101
|
Wiemerslage L, Schultz BJ, Ganguly A, Lee D. Selective degeneration of dopaminergic neurons by MPP(+) and its rescue by D2 autoreceptors in Drosophila primary culture. J Neurochem 2013; 126:529-40. [PMID: 23452092 DOI: 10.1111/jnc.12228] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 01/10/2013] [Accepted: 02/14/2013] [Indexed: 11/29/2022]
Abstract
Drosophila melanogaster is widely used to study genetic factors causing Parkinson's disease (PD) largely because of the use of sophisticated genetic approaches and the presence of a high conservation of gene sequence/function between Drosophila and mammals. However, in Drosophila, little has been done to study the environmental factors which cause over 90% of PD cases. We used Drosophila primary neuronal culture to study degenerative effects of a well-known PD toxin MPP(+) . Dopaminergic (DA) neurons were selectively degenerated by MPP(+) , whereas cholinergic and GABAergic neurons were not affected. This DA neuronal loss was because of post-mitotic degeneration, not by inhibition of DA neuronal differentiation. We also found that MPP(+) -mediated neurodegeneration was rescued by D2 agonists quinpirole and bromocriptine. This rescue was through activation of Drosophila D2 receptor DD2R, as D2 agonists failed to rescue MPP(+) -toxicity in neuronal cultures prepared from both a DD2R deficiency line and a transgenic line pan-neuronally expressing DD2R RNAi. Furthermore, DD2R autoreceptors in DA neurons played a critical role in the rescue. When DD2R RNAi was expressed only in DA neurons, MPP(+) toxicity was not rescued by D2 agonists. Our study also showed that rescue of DA neurodegeneration by Drosophila DD2R activation was mediated through suppression of action potentials in DA neurons.
Collapse
Affiliation(s)
- Lyle Wiemerslage
- Neuroscience Program, Department of Biological Sciences, Ohio University, Athens, Ohio 45701, USA
| | | | | | | |
Collapse
|
102
|
Bajpai P, Sangar MC, Singh S, Tang W, Bansal S, Chowdhury G, Cheng Q, Fang JK, Martin MV, Guengerich FP, Avadhani NG. Metabolism of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine by mitochondrion-targeted cytochrome P450 2D6: implications in Parkinson disease. J Biol Chem 2013; 288:4436-51. [PMID: 23258538 PMCID: PMC3567693 DOI: 10.1074/jbc.m112.402123] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 11/27/2012] [Indexed: 11/06/2022] Open
Abstract
1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is a neurotoxic side product formed in the chemical synthesis of desmethylprodine opioid analgesic, which induces Parkinson disease. Monoamine oxidase B, present in the mitochondrial outer membrane of glial cells, catalyzes the oxidation of MPTP to the toxic 1-methyl-4-phenylpyridinium ion (MPP(+)), which then targets the dopaminergic neurons causing neuronal death. Here, we demonstrate that mitochondrion-targeted human cytochrome P450 2D6 (CYP2D6), supported by mitochondrial adrenodoxin and adrenodoxin reductase, can efficiently catalyze the metabolism of MPTP to MPP(+), as shown with purified enzymes and also in cells expressing mitochondrial CYP2D6. Neuro-2A cells stably expressing predominantly mitochondrion-targeted CYP2D6 were more sensitive to MPTP-mediated mitochondrial respiratory dysfunction and complex I inhibition than cells expressing predominantly endoplasmic reticulum-targeted CYP2D6. Mitochondrial CYP2D6 expressing Neuro-2A cells produced higher levels of reactive oxygen species and showed abnormal mitochondrial structures. MPTP treatment also induced mitochondrial translocation of an autophagic marker, Parkin, and a mitochondrial fission marker, Drp1, in differentiated neurons expressing mitochondrial CYP2D6. MPTP-mediated toxicity in primary dopaminergic neurons was attenuated by CYP2D6 inhibitor, quinidine, and also partly by monoamine oxidase B inhibitors deprenyl and pargyline. These studies show for the first time that dopaminergic neurons expressing mitochondrial CYP2D6 are fully capable of activating the pro-neurotoxin MPTP and inducing neuronal damage, which is effectively prevented by the CYP2D6 inhibitor quinidine.
Collapse
Affiliation(s)
- Prachi Bajpai
- From the Department of Animal Biology and Marie Lowe Center for Comparative Oncology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6046 and
| | - Michelle C. Sangar
- From the Department of Animal Biology and Marie Lowe Center for Comparative Oncology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6046 and
| | - Shilpee Singh
- From the Department of Animal Biology and Marie Lowe Center for Comparative Oncology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6046 and
| | - Weigang Tang
- From the Department of Animal Biology and Marie Lowe Center for Comparative Oncology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6046 and
| | - Seema Bansal
- From the Department of Animal Biology and Marie Lowe Center for Comparative Oncology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6046 and
| | - Goutam Chowdhury
- the Department of Biochemistry and Center in Molecular Toxicology, School of Medicine, Vanderbilt University, Nashville, Tennessee 37232-0146
| | - Qian Cheng
- the Department of Biochemistry and Center in Molecular Toxicology, School of Medicine, Vanderbilt University, Nashville, Tennessee 37232-0146
| | - Ji-Kang Fang
- From the Department of Animal Biology and Marie Lowe Center for Comparative Oncology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6046 and
| | - Martha V. Martin
- the Department of Biochemistry and Center in Molecular Toxicology, School of Medicine, Vanderbilt University, Nashville, Tennessee 37232-0146
| | - F. Peter Guengerich
- the Department of Biochemistry and Center in Molecular Toxicology, School of Medicine, Vanderbilt University, Nashville, Tennessee 37232-0146
| | - Narayan G. Avadhani
- From the Department of Animal Biology and Marie Lowe Center for Comparative Oncology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6046 and
| |
Collapse
|
103
|
Lee KW, Im JY, Woo JM, Grosso H, Kim YS, Cristovao AC, Sonsalla PK, Schuster DS, Jalbut MM, Fernandez JR, Voronkov M, Junn E, Braithwaite SP, Stock JB, Mouradian MM. Neuroprotective and anti-inflammatory properties of a coffee component in the MPTP model of Parkinson's disease. Neurotherapeutics 2013; 10:143-53. [PMID: 23296837 PMCID: PMC3557367 DOI: 10.1007/s13311-012-0165-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Consumption of coffee is associated with reduced risk of Parkinson's disease (PD), an effect that has largely been attributed to caffeine. However, coffee contains numerous components that may also be neuroprotective. One of these compounds is eicosanoyl-5-hydroxytryptamide (EHT), which ameliorates the phenotype of α-synuclein transgenic mice associated with decreased protein aggregation and phosphorylation, improved neuronal integrity and reduced neuroinflammation. Here, we sought to investigate if EHT has an effect in the MPTP model of PD. Mice fed a diet containing EHT for four weeks exhibited dose-dependent preservation of nigral dopaminergic neurons following MPTP challenge compared to animals given control feed. Reductions in striatal dopamine and tyrosine hydroxylase content were also less pronounced with EHT treatment. The neuroinflammatory response to MPTP was markedly attenuated, and indices of oxidative stress and JNK activation were significantly prevented with EHT. In cultured primary microglia and astrocytes, EHT had a direct anti-inflammatory effect demonstrated by repression of lipopolysaccharide-induced NFκB activation, iNOS induction, and nitric oxide production. EHT also exhibited a robust anti-oxidant activity in vitro. Additionally, in SH-SY5Y cells, MPP(+)-induced demethylation of phosphoprotein phosphatase 2A (PP2A), the master regulator of the cellular phosphoregulatory network, and cytotoxicity were ameliorated by EHT. These findings indicate that the neuroprotective effect of EHT against MPTP is through several mechanisms including its anti-inflammatory and antioxidant activities as well as its ability to modulate the methylation and hence activity of PP2A. Our data, therefore, reveal a strong beneficial effect of a novel component of coffee in multiple endpoints relevant to PD.
Collapse
Affiliation(s)
- Kang-Woo Lee
- />Center for Neurodegenerative and Neuroimmunologic Diseases, Department of Neurology, UMDNJ-Robert Wood Johnson Medical School, 683 Hoes Lane West, Room 180, Piscataway, NJ 08854 USA
- />Medical Research Division, Acupuncture, Moxibustion & Meridian Research Group, Korea Institute of Oriental Medicine, Daejeon, South Korea 305-811
| | - Joo-Young Im
- />Center for Neurodegenerative and Neuroimmunologic Diseases, Department of Neurology, UMDNJ-Robert Wood Johnson Medical School, 683 Hoes Lane West, Room 180, Piscataway, NJ 08854 USA
| | - Jong-Min Woo
- />Center for Neurodegenerative and Neuroimmunologic Diseases, Department of Neurology, UMDNJ-Robert Wood Johnson Medical School, 683 Hoes Lane West, Room 180, Piscataway, NJ 08854 USA
| | - Hilary Grosso
- />Center for Neurodegenerative and Neuroimmunologic Diseases, Department of Neurology, UMDNJ-Robert Wood Johnson Medical School, 683 Hoes Lane West, Room 180, Piscataway, NJ 08854 USA
| | - Yoon-Seong Kim
- />Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827 USA
| | - Ana Clara Cristovao
- />Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827 USA
- />Health Sciences Research Center, University of Beira Interior, Covilhã, Portugal
| | - Patricia K. Sonsalla
- />Center for Neurodegenerative and Neuroimmunologic Diseases, Department of Neurology, UMDNJ-Robert Wood Johnson Medical School, 683 Hoes Lane West, Room 180, Piscataway, NJ 08854 USA
| | - David S. Schuster
- />Department of Molecular Biology, Princeton University, Princeton, NJ 08544 USA
| | - Marla M. Jalbut
- />Department of Molecular Biology, Princeton University, Princeton, NJ 08544 USA
| | | | | | - Eunsung Junn
- />Center for Neurodegenerative and Neuroimmunologic Diseases, Department of Neurology, UMDNJ-Robert Wood Johnson Medical School, 683 Hoes Lane West, Room 180, Piscataway, NJ 08854 USA
| | - Steven P. Braithwaite
- />Signum Biosciences, Inc., Monmouth Junction, NJ 08852 USA
- />Circuit Therapeutics, Inc., Menlo Park, CA 94025 USA
| | - Jeffry B. Stock
- />Department of Molecular Biology, Princeton University, Princeton, NJ 08544 USA
- />Signum Biosciences, Inc., Monmouth Junction, NJ 08852 USA
| | - M. Maral Mouradian
- />Center for Neurodegenerative and Neuroimmunologic Diseases, Department of Neurology, UMDNJ-Robert Wood Johnson Medical School, 683 Hoes Lane West, Room 180, Piscataway, NJ 08854 USA
| |
Collapse
|
104
|
Jiang P, Gan M, Ebrahim AS, Castanedes-Casey M, Dickson DW, Yen SHC. Adenosine monophosphate-activated protein kinase overactivation leads to accumulation of α-synuclein oligomers and decrease of neurites. Neurobiol Aging 2012. [PMID: 23200460 DOI: 10.1016/j.neurobiolaging.2012.11.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Neuronal inclusions of α-synuclein (α-syn), termed Lewy bodies, are a hallmark of Parkinson disease (PD). Increased α-syn levels can occur in brains of aging human and neurotoxin-treated mice. Because previous studies have shown increased brain lactate levels in aging brains, in PD affected subjects when compared with age-matched controls, and in mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine(MPTP), we tested the effects of lactate exposure on α-syn in a cell-based study. We demonstrated that (1) lactate treatment led to α-syn accumulation and oligomerization in a time- and concentration-dependent manner; (2) such alterations were mediated via adenosine monophosphate-activated protein kinase (AMPK) and associated with increasing cytoplasmic phosphorylated AMPK levels; (3) AMPK activation facilitated α-syn accumulation and phosphorylation; (4) lactate treatment or overexpression of the active form of AMPK decreased α-syn turnover and neurite outgrowth; and (5) Lewy body-bearing neurons displayed abnormal cytoplasmic distribution of phosphorylated AMPK, which normally is located in nuclei. Together, our results suggest that chronic neuronal accumulation of α-syn induced by lactate-triggered AMPK activation in aging brains might be a novel mechanism underlying α-synucleinopathies in PD and related disorders.
Collapse
Affiliation(s)
- Peizhou Jiang
- Department of Neuroscience, Mayo Clinic College of Medicine, Jacksonville, FL 32224, USA
| | | | | | | | | | | |
Collapse
|
105
|
Li X, Lee J, Parsons D, Janaurajs K, Standaert DG. Evaluation of TorsinA as a target for Parkinson disease therapy in mouse models. PLoS One 2012; 7:e50063. [PMID: 23185535 PMCID: PMC3503809 DOI: 10.1371/journal.pone.0050063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 10/18/2012] [Indexed: 11/19/2022] Open
Abstract
Parkinson disease (PD) is a common and disabling disorder. No current therapy can slow or reverse disease progression. An important aspect of research in this field is target validation, a systematic approach to evaluating the likelihood that modification of a certain molecule, mechanism or biological pathway may be useful for the development of pharmacological or molecular treatments for the disease. TorsinA, a member of the AAA+ family of chaperone proteins, has been proposed as a potential target of neuroprotective therapy. TorsinA is found in Lewy bodies in human PD, and can suppress toxicity in cellular and invertebrate models of PD. Here, we evaluated the neuroprotective properties of torsinA in mouse models of PD based on intoxication with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) as well as recombinant adeno associated virus (rAAV) induced overexpression of alpha-synuclein (α-syn). Using either transgenic mice with overexpression of human torsinA (hWT mice) or mice in which torsinA expression was induced using an rAAV vector, we found no evidence for protection against acute MPTP intoxication. Similarly, genetic deletion of the endogenous mouse gene for torsinA (Dyt1) using an rAAV delivered Cre recombinase did not enhance the vulnerability of dopaminergic neurons to MPTP. Overexpression of α-syn using rAAV in the mouse substantia nigra lead to a loss of TH positive neurons six months after administration, and no difference in the degree of loss was observed between transgenic animals expressing forms of torsinA and wild type controls. Collectively, we did not observe evidence for a protective effect of torsinA in the mouse models we examined. Each of these models has limitations, and there is no single model with established predictive value with respect to the human disease. Nevertheless, these data do seem to support the view that torsinA is unlikely to be successfully translated as a target of therapy for human PD.
Collapse
Affiliation(s)
- Xinru Li
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jenny Lee
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Dee Parsons
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Karen Janaurajs
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - David G. Standaert
- Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, The University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|
106
|
Surmeier DJ, Schumacker PT. Calcium, bioenergetics, and neuronal vulnerability in Parkinson's disease. J Biol Chem 2012; 288:10736-41. [PMID: 23086948 DOI: 10.1074/jbc.r112.410530] [Citation(s) in RCA: 157] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The most distinguishing feature of neurons is their capacity for regenerative electrical activity. This activity imposes a significant mitochondrial burden, especially in neurons that are autonomously active, have broad action potentials, and exhibit prominent Ca(2+) entry. Many of the genetic mutations and toxins associated with Parkinson's disease compromise mitochondrial function, providing a mechanistic explanation for the pattern of neuronal pathology in this disease. Because much of the neuronal mitochondrial burden can be traced to L-type voltage-dependent channels (channels for which there are brain-penetrant antagonists approved for human use), a neuroprotective strategy to reduce this burden is available.
Collapse
Affiliation(s)
- D James Surmeier
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA.
| | | |
Collapse
|
107
|
Gene expression profiles regulated by Hspa1b in MPTP-induced dopaminergic neurotoxicity using knockout mice. Mol Cell Toxicol 2012. [DOI: 10.1007/s13273-012-0034-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
108
|
Pintana H, Apaijai N, Pratchayasakul W, Chattipakorn N, Chattipakorn SC. Effects of metformin on learning and memory behaviors and brain mitochondrial functions in high fat diet induced insulin resistant rats. Life Sci 2012; 91:409-414. [PMID: 22925597 DOI: 10.1016/j.lfs.2012.08.017] [Citation(s) in RCA: 179] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 08/04/2012] [Accepted: 08/08/2012] [Indexed: 11/18/2022]
Abstract
AIM Metformin is a first line drug for the treatment of type 2 diabetes mellitus (T2DM). Our previous study reported that high-fat diet (HFD) consumption caused not only peripheral and neuronal insulin resistance, but also induced brain mitochondrial dysfunction as well as learning impairment. However, the effects of metformin on learning behavior and brain mitochondrial functions in HFD-induced insulin resistant rats have never been investigated. MAIN METHODS Thirty-two male Wistar rats were divided into two groups to receive either a normal diet (ND) or a high-fat diet (HFD) for 12weeks. Then, rats in each group were divided into two treatment groups to receive either vehicle or metformin (15mg/kg BW twice daily) for 21days. All rats were tested for cognitive behaviors using the Morris water maze (MWM) test, and blood samples were collected for the determination of glucose, insulin, and malondialdehyde. At the end of the study, animals were euthanized and the brain was removed for studying brain mitochondrial function and brain oxidative stress. KEY FINDINGS We found that in the HFD group, metformin significantly attenuated the insulin resistant condition by improving metabolic parameters, decreasing peripheral and brain oxidative stress levels, and improving learning behavior, compared to the vehicle-treated group. Furthermore, metformin completely prevented brain mitochondrial dysfunction caused by long-term HFD consumption. SIGNIFICANCE Our findings suggest that metformin effectively improves peripheral insulin sensitivity, prevents brain mitochondrial dysfunction, and completely restores learning behavior, which were all impaired by long-term HFD consumption.
Collapse
Affiliation(s)
- Hiranya Pintana
- Neurophysiology unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai, 50200, Thailand
| | - Nattayaporn Apaijai
- Neurophysiology unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai, 50200, Thailand
| | - Wasana Pratchayasakul
- Neurophysiology unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai, 50200, Thailand
| | - Nipon Chattipakorn
- Neurophysiology unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai, 50200, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai, 50200, Thailand; Department of Oral Biology and Diagnostic Science, Faculty of Dentistry, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
109
|
Thomas B, Banerjee R, Starkova NN, Zhang SF, Calingasan NY, Yang L, Wille E, Lorenzo BJ, Ho DJ, Beal MF, Starkov A. Mitochondrial permeability transition pore component cyclophilin D distinguishes nigrostriatal dopaminergic death paradigms in the MPTP mouse model of Parkinson's disease. Antioxid Redox Signal 2012; 16:855-68. [PMID: 21529244 PMCID: PMC3292750 DOI: 10.1089/ars.2010.3849] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2010] [Revised: 04/21/2011] [Accepted: 04/29/2011] [Indexed: 01/16/2023]
Abstract
AIMS Mitochondrial damage due to Ca(2+) overload-induced opening of permeability transition pores (PTP) is believed to play a role in selective degeneration of nigrostriatal dopaminergic neurons in Parkinson's disease (PD). Genetic ablation of mitochondrial matrix protein cyclophilin D (CYPD) has been shown to increase Ca(2+) threshold of PTP in vitro and to prevent cell death in several in vivo disease models. We investigated the role of CYPD in a mouse model of MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)-induced PD. RESULTS We demonstrate that in vitro, brain mitochondria isolated from CYPD knockout mice were less sensitive to MPP+ (1-methyl-4-phenyl-pyridinium ion)-induced membrane depolarization, and free radical generation compared to wild-type mice. CYPD knockout mitochondria isolated from ventral midbrain of mice treated with MPTP in vivo exhibited less damage as judged from respiratory chain Complex I activity, State 3 respiration rate, and respiratory control index than wild-type mice, whereas assessment of apoptotic markers showed no differences between the two genotypes. However, CYPD knockout mice were significantly resistant only to an acute regimen of MPTP neurotoxicity in contrast to the subacute and chronic MPTP paradigms. INNOVATION Inactivation of CYPD is beneficial in preserving mitochondrial functions only in an acute insult model of MPTP-induced dopaminergic neurotoxicity. CONCLUSION Our results suggest that CYPD deficiency distinguishes the modes of dopaminergic neurodegeneration in various regimens of MPTP-neurotoxicity.
Collapse
Affiliation(s)
- Bobby Thomas
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, New York, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Haque ME, Mount MP, Safarpour F, Abdel-Messih E, Callaghan S, Mazerolle C, Kitada T, Slack RS, Wallace V, Shen J, Anisman H, Park DS. Inactivation of Pink1 gene in vivo sensitizes dopamine-producing neurons to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and can be rescued by autosomal recessive Parkinson disease genes, Parkin or DJ-1. J Biol Chem 2012; 287:23162-70. [PMID: 22511790 DOI: 10.1074/jbc.m112.346437] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mutations in the mitochondrial PTEN-induced kinase 1 (Pink1) gene have been linked to Parkinson disease (PD). Recent reports including our own indicated that ectopic Pink1 expression is protective against toxic insult in vitro, suggesting a potential role for endogenous Pink1 in mediating survival. However, the role of endogenous Pink1 in survival, particularly in vivo, is unclear. To address this critical question, we examined whether down-regulation of Pink1 affects dopaminergic neuron loss following 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in the adult mouse. Two model systems were utilized: virally delivered shRNA-mediated knockdown of Pink1 and germ line-deficient mice. In both instances, loss of Pink1 generated significant sensitivity to damage induced by systemic MPTP treatment. This sensitivity was associated with greater loss of dopaminergic neurons in the Substantia Nigra pars compacta and terminal dopamine fiber density in the striatum region. Importantly, we also show that viral mediated expression of two other recessive PD-linked familial genes, DJ-1 and Parkin, can protect dopaminergic neurons even in the absence of Pink1. This evidence not only provides strong evidence for the role of endogenous Pink1 in neuronal survival, but also supports a role of DJ-1 and Parkin acting parallel or downstream of endogenous Pink1 to mediate survival in a mammalian in vivo context.
Collapse
Affiliation(s)
- M Emdadul Haque
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Selvaraj S, Sun Y, Watt JA, Wang S, Lei S, Birnbaumer L, Singh BB. Neurotoxin-induced ER stress in mouse dopaminergic neurons involves downregulation of TRPC1 and inhibition of AKT/mTOR signaling. J Clin Invest 2012; 122:1354-67. [PMID: 22446186 DOI: 10.1172/jci61332] [Citation(s) in RCA: 189] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Accepted: 01/11/2012] [Indexed: 11/17/2022] Open
Abstract
Individuals with Parkinson's disease (PD) experience a progressive decline in motor function as a result of selective loss of dopaminergic (DA) neurons in the substantia nigra. The mechanism(s) underlying the loss of DA neurons is not known. Here, we show that a neurotoxin that causes a disease that mimics PD upon administration to mice, because it induces the selective loss of DA neurons in the substantia nigra, alters Ca²⁺ homeostasis and induces ER stress. In a human neuroblastoma cell line, we found that endogenous store-operated Ca²⁺ entry (SOCE), which is critical for maintaining ER Ca²⁺ levels, is dependent on transient receptor potential channel 1 (TRPC1) activity. Neurotoxin treatment decreased TRPC1 expression, TRPC1 interaction with the SOCE modulator stromal interaction molecule 1 (STIM1), and Ca²⁺ entry into the cells. Overexpression of functional TRPC1 protected against neurotoxin-induced loss of SOCE, the associated decrease in ER Ca²⁺ levels, and the resultant unfolded protein response (UPR). In contrast, silencing of TRPC1 or STIM1 increased the UPR. Furthermore, Ca²⁺ entry via TRPC1 activated the AKT pathway, which has a known role in neuroprotection. Consistent with these in vitro data, Trpc1⁻/⁻ mice had an increased UPR and a reduced number of DA neurons. Brain lysates of patients with PD also showed an increased UPR and decreased TRPC1 levels. Importantly, overexpression of TRPC1 in mice restored AKT/mTOR signaling and increased DA neuron survival following neurotoxin administration. Overall, these results suggest that TRPC1 is involved in regulating Ca²⁺ homeostasis and inhibiting the UPR and thus contributes to neuronal survival.
Collapse
Affiliation(s)
- Senthil Selvaraj
- Department of Biochemistry and Molecular Biology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, North Dakota 58201, USA
| | | | | | | | | | | | | |
Collapse
|
112
|
|
113
|
Mao P, Meshul CK, Thuillier P, Goldberg NRS, Reddy PH. CART peptide is a potential endogenous antioxidant and preferentially localized in mitochondria. PLoS One 2012; 7:e29343. [PMID: 22235287 PMCID: PMC3250433 DOI: 10.1371/journal.pone.0029343] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 11/25/2011] [Indexed: 12/04/2022] Open
Abstract
The multifunctional neuropeptide Cocaine and Amphetamine Regulated Transcript (CART) is secreted from hypothalamus, pituitary, adrenal gland and pancreas. It also can be found in circulatory system. This feature suggests a general role for CART in different cells. In the present study, we demonstrate that CART protects mitochondrial DNA (mtDNA), cellular proteins and lipids against the oxidative action of hydrogen peroxide, a widely used oxidant. Using cis-parinaric acid as a sensitive reporting probe for peroxidation in membranes, and a lipid-soluble azo initiator of peroxyl radicals, 2,2'-azobis(2,4-dimethylvaleronitrile) we found that CART is an antioxidant. Furthermore, we found that CART localized to mitochondria in cultured cells and mouse brain neuronal cells. More importantly, pretreatment with CART by systemic injection protects against a mouse oxidative stress model, which mimics the main features of Parkinson's disease. Given the unique molecular structure and biological features of CART, we conclude that CART is an antioxidant peptide (or antioxidant hormone). We further propose that it may have strong therapeutic properties for human diseases in which oxidative stress is strongly involved such as Parkinson's disease.
Collapse
Affiliation(s)
- Peizhong Mao
- The Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, Oregon, United States of America.
| | | | | | | | | |
Collapse
|
114
|
Ismaili J, Boisvert M, Longpré F, Carange J, Le Gall C, Martinoli MG, Daoust B. Brassinosteroids and analogs as neuroprotectors: synthesis and structure-activity relationships. Steroids 2012; 77:91-9. [PMID: 22064216 DOI: 10.1016/j.steroids.2011.10.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 10/18/2011] [Accepted: 10/20/2011] [Indexed: 10/15/2022]
Abstract
We have demonstrated previously that the brassinosteroid (BR) 24-epibrassinolide exerts neuroprotective effects deriving from its antioxidative properties. In this study, we synthesized 2 natural BRs and 5 synthetic analogs and analyzed their neuroprotective actions in neuronal PC12 cells, against 1-methyl-4-phenylpyridinium (MPP(+)), a neurotoxin known to induce oxidative stress and degenerescence of dopaminergic neurons characteristic of Parkinsonian brains. We also tested the neuroprotective potential of 2 commercially available BRs. Our results disclosed that 6 of the 9 BRs and analogs tested protected neuronal PC12 cells against MPP(+) toxicity. In addition, our structure-activity study suggests that the steroid B-ring and lateral chain play an important role for their neuroprotective action.
Collapse
Affiliation(s)
- Jihane Ismaili
- Département de Chimie-Biologie, Université du Québec à Trois-Rivières, Trois-Rivières, Québec, Canada
| | | | | | | | | | | | | |
Collapse
|
115
|
Synaptic Protein Alterations in Parkinson’s Disease. Mol Neurobiol 2011; 45:126-43. [DOI: 10.1007/s12035-011-8226-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 12/07/2011] [Indexed: 10/14/2022]
|
116
|
Li XX, He GR, Mu X, Xu B, Tian S, Yu X, Meng FR, Xuan ZH, Du GH. Protective effects of baicalein against rotenone-induced neurotoxicity in PC12 cells and isolated rat brain mitochondria. Eur J Pharmacol 2011; 674:227-33. [PMID: 21996316 DOI: 10.1016/j.ejphar.2011.09.181] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 09/22/2011] [Accepted: 09/24/2011] [Indexed: 12/21/2022]
Abstract
Baicalein is one of the major flavonoids obtained from the Scutellaria root. Previous pharmacological studies found that baicalein had neuroprotective effects in animal models of Parkinson's disease. The purpose of this paper was to explore the molecular mechanism of the action of baicalein on PC12 cells and isolated rat brain mitochondria. Firstly, we investigated the effects of baicalein on rotenone-induced toxicity in PC12 cells. The results showed that baicalein suppressed rotenone-induced apoptosis, and inhibited the accumulation of reactive oxidant species, ATP deficiency, mitochondrial membrane potential dissipation, and caspase-3/7 activation in a concentration-dependent manner, indicating that baicalein likely improved mitochondrial function. Furthermore, we used isolated rat brain mitochondria to evaluate the effect of baicalein. Treatment with baicalein prevented rotenone-induced reactive oxidant species production, ATP deficiency and mitochondrial swelling in isolated brain mitochondria. Interestingly, exposure of isolated mitochondria to baicalein promoted mitochondrial active respiration. These results suggest that baicalein may be a mitochondria-targeted antioxidant and exerts neuroprotective effects on rotenone-induced neurotoxicity. This study supports our previous research that baicalein possesses neuroprotective activity in vivo and it is worthy of further study.
Collapse
Affiliation(s)
- Xiao-xiu Li
- National Center for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Xian Nong Tan Street, Beijing 100050, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Singh M, Murthy V, Ramassamy C. Standardized Extracts of Bacopa monniera Protect Against MPP+- and Paraquat-Induced Toxicity by Modulating Mitochondrial Activities, Proteasomal Functions, and Redox Pathways. Toxicol Sci 2011; 125:219-32. [DOI: 10.1093/toxsci/kfr255] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
118
|
Surmeier DJ, Guzman JN, Sanchez-Padilla J, Schumacker PT. The role of calcium and mitochondrial oxidant stress in the loss of substantia nigra pars compacta dopaminergic neurons in Parkinson's disease. Neuroscience 2011; 198:221-31. [PMID: 21884755 DOI: 10.1016/j.neuroscience.2011.08.045] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 08/17/2011] [Accepted: 08/20/2011] [Indexed: 10/17/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease in developed countries. The core motor symptoms are attributable to the degeneration of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNc). Why these neurons succumb in PD is not clear. One potential clue has come from the observation that the engagement of L-type Ca²⁺ channels during autonomous pacemaking elevates the sensitivity of SNc DA neurons to mitochondrial toxins used to create animal models of PD, suggesting that Ca²⁺ entry is a factor in their selective vulnerability. Recent work has shown that this Ca²⁺ entry also elevates mitochondrial oxidant stress and that this stress is exacerbated by deletion of DJ-1, a gene associated with an early onset, recessive form of PD. Epidemiological data also support a linkage between L-type Ca²⁺ channels and the risk of developing PD. This review examines the hypothesis that the primary factor driving neurodegenerative changes in PD is the metabolic stress created by Ca²⁺ entry, particularly in the face of genetic or environmental factors that compromise oxidative defenses or proteostatic competence.
Collapse
Affiliation(s)
- D J Surmeier
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | | | | | | |
Collapse
|
119
|
Tang XQ, Zhuang YY, Fan LL, Fang HR, Zhou CF, Zhang P, Hu B. Involvement of KATP/PI3K/AKT/Bcl-2 Pathway in Hydrogen Sulfide-induced Neuroprotection Against the Toxicity of 1-methy-4-phenylpyridinium Ion. J Mol Neurosci 2011; 46:442-9. [DOI: 10.1007/s12031-011-9608-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 07/20/2011] [Indexed: 12/21/2022]
|
120
|
Kirches E. Do mtDNA Mutations Participate in the Pathogenesis of Sporadic Parkinson's Disease? Curr Genomics 2011; 10:585-93. [PMID: 20514220 PMCID: PMC2817889 DOI: 10.2174/138920209789503879] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2009] [Revised: 08/14/2009] [Accepted: 08/24/2009] [Indexed: 11/22/2022] Open
Abstract
The pathogenesis of sporadic Parkinson’s disease (PD) remains enigmatic. Mitochondrial complex-I defects are known to occur in the substantia nigra (SN) of PD patients and are also debated in some extracerebral tissues. Early sequencing efforts of the mitochondrial DNA (mtDNA) did not reveal specific mutations, but a long lasting discussion was devoted to the issue of randomly distributed low level point mutations, caused by oxidative stress. However, a potential functional impact remained a matter of speculation, since heteroplasmy (mutational load) at any base position analyzed, remained far below the relevant functional threshold. A clearly age-dependent increase of the ‘common mtDNA deletion’ had been demonstrated in most brain regions by several authors since 1992. However, heteroplasmy did hardly exceed 1% of total mtDNA. It became necessary to exploit PCR techniques, which were able to detect any deletion in a few microdissected dopaminergic neurons of the SN. In 2006, two groups published biochemically relevant loads of somatic mtDNA deletions in these neurons. They seem to accumulate to relevant levels in the SN dopaminergic neurons of aged individuals in general, but faster in those developing PD. It is reasonable to assume that this accumulation causes mitochondrial dysfunction of the SN, although it cannot be taken as a final proof for an early pathogenetic role of this dysfunction. Recent studies demonstrate a distribution of deletion breakpoints, which does not differ between PD, aging and classical mitochondrial disorders, suggesting a common, but yet unknown mechanism.
Collapse
Affiliation(s)
- E Kirches
- Department of Neuropathology, Otto-von-Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany
| |
Collapse
|
121
|
Endogenous Hydrogen Sulfide is Involved in Asymmetric Dimethylarginine-induced Protection Against Neurotoxicity of 1-Methyl-4-phenyl-pyridinium Ion. Neurochem Res 2011; 36:2176-85. [DOI: 10.1007/s11064-011-0542-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2011] [Indexed: 01/21/2023]
|
122
|
Neuroprotective cytokines repress PUMA induction in the 1-methyl-4-phenylpyridinium (MPP(+)) model of Parkinson's disease. Biochem Biophys Res Commun 2011; 411:370-4. [PMID: 21741364 DOI: 10.1016/j.bbrc.2011.06.151] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 06/24/2011] [Indexed: 01/01/2023]
Abstract
The hematopoietic cytokines erythropoietin (Epo) and granulocyte-colony stimulating factor (G-CSF) provide neuroprotection in several in vitro and in vivo models of Parkinson's disease (PD). The molecular mechanism by which Epo and G-CSF signals reduce the neuronal death in PD is not clear. Here, we show that in rat pheochromocytoma PC12 cells, Epo and G-CSF efficiently repressed the 1-methyl-4-phenylpyridinium (MPP(+))-induced expression of the proapoptotic protein PUMA (p53 up-regulated modulator of apoptosis). Accordingly, Epo and G-CSF treatment reduced the PC12 cell fraction that underwent apoptosis by MPP(+) treatment and thus improved cell viability. Downregulation of PUMA expression by Epo and G-CSF in MPP(+)-treated PC12 cells seems to be mediated by repression of p53, as the expression of p53 was increased by MPP(+)-treatment and reduced by Epo and G-CSF. Together, these results suggest that the neuroprotective activities of Epo and G-CSF in an experimental model of PD involve the repression of the apoptosis-inducing action of PUMA.
Collapse
|
123
|
Macgillivray L, Reynolds K, Sickand M, Rosebush P, Mazurek M. Inhibition of the serotonin transporter induces microglial activation and downregulation of dopaminergic neurons in the substantia nigra. Synapse 2011; 65:1166-72. [DOI: 10.1002/syn.20954] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2011] [Accepted: 05/03/2011] [Indexed: 12/13/2022]
|
124
|
24-Epibrassinolide, a Phytosterol from the Brassinosteroid Family, Protects Dopaminergic Cells against MPP-Induced Oxidative Stress and Apoptosis. J Toxicol 2011; 2011:392859. [PMID: 21776258 PMCID: PMC3135132 DOI: 10.1155/2011/392859] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 03/07/2011] [Accepted: 03/28/2011] [Indexed: 12/03/2022] Open
Abstract
Oxidative stress and apoptosis are frequently cited to explain neuronal cell damage in various neurodegenerative disorders, such as Parkinson' s disease. Brassinosteroids (BRs) are phytosterols recognized to promote stress tolerance of vegetables via modulation of the antioxidative enzyme cascade. However, their antioxidative effects on mammalian neuronal cells have never been examined so far.
We analyzed the ability of 24-epibrassinolide (24-Epi), a natural BR, to protect neuronal PC12 cells from 1-methyl-4-phenylpyridinium- (MPP+-) induced oxidative stress and consequent apoptosis in dopaminergic neurons. Our results demonstrate that 24-Epi reduces the levels of intracellular reactive oxygen species and modulates superoxide dismutase, catalase, and glutathione peroxidase activities. Finally, we determined that the antioxidative properties of 24-Epi lead to the inhibition of MPP+-induced apoptosis by reducing DNA fragmentation as well as the Bax/Bcl-2 protein ratio and cleaved caspase-3. This is the first time that the potent antioxidant and neuroprotective role of 24-Epi has been shown in a mammalian neuronal cell line.
Collapse
|
125
|
Chi Y, Fan Y, He L, Liu W, Wen X, Zhou S, Wang X, Zhang C, Kong H, Sonoda L, Tripathi P, Li CJ, Yu MS, Su C, Hu G. Novel role of aquaporin-4 in CD4+ CD25+ T regulatory cell development and severity of Parkinson's disease. Aging Cell 2011; 10:368-82. [PMID: 21255222 DOI: 10.1111/j.1474-9726.2011.00677.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Aquaporin-4 (AQP4) is highly expressed in mammalian brains and is involved in the pathophysiology of cerebral disorders, including stroke, tumors, infections, hydrocephalus, epilepsy, and traumatic brain injury. We found that AQP4-deficient mice were hypersensitive to stimulations such as 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or lipopolysaccharide compared to wild-type (WT) littermates. In a mouse model of MPTP-induced Parkinson's disease (PD), AQP4-deficient animals show more robust microglial inflammatory responses and more severe loss of dopaminergic neurons (DNs) compared with WT mice. However, a few studies have investigated the association of abnormal AQP4 levels with immune dysfunction. Here, for the first time, we report AQP4 expression in mouse thymus, spleen, and lymph nodes. Furthermore, the significantly lower numbers of CD4(+) CD25(+) regulatory T cells in AQP4-deficient mice compared to WT mice, perhaps resulting from impaired thymic generation, may be responsible for the uncontrolled microglial inflammatory responses and subsequent severe loss of DNs in the substantia nigra pars compacta in the MPTP-induced PD model. These novel findings suggest that AQP4 deficiency may disrupt immunosuppressive regulators, resulting in hyperactive immune responses and potentially contributing to the increased severity of PD or other immune-associated diseases.
Collapse
Affiliation(s)
- Ying Chi
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Pathogen Biology, Nanjing Medical University, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Srinivasan V, Spence DW, Pandi-Perumal SR, Brown GM, Cardinali DP. Melatonin in mitochondrial dysfunction and related disorders. Int J Alzheimers Dis 2011; 2011:326320. [PMID: 21629741 PMCID: PMC3100547 DOI: 10.4061/2011/326320] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2010] [Accepted: 03/02/2011] [Indexed: 12/15/2022] Open
Abstract
Mitochondrial dysfunction is considered one of the major causative factors in the aging process, ischemia/reperfusion (I/R), septic shock, and neurodegenerative disorders like Parkinson's disease (PD), Alzheimer's disease (AD), and Huntington's disease (HD). Increased free radical generation, enhanced mitochondrial inducible nitric oxide (NO) synthase activity, enhanced NO production, decreased respiratory complex activity, impaired electron transport system, and opening of mitochondrial permeability transition pore all have been suggested as factors responsible for impaired mitochondrial function. Melatonin, the major hormone of the pineal gland, also acts as an antioxidant and as a regulator of mitochondrial bioenergetic function. Both in vitro and in vivo, melatonin was effective for preventing oxidative stress/nitrosative stress-induced mitochondrial dysfunction seen in experimental models of PD, AD, and HD. In addition, melatonin is known to retard aging and to inhibit the lethal effects of septic shock or I/R lesions by maintaining respiratory complex activities, electron transport chain, and ATP production in mitochondria. Melatonin is selectively taken up by mitochondrial membranes, a function not shared by other antioxidants. Melatonin has thus emerged as a major potential therapeutic tool for treating neurodegenerative disorders such as PD or AD, and for preventing the lethal effects of septic shock or I/R.
Collapse
Affiliation(s)
- Venkatramanujam Srinivasan
- Sri Sathya Sai Medical, Educational and Research Foundation, Prashanthi Nilayam 40, Kovai Thirunagar Coimbatore 641014, India
| | | | | | - Gregory M. Brown
- Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, Canada M5T 1R8
| | - Daniel P. Cardinali
- Departamento de Docencia e Investigación, Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina, Avenida Alicia Moreau de Justo 1500, 4 Piso, 1107 Buenos Aires, Argentina
- Departamento de Fisiologia, Facultad de Medicina, Universidad de Buenos Aires, 1121 Buenos Aires, Argentina
| |
Collapse
|
127
|
Fujita K, Nakabeppu Y, Noda M. Therapeutic effects of hydrogen in animal models of Parkinson's disease. PARKINSONS DISEASE 2011; 2011:307875. [PMID: 21687749 PMCID: PMC3109337 DOI: 10.4061/2011/307875] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 01/05/2011] [Accepted: 03/14/2011] [Indexed: 11/20/2022]
Abstract
Since the first description of Parkinson's disease (PD) nearly two centuries ago, a number of studies have revealed the clinical symptoms, pathology, and therapeutic approaches to overcome this intractable neurodegenerative disease. 1-methy-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and 6-hydroxydopamine (6-OHDA) are neurotoxins which produce Parkinsonian pathology. From the animal studies using these neurotoxins, it has become well established that oxidative stress is a primary cause of, and essential for, cellular apoptosis in dopaminergic neurons. Here, we describe the mechanism whereby oxidative stress evokes irreversible cell death, and propose a novel therapeutic strategy for PD using molecular hydrogen. Hydrogen has an ability to reduce oxidative damage and ameliorate the loss of nigrostriatal dopaminergic neuronal pathway in two experimental animal models. Thus, it is strongly suggested that hydrogen might provide a great advantage to prevent or minimize the onset and progression of PD.
Collapse
Affiliation(s)
- Kyota Fujita
- Laboratory of Pathophysiology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Fukuoka 812-8582, Japan
| | | | | |
Collapse
|
128
|
Ilijic E, Guzman JN, Surmeier DJ. The L-type channel antagonist isradipine is neuroprotective in a mouse model of Parkinson's disease. Neurobiol Dis 2011; 43:364-71. [PMID: 21515375 DOI: 10.1016/j.nbd.2011.04.007] [Citation(s) in RCA: 187] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 03/26/2011] [Accepted: 04/07/2011] [Indexed: 12/31/2022] Open
Abstract
The motor symptoms of Parkinson's disease (PD) are due to the progressive loss of dopamine (DA) neurons in substantia nigra pars compacta (SNc). Nothing is known to slow the progression of the disease, making the identification of potential neuroprotective agents of great clinical importance. Previous studies using the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of PD have shown that antagonism of L-type Ca2+ channels protects SNc DA neurons. However, this was not true in a 6-hydroxydopamine (6-OHDA) model. One potential explanation for this discrepancy is that protection in the 6-OHDA model requires greater antagonism of Cav1.3 L-type Ca2+ channels thought to underlie vulnerability and this was not achievable with the low affinity dihydropyridine (DHP) antagonist used. To test this hypothesis, the DHP with the highest affinity for Cav1.3L-type channels-isradipine-was systemically administered and then the DA toxin 6-OHDA injected intrastriatally. Twenty-five days later, neuroprotection and plasma concentration of isradipine were determined. This analysis revealed that isradipine produced a dose-dependent sparing of DA fibers and cell bodies at concentrations achievable in humans, suggesting that isradipine is a potentially viable neuroprotective agent for PD.
Collapse
Affiliation(s)
- E Ilijic
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | |
Collapse
|
129
|
Surmeier DJ, Guzman JN, Sanchez-Padilla J, Goldberg JA. The origins of oxidant stress in Parkinson's disease and therapeutic strategies. Antioxid Redox Signal 2011; 14:1289-301. [PMID: 20712409 PMCID: PMC3048813 DOI: 10.1089/ars.2010.3521] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is a major world-wide health problem afflicting millions of the aged population. Factors that act on most or all cell types (pan-cellular factors), particularly genetic mutations and environmental toxins, have dominated public discussions of disease etiology. Although there is compelling evidence supporting an association between disease risk and these factors, the pattern of neuronal pathology and cell loss is difficult to explain without cell-specific factors. This article focuses on recent studies showing that the neurons at greatest risk in PD-substantia nigra pars compacta dopamine neurons-have a distinctive physiological phenotype that could contribute to their vulnerability. The opening of L-type calcium channels during autonomous pacemaking results in sustained calcium entry into the cytoplasm of substantia nigra pars compacta dopamine neurons, resulting in elevated mitochondrial oxidant stress and susceptibility to toxins used to create animal models of PD. This cell-specific stress could increase the negative consequences of pan-cellular factors that broadly challenge either mitochondrial or proteostatic competence. The availability of well-tolerated, orally deliverable antagonists for L-type calcium channels points to a novel neuroprotective strategy that could complement current attempts to boost mitochondrial function in the early stages of the disease.
Collapse
Affiliation(s)
- Dalton James Surmeier
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | | | | | | |
Collapse
|
130
|
Protective effects of synthetic kynurenines on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism in mice. Brain Res Bull 2011; 85:133-40. [PMID: 21419832 DOI: 10.1016/j.brainresbull.2011.03.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 03/07/2011] [Accepted: 03/09/2011] [Indexed: 10/18/2022]
Abstract
Mitochondrial complex I inhibition is thought to underlie the neurodegenerative process in Parkinson's disease (PD). Moreover, an overproduction of nitric oxide due to both cytosolic (iNOS) and mitochondrial (i-mtNOS) inducible nitric oxide synthases causes free radicals generation and oxidative/nitrosative stress, contributing to mitochondrial dysfunction and neuronal cell death. Looking for active molecules against mitochondrial dysfunction and inflammatory response in PD, we show here the effects of four synthetic kynurenines in the MPTP model of PD in mice. After MPTP administration, mitochondria from substantia nigra and, in a lesser extent, from striatum showed a significant increase in i-mtNOS activity, nitric oxide production, oxidative stress, and complex I inhibition. The four kynurenines assayed counteracted the effects of MPTP, reducing iNOS/i-mtNOS activity, and restoring the activity of the complex I. Consequently, the cytosolic and mitochondrial oxidative/nitrosative stress returned to control values. The results suggest that the kynurenines here reported represent a family of synthetic compounds with neuroprotective properties against PD, and that they can serve as templates for the design of new drugs able to target the mitochondria.
Collapse
|
131
|
Keane PC, Kurzawa M, Blain PG, Morris CM. Mitochondrial dysfunction in Parkinson's disease. PARKINSONS DISEASE 2011; 2011:716871. [PMID: 21461368 PMCID: PMC3065167 DOI: 10.4061/2011/716871] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 01/03/2011] [Accepted: 01/16/2011] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is a progressive, neurodegenerative condition that has increasingly been linked with mitochondrial dysfunction and inhibition of the electron transport chain. This inhibition leads to the generation of reactive oxygen species and depletion of cellular energy levels, which can consequently cause cellular damage and death mediated by oxidative stress and excitotoxicity. A number of genes that have been shown to have links with inherited forms of PD encode mitochondrial proteins or proteins implicated in mitochondrial dysfunction, supporting the central involvement of mitochondria in PD. This involvement is corroborated by reports that environmental toxins that inhibit the mitochondrial respiratory chain have been shown to be associated with PD.
This paper aims to illustrate the considerable body of evidence linking mitochondrial dysfunction with neuronal cell death in the substantia nigra pars compacta (SNpc) of PD patients and to highlight the important need for further research in this area.
Collapse
Affiliation(s)
- P C Keane
- Medical Toxicology Centre, Wolfson Unit, Newcastle University, Claremont Place, Newcastle upon Tyne NE2 4AA, UK
| | | | | | | |
Collapse
|
132
|
Kim IS, Koppula S, Kim BW, Song MD, Jung JY, Lee G, Lee HS, Choi DK. A novel synthetic compound PHID (8-Phenyl-6a, 7, 8, 9, 9a, 10-hexahydro-6H-isoindolo [5, 6-g] quinoxaline-7, 9-dione) protects SH-SY5Y cells against MPP+-induced cytotoxicity through inhibition of reactive oxygen species generation and JNK signaling. Eur J Pharmacol 2011; 650:48-57. [DOI: 10.1016/j.ejphar.2010.09.063] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 09/17/2010] [Accepted: 09/20/2010] [Indexed: 01/31/2023]
|
133
|
Trancikova A, Ramonet D, Moore DJ. Genetic Mouse Models of Neurodegenerative Diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 100:419-82. [DOI: 10.1016/b978-0-12-384878-9.00012-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
134
|
Neuroprotective profile of the multitarget drug rasagiline in Parkinson's disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2011; 100:127-49. [DOI: 10.1016/b978-0-12-386467-3.00007-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
135
|
Mounsey RB, Teismann P. Mitochondrial dysfunction in Parkinson's disease: pathogenesis and neuroprotection. PARKINSONS DISEASE 2010; 2011:617472. [PMID: 21234411 PMCID: PMC3014704 DOI: 10.4061/2011/617472] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Accepted: 11/30/2010] [Indexed: 12/13/2022]
Abstract
Mitochondria are vitally important organelles involved in an array of functions. The most notable is their prominent role in energy metabolism, where they generate over 90% of our cellular energy in the form of ATP through oxidative phosphorylation. Mitochondria are involved in various other processes including the regulation of calcium homeostasis and stress response. Mitochondrial complex I impairment and subsequent oxidative stress have been identified as modulators of cell death in experimental models of Parkinson's disease (PD). Identification of specific genes which are involved in the rare familial forms of PD has further augmented the understanding and elevated the role mitochondrial dysfunction is thought to have in disease pathogenesis. This paper provides a review of the role mitochondria may play in idiopathic PD through the study of experimental models and how genetic mutations influence mitochondrial activity. Recent attempts at providing neuroprotection by targeting mitochondria are described and their progress assessed.
Collapse
Affiliation(s)
- Ross B Mounsey
- School of Medical Sciences, College of Life Sciences and Medicine, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
| | | |
Collapse
|
136
|
Barber-Singh J, Seo BB, Matsuno-Yagi A, Yagi T. Protective Role of rAAV-NDI1, Serotype 5, in an Acute MPTP Mouse Parkinson's Model. PARKINSONS DISEASE 2010; 2011:438370. [PMID: 21188192 PMCID: PMC3005838 DOI: 10.4061/2011/438370] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 10/22/2010] [Indexed: 01/19/2023]
Abstract
Defects in mitochondrial proton-translocating NADH-quinone oxidoreductase (complex I) have been implicated in a number of acquired and hereditary diseases including Leigh's syndrome and more recently Parkinson's disease. A limited number of strategies have been attempted to repair the damaged complex I with little or no success. We have recently shown that the non-proton-pumping, internal NADH-ubiquinone oxidoreductase (Ndi1) from Saccharomyces cerevisiae (baker's yeast) can be successfully inserted into the mitochondria of mice and rats, and the enzyme was found to be fully active. Using recombinant adenoassociated virus vectors (serotype 5) carrying our NDI1 gene, we were able to express the Ndi1 protein in the substantia nigra (SN) of C57BL/6 mice with an expression period of two months. The results show that the AAV serotype 5 was highly efficient in expressing Ndi1 in the SN, when compared to a previous model using serotype 2, which led to nearly 100% protection when using an acute MPTP model. It is conceivable that the AAV-serotype5 carrying the NDI1 gene is a powerful tool for proof-of-concept study to demonstrate complex I defects as the causable factor in diseases of the brain.
Collapse
Affiliation(s)
- Jennifer Barber-Singh
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, MEM256, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
137
|
Sriram K, Lin GX, Jefferson AM, Roberts JR, Wirth O, Hayashi Y, Krajnak KM, Soukup JM, Ghio AJ, Reynolds SH, Castranova V, Munson AE, Antonini JM. Mitochondrial dysfunction and loss of Parkinson's disease‐linked proteins contribute to neurotoxicity of manganese‐containing welding fumes. FASEB J 2010. [DOI: 10.1096/fj.10.163964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Krishnan Sriram
- Health Effects Laboratory, National Institute for Occupational Safety and Health Morgantown West Virginia USA
| | - Gary X. Lin
- Health Effects Laboratory, National Institute for Occupational Safety and Health Morgantown West Virginia USA
| | - Amy M. Jefferson
- Health Effects Laboratory, National Institute for Occupational Safety and Health Morgantown West Virginia USA
| | - Jenny R. Roberts
- Health Effects Laboratory, National Institute for Occupational Safety and Health Morgantown West Virginia USA
| | - Oliver Wirth
- Health Effects Laboratory, National Institute for Occupational Safety and Health Morgantown West Virginia USA
| | - Yusuke Hayashi
- Health Effects Laboratory, National Institute for Occupational Safety and Health Morgantown West Virginia USA
| | - Kristine M. Krajnak
- Health Effects Laboratory, National Institute for Occupational Safety and Health Morgantown West Virginia USA
| | - Joleen M. Soukup
- National Health and Environmental Effects Research LaboratoryU.S. Environmental Protection Agency, Research Triangle Park North Carolina USA
| | - Andrew J. Ghio
- National Health and Environmental Effects Research LaboratoryU.S. Environmental Protection Agency, Research Triangle Park North Carolina USA
| | - Steven H. Reynolds
- Health Effects Laboratory, National Institute for Occupational Safety and Health Morgantown West Virginia USA
| | - Vincent Castranova
- Health Effects Laboratory, National Institute for Occupational Safety and Health Morgantown West Virginia USA
| | - Albert E. Munson
- Health Effects Laboratory, National Institute for Occupational Safety and Health Morgantown West Virginia USA
| | - James M. Antonini
- Health Effects Laboratory, National Institute for Occupational Safety and Health Morgantown West Virginia USA
| |
Collapse
|
138
|
Rasagiline: A novel anti-Parkinsonian monoamine oxidase-B inhibitor with neuroprotective activity. Prog Neurobiol 2010; 92:330-44. [DOI: 10.1016/j.pneurobio.2010.06.008] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 06/10/2010] [Accepted: 06/14/2010] [Indexed: 11/17/2022]
|
139
|
Proanthocyanidin-rich fraction from Croton celtidifolius Baill confers neuroprotection in the intranasal 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine rat model of Parkinson's disease. J Neural Transm (Vienna) 2010; 117:1337-51. [PMID: 20931248 DOI: 10.1007/s00702-010-0464-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Accepted: 08/16/2010] [Indexed: 12/27/2022]
Abstract
We have recently demonstrated that rodents treated intranasally with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) suffered impairments in olfactory, cognitive and motor functions associated with time-dependent disruption of dopaminergic neurotransmission in different brain structures conceivably analogous to those observed during different stages of Parkinson's disease (PD). On the other hand, the proanthocyanidin-rich fraction (PRF) obtained from the bark of Croton celtidifolius Baill (Euphorbiaceae), a tree frequently found in the Atlantic forest in south Brazil, has been described to have several neurobiological activities including antioxidant and anti-inflammatory properties, which may be of interest in the treatment of PD. The present data indicated that the pretreatment with PRF (10 mg/kg, i.p.) during five consecutive days was able to prevent mitochondrial complex-I inhibition in the striatum and olfactory bulb, as well as a decrease of the enzyme tyrosine hydroxylase expression in the olfactory bulb and substantia nigra of rats infused with a single intranasal administration of MPTP (1 mg/nostril). Moreover, pretreatment with PRF was found to attenuate the short-term social memory deficits, depressive-like behavior and reduction of locomotor activity observed at different periods after intranasal MPTP administration in rats. Altogether, the present findings provide strong evidence that PRF from C. celtidifolius may represent a promising therapeutic tool in PD, thus being able to prevent both motor and non-motor early symptoms of PD, together with its neuroprotective potential.
Collapse
|
140
|
Zheng B, Liao Z, Locascio JJ, Lesniak KA, Roderick SS, Watt ML, Eklund AC, Zhang-James Y, Kim PD, Hauser MA, Grünblatt E, Moran LB, Mandel SA, Riederer P, Miller RM, Federoff HJ, Wüllner U, Papapetropoulos S, Youdim MB, Cantuti-Castelvetri I, Young AB, Vance JM, Davis RL, Hedreen JC, Adler CH, Beach TG, Graeber MB, Middleton FA, Rochet JC, Scherzer CR. PGC-1α, a potential therapeutic target for early intervention in Parkinson's disease. Sci Transl Med 2010; 2:52ra73. [PMID: 20926834 PMCID: PMC3129986 DOI: 10.1126/scitranslmed.3001059] [Citation(s) in RCA: 627] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Parkinson's disease affects 5 million people worldwide, but the molecular mechanisms underlying its pathogenesis are still unclear. Here, we report a genome-wide meta-analysis of gene sets (groups of genes that encode the same biological pathway or process) in 410 samples from patients with symptomatic Parkinson's and subclinical disease and healthy controls. We analyzed 6.8 million raw data points from nine genome-wide expression studies, and 185 laser-captured human dopaminergic neuron and substantia nigra transcriptomes, followed by two-stage replication on three platforms. We found 10 gene sets with previously unknown associations with Parkinson's disease. These gene sets pinpoint defects in mitochondrial electron transport, glucose utilization, and glucose sensing and reveal that they occur early in disease pathogenesis. Genes controlling cellular bioenergetics that are expressed in response to peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) are underexpressed in Parkinson's disease patients. Activation of PGC-1α results in increased expression of nuclear-encoded subunits of the mitochondrial respiratory chain and blocks the dopaminergic neuron loss induced by mutant α-synuclein or the pesticide rotenone in cellular disease models. Our systems biology analysis of Parkinson's disease identifies PGC-1α as a potential therapeutic target for early intervention.
Collapse
Affiliation(s)
- Bin Zheng
- Laboratory for Neurogenomics, Center for Neurologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, 65 Landsdowne Street, Suite 307A, Cambridge, MA 02139, USA
| | - Zhixiang Liao
- Laboratory for Neurogenomics, Center for Neurologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, 65 Landsdowne Street, Suite 307A, Cambridge, MA 02139, USA
| | - Joseph J. Locascio
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Kristen A. Lesniak
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Sarah S. Roderick
- Laboratory for Neurogenomics, Center for Neurologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, 65 Landsdowne Street, Suite 307A, Cambridge, MA 02139, USA
| | - Marla L. Watt
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Aron C. Eklund
- Laboratory for Neurogenomics, Center for Neurologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, 65 Landsdowne Street, Suite 307A, Cambridge, MA 02139, USA
- Center for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Yanli Zhang-James
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Peter D. Kim
- Department of Neurosurgery, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | | | - Edna Grünblatt
- Clinical Neurochemistry, National Parkinson Foundation Centre of Excellence Research Laboratory, University of Würzburg, 97070 Würzburg, Germany
| | | | - Silvia A. Mandel
- Eve Topf and National Parkinson Foundation Centers of Excellence for Neurodegenerative Diseases, Technion-Faculty of Medicine, Haifa 31096, Israel
| | - Peter Riederer
- Clinical Neurochemistry, National Parkinson Foundation Centre of Excellence Research Laboratory, University of Würzburg, 97070 Würzburg, Germany
| | - Renee M. Miller
- Center for Neural Development and Disease, University of Rochester, Rochester, NY 14620, USA
| | - Howard J. Federoff
- Department of Neurology, Georgetown University Medical Center, Washington, DC 20007, USA
| | - Ullrich Wüllner
- Department of Neurology, Friedrich-Wilhelms-University Bonn, UKB, 53105 Bonn, Germany
| | - Spyridon Papapetropoulos
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
- Allergan, Irvine, CA 92623-9534, USA
| | - Moussa B. Youdim
- Eve Topf and National Parkinson Foundation Centers of Excellence for Neurodegenerative Diseases, Technion-Faculty of Medicine, Haifa 31096, Israel
- Department of Biology, Yonsei World Central University, Department of Biology, Seoul 120-749, South Korea
| | | | - Anne B. Young
- Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jeffery M. Vance
- Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | - Richard L. Davis
- Department of Pathology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - John C. Hedreen
- Harvard Brain Tissue Resource Center, Department of Psychiatry, McLean Hospital, Belmont, MA 02478, USA
| | - Charles H. Adler
- Mayo Division of Movement Disorders, Mayo Clinic Arizona, Scottsdale, AZ 85259, USA
| | - Thomas G. Beach
- W. H. Civin Laboratory of Neuropathology, Sun Health Research Institute, Sun City, AZ 85259, USA
| | - Manuel B. Graeber
- The Brain & Mind Research Institute, University of Sydney, Sydney, NSW 2050, Australia
| | - Frank A. Middleton
- Department of Pathology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Jean-Christophe Rochet
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Clemens R. Scherzer
- Laboratory for Neurogenomics, Center for Neurologic Diseases, Harvard Medical School and Brigham and Women’s Hospital, 65 Landsdowne Street, Suite 307A, Cambridge, MA 02139, USA
- Harvard NeuroDiscovery Center Biomarker Program, Cambridge, MA 02139, USA
| | | |
Collapse
|
141
|
Lull ME, Block ML. Microglial activation and chronic neurodegeneration. Neurotherapeutics 2010; 7:354-65. [PMID: 20880500 PMCID: PMC2951017 DOI: 10.1016/j.nurt.2010.05.014] [Citation(s) in RCA: 696] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 05/05/2010] [Accepted: 05/19/2010] [Indexed: 12/14/2022] Open
Abstract
Microglia, the resident innate immune cells in the brain, have long been implicated in the pathology of neurodegenerative diseases. Accumulating evidence points to activated microglia as a chronic source of multiple neurotoxic factors, including tumor necrosis factor-α, nitric oxide, interleukin-1β, and reactive oxygen species (ROS), driving progressive neuron damage. Microglia can become chronically activated by either a single stimulus (e.g., lipopolysaccharide or neuron damage) or multiple stimuli exposures to result in cumulative neuronal loss with time. Although the mechanisms driving these phenomena are just beginning to be understood, reactive microgliosis (the microglial response to neuron damage) and ROS have been implicated as key mechanisms of chronic and neurotoxic microglial activation, particularly in the case of Parkinson's disease. We review the mechanisms of neurotoxicity associated with chronic microglial activation and discuss the role of neuronal death and microglial ROS driving the chronic and toxic microglial phenotype.
Collapse
Affiliation(s)
- Melinda E. Lull
- grid.224260.00000000404588737Department of Anatomy and Neurobiology, Virginia Commonwealth University Medical Campus, Sanger Hall, Room 9-048, 1101 E. Marshall St., Box 980709, 23298-0709 Richmond, VA
| | - Michelle L. Block
- grid.224260.00000000404588737Department of Anatomy and Neurobiology, Virginia Commonwealth University Medical Campus, Sanger Hall, Room 9-048, 1101 E. Marshall St., Box 980709, 23298-0709 Richmond, VA
| |
Collapse
|
142
|
Chinta SJ, Andersen JK. Nitrosylation and nitration of mitochondrial complex I in Parkinson's disease. Free Radic Res 2010; 45:53-8. [PMID: 20815786 DOI: 10.3109/10715762.2010.509398] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Impairment of the mitochondrial electron transport chain has been suggested to be a critical factor in the neuropathogenesis of Parkinson's disease (PD), as inhibition of mitochondrial complex I (CI) activity is consistently detected in PD patients as well as in mitochondrial toxin models of the disorder. Increased levels of various reactive oxygen and nitrogen species appear to contribute to CI inhibition and mitochondrial dysfunction in PD. Reactive nitrogen species (RNS) such as nitric oxide (NO) and its metabolite peroxynitrite (PN) may inhibit CI activity via several different mechanisms including S-nitrosylation, nitration, and protein thiol formation. Studies using various cell and animal PD models have demonstrated that selective mitochondrial CI inhibition in dopaminergic cells may be due to both NO-mediated S-nitrosylation and nitration of CI sub-units. Strategies to modulate mitochondrial NO levels will therefore likely be a promising approach to enhance mitochondrial function and protect dopaminergic neurons against oxidative or nitrosative insult.
Collapse
Affiliation(s)
- Shankar J Chinta
- Buck Institute for Age Research, 8001 Redwood Blvd, Novato, CA 94945, USA
| | | |
Collapse
|
143
|
Sriram K, Lin GX, Jefferson AM, Roberts JR, Wirth O, Hayashi Y, Krajnak KM, Soukup JM, Ghio AJ, Reynolds SH, Castranova V, Munson AE, Antonini JM. Mitochondrial dysfunction and loss of Parkinson's disease-linked proteins contribute to neurotoxicity of manganese-containing welding fumes. FASEB J 2010; 24:4989-5002. [PMID: 20798247 DOI: 10.1096/fj.10-163964] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Welding generates complex metal aerosols, inhalation of which is linked to adverse health effects among welders. An important health concern of welding fume (WF) exposure is neurological dysfunction akin to Parkinson's disease (PD), thought to be mediated by manganese (Mn) in the fumes. Also, there is a proposition that welding might accelerate the onset of PD. Our recent findings link the presence of Mn in the WF with dopaminergic neurotoxicity seen in rats exposed to manual metal arc-hard surfacing (MMA-HS) or gas metal arc-mild steel (GMA-MS) fumes. To elucidate the molecular mechanisms further, we investigated the association of PD-linked (Park) genes and mitochondrial function in causing dopaminergic abnormality. Repeated instillations of the two fumes at doses that mimic ∼1 to 5 yr of worker exposure resulted in selective brain accumulation of Mn. This accumulation caused impairment of mitochondrial function and loss of tyrosine hydroxylase (TH) protein, indicative of dopaminergic injury. A fascinating finding was the altered expression of Parkin (Park2), Uchl1 (Park5), and Dj1 (Park7) proteins in dopaminergic brain areas. A similar regimen of manganese chloride (MnCl(2)) also caused extensive loss of striatal TH, mitochondrial electron transport components, and Park proteins. As mutations in PARK genes have been linked to early-onset PD in humans, and because welding is implicated as a risk factor for parkinsonism, PARK genes might play a critical role in WF-mediated dopaminergic dysfunction. Whether these molecular alterations culminate in neurobehavioral and neuropathological deficits reminiscent of PD remains to be ascertained.
Collapse
Affiliation(s)
- Krishnan Sriram
- Toxicology and Molecular Biology Branch, Mailstop L-3014, CDC-NIOSH, 1095 Willowdale Rd., Morgantown, WV 26505, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Abstract
Parkinson's disease (PD) is marked by widespread neurodegeneration in the brain in addition to a selective yet prominent and progressive loss of nigrostriatal dopaminergic neurons. Of the multiple theories suggested in the pathogenesis of PD, mitochondrial dysfunction takes a center stage in both sporadic and familial forms of illness. Deficits in mitochondrial functions due to impaired bioenergetics, aging associated increased generation of reactive oxygen species, damage to mitochondrial DNA, impaired calcium buffering, and alterations in mitochondrial morphology may contribute to improper functioning of the CNS leading to neurodegeneration. These mitochondrial alterations suggest that a potential target worth exploring for neuroprotective therapies are the ones that can preserve mitochondrial functions in PD. Here, we provide a recent update on potential drugs that are known to block mitochondrial dysfunctions in various experimental models and those that are currently under clinical trials for PD. We also review novel mitochondrial survival pathways that provide hope and promise for innovative neuroprotective therapies in the future that can be explored as possible therapeutic intervention for PD pathogenesis.
Collapse
Affiliation(s)
- Bobby Thomas
- Department of Neurology and Neuroscience, Weill Medical College of Cornell University, New York, New York 10065, USA.
| | | |
Collapse
|
145
|
Tang XQ, Li YJ, Zhao J, Shen XT, Yang CT, Fan LL, Hu B, Li YJ, Liao DF. Neuroprotective effect of asymmetric dimethylarginine against 1-methyl-4-phenylpyridinium ion-induced damage in PC12 cells. Clin Exp Pharmacol Physiol 2010; 37:530-5. [DOI: 10.1111/j.1440-1681.2010.05344.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
146
|
Inhibition of Hydrogen Sulfide Generation Contributes to 1-Methy-4-Phenylpyridinium Ion-Induced Neurotoxicity. Neurotox Res 2010; 19:403-11. [DOI: 10.1007/s12640-010-9180-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Revised: 03/18/2010] [Accepted: 03/23/2010] [Indexed: 10/19/2022]
|
147
|
Barber-Singh J, Seo BB, Nakamaru-Ogiso E, Lau YS, Matsuno-Yagi A, Yagi T. Neuroprotective effect of long-term NDI1 gene expression in a chronic mouse model of Parkinson disorder. Rejuvenation Res 2010; 12:259-67. [PMID: 19653878 DOI: 10.1089/rej.2009.0854] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Previously, we showed that the internal rotenone-insensitive nicotinamide adenine dinucleotide (NADH)-quinone oxidoreductase (NDI1) gene from Saccharomyces cerevisiae (baker's yeast) can be successfully inserted into the mitochondria of mice and rats and the expressed enzyme was found to be fully functional. In this study, we investigated the ability of the Ndi1 enzyme to protect the dopaminergic neurons in a chronic mouse model of Parkinson disorder. After expression of the NDI1 gene in the unilateral substantia nigra of male C57BL/6 mice for 8 months, a chronic Parkinsonian model was created by administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) with probenecid and evaluated using neurochemical and behavioral responses 1-4 weeks post-MPTP/probenecid injection. We showed that expression of Ndi1 was able to significantly prevent the loss of dopamine and tyrosine hydroxylase as well as the dopaminergic transporters in the striatum of the chronic Parkinsonian mice. Behavioral assessment based on a methamphetamine-induced rotation test and spontaneous swing test further supported neurological preservation in the NDI1-treated Parkinsonian mice. The data presented in this study demonstrate a protective effect of the NDI1 gene in dopaminergic neurons, suggesting its therapeutic potential for Parkinson-like disorders.
Collapse
Affiliation(s)
- Jennifer Barber-Singh
- The Scripps Research Institute, Department of Molecular and Experimental Medicine, La Jolla, California 92037, USA
| | | | | | | | | | | |
Collapse
|
148
|
Xie J, Duan L, Qian X, Huang X, Ding J, Hu G. KATP channel openers protect mesencephalic neurons against MPP+-induced cytotoxicity via inhibition of ROS production. J Neurosci Res 2010; 88:428-37. [DOI: 10.1002/jnr.22213] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
149
|
Levesque S, Wilson B, Gregoria V, Thorpe LB, Dallas S, Polikov VS, Hong JS, Block ML. Reactive microgliosis: extracellular micro-calpain and microglia-mediated dopaminergic neurotoxicity. ACTA ACUST UNITED AC 2010; 133:808-21. [PMID: 20123724 DOI: 10.1093/brain/awp333] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Microglia, the innate immune cells in the brain, can become chronically activated in response to dopaminergic neuron death, fuelling a self-renewing cycle of microglial activation followed by further neuron damage (reactive microgliosis), which is implicated in the progressive nature of Parkinson's disease. Here, we use an in vitro approach to separate neuron injury factors from the cellular actors of reactive microgliosis and discover molecular signals responsible for chronic and toxic microglial activation. Upon injury with the dopaminergic neurotoxin 1-methyl-4-phenylpyridinium, N27 cells (dopaminergic neuron cell line) released soluble neuron injury factors that activated microglia and were selectively toxic to dopaminergic neurons in mixed mesencephalic neuron-glia cultures through nicotinamide adenine dinucleotide phosphate oxidase. mu-Calpain was identified as a key signal released from damaged neurons, causing selective dopaminergic neuron death through activation of microglial nicotinamide adenine dinucleotide phosphate oxidase and superoxide production. These findings suggest that dopaminergic neurons may be inherently susceptible to the pro-inflammatory effects of neuron damage, i.e. reactive microgliosis, providing much needed insight into the chronic nature of Parkinson's disease.
Collapse
Affiliation(s)
- Shannon Levesque
- Department of Anatomy & Neurobiology, Sanger Hall, Room 9-048, 1101 E. Marshall Street, Virginia Commonwealth University Medical Campus, Box 980709, Richmond, VA 23298-0709, USA
| | | | | | | | | | | | | | | |
Collapse
|
150
|
Calcium, cellular aging, and selective neuronal vulnerability in Parkinson's disease. Cell Calcium 2010; 47:175-82. [PMID: 20053445 DOI: 10.1016/j.ceca.2009.12.003] [Citation(s) in RCA: 149] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2009] [Accepted: 12/02/2009] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease in developed countries. The core motor symptoms are attributable to the degeneration of dopamine (DA) neurons in the substantia nigra pars compacta (SNc). Why these neurons, and other restricted sets of non-dopamine neuron, succumb in PD is not clear. One potential clue has come from the observation that the engagement of L-type Ca2+ channels during autonomous pacemaking elevates the sensitivity of SNc DA neurons to mitochondrial toxins used to create animal models of PD, suggesting that Ca2+ entry is a factor in their selective vulnerability. Epidemiological data also supports a linkage between L-type Ca2+ channels and the risk of developing PD. This review examines the hypothesis that the primary factor driving neurodegenerative changes in PD is the metabolic stress created by sustained Ca2+ entry, particularly in the face of genetic or environmental factors that compromise oxidative defenses or proteostatic competence.
Collapse
|