclear. Therefore, innovative treatment strategies are essential for addressing the therapeutic challenges of this highly aggressive lung cancer. AgNPs and HDACi seem to be the best candidates for anticancer therapy because of their anti-proliferative effect in a variety of cancer cells. First, we synthesized AgNPs using wogonin as a reducing and stabilizing agent, following which the synthesized AgNPs were characterized by various analytical techniques. The synthesized AgNPs exhibited dose- and size-dependent toxicity towards A549 cells. Interestingly, the combination of AgNPs and MS-275 significantly induces apoptosis, which was accompanied by an increased level of reactive oxygen species (ROS); leakage of lactate dehydrogenase (LDH); secretion of TNFα; dysfunction of mitochondria; accumulation autophagosomes; caspase 9/3 activation; up and down regulation of pro-apoptotic genes and anti-apoptotic genes, respectively; and eventually, induced DNA-fragmentation. Our findings suggest that AgNPs and MS-275 induce cell death in A549 lung cells via the mitochondrial-mediated intrinsic apoptotic pathway. Finally, our data show that the combination of AgNPs and MS-275 is a promising new approach for the treatment of lung cancer and our findings contribute to understanding the potential roles of AgNPs and MS-275 in pulmonary disease. However, further study is warranted to potentiate the use of this combination therapy in cancer therapy trials.
Collapse
Affiliation(s)
- Sangiliyandi Gurunathan
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea.
| | - Min-Hee Kang
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea.
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
115
|
Morozova OB, Fishman NN, Yurkovskaya AV. Kinetics of Reversible Protonation of Transient Neutral Guanine Radical in Neutral Aqueous Solution. Chemphyschem 2018; 19:2696-2702. [PMID: 29978943 DOI: 10.1002/cphc.201800539] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Indexed: 11/11/2022]
Abstract
Time-resolved chemically induced dynamic nuclear polarization (TR-CIDNP) is applied to follow transformation of the short-lived neutral guanine radical into a secondary guanine radical by its protonation, presumably at position N7. In the initial step the photoreaction of guanosine-5'-monophosphate (GMP) with triplet excited 3,3',4,4'-tetracarboxy benzophenone (TCBP) leads to formation of the neutral radical G(-H). . The evidence of the radical conversion is based on the inversion of CIDNP sign for TCBP and GMP protons on the microsecond timescale as a result of the change in magnetic resonance parameters in the pairs of TCBP and GMP radicals due to structural changes of the GMP radical. Acceleration of the CIDNP sign change upon addition of phosphate (proton donor) confirms that the radical transformation responsible for the observed CIDNP kinetics is protonation of the neutral guanine radical with formation of the newly characterized cation radical, (G.+ )'. From the full analysis of the pH-dependent CIDNP kinetics, the protonation and deprotonation behaviour is quantitatively characterized, giving pKa =8.0±0.2 of the cation radical (G.+ )'.
Collapse
Affiliation(s)
- Olga B Morozova
- International Tomography Center, Institutskaya 3a, 630090, Novosibirsk, Russia.,Novosibirsk State University, Pirogova 2, 630090, Novosibirsk, Russia
| | - Natalya N Fishman
- International Tomography Center, Institutskaya 3a, 630090, Novosibirsk, Russia.,Novosibirsk State University, Pirogova 2, 630090, Novosibirsk, Russia
| | - Alexandra V Yurkovskaya
- International Tomography Center, Institutskaya 3a, 630090, Novosibirsk, Russia.,Novosibirsk State University, Pirogova 2, 630090, Novosibirsk, Russia
| |
Collapse
|
116
|
Mechanisms of scavenging superoxide, hydroxyl, nitrogen dioxide and methoxy radicals by allicin: catalytic role of superoxide dismutase in scavenging superoxide radical. J CHEM SCI 2018. [DOI: 10.1007/s12039-018-1509-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
117
|
Kong Q, Yin X, Yu J, Ren X. Mechanistic processes of resveratrol in inhibiting the oxidative damage of guanine, as evidenced by UHPLC-MS 2. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1093-1094:174-182. [PMID: 30032017 DOI: 10.1016/j.jchromb.2018.07.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 06/28/2018] [Accepted: 07/07/2018] [Indexed: 02/06/2023]
Abstract
Resveratrol, as one of the stilbenoids, is present in abundance in wine grapes and has been shown to selectively quench 1O2. DNA is oxidized by 1O2 causing irreparable functional damage, and of the nucleic acids, guanine is the most susceptible. An agarose gel electrophoresis assay demonstrated that DNA was damaged by 1O2 with less than 5 min of UVA irradiation, and also that 5 mM resveratrol dissolved in MeOH could relieve the observed oxidation stress. Ultra-high performance liquid chromatography coupled with mass spectrometry was performed to reveal the mechanism. Four guanine oxidation products at m/z 140.0334 [M-H]-(1), DGh, 8-oxoG, Sp and two conjugates at m/z 377.1104 [M-H]- and 391.0907 [M-H]- were identified and quantified. Thus, we propose the mechanism that the phenol ring of resveratrol links with the free amino groups (NH) of guanine at the beginning of 1O2 attack to form m/z 377.1104 [M-H]-, however, as 1O2 is able to attack the amino groups continuously, resveratrol can efficiently react with 1O2 prior to damage, and form m/z 391.0907 [M-H]- thereby protecting guanine.
Collapse
Affiliation(s)
- Qingjun Kong
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Normal University, Xi'an 710062, China
| | - Xuefeng Yin
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Normal University, Xi'an 710062, China
| | - Jia Yu
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Normal University, Xi'an 710062, China
| | - Xueyan Ren
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, Shaanxi Normal University, Xi'an 710062, China.
| |
Collapse
|
118
|
Tan DQ, Suda T. Reactive Oxygen Species and Mitochondrial Homeostasis as Regulators of Stem Cell Fate and Function. Antioxid Redox Signal 2018; 29:149-168. [PMID: 28708000 DOI: 10.1089/ars.2017.7273] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
SIGNIFICANCE The precise role and impact of reactive oxygen species (ROS) in stem cells, which are essential for lifelong tissue homeostasis and regeneration, remain of significant interest to the field. The long-term regenerative potential of a stem cell compartment is determined by the delicate balance between quiescence, self-renewal, and differentiation, all of which can be influenced by ROS levels. Recent Advances: The past decade has seen a growing appreciation for the importance of ROS and redox homeostasis in various stem cell compartments, particularly those of hematopoietic, neural, and muscle tissues. In recent years, the importance of proteostasis and mitochondria in relation to stem cell biology and redox homeostasis has garnered considerable interest. CRITICAL ISSUES Here, we explore the reciprocal relationship between ROS and stem cells, with significant emphasis on mitochondria as a core component of redox homeostasis. We discuss how redox signaling, involving cell-fate determining protein kinases and transcription factors, can control stem cell function and fate. We also address the impact of oxidative stress on stem cells, especially oxidative damage of lipids, proteins, and nucleic acids. We further discuss ROS management in stem cells, and present recent evidence supporting the importance of mitochondrial activity and its modulation (via mitochondrial clearance, biogenesis, dynamics, and distribution [i.e., segregation and transfer]) in stem cell redox homeostasis. FUTURE DIRECTIONS Therefore, elucidating the intricate links between mitochondria, cellular metabolism, and redox homeostasis is envisioned to be critical for our understanding of ROS in stem cell biology and its therapeutic relevance in regenerative medicine. Antioxid. Redox Signal. 00, 000-000.
Collapse
Affiliation(s)
- Darren Q Tan
- Cancer Science Institute of Singapore, National University of Singapore , Singapore, Singapore
| | - Toshio Suda
- Cancer Science Institute of Singapore, National University of Singapore , Singapore, Singapore
| |
Collapse
|
119
|
Matter B, Seiler CL, Murphy K, Ming X, Zhao J, Lindgren B, Jones R, Tretyakova N. Mapping three guanine oxidation products along DNA following exposure to three types of reactive oxygen species. Free Radic Biol Med 2018; 121:180-189. [PMID: 29702150 PMCID: PMC6858621 DOI: 10.1016/j.freeradbiomed.2018.04.561] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 04/16/2018] [Accepted: 04/18/2018] [Indexed: 12/18/2022]
Abstract
Reactive oxygen and nitrogen species generated during respiration, inflammation, and immune response can damage cellular DNA, contributing to aging, cancer, and neurodegeneration. The ability of oxidized DNA bases to interfere with DNA replication and transcription is strongly influenced by their chemical structures and locations within the genome. In the present work, we examined the influence of local DNA sequence context, DNA secondary structure, and oxidant identity on the efficiency and the chemistry of guanine oxidation in the context of the Kras protooncogene. A novel isotope labeling strategy developed in our laboratory was used to accurately map the formation of 2,2-diamino-4-[(2-deoxy-β-D-erythropentofuranosyl)amino]- 5(2 H)-oxazolone (Z), 8-oxo-7,8-dihydro-2'-deoxyguanosine (OG), and 8-nitroguanine (8-NO2-G) lesions along DNA duplexes following photooxidation in the presence of riboflavin, treatment with nitrosoperoxycarbonate, and oxidation in the presence of hydroxyl radicals. Riboflavin-mediated photooxidation preferentially induced OG lesions at 5' guanines within GG repeats, while treatment with nitrosoperoxycarbonate targeted 3'-guanines within GG and AG dinucleotides. Little sequence selectivity was observed following hydroxyl radical-mediated oxidation. However, Z and 8-NO2-G adducts were overproduced at duplex ends, irrespective of oxidant identity. Overall, our results indicate that the patterns of Z, OG, and 8-NO2-G adduct formation in the genome are distinct and are influenced by oxidant identity and the secondary structure of DNA.
Collapse
Affiliation(s)
- Brock Matter
- Department of Medicinal Chemistry and Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Christopher L Seiler
- Department of Medicinal Chemistry and Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kristopher Murphy
- Department of Medicinal Chemistry and Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Xun Ming
- Department of Medicinal Chemistry and Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jianwei Zhao
- Department of Chemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Bruce Lindgren
- Biostatistics Core, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Roger Jones
- Department of Chemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Natalia Tretyakova
- Department of Medicinal Chemistry and Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
120
|
Omaga CA, Fleming AM, Burrows CJ. The Fifth Domain in the G-Quadruplex-Forming Sequence of the Human NEIL3 Promoter Locks DNA Folding in Response to Oxidative Damage. Biochemistry 2018; 57:2958-2970. [PMID: 29718661 DOI: 10.1021/acs.biochem.8b00226] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
DNA oxidation is an inevitable and usually detrimental process, but the cell is capable of reversing this state because the cell possesses a highly developed set of DNA repair machineries, including the DNA glycosylase NEIL3 that is encoded by the NEIL3 gene. In this work, the G-rich promoter region of the human NEIL3 gene was shown to fold into a dynamic G-quadruplex (G4) structure under nearly physiological conditions using spectroscopic techniques (e.g., nuclear magnetic resonance, circular dichroism, fluorescence, and ultraviolet-visible) and DNA polymerase stop assays. The presence of 8-oxo-7,8-dihydroguanine (OG) modified the properties of the NEIL3 G4 and entailed the recruitment of the fifth domain to function as a "spare tire", in which an undamaged fifth G-track is swapped for the damaged section of the G4. The polymerase stop assay findings also revealed that owing to its dynamic polymorphism, the NEIL3 G4 is more readily bypassed by DNA polymerase I (Klenow fragment) than well-known oncogene G4s are. This study identifies the NEIL3 promoter possessing a G-rich element that can adopt a G4 fold, and when OG is incorporated, the sequence can lock into a more stable G4 fold via recruitment of the fifth track of Gs.
Collapse
Affiliation(s)
- Carla A Omaga
- Department of Chemistry , University of Utah , Salt Lake City , Utah 84112-0850 , United States
| | - Aaron M Fleming
- Department of Chemistry , University of Utah , Salt Lake City , Utah 84112-0850 , United States
| | - Cynthia J Burrows
- Department of Chemistry , University of Utah , Salt Lake City , Utah 84112-0850 , United States
| |
Collapse
|
121
|
Antibacterial Efficacy of Silver Nanoparticles on Endometritis Caused by Prevotella melaninogenica and Arcanobacterum pyogenes in Dairy Cattle. Int J Mol Sci 2018; 19:ijms19041210. [PMID: 29659523 PMCID: PMC5979543 DOI: 10.3390/ijms19041210] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/09/2018] [Accepted: 04/11/2018] [Indexed: 02/07/2023] Open
Abstract
Bovine postpartum diseases remain one of the most significant and highly prevalent illnesses with negative effects on the productivity, survival, and welfare of dairy cows. Antibiotics are generally considered beneficial in the treatment of endometritis; however, frequent usage of each antibiotic drug is reason for the emergence of multidrug resistance (MDR) of the pathogenic microorganisms, representing a major impediment for the successful diagnosis and management of infectious diseases in both humans and animals. We synthesized silver nanoparticles (AgNPs) with an average size of 10 nm using the novel biomolecule apigenin as a reducing and stabilizing agent, and evaluated the efficacy of the AgNPs on the MDR pathogenic bacteria Prevotella melaninogenica and Arcanobacterium pyogenes isolated from uterine secretion samples. AgNPs inhibited cell viability and biofilm formation in a dose- and time-dependent manner. Moreover, the metabolic toxicity of the AgNPs was assessed through various cellular assays. The major toxic effect of cell death was caused by an increase in oxidative stress, as evidenced by the increased generation of reactive oxygen species (ROS), malondialdehyde, protein carbonyl content, and nitric oxide. The formation of ROS is considered to be the primary mechanism of bacterial death. Therefore, the biomolecule-mediated synthesis of AgNPs shows potential as an alternative antimicrobial therapy for bovine metritis and endometritis.
Collapse
|
122
|
Fleming AM, Burrows CJ. 8-Oxo-7,8-dihydro-2'-deoxyguanosine and abasic site tandem lesions are oxidation prone yielding hydantoin products that strongly destabilize duplex DNA. Org Biomol Chem 2018; 15:8341-8353. [PMID: 28936535 DOI: 10.1039/c7ob02096a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In DNA, 2'-deoxyguanosine (dG) is susceptible to oxidative modification by reactive oxygen species (ROS) yielding many products, one of which is 8-oxo-7,8-dihydro-2'-deoxyguanosine (dOG). Interestingly, dOG is stable but much more labile toward oxidation than dG, furnishing 5-guanidinohydantoin-2'-deoxyribose (dGh) that is favored in the duplex context or spiroiminodihydantoin-2'-deoxyribose (dSp) that is favored in the oxidation of single-stranded contexts. Previously, exposure of DNA to ionizing radiation found ∼50% of the dOG exists as a tandem lesion with an adjacent formamide site. The present work explored oxidation of dOG in a tandem lesion with a THF abasic site analog (F) that models the formamide on either the 5' or 3' side. When dOG was in a tandem lesion, both dGh and dSp were observed as oxidation products. The 5' versus 3' side in which F resided influenced the stereochemistry of the dSp formed. Further, tandem lesions with dOG were found to be up to two orders of magnitude more reactive to oxidation than dOG in an intact duplex. When dOG is in a tandem lesion it is up to fivefold more prone to formation of spermine cross-links during oxidation compared to dOG in an intact duplex. Lastly, dOG, dGh, and each dSp diastereomer were synthesized as part of a tandem lesion in a duplex DNA to establish that dOG tandem lesions decrease the thermal stability by 12-13 °C, while dGh or either dSp diastereomer in a tandem lesion decrease the stability by >20 °C. The biological consequences of these results are discussed.
Collapse
Affiliation(s)
- Aaron M Fleming
- Department of Chemistry, University of Utah, 315 S 1400 East, Salt Lake City, UT 84112-0850, USA.
| | | |
Collapse
|
123
|
Ceylan D, Tuna G, Kirkali G, Tunca Z, Can G, Arat HE, Kant M, Dizdaroglu M, Özerdem A. Oxidatively-induced DNA damage and base excision repair in euthymic patients with bipolar disorder. DNA Repair (Amst) 2018; 65:64-72. [PMID: 29626765 DOI: 10.1016/j.dnarep.2018.03.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/29/2018] [Accepted: 03/29/2018] [Indexed: 01/08/2023]
Abstract
Oxidatively-induced DNA damage has previously been associated with bipolar disorder. More recently, impairments in DNA repair mechanisms have also been reported. We aimed to investigate oxidatively-induced DNA lesions and expression of DNA glycosylases involved in base excision repair in euthymic patients with bipolar disorder compared to healthy individuals. DNA base lesions including both base and nucleoside modifications were measured using gas chromatography-tandem mass spectrometry and liquid chromatography-tandem mass spectrometry with isotope-dilution in DNA samples isolated from leukocytes of euthymic patients with bipolar disorder (n = 32) and healthy individuals (n = 51). The expression of DNA repair enzymes OGG1 and NEIL1 were measured using quantitative real-time polymerase chain reaction. The levels of malondialdehyde were measured using high performance liquid chromatography. Seven DNA base lesions in DNA of leukocytes of patients and healthy individuals were identified and quantified. Three of them had significantly elevated levels in bipolar patients when compared to healthy individuals. No elevation of lipid peroxidation marker malondialdehyde was observed. The level of OGG1 expression was significantly reduced in bipolar patients compared to healthy individuals, whereas the two groups exhibited similar levels of NEIL1 expression. Our results suggest that oxidatively-induced DNA damage occurs and base excision repair capacity may be decreased in bipolar patients when compared to healthy individuals. Measurement of oxidatively-induced DNA base lesions and the expression of DNA repair enzymes may be of great importance for large scale basic research and clinical studies of bipolar disorder.
Collapse
Affiliation(s)
- Deniz Ceylan
- Vocational School of Health Services, Izmir University of Economics, Izmir, Turkey; Department of Neuroscience, Health Sciences Institute, Dokuz Eylul University, Izmir, Turkey.
| | - Gamze Tuna
- Department of Molecular Medicine, Health Sciences Institute, Dokuz Eylul University, Izmir, Turkey
| | - Güldal Kirkali
- Thoracic and Gastrointestinal Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 10, Bethesda, MD, 20892, USA
| | - Zeliha Tunca
- Department of Psychiatry, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Güneş Can
- Department of Psychiatry, Mardin State Hospital, Mardin, Turkey
| | - Hidayet Ece Arat
- Department of Psychology, Istanbul Gelişim University, Istanbul, Turkey, Turkey
| | - Melis Kant
- Department of Medical Biochemistry, Health Sciences Institute, Dokuz Eylul University, Izmir, Turkey
| | - Miral Dizdaroglu
- Biomolecular Measurement Division, National Institute of Standards and Technology, Gaithersburg, MD, 20899, USA.
| | - Ayşegül Özerdem
- Department of Neuroscience, Health Sciences Institute, Dokuz Eylul University, Izmir, Turkey; Department of Psychiatry, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| |
Collapse
|
124
|
Trajano LADSN, Sergio LPDS, Stumbo AC, Mencalha AL, Fonseca ADSD. Low power lasers on genomic stability. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 180:186-197. [DOI: 10.1016/j.jphotobiol.2018.02.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/02/2018] [Accepted: 02/07/2018] [Indexed: 12/11/2022]
|
125
|
A theoretical characterization of reactions of HOOO radical with guanine: formation of 8-oxoguanine. Struct Chem 2018. [DOI: 10.1007/s11224-018-1095-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
126
|
Bhattacharjee K, Shukla PK. Does 8-Nitroguanine Form 8-Oxoguanine? An Insight from Its Reaction with •OH Radical. J Phys Chem B 2018; 122:1852-1861. [PMID: 29360382 DOI: 10.1021/acs.jpcb.7b12192] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
8-Nitroguanine (8-nitroG) formed due to nitration of guanine base of DNA plays an important role in mutagenesis and carcinogenesis. In the present contribution, state-of-the-art quantum chemical calculations using M06-2X density functional and domain-based local pair natural orbital-coupled cluster theory with single, double, and perturbative triple excitations (DLPNO-CCSD(T)) methods have been carried out to investigate the mechanism of reaction of •OH radical with 8-nitroG leading to the formation of 8-oxoguanine (8-oxoG) (one of the most mutagenic and carcinogenic derivatives of guanine) in gas phase and aqueous media. Calculations of barrier energies and rate constants involved in the addition reactions of •OH radical at different sites of 8-nitroguanine show that C8 and C2 sites are the most and least reactive sites, respectively. Relative stability and Boltzmann populations of adducts show that the adduct formed at the C8 site occurs predominantly in equilibrium. Our calculations reveal that 8-nitroG is very reactive toward •OH radical and is converted readily into 8-oxoG when attacked by •OH radicals, in agreement with available experimental observations.
Collapse
Affiliation(s)
| | - P K Shukla
- Department of Physics, Assam University , Silchar 788011, India
| |
Collapse
|
127
|
Morozova OB, Fishman NN, Yurkovskaya AV. Indirect NMR detection of transient guanosyl radical protonation in neutral aqueous solution. Phys Chem Chem Phys 2018; 19:21262-21266. [PMID: 28759067 DOI: 10.1039/c7cp03797j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
By using the time-resolved chemically induced dynamic nuclear polarization technique, we show that the neutral guanosyl radical, G(-H)˙, formed in the reaction of guanosine-5'-monophosphate with a triplet-excited 3,3',4,4'-tetracarboxy benzophenone in neutral aqueous solution, protonates readily at the N7 position with the formation of a new guanosyl cation radical (G˙+)'.
Collapse
Affiliation(s)
- O B Morozova
- International Tomography Center, Institutskaya 3a, 630090 Novosibirsk, Russia. and Novosibirsk State University, Pirogova 2, 630090 Novosibirsk, Russia
| | - N N Fishman
- International Tomography Center, Institutskaya 3a, 630090 Novosibirsk, Russia. and Novosibirsk State University, Pirogova 2, 630090 Novosibirsk, Russia
| | - A V Yurkovskaya
- International Tomography Center, Institutskaya 3a, 630090 Novosibirsk, Russia. and Novosibirsk State University, Pirogova 2, 630090 Novosibirsk, Russia
| |
Collapse
|
128
|
Lu W, Liu J. Deprotonated guanine·cytosine and 9-methylguanine·cytosine base pairs and their "non-statistical" kinetics: a combined guided-ion beam and computational study. Phys Chem Chem Phys 2018; 18:32222-32237. [PMID: 27849082 DOI: 10.1039/c6cp06670d] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report a guided-ion beam mass spectrometric study on collision-induced dissociation (CID) of deprotonated guanine(G)·cytosine(C) base pairs and their 9-methylguanine (9MG) analogue with Xe, including measurements of product cross sections as a function of collision energy and determination of dissociation thresholds. DFT, RI-MP2 and DLPNO-CCSD(T) calculations and Rice-Ramsperger-Kassel-Marcus (RRKM) modeling were performed to elucidate structures and kinetics. The experiment and theoretical study have provided considerable insight into tautomerization, intra-base-pair proton transfer and dissociation of deprotonated G·C and 9MG·C. In contrast to the previously reported lowest-energy deprotonated base pair structure G·[C-H1]- that consists of H-bonded neutral guanine and N1-deprotonated cytosine, we found that proton transfer from guanine N1 to cytosine N3 within G·[C-H1]- (or 9MG·[C-H1]-) leads to another slightly more stable conformer denoted as G·[C-H1]-_PT1 (or 9MG·[C-H1]-_PT1). The conventional (non-proton-transferred) and the proton-transferred conformers are close in energy and interconvert quickly, but they can be distinguished by dissociation products. The conventional structure dissociates into deprotonated cytosine and neutral guanine, while the other dissociates into deprotonated guanine and neutral cytosine. The two dissociation asymptotes have similar threshold energies, but surprisingly the CID product mass spectra of deprotonated G·C and 9MG·C are both overwhelmingly dominated by deprotonated G or 9MG, with their branching ratios greater than RRKM predictions by one to two orders of magnitude. The proton-transferred structures of deprotonated base pairs and the "unexpected" non-statistical kinetics provide new leads for understanding purine-pyrimidine interactions, forming rare nucleobase tautomers, and base pair opening.
Collapse
Affiliation(s)
- Wenchao Lu
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, NY 11367, USA. and Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 5th Ave., New York, NY 10016, USA
| | - Jianbo Liu
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, NY 11367, USA. and Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 5th Ave., New York, NY 10016, USA
| |
Collapse
|
129
|
Maguire D, Neytchev O, Talwar D, McMillan D, Shiels PG. Telomere Homeostasis: Interplay with Magnesium. Int J Mol Sci 2018; 19:E157. [PMID: 29303978 PMCID: PMC5796106 DOI: 10.3390/ijms19010157] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 12/21/2017] [Accepted: 01/03/2018] [Indexed: 12/14/2022] Open
Abstract
Telomere biology, a key component of the hallmarks of ageing, offers insight into dysregulation of normative ageing processes that accompany age-related diseases such as cancer. Telomere homeostasis is tightly linked to cellular metabolism, and in particular with mitochondrial physiology, which is also diminished during cellular senescence and normative physiological ageing. Inherent in the biochemistry of these processes is the role of magnesium, one of the main cellular ions and an essential cofactor in all reactions that use ATP. Magnesium plays an important role in many of the processes involved in regulating telomere structure, integrity and function. This review explores the mechanisms that maintain telomere structure and function, their influence on circadian rhythms and their impact on health and age-related disease. The pervasive role of magnesium in telomere homeostasis is also highlighted.
Collapse
Affiliation(s)
- Donogh Maguire
- Emergency Medicine Department, Glasgow Royal Infirmary, Glasgow G4 0SF, UK.
- Academic Unit of Surgery, School of Medicine, University of Glasgow, Glasgow Royal Infirmary, Glasgow G4 0SF, UK.
| | - Ognian Neytchev
- Section of Epigenetics, Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK.
| | - Dinesh Talwar
- The Scottish Trace Element and Micronutrient Reference Laboratory, Department of Biochemistry, Royal Infirmary, Glasgow G31 2ER, UK.
| | - Donald McMillan
- Academic Unit of Surgery, School of Medicine, University of Glasgow, Glasgow Royal Infirmary, Glasgow G4 0SF, UK.
| | - Paul G Shiels
- Section of Epigenetics, Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK.
| |
Collapse
|
130
|
Sun Y, Zhou W, Moe MM, Liu J. Reactions of water with radical cations of guanine, 9-methylguanine, 2′-deoxyguanosine and guanosine: keto–enol isomerization, C8-hydroxylation, and effects of N9-substitution. Phys Chem Chem Phys 2018; 20:27510-27522. [DOI: 10.1039/c8cp05453c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reactions of D2O with guanine radical cations in nucleobases and nucleosides were studied in the gas phase using the guided-ion-beam experiment and computational modeling.
Collapse
Affiliation(s)
- Yan Sun
- Department of Chemistry and Biochemistry
- Queens College of the City University of New York
- Queens
- USA
- PhD Program in Chemistry
| | - Wenjing Zhou
- Department of Chemistry and Biochemistry
- Queens College of the City University of New York
- Queens
- USA
| | - May Myat Moe
- Department of Chemistry and Biochemistry
- Queens College of the City University of New York
- Queens
- USA
| | - Jianbo Liu
- Department of Chemistry and Biochemistry
- Queens College of the City University of New York
- Queens
- USA
- PhD Program in Chemistry
| |
Collapse
|
131
|
Lu W, Sun Y, Zhou W, Liu J. pH-Dependent Singlet O2 Oxidation Kinetics of Guanine and 9-Methylguanine: An Online Mass Spectrometry and Spectroscopy Study Combined with Theoretical Exploration. J Phys Chem B 2017; 122:40-53. [DOI: 10.1021/acs.jpcb.7b09515] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Wenchao Lu
- Department
of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Boulevard, Queens, New York 11367, United States
- Ph.D.
Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| | - Yan Sun
- Department
of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Boulevard, Queens, New York 11367, United States
- Ph.D.
Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| | - Wenjing Zhou
- Department
of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Boulevard, Queens, New York 11367, United States
| | - Jianbo Liu
- Department
of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Boulevard, Queens, New York 11367, United States
- Ph.D.
Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| |
Collapse
|
132
|
Jiang D, Malla S, Fu YJ, Choudhary D, Rusling JF. Direct LC-MS/MS Detection of Guanine Oxidations in Exon 7 of the p53 Tumor Suppressor Gene. Anal Chem 2017; 89:12872-12879. [PMID: 29116749 PMCID: PMC5777150 DOI: 10.1021/acs.analchem.7b03487] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Oxidation of DNA by reactive oxygen species (ROS) yields 8-oxo-7,8-dihydroguanosine (8-oxodG) as primary oxidation product, which can lead to downstream G to T transversion mutations. DNA mutations are nonrandom, and mutations at specific codons are associated with specific cancers, as widely documented for the p53 tumor suppressor gene. Here, we present the first direct LC-MS/MS study (without isotopic labeling or hydrolysis) of primary oxidation sites of p53 exon 7. We oxidized a 32 base pair (bp) double-stranded (ds) oligonucleotide representing exon 7 of the p53 gene. Oxidized oligonucleotides were cut by a restriction endonuclease to provide small strands and enable positions and amounts of 8-oxodG to be determined directly by LC-MS/MS. Oxidation sites on the oligonucleotide generated by two oxidants, catechol/Cu2+/NADPH and Fenton's reagent, were located and compared. Guanines in codons 243, 244, 245, and 248 were most frequently oxidized by catechol/Cu2+/NADPH with relative oxidation of 5.6, 7.2, 2.6, and 10.7%, respectively. Fenton's reagent oxidations were more specific for guanines in codons 243 (20.3%) and 248 (10.4%). Modeling of docking of oxidizing species on the ds-oligonucleotide were consistent with the experimental codon oxidation sites. Significantly, codons 244 and 248 are mutational "hotspots" in nonsmall cell and small cell lung cancers, supporting a possible role of oxidation in p53 mutations leading to lung cancer.
Collapse
Affiliation(s)
- Di Jiang
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Spundana Malla
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - You-jun Fu
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Dharamainder Choudhary
- Department of Surgery and Neag Cancer Center, UConn Health, Farmington, Connecticut 06032, United States
| | - James F. Rusling
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269, United States
- Department of Surgery and Neag Cancer Center, UConn Health, Farmington, Connecticut 06032, United States
- Institute of Material Science, University of Connecticut, Storrs, Connecticut 06269, United States
- School of Chemistry, National University of Ireland at Galway, Galway H91 TK33, Ireland
| |
Collapse
|
133
|
Han P, Guo R, Wang Y, Yao L, Liu C. Bidirectional Electron-Transfer in Polypeptides with Various Secondary Structures. Sci Rep 2017; 7:16445. [PMID: 29180651 PMCID: PMC5703997 DOI: 10.1038/s41598-017-16678-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 11/16/2017] [Indexed: 12/25/2022] Open
Abstract
The protein-mediated bidirectional electron transfer (ET) is the foundation of protein molecular wire, and plays an important role in the rapid detection of oxo-guanine-adenine DNA mismatches by MutY glycosylase. However, the influences of structural transitions on bidirectional ET are still not clear. In this work, the modified through-bond coupling (MTBC) model was further refined to correlate the structural transition and ET rate more quantitatively. With this model, various polyglycine structures (310-helix, α-helix, β-sheets, linear, polyproline helical I and II) were studied to explore the influences of structural transitions on bidirectional ET. It was found that the HOMO-LUMO gaps (ΔE) in CN (from the carboxyl to amino terminus) direction are much lower than that in opposite direction, except for polypro I. However, with the equal tunneling energy, the differences between bidirectional ET rates are slight for all structures. In structural transitions, we found that the ET rates are not only affected by the Ramachandran angles, but also correlated to the alignment of C = O vectors, the alignment of peptide planes and the rearrangement of other structure factors. The detailed information can be used to rationalize the inhomogeneous ET across different protein structures and design more efficient protein molecular wires.
Collapse
Affiliation(s)
- Ping Han
- Department of Neurology, Haici Hospital Affiliated to Medical College of Qingdao University, Qingdao, 266033, Shandong, P.R. China
| | - Ruiyou Guo
- Department of Neurology, Haici Hospital Affiliated to Medical College of Qingdao University, Qingdao, 266033, Shandong, P.R. China
| | - Yefei Wang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, Shandong, P.R. China.
| | - Lishan Yao
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, Shandong, P.R. China
| | - Chengbu Liu
- Institute of Theoretical Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, Shandong, China
| |
Collapse
|
134
|
Singh A. Guardians of the mycobacterial genome: A review on DNA repair systems in Mycobacterium tuberculosis. MICROBIOLOGY-SGM 2017; 163:1740-1758. [PMID: 29171825 DOI: 10.1099/mic.0.000578] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The genomic integrity of Mycobacterium tuberculosis is continuously threatened by the harsh survival conditions inside host macrophages, due to immune and antibiotic stresses. Faithful genome maintenance and repair must be accomplished under stress for the bacillus to survive in the host, necessitating a robust DNA repair system. The importance of DNA repair systems in pathogenesis is well established. Previous examination of the M. tuberculosis genome revealed homologues of almost all the major DNA repair systems, i.e. nucleotide excision repair (NER), base excision repair (BER), homologous recombination (HR) and non-homologous end joining (NHEJ). However, recent developments in the field have pointed to the presence of novel proteins and pathways in mycobacteria. Homologues of archeal mismatch repair proteins were recently reported in mycobacteria, a pathway previously thought to be absent. RecBCD, the major nuclease-helicase enzymes involved in HR in E. coli, were implicated in the single-strand annealing (SSA) pathway. Novel roles of archeo-eukaryotic primase (AEP) polymerases, previously thought to be exclusive to NHEJ, have been reported in BER. Many new proteins with a probable role in DNA repair have also been discovered. It is now realized that the DNA repair systems in M. tuberculosis are highly evolved and have redundant backup mechanisms to mend the damage. This review is an attempt to summarize our current understanding of the DNA repair systems in M. tuberculosis.
Collapse
Affiliation(s)
- Amandeep Singh
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, Karnataka, India
| |
Collapse
|
135
|
The origin of oxidized guanine resolves the puzzle of oxidation-induced telomere-length alterations. Nat Struct Mol Biol 2017; 23:1070-1071. [PMID: 27922610 DOI: 10.1038/nsmb.3332] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
136
|
Sagi J. In What Ways Do Synthetic Nucleotides and Natural Base Lesions Alter the Structural Stability of G-Quadruplex Nucleic Acids? J Nucleic Acids 2017; 2017:1641845. [PMID: 29181193 PMCID: PMC5664352 DOI: 10.1155/2017/1641845] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/15/2017] [Indexed: 01/03/2023] Open
Abstract
Synthetic analogs of natural nucleotides have long been utilized for structural studies of canonical and noncanonical nucleic acids, including the extensively investigated polymorphic G-quadruplexes (GQs). Dependence on the sequence and nucleotide modifications of the folding landscape of GQs has been reviewed by several recent studies. Here, an overview is compiled on the thermodynamic stability of the modified GQ folds and on how the stereochemical preferences of more than 70 synthetic and natural derivatives of nucleotides substituting for natural ones determine the stability as well as the conformation. Groups of nucleotide analogs only stabilize or only destabilize the GQ, while the majority of analogs alter the GQ stability in both ways. This depends on the preferred syn or anti N-glycosidic linkage of the modified building blocks, the position of substitution, and the folding architecture of the native GQ. Natural base lesions and epigenetic modifications of GQs explored so far also stabilize or destabilize the GQ assemblies. Learning the effect of synthetic nucleotide analogs on the stability of GQs can assist in engineering a required stable GQ topology, and exploring the in vitro action of the single and clustered natural base damage on GQ architectures may provide indications for the cellular events.
Collapse
Affiliation(s)
- Janos Sagi
- Rimstone Laboratory, RLI, Carlsbad, CA 92010, USA
| |
Collapse
|
137
|
Maladaptive DNA repair is the ultimate contributor to the death of trimethoprim-treated cells under aerobic and anaerobic conditions. Proc Natl Acad Sci U S A 2017; 114:11512-11517. [PMID: 29073080 PMCID: PMC5664507 DOI: 10.1073/pnas.1706236114] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Antibiotic resistance leads to substantial mortality and morbidity and significant economic cost because it seriously undermines our ability to treat bacterial infections. Therefore, a better understanding of the effect of antibiotics on bacteria is needed to increase the effectiveness of treatments and slow the emergence of resistance. The bactericidal effects of antibiotics are triggered by target-specific interactions, but there is growing evidence that an important part of their cytotoxicity results from metabolic disturbances induced by treatment. In this article, we report that the perturbation of DNA replication by a wide-spectrum antibiotic, trimethoprim, affects bacterial metabolism, which provokes the production of genotoxic agents and DNA damage, whose processing ultimately contributes to cell death under both aerobic and anaerobic conditions. The bactericidal effects of antibiotics are undoubtedly triggered by target-specific interactions, but there is growing evidence that an important aspect of cytotoxicity results from treatment-induced metabolic perturbations. In this study, we characterized molecular mechanisms whereby trimethoprim treatment results in cell death, using Escherichia coli as the model organism. E. coli cells grown in rich medium that contained all amino acids and low amounts of thymidine were treated with trimethoprim under aerobic and anaerobic conditions. Under these growth conditions, accelerated thymine depletion is the primary trigger of the processes leading to cell death. Thymine depletion-induced DNA replication stress leads to the production of reactive oxygen species under aerobic conditions and of the DNA-damaging byproducts of nitrate respiration under anaerobic conditions. Lowering the DNA replication initiation rate by introducing the dnaA(Sx) allele or by overexpressing Hda protein reduces the number of active replication forks, which reduces the consumption of thymidine and increases resistance to trimethoprim under both aerobic and anaerobic conditions. Analysis of the involvement of DNA repair enzymes in trimethoprim-induced cytotoxicity clearly indicates that different amounts and/or different types of DNA lesions are produced in the presence or absence of oxygen. Maladaptive processing of the DNA damage by DNA repair enzymes, in particular by MutM and MutY DNA glycosylases, ultimately contributes to cell death.
Collapse
|
138
|
Markkanen E. Not breathing is not an option: How to deal with oxidative DNA damage. DNA Repair (Amst) 2017; 59:82-105. [PMID: 28963982 DOI: 10.1016/j.dnarep.2017.09.007] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 09/20/2017] [Indexed: 02/07/2023]
Abstract
Oxidative DNA damage constitutes a major threat to genetic integrity, and has thus been implicated in the pathogenesis of a wide variety of diseases, including cancer and neurodegeneration. 7,8-dihydro-8oxo-deoxyGuanine (8-oxo-G) is one of the best characterised oxidative DNA lesions, and it can give rise to point mutations due to its miscoding potential that instructs most DNA polymerases (Pols) to preferentially insert Adenine (A) opposite 8-oxo-G instead of the correct Cytosine (C). If uncorrected, A:8-oxo-G mispairs can give rise to C:G→A:T transversion mutations. Cells have evolved a variety of pathways to mitigate the mutational potential of 8-oxo-G that include i) mechanisms to avoid incorporation of oxidized nucleotides into DNA through nucleotide pool sanitisation enzymes (by MTH1, MTH2, MTH3 and NUDT5), ii) base excision repair (BER) of 8-oxo-G in DNA (involving MUTYH, OGG1, Pol λ, and other components of the BER machinery), and iii) faithful bypass of 8-oxo-G lesions during replication (using a switch between replicative Pols and Pol λ). In the following, the fate of 8-oxo-G in mammalian cells is reviewed in detail. The differential origins of 8-oxo-G in DNA and its consequences for genetic stability will be covered. This will be followed by a thorough discussion of the different mechanisms in place to cope with 8-oxo-G with an emphasis on Pol λ-mediated correct bypass of 8-oxo-G during MUTYH-initiated BER as well as replication across 8-oxo-G. Furthermore, the multitude of mechanisms in place to regulate key proteins involved in 8-oxo-G repair will be reviewed. Novel functions of 8-oxo-G as an epigenetic-like regulator and insights into the repair of 8-oxo-G within the cellular context will be touched upon. Finally, a discussion will outline the relevance of 8-oxo-G and the proteins involved in dealing with 8-oxo-G to human diseases with a special emphasis on cancer.
Collapse
Affiliation(s)
- Enni Markkanen
- Institute of Veterinary Pharmacology and Toxicology, Vetsuisse Faculty, University of Zürich, Winterthurerstr. 260, 8057 Zürich, Switzerland.
| |
Collapse
|
139
|
Alenko A, Fleming AM, Burrows CJ. Reverse Transcription Past Products of Guanine Oxidation in RNA Leads to Insertion of A and C opposite 8-Oxo-7,8-dihydroguanine and A and G opposite 5-Guanidinohydantoin and Spiroiminodihydantoin Diastereomers. Biochemistry 2017; 56:5053-5064. [PMID: 28845978 DOI: 10.1021/acs.biochem.7b00730] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Reactive oxygen species, both endogenous and exogenous, can damage nucleobases of RNA and DNA. Among the nucleobases, guanine has the lowest redox potential, making it a major target of oxidation. Although RNA is more prone to oxidation than DNA is, oxidation of guanine in RNA has been studied to a significantly lesser extent. One of the reasons for this is that many tools that were previously developed to study oxidation of DNA cannot be used on RNA. In the study presented here, the lack of a method for seeking sites of modification in RNA where oxidation occurs is addressed. For this purpose, reverse transcription of RNA containing major products of guanine oxidation was used. Extension of a DNA primer annealed to an RNA template containing 8-oxo-7,8-dihydroguanine (OG), 5-guanidinohydantoin (Gh), or the R and S diastereomers of spiroiminodihydantoin (Sp) was studied under standing start conditions. SuperScript III reverse transcriptase is capable of bypassing these lesions in RNA inserting predominantly A opposite OG, predominantly G opposite Gh, and almost an equal mixture of A and G opposite the Sp diastereomers. These data should allow RNA sequencing of guanine oxidation products by following characteristic mutation signatures formed by the reverse transcriptase during primer elongation past G oxidation sites in the template RNA strand.
Collapse
Affiliation(s)
- Anton Alenko
- Department of Chemistry, University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Aaron M Fleming
- Department of Chemistry, University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| | - Cynthia J Burrows
- Department of Chemistry, University of Utah , 315 South 1400 East, Salt Lake City, Utah 84112-0850, United States
| |
Collapse
|
140
|
Chang YJ, Tseng CY, Lin PY, Chuang YC, Chao MW. Acute exposure to DEHP metabolite, MEHP cause genotoxicity, mutagenesis and carcinogenicity in mammalian Chinese hamster ovary cells. Carcinogenesis 2017; 38:336-345. [PMID: 28426879 DOI: 10.1093/carcin/bgx009] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 01/15/2017] [Indexed: 12/20/2022] Open
Abstract
Di-(2-ethylhexyl) phthalate (DEHP), the common plasticizer used in the production of polyvinyl chloride, can be converted to the more potent metabolite mono-ethylhexyl phthalate (MEHP). Epidemiological studies have shown an association with elevated induction of rat hepatic cancer and reproductive toxicity in response to MEHP exposure. However, the mechanism of genotoxicity and carcinogenicity induced by MEHP treatment remains unclear. As a means to elucidate the mechanisms of action, lethality and mutagenicity in the adenine phosphoribosyltransferase (aprt+/-) gene induced in several CHO cell types by MEHP were assessed. Dose-response relationships were determined in the parental AA8 cell line, its nucleotide repair-deficient UV5 and base repair-deficient EM9 subclones, and also in AS52 cells harboring the bacterial guanine-hypoxanthine phosphoribosyltransferase (gpt) gene and its derived AS52-XPD-knockdown and AS52-PARP-1-knockdown cells. Treatment of AS52 with MEHP led to intracellular production of reactive oxygen species (ROS) and DNA strand breaks in a dose-dependent manner. Separately, mutations in the gpt gene of AS52 cells were characterized and found to be dominated by G:C to A:T and A:T to G:C transitions. Independent AS52-mutant cell (ASMC) clones were collected for the sequential in vivo xenograft tumorigenic studies, 4 of total 20 clones had aggressive tumor growth. Moreover, microarray analysis indicated miR-let-7a and miR-125b downregulated in ASMC, which might raise oncogenic MYC and RAS level and activate ErbB pathway. Comparative evaluation of the results indicates that the principal mechanism of this mutagenic action is probably to be through generation of ROS, causing base excision damage resulting in carcinogenicity.
Collapse
Affiliation(s)
- Yu-Jung Chang
- Department of Bioscience Technology, College of Science
| | - Chia-Yi Tseng
- Department of Biomedical Engineering, College of Engineering and.,Center of Nanotechnology, Chung Yuan Christian University, Taoyuan 32023, Taiwan
| | - Pei-Ying Lin
- Department of Bioscience Technology, College of Science
| | - Yu-Chen Chuang
- Department of Biomedical Engineering, College of Engineering and
| | - Ming-Wei Chao
- Department of Bioscience Technology, College of Science.,Center of Nanotechnology, Chung Yuan Christian University, Taoyuan 32023, Taiwan
| |
Collapse
|
141
|
Liu P, Wang Q, Niu M, Wang D. Multi-level Quantum Mechanics and Molecular Mechanics Study of Ring Opening Process of Guanine Damage by Hydroxyl Radical in Aqueous Solution. Sci Rep 2017; 7:7798. [PMID: 28798372 PMCID: PMC5552687 DOI: 10.1038/s41598-017-08219-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 07/07/2017] [Indexed: 11/09/2022] Open
Abstract
Combining multi-level quantum mechanics theories and molecular mechanics with an explicit water model, we investigated the ring opening process of guanine damage by hydroxyl radical in aqueous solution. The detailed, atomic-level ring-opening mechanism along the reaction pathway was revealed in aqueous solution at the CCSD(T)/MM levels of theory. The potentials of mean force in aqueous solution were calculated at both the DFT/MM and CCSD(T)/MM levels of the theory. Our study found that the aqueous solution has a significant effect on this reaction in solution. In particular, by comparing the geometries of the stationary points between in gas phase and in aqueous solution, we found that the aqueous solution has a tremendous impact on the torsion angles much more than on the bond lengths and bending angles. Our calculated free-energy barrier height 31.6 kcal/mol at the CCSD(T)/MM level of theory agrees well with the one obtained based on gas-phase reaction profile and free energies of solvation. In addition, the reaction path in gas phase was also mapped using multi-level quantum mechanics theories, which shows a reaction barrier at 19.2 kcal/mol at the CCSD(T) level of theory, agreeing very well with a recent ab initio calculation result at 20.8 kcal/mol.
Collapse
Affiliation(s)
- Peng Liu
- College of Physics and Electronics, Shandong Normal University, Jinan, 250014, China
| | - Qiong Wang
- College of Chemistry, Shandong Normal University, Jinan, 250014, China
| | - Meixing Niu
- College of Physics and Electronics, Shandong Normal University, Jinan, 250014, China
| | - Dunyou Wang
- College of Physics and Electronics, Shandong Normal University, Jinan, 250014, China.
| |
Collapse
|
142
|
Lethality of MalE-LacZ hybrid protein shares mechanistic attributes with oxidative component of antibiotic lethality. Proc Natl Acad Sci U S A 2017; 114:9164-9169. [PMID: 28794281 DOI: 10.1073/pnas.1707466114] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Downstream metabolic events can contribute to the lethality of drugs or agents that interact with a primary cellular target. In bacteria, the production of reactive oxygen species (ROS) has been associated with the lethal effects of a variety of stresses including bactericidal antibiotics, but the relative contribution of this oxidative component to cell death depends on a variety of factors. Experimental evidence has suggested that unresolvable DNA problems caused by incorporation of oxidized nucleotides into nascent DNA followed by incomplete base excision repair contribute to the ROS-dependent component of antibiotic lethality. Expression of the chimeric periplasmic-cytoplasmic MalE-LacZ72-47 protein is an historically important lethal stress originally identified during seminal genetic experiments that defined the SecY-dependent protein translocation system. Multiple, independent lines of evidence presented here indicate that the predominant mechanism for MalE-LacZ lethality shares attributes with the ROS-dependent component of antibiotic lethality. MalE-LacZ lethality requires molecular oxygen, and its expression induces ROS production. The increased susceptibility of mutants sensitive to oxidative stress to MalE-LacZ lethality indicates that ROS contribute causally to cell death rather than simply being produced by dying cells. Observations that support the proposed mechanism of cell death include MalE-LacZ expression being bacteriostatic rather than bactericidal in cells that overexpress MutT, a nucleotide sanitizer that hydrolyzes 8-oxo-dGTP to the monophosphate, or that lack MutM and MutY, DNA glycosylases that process base pairs involving 8-oxo-dGTP. Our studies suggest stress-induced physiological changes that favor this mode of ROS-dependent death.
Collapse
|
143
|
Park G, Park JK, Shin SH, Jeon HJ, Kim NKD, Kim YJ, Shin HT, Lee E, Lee KH, Son DS, Park WY, Park D. Characterization of background noise in capture-based targeted sequencing data. Genome Biol 2017; 18:136. [PMID: 28732520 PMCID: PMC5521083 DOI: 10.1186/s13059-017-1275-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 07/06/2017] [Indexed: 12/31/2022] Open
Abstract
Background Targeted deep sequencing is increasingly used to detect low-allelic fraction variants; it is therefore essential that errors that constitute baseline noise and impose a practical limit on detection are characterized. In the present study, we systematically evaluate the extent to which errors are incurred during specific steps of the capture-based targeted sequencing process. Results We removed most sequencing artifacts by filtering out low-quality bases and then analyze the remaining background noise. By recognizing that plasma DNA is naturally fragmented to be of a size comparable to that of mono-nucleosomal DNA, we were able to identify and characterize errors that are specifically associated with acoustic shearing. Two-thirds of C:G > A:T errors and one quarter of C:G > G:C errors were attributed to the oxidation of guanine during acoustic shearing, and this was further validated by comparative experiments conducted under different shearing conditions. The acoustic shearing step also causes A > G and A > T substitutions localized to the end bases of sheared DNA fragments, indicating a probable association of these errors with DNA breakage. Finally, the hybrid selection step contributes to one-third of the remaining C:G > A:T and one-fifth of the C > T errors. Conclusions The results of this study provide a comprehensive summary of various errors incurred during targeted deep sequencing, and their underlying causes. This information will be invaluable to drive technical improvements in this sequencing method, and may increase the future usage of targeted deep sequencing methods for low-allelic fraction variant detection. Electronic supplementary material The online version of this article (doi:10.1186/s13059-017-1275-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gahee Park
- Samsung Genome Institute, Samsung Medical Center, Seoul, 06351, Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Korea
| | - Joo Kyung Park
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Korea
| | - Seung-Ho Shin
- Samsung Genome Institute, Samsung Medical Center, Seoul, 06351, Korea.,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, 06351, Korea
| | - Hyo-Jeong Jeon
- Samsung Genome Institute, Samsung Medical Center, Seoul, 06351, Korea
| | - Nayoung K D Kim
- Samsung Genome Institute, Samsung Medical Center, Seoul, 06351, Korea
| | - Yeon Jeong Kim
- Samsung Genome Institute, Samsung Medical Center, Seoul, 06351, Korea
| | - Hyun-Tae Shin
- Samsung Genome Institute, Samsung Medical Center, Seoul, 06351, Korea
| | - Eunjin Lee
- Samsung Genome Institute, Samsung Medical Center, Seoul, 06351, Korea
| | - Kwang Hyuck Lee
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Korea.,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, 06351, Korea
| | - Dae-Soon Son
- Samsung Genome Institute, Samsung Medical Center, Seoul, 06351, Korea
| | - Woong-Yang Park
- Samsung Genome Institute, Samsung Medical Center, Seoul, 06351, Korea. .,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul, 06351, Korea. .,Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, Korea.
| | - Donghyun Park
- Samsung Genome Institute, Samsung Medical Center, Seoul, 06351, Korea.
| |
Collapse
|
144
|
Yokogawa D, Arifin. Electrostatic Potential Charge including Spatial Electron Density Distribution (SEDD): Application to Biosystems. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2017. [DOI: 10.1246/bcsj.20170099] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Daisuke Yokogawa
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa-ku, Nagoya 464-8602
| | - Arifin
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa-ku, Nagoya 464-8602
| |
Collapse
|
145
|
Effects of Antioxidant Supplements on the Survival and Differentiation of Stem Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:5032102. [PMID: 28770021 PMCID: PMC5523230 DOI: 10.1155/2017/5032102] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 05/31/2017] [Indexed: 12/13/2022]
Abstract
Although physiological levels of reactive oxygen species (ROS) are required to maintain the self-renewal capacity of stem cells, elevated ROS levels can induce chromosomal aberrations, mitochondrial DNA damage, and defective stem cell differentiation. Over the past decade, several studies have shown that antioxidants can not only mitigate oxidative stress and improve stem cell survival but also affect the potency and differentiation of these cells. Further beneficial effects of antioxidants include increasing genomic stability, improving the adhesion of stem cells to culture media, and enabling researchers to manipulate stem cell proliferation by using different doses of antioxidants. These findings can have several clinical implications, such as improving neurogenesis in patients with stroke and neurodegenerative diseases, as well as improving the regeneration of infarcted myocardial tissue and the banking of spermatogonial stem cells. This article reviews the cellular and molecular effects of antioxidant supplementation to cultured or transplanted stem cells and draws up recommendations for further research in this area.
Collapse
|
146
|
Wang X, Ma Y, Liu J, Yin X, Zhang Z, Wang C, Li Y, Wang H. Reproductive toxicity of β-diketone antibiotic mixtures to zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 141:160-170. [PMID: 28342328 DOI: 10.1016/j.ecoenv.2017.02.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 02/23/2017] [Accepted: 02/24/2017] [Indexed: 05/03/2023]
Abstract
So far, few data are available on the reproductive toxicological assessment of β-diketone antibiotics (DKAs), a class of ubiquitous pseudo-persistent pollutant, in zebrafish (Danio rerio). Herein, we reported the reproductive effects of DKAs by means of transcriptome analysis (F1-zebrafish), changes in a series of reproductive indices (F0-zebrafish) and histopathological observations. A total of 1170, 983 and 1399 genes were found to be differentially expressed when compared control vs. 6.25mg/L, control vs. 12.5mg/L and 6.25 vs. 12.5mg/L DKA-exposure treatments, respectively. Among three comparison groups, 670, 569 and 821 genes were respectively assigned for GO analyses based on matches with sequences of known functions. In 149 KEGG-noted metabolic pathways, the preferential one was the MAPK (mitogen-activated protein kinase) signaling pathway, followed by oxidative phosphorylation, neuroactive ligand-receptor interaction and so on. By qPCR verification, 6 genes (c6ast4, igfbp1b, mrpl42, tnnc2, emc4 and ddit4) showed consistent gene expression with those identified by transcriptome sequencing. Due to DKA-exposure, the concentrations of plasma estradiol and testosterone, and the gonado-somatic index were significantly dose-dependently declined. Also, DKA-exposure led to declining in zebrafish reproductive capacity, reflecting in fertilization, hatchability and egg production. Histopathological observations demonstrated that zebrafish ovary and testis suffered serious damage after DKA-exposure. The 4-oxo-TEMP signals increased obviously with increasing DKA-exposed concentrations, implying disruption of balance between generation and clearance of 1O2. In summary, DKAs not only produce reproductive toxicological effects on F0-zebrafish, but also result in adverse consequences for growth and development of F1-zebrafish.
Collapse
Affiliation(s)
- Xuedong Wang
- Key Lab of Watershed Sciences and Health of Zhejiang Province, Wenzhou Medical University, Wenzhou 325035, China
| | - Yan Ma
- College of Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Jinfeng Liu
- College of Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Xiaohan Yin
- Key Lab of Watershed Sciences and Health of Zhejiang Province, Wenzhou Medical University, Wenzhou 325035, China
| | - Zhiheng Zhang
- College of Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Caihong Wang
- College of Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yanyan Li
- Key Lab of Watershed Sciences and Health of Zhejiang Province, Wenzhou Medical University, Wenzhou 325035, China
| | - Huili Wang
- College of Life Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
147
|
Lee AJ, Wallace SS. Hide and seek: How do DNA glycosylases locate oxidatively damaged DNA bases amidst a sea of undamaged bases? Free Radic Biol Med 2017; 107:170-178. [PMID: 27865982 PMCID: PMC5433924 DOI: 10.1016/j.freeradbiomed.2016.11.024] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 11/11/2016] [Accepted: 11/13/2016] [Indexed: 01/10/2023]
Abstract
The first step of the base excision repair (BER) pathway responsible for removing oxidative DNA damage utilizes DNA glycosylases to find and remove the damaged DNA base. How glycosylases find the damaged base amidst a sea of undamaged bases has long been a question in the BER field. Single molecule total internal reflection fluorescence microscopy (SM TIRFM) experiments have allowed for an exciting look into this search mechanism and have found that DNA glycosylases scan along the DNA backbone in a bidirectional and random fashion. By comparing the search behavior of bacterial glycosylases from different structural families and with varying substrate specificities, it was found that glycosylases search for damage by periodically inserting a wedge residue into the DNA stack as they redundantly search tracks of DNA that are 450-600bp in length. These studies open up a wealth of possibilities for further study in real time of the interactions of DNA glycosylases and other BER enzymes with various DNA substrates.
Collapse
Affiliation(s)
- Andrea J Lee
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, The University of Vermont, 95 Carrigan Drive, Burlington, VT 05405, USA
| | - Susan S Wallace
- Department of Microbiology and Molecular Genetics, The Markey Center for Molecular Genetics, The University of Vermont, 95 Carrigan Drive, Burlington, VT 05405, USA.
| |
Collapse
|
148
|
Cadet J, Davies KJA, Medeiros MH, Di Mascio P, Wagner JR. Formation and repair of oxidatively generated damage in cellular DNA. Free Radic Biol Med 2017; 107:13-34. [PMID: 28057600 PMCID: PMC5457722 DOI: 10.1016/j.freeradbiomed.2016.12.049] [Citation(s) in RCA: 215] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 12/27/2016] [Accepted: 12/31/2016] [Indexed: 12/18/2022]
Abstract
In this review article, emphasis is placed on the critical survey of available data concerning modified nucleobase and 2-deoxyribose products that have been identified in cellular DNA following exposure to a wide variety of oxidizing species and agents including, hydroxyl radical, one-electron oxidants, singlet oxygen, hypochlorous acid and ten-eleven translocation enzymes. In addition, information is provided about the generation of secondary oxidation products of 8-oxo-7,8-dihydroguanine and nucleobase addition products with reactive aldehydes arising from the decomposition of lipid peroxides. It is worth noting that the different classes of oxidatively generated DNA damage that consist of single lesions, intra- and interstrand cross-links were unambiguously assigned and quantitatively detected on the basis of accurate measurements involving in most cases high performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry. The reported data clearly show that the frequency of DNA lesions generated upon severe oxidizing conditions, including exposure to ionizing radiation is low, at best a few modifications per 106 normal bases. Application of accurate analytical measurement methods has also allowed the determination of repair kinetics of several well-defined lesions in cellular DNA that however concerns so far only a restricted number of cases.
Collapse
Affiliation(s)
- Jean Cadet
- Département de médecine nucléaire et radiobiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada J1H 5N4.
| | - Kelvin J A Davies
- Leonard Davis School of Gerontology of the Ethel Percy Andrus Gerontology Center, The University of Southern California, Los Angeles, CA 90089-0191, United States; Division of Molecular & Computational Biology, Department of Biological Sciences of the Dornsife College of Letters, Arts, and Sciences, The University of Southern California, Los Angeles, CA 90089-0191, United States
| | - Marisa Hg Medeiros
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CP 26077, CEP 05508 000 São Paulo, SP, Brazil
| | - Paolo Di Mascio
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, CP 26077, CEP 05508 000 São Paulo, SP, Brazil
| | - J Richard Wagner
- Département de médecine nucléaire et radiobiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada J1H 5N4
| |
Collapse
|
149
|
Seifermann M, Epe B. Oxidatively generated base modifications in DNA: Not only carcinogenic risk factor but also regulatory mark? Free Radic Biol Med 2017; 107:258-265. [PMID: 27871818 DOI: 10.1016/j.freeradbiomed.2016.11.018] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 11/07/2016] [Accepted: 11/08/2016] [Indexed: 02/03/2023]
Abstract
The generation of DNA modifications in cells is in most cases accidental and associated with detrimental consequences such as increased mutation rates and an elevated risk of malignant transformation. Accordingly, repair enzymes involved in the removal of the modifications have primarily a protective function. Among the well-established exceptions of this rule are 5-methylcytosine and uracil, which are generated in DNA enzymatically under controlled conditions and fulfill important regulatory functions in DNA as epigenetic marks and in antibody diversification, respectively. More recently, considerable evidence has been obtained that also 8-oxo-7,8-dihydroguanine (8-oxoG), a frequent pro-mutagenic DNA modification generated by endogenous or exogenous reactive oxygen species (ROS), has distinct roles in the regulation of both transcription and signal transduction. Thus, the activation of transcription by the estrogen receptor, NF-κB, MYC and other transcription factors was shown to depend on the presence of 8-oxoG in the promoter regions and its recognition by the DNA repair glycosylase OGG1. The lysine-specific histone demethylase LSD1, which produces H2O2 as a by-product, was indentified as a local generator of 8-oxoG in some of these cases. In addition, a complex of OGG1 with the excised free substrate base was demonstrated to act as a guanine nucleotide exchange factor (GEF) for small GTPases such as Ras, Rac and Rho, thus stimulating signal transduction. The various findings and intriguing novel mechanisms suggested will be described and compared in this review.
Collapse
Affiliation(s)
- Marco Seifermann
- Institute of Pharmacy and Biochemistry, University of Mainz, Staudingerweg 5, D-55099 Mainz, Germany
| | - Bernd Epe
- Institute of Pharmacy and Biochemistry, University of Mainz, Staudingerweg 5, D-55099 Mainz, Germany.
| |
Collapse
|
150
|
Schuch AP, Moreno NC, Schuch NJ, Menck CFM, Garcia CCM. Sunlight damage to cellular DNA: Focus on oxidatively generated lesions. Free Radic Biol Med 2017; 107:110-124. [PMID: 28109890 DOI: 10.1016/j.freeradbiomed.2017.01.029] [Citation(s) in RCA: 245] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 01/11/2017] [Accepted: 01/17/2017] [Indexed: 12/19/2022]
Abstract
The routine and often unavoidable exposure to solar ultraviolet (UV) radiation makes it one of the most significant environmental DNA-damaging agents to which humans are exposed. Sunlight, specifically UVB and UVA, triggers various types of DNA damage. Although sunlight, mainly UVB, is necessary for the production of vitamin D, which is necessary for human health, DNA damage may have several deleterious consequences, such as cell death, mutagenesis, photoaging and cancer. UVA and UVB photons can be directly absorbed not only by DNA, which results in lesions, but also by the chromophores that are present in skin cells. This process leads to the formation of reactive oxygen species, which may indirectly cause DNA damage. Despite many decades of investigation, the discrimination among the consequences of these different types of lesions is not clear. However, human cells have complex systems to avoid the deleterious effects of the reactive species produced by sunlight. These systems include antioxidants, that protect DNA, and mechanisms of DNA damage repair and tolerance. Genetic defects in these mechanisms that have clear harmful effects in the exposed skin are found in several human syndromes. The best known of these is xeroderma pigmentosum (XP), whose patients are defective in the nucleotide excision repair (NER) and translesion synthesis (TLS) pathways. These patients are mainly affected due to UV-induced pyrimidine dimers, but there is growing evidence that XP cells are also defective in the protection against other types of lesions, including oxidized DNA bases. This raises a question regarding the relative roles of the various forms of sunlight-induced DNA damage on skin carcinogenesis and photoaging. Therefore, knowledge of what occurs in XP patients may still bring important contributions to the understanding of the biological impact of sunlight-induced deleterious effects on the skin cells.
Collapse
Affiliation(s)
- André Passaglia Schuch
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, 97110-970 Santa Maria, RS, Brazil.
| | - Natália Cestari Moreno
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, 05508-000 São Paulo, SP, Brazil.
| | - Natielen Jacques Schuch
- Departamento de Nutrição, Centro Universitário Franciscano, 97010-032 Santa Maria, RS, Brazil.
| | - Carlos Frederico Martins Menck
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, 05508-000 São Paulo, SP, Brazil.
| | - Camila Carrião Machado Garcia
- Núcleo de Pesquisa em Ciências Biológicas & Departamento de Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, 35400-000 Ouro Preto, MG, Brazil.
| |
Collapse
|