101
|
Yu D, Horton JR, Yang J, Hajian T, Vedadi M, Sagum CA, Bedford MT, Blumenthal RM, Zhang X, Cheng X. Human MettL3-MettL14 RNA adenine methyltransferase complex is active on double-stranded DNA containing lesions. Nucleic Acids Res 2021; 49:11629-11642. [PMID: 34086966 PMCID: PMC8599731 DOI: 10.1093/nar/gkab460] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/07/2021] [Accepted: 05/13/2021] [Indexed: 12/22/2022] Open
Abstract
MettL3-MettL14 methyltransferase complex has been studied widely for its role in RNA adenine methylation. This complex is also recruited to UV- and X-ray exposed DNA damaged sites, and its methyltransfer activity is required for subsequent DNA repair, though in theory this could result from RNA methylation of short transcripts made at the site of damage. We report here that MettL3-MettL14 is active in vitro on double-stranded DNA containing a cyclopyrimidine dimer – a major lesion of UV radiation-induced products – or an abasic site or mismatches. Furthermore, N6-methyladenine (N6mA) decreases misincorporation of 8-oxo-guanine (8-oxoG) opposite to N6mA by repair DNA polymerases. When 8-oxoG is nevertheless incorporated opposite N6mA, the methylation inhibits N6mA excision from the template (correct) strand by the adenine DNA glycosylase (MYH), implying that the methylation decreases inappropriate misrepair. Finally, we observed that the N6mA reader domain of YTHDC1, which is also recruited to sites of DNA damage, binds N6mA that is located across from a single-base gap between two canonical DNA helices. This YTHDC1 complex with a gapped duplex is structurally similar to DNA complexes with FEN1 and GEN1 – two members of the nuclease family that act in nucleotide excision repair, mismatch repair and homologous recombination, and which incise distinct non-B DNA structures. Together, the parts of our study provide a plausible mechanism for N6mA writer and reader proteins acting directly on lesion-containing DNA, and suggest in vivo experiments to test the mechanisms involving methylation of adenine.
Collapse
Affiliation(s)
- Dan Yu
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - John R Horton
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jie Yang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Taraneh Hajian
- Structural Genomics Consortium, University of Toronto, Toronto, ON Canada
| | - Masoud Vedadi
- Structural Genomics Consortium, University of Toronto, Toronto, ON Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Cari A Sagum
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mark T Bedford
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Robert M Blumenthal
- Department of Medical Microbiology and Immunology, and Program in Bioinformatics, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Xing Zhang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
102
|
Bergero R, Ellis P, Haerty W, Larcombe L, Macaulay I, Mehta T, Mogensen M, Murray D, Nash W, Neale MJ, O'Connor R, Ottolini C, Peel N, Ramsey L, Skinner B, Suh A, Summers M, Sun Y, Tidy A, Rahbari R, Rathje C, Immler S. Meiosis and beyond - understanding the mechanistic and evolutionary processes shaping the germline genome. Biol Rev Camb Philos Soc 2021; 96:822-841. [PMID: 33615674 PMCID: PMC8246768 DOI: 10.1111/brv.12680] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/15/2020] [Accepted: 12/15/2020] [Indexed: 12/11/2022]
Abstract
The separation of germ cell populations from the soma is part of the evolutionary transition to multicellularity. Only genetic information present in the germ cells will be inherited by future generations, and any molecular processes affecting the germline genome are therefore likely to be passed on. Despite its prevalence across taxonomic kingdoms, we are only starting to understand details of the underlying micro-evolutionary processes occurring at the germline genome level. These include segregation, recombination, mutation and selection and can occur at any stage during germline differentiation and mitotic germline proliferation to meiosis and post-meiotic gamete maturation. Selection acting on germ cells at any stage from the diploid germ cell to the haploid gametes may cause significant deviations from Mendelian inheritance and may be more widespread than previously assumed. The mechanisms that affect and potentially alter the genomic sequence and allele frequencies in the germline are pivotal to our understanding of heritability. With the rise of new sequencing technologies, we are now able to address some of these unanswered questions. In this review, we comment on the most recent developments in this field and identify current gaps in our knowledge.
Collapse
Affiliation(s)
- Roberta Bergero
- Institute of Evolutionary BiologyUniversity of EdinburghEdinburghEH9 3JTU.K.
| | - Peter Ellis
- School of BiosciencesUniversity of KentCanterburyCT2 7NJU.K.
| | | | - Lee Larcombe
- Applied Exomics LtdStevenage Bioscience CatalystStevenageSG1 2FXU.K.
| | - Iain Macaulay
- Earlham InstituteNorwich Research ParkNorwichNR4 7UZU.K.
| | - Tarang Mehta
- Earlham InstituteNorwich Research ParkNorwichNR4 7UZU.K.
| | - Mette Mogensen
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJU.K.
| | - David Murray
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJU.K.
| | - Will Nash
- Earlham InstituteNorwich Research ParkNorwichNR4 7UZU.K.
| | - Matthew J. Neale
- Genome Damage and Stability Centre, School of Life SciencesUniversity of SussexBrightonBN1 9RHU.K.
| | | | | | - Ned Peel
- Earlham InstituteNorwich Research ParkNorwichNR4 7UZU.K.
| | - Luke Ramsey
- The James Hutton InstituteInvergowrieDundeeDD2 5DAU.K.
| | - Ben Skinner
- School of Life SciencesUniversity of EssexColchesterCO4 3SQU.K.
| | - Alexander Suh
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJU.K.
- Department of Organismal BiologyUppsala UniversityNorbyvägen 18DUppsala752 36Sweden
| | - Michael Summers
- School of BiosciencesUniversity of KentCanterburyCT2 7NJU.K.
- The Bridge Centre1 St Thomas Street, London BridgeLondonSE1 9RYU.K.
| | - Yu Sun
- Norwich Medical SchoolUniversity of East AngliaNorwich Research Park, Colney LnNorwichNR4 7UGU.K.
| | - Alison Tidy
- School of BiosciencesUniversity of Nottingham, Plant Science, Sutton Bonington CampusSutton BoningtonLE12 5RDU.K.
| | | | - Claudia Rathje
- School of BiosciencesUniversity of KentCanterburyCT2 7NJU.K.
| | - Simone Immler
- School of Biological SciencesUniversity of East AngliaNorwich Research ParkNorwichNR4 7TJU.K.
| |
Collapse
|
103
|
Garner TB, Hester JM, Carothers A, Diaz FJ. Role of zinc in female reproduction. Biol Reprod 2021; 104:976-994. [PMID: 33598687 PMCID: PMC8599883 DOI: 10.1093/biolre/ioab023] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 01/09/2021] [Accepted: 02/15/2021] [Indexed: 11/14/2022] Open
Abstract
Zinc is a critical component in a number of conserved processes that regulate female germ cell growth, fertility, and pregnancy. During follicle development, a sufficient intracellular concentration of zinc in the oocyte maintains meiotic arrest at prophase I until the germ cell is ready to undergo maturation. An adequate supply of zinc is necessary for the oocyte to form a fertilization-competent egg as dietary zinc deficiency or chelation of zinc disrupts maturation and reduces the oocyte quality. Following sperm fusion to the egg to initiate the acrosomal reaction, a quick release of zinc, known as the zinc spark, induces egg activation in addition to facilitating zona pellucida hardening and reducing sperm motility to prevent polyspermy. Symmetric division, proliferation, and differentiation of the preimplantation embryo rely on zinc availability, both during the oocyte development and post-fertilization. Further, the fetal contribution to the placenta, fetal limb growth, and neural tube development are hindered in females challenged with zinc deficiency during pregnancy. In this review, we discuss the role of zinc in germ cell development, fertilization, and pregnancy with a focus on recent studies in mammalian females. We further detail the fundamental zinc-mediated reproductive processes that have only been explored in non-mammalian species and speculate on the role of zinc in similar mechanisms of female mammals. The evidence collected over the last decade highlights the necessity of zinc for normal fertility and healthy pregnancy outcomes, which suggests zinc supplementation should be considered for reproductive age women at risk of zinc deficiency.
Collapse
Affiliation(s)
- Tyler Bruce Garner
- Huck Institutes of the Life Sciences, Integrative and Biomedical Physiology Program, The Pennsylvania State University, University Park, PA, USA
| | - James Malcolm Hester
- Huck Institutes of the Life Sciences, Integrative and Biomedical Physiology Program, The Pennsylvania State University, University Park, PA, USA
| | - Allison Carothers
- Huck Institutes of the Life Sciences, Integrative and Biomedical Physiology Program, The Pennsylvania State University, University Park, PA, USA
| | - Francisco J Diaz
- Huck Institutes of the Life Sciences, Integrative and Biomedical Physiology Program, The Pennsylvania State University, University Park, PA, USA
- Department of Animal Science, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
104
|
CpG Methylation Profiles of HIV-1 Pro-Viral DNA in Individuals on ART. Viruses 2021; 13:v13050799. [PMID: 33946976 PMCID: PMC8146454 DOI: 10.3390/v13050799] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/20/2021] [Accepted: 04/25/2021] [Indexed: 11/17/2022] Open
Abstract
The latent HIV-1 reservoir is comprised of stably integrated and intact proviruses with limited to no viral transcription. It has been proposed that latent infection may be maintained by methylation of pro-viral DNA. Here, for the first time, we investigate the cytosine methylation of a replication competent provirus (AMBI-1) found in a T cell clone in a donor on antiretroviral therapy (ART). Methylation profiles of the AMBI-1 provirus were compared to other proviruses in the same donor and in samples from three other individuals on ART, including proviruses isolated from lymph node mononuclear cells (LNMCs) and peripheral blood mononuclear cells (PBMCs). We also evaluated the apparent methylation of cytosines outside of CpG (i.e., CpH) motifs. We found no evidence for methylation in AMBI-1 or any other provirus tested within the 5' LTR promoter. In contrast, CpG methylation was observed in the env-tat-rev overlapping reading frame. In addition, we found evidence for differential provirus methylation in cells isolated from LNMCs vs. PBMCs in some individuals, possibly from the expansion of infected cell clones. Finally, we determined that apparent low-level methylation of CpH cytosines is consistent with occasional bisulfite reaction failures. In conclusion, our data do not support the proposition that latent HIV infection is associated with methylation of the HIV 5' LTR promoter.
Collapse
|
105
|
Human Endogenous Retroviruses as Biomedicine Markers. Virol Sin 2021; 36:852-858. [PMID: 33905075 DOI: 10.1007/s12250-021-00387-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 03/15/2021] [Indexed: 11/27/2022] Open
Abstract
Human endogenous retroviruses (HERVs) were formed via ancient integration of exogenous retroviruses into the human genome and are considered to be viral "fossils". The human genome is embedded with a considerable amount of HERVs, witnessing the long-term evolutionary history of the viruses and the host. Most HERVs have lost coding capability during selection but still function in terms of HERV-mediated regulation of host gene expression. In this review, we summarize the roles of HERV activation in response to viral infections and diseases, and emphasize the potential use of HERVs as biomedicine markers in the early diagnosis of diseases such as cancer, which provides a new perspective for the clinical application of HERVs.
Collapse
|
106
|
Bertozzi TM, Takahashi N, Hanin G, Kazachenka A, Ferguson-Smith AC. A spontaneous genetically induced epiallele at a retrotransposon shapes host genome function. eLife 2021; 10:e65233. [PMID: 33755012 PMCID: PMC8084528 DOI: 10.7554/elife.65233] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 03/22/2021] [Indexed: 12/14/2022] Open
Abstract
Intracisternal A-particles (IAPs) are endogenous retroviruses (ERVs) responsible for most insertional mutations in the mouse. Full-length IAPs harbour genes flanked by long terminal repeats (LTRs). Here, we identify a solo LTR IAP variant (Iap5-1solo) recently formed in the inbred C57BL/6J mouse strain. In contrast to the C57BL/6J full-length IAP at this locus (Iap5-1full), Iap5-1solo lacks DNA methylation and H3K9 trimethylation. The distinct DNA methylation levels between the two alleles are established during preimplantation development, likely due to loss of KRAB zinc finger protein binding at the Iap5-1solo variant. Iap5-1solo methylation increases and becomes more variable in a hybrid genetic background yet is unresponsive to maternal dietary methyl supplementation. Differential epigenetic modification of the two variants is associated with metabolic differences and tissue-specific changes in adjacent gene expression. Our characterisation of Iap5-1 as a genetically induced epiallele with functional consequences establishes a new model to study transposable element repression and host-element co-evolution.
Collapse
Affiliation(s)
- Tessa M Bertozzi
- Department of Genetics, University of CambridgeCambridgeUnited Kingdom
| | - Nozomi Takahashi
- Department of Genetics, University of CambridgeCambridgeUnited Kingdom
| | - Geula Hanin
- Department of Genetics, University of CambridgeCambridgeUnited Kingdom
| | | | | |
Collapse
|
107
|
Jones R, Wijesinghe S, Wilson C, Halsall J, Liloglou T, Kanhere A. A long intergenic non-coding RNA regulates nuclear localization of DNA methyl transferase-1. iScience 2021; 24:102273. [PMID: 33851096 PMCID: PMC8022221 DOI: 10.1016/j.isci.2021.102273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 12/21/2020] [Accepted: 03/02/2021] [Indexed: 01/10/2023] Open
Abstract
DNA methyl transferase-1 or DNMT1 maintains DNA methylation in the genome and is important for regulating gene expression in cells. Aberrant changes in DNMT1 activity and DNA methylation are commonly observed in cancers and many other diseases. Recently, a number of long intergenic non-protein-coding RNAs or lincRNAs have been shown to play a role in regulating DNMT1 activity. CCDC26 is a nuclear lincRNA that is frequently mutated in cancers and is a hotbed for disease-associated single nucleotide changes. However, the functional mechanism of CCDC26 is not understood. Here, we show that this lincRNA is concentrated on the nuclear periphery. Strikingly, in the absence of CCDC26 lincRNA, DNMT1 is mis-located in the cytoplasm, and the genomic DNA is significantly hypomethylated. This is accompanied by double-stranded DNA breaks and increased cell death. These results point to a previously unrecognized mechanism of lincRNA-mediated subcellular localization of DNMT1 and regulation of DNA methylation.
Collapse
Affiliation(s)
- Rhian Jones
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Susanne Wijesinghe
- Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, Birmingham, UK
| | - Claire Wilson
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - John Halsall
- Institute of Genomic Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Triantafillos Liloglou
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Aditi Kanhere
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK.,Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| |
Collapse
|
108
|
METTL3 regulates heterochromatin in mouse embryonic stem cells. Nature 2021; 591:317-321. [PMID: 33505026 DOI: 10.1038/s41586-021-03210-1] [Citation(s) in RCA: 227] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023]
Abstract
METTL3 (methyltransferase-like 3) mediates the N6-methyladenosine (m6A) methylation of mRNA, which affects the stability of mRNA and its translation into protein1. METTL3 also binds chromatin2-4, but the role of METTL3 and m6A methylation in chromatin is not fully understood. Here we show that METTL3 regulates mouse embryonic stem-cell heterochromatin, the integrity of which is critical for silencing retroviral elements and for mammalian development5. METTL3 predominantly localizes to the intracisternal A particle (IAP)-type family of endogenous retroviruses. Knockout of Mettl3 impairs the deposition of multiple heterochromatin marks onto METTL3-targeted IAPs, and upregulates IAP transcription, suggesting that METTL3 is important for the integrity of IAP heterochromatin. We provide further evidence that RNA transcripts derived from METTL3-bound IAPs are associated with chromatin and are m6A-methylated. These m6A-marked transcripts are bound by the m6A reader YTHDC1, which interacts with METTL3 and in turn promotes the association of METTL3 with chromatin. METTL3 also interacts physically with the histone 3 lysine 9 (H3K9) tri-methyltransferase SETDB1 and its cofactor TRIM28, and is important for their localization to IAPs. Our findings demonstrate that METTL3-catalysed m6A modification of RNA is important for the integrity of IAP heterochromatin in mouse embryonic stem cells, revealing a mechanism of heterochromatin regulation in mammals.
Collapse
|
109
|
Wang G, Li X, Li Y, Ye N, Li H, Zhang J. Comprehensive epigenome and transcriptome analysis of carbon reserve remobilization in indica and japonica rice stems under moderate soil drying. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1384-1398. [PMID: 33130853 DOI: 10.1093/jxb/eraa502] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/27/2020] [Indexed: 06/11/2023]
Abstract
Moderate soil drying (MD) imposed at the post-anthesis stage significantly improves carbon reserve remobilization in rice stems, increasing grain yield. However, the methylome and transcriptome profiles of carbon reserve remobilization under MD are obscure in indica and japonica rice stems. Here, we generated whole-genome single-base resolution maps of the DNA methylome in indica and japonica rice stems. DNA methylation levels were higher in indica than in japonica and positively correlated with genome size. MD treatment had a weak impact on the changes in methylation levels in indica. Moreover, the number of differentially methylated regions was much lower in indica, indicating the existence of cultivar-specific methylation patterns in response to MD during grain filling. The gene encoding β-glucosidase 1, involved in the starch degradation process, was hypomethylated and up-regulated in indica, resulting in improved starch to sucrose conversion under MD treatment. Additionally, increased expression of MYBS1 transactivated the expression of AMYC2/OsAMY2A in both indica and japonica, leading to enhanced starch degradation under MD. In contrast, down-regulated expression of MYB30 resulted in increased expression of BMY5 in both cultivars. Our findings decode the dynamics of DNA methylation in indica and japonica rice stems and propose candidate genes for improving carbon reserve remobilization.
Collapse
Affiliation(s)
- Guanqun Wang
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong
| | - Xiaozheng Li
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Yongqiang Li
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Nenghui Ye
- Southern Regional Collaborative Innovation Center for Grain and Oil Crops in China, College of Agriculture, Hunan Agricultural University, Changsha, 410128, China
| | - Haoxuan Li
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| |
Collapse
|
110
|
Elmer JL, Hay AD, Kessler NJ, Bertozzi TM, Ainscough EAC, Ferguson-Smith AC. Genomic properties of variably methylated retrotransposons in mouse. Mob DNA 2021; 12:6. [PMID: 33612119 PMCID: PMC7898769 DOI: 10.1186/s13100-021-00235-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/02/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Transposable elements (TEs) are enriched in cytosine methylation, preventing their mobility within the genome. We previously identified a genome-wide repertoire of candidate intracisternal A particle (IAP) TEs in mice that exhibit inter-individual variability in this methylation (VM-IAPs) with implications for genome function. RESULTS Here we validate these metastable epialleles and discover a novel class that exhibit tissue specificity (tsVM-IAPs) in addition to those with uniform methylation in all tissues (constitutive- or cVM-IAPs); both types have the potential to regulate genes in cis. Screening for variable methylation at other TEs shows that this phenomenon is largely limited to IAPs, which are amongst the youngest and most active endogenous retroviruses. We identify sequences enriched within cVM-IAPs, but determine that these are not sufficient to confer epigenetic variability. CTCF is enriched at VM-IAPs with binding inversely correlated with DNA methylation. We uncover dynamic physical interactions between cVM-IAPs with low methylation ranges and other genomic loci, suggesting that VM-IAPs have the potential for long-range regulation. CONCLUSION Our findings indicate that a recently evolved interplay between genetic sequence, CTCF binding, and DNA methylation at young TEs can result in inter-individual variability in transcriptional outcomes with implications for phenotypic variation.
Collapse
Affiliation(s)
- Jessica L. Elmer
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH UK
| | - Amir D. Hay
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH UK
| | - Noah J. Kessler
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH UK
| | - Tessa M. Bertozzi
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH UK
| | | | | |
Collapse
|
111
|
Liu T, Xing Y, Fan X, Chen Z, Zhao C, Liu L, Zhao M, Hu X, Dong B, Wang J, Cui H, Gong D, Geng T. Fasting and overfeeding affect the expression of the immunity- or inflammation-related genes in the liver of poultry via endogenous retrovirus. Poult Sci 2021; 100:973-981. [PMID: 33518151 PMCID: PMC7858184 DOI: 10.1016/j.psj.2020.11.057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 11/06/2020] [Accepted: 11/22/2020] [Indexed: 12/19/2022] Open
Abstract
It is known that nutrition and immunity are connected, but the mechanism is not very clear. Endogenous retroviruses (ERV) account for 8 to 10% of the human and mouse genomes and play an important role in some biological processes of animals. Recent studies indicate that the activation of ERV can affect the expression of the immunity- or inflammation-related genes, and the activities of ERV are subjected to regulation of many factors including nutritional factors. Therefore, we hypothesize that nutritional status can affect the expression of the immunity- or inflammation-related genes via ERV. To verify this hypothesis, the nutritional status of animals was altered by fasting or overfeeding, and the expression of intact ERV (ERVK18P, ERVK25P) and immunity- or inflammation-related genes (DDX41, IFIH1, IFNG, IRF7, STAT3) in the liver was determined by quantitative PCR, followed by overexpressing ERVK25P in goose primary hepatocytes and determining the expression of the immunity- or inflammation-related genes. The data showed that compared with the control group (no fasting), the expression of ERV and the immunity- or inflammation-related genes was increased in the liver of the fasted chickens but decreased in the liver of the fasted geese. Moreover, compared with the control group (routinely fed), the expression of ERV and the immunity- or inflammation-related genes was increased in the liver of the overfed geese. In addition, overexpression of ERVK25P in goose primary hepatocytes can induce the expression of the immunity- or inflammation-related genes. In conclusion, these findings suggest that ERV mediate the effects of fasting and overfeeding on the expression of the immunity- or inflammation-related genes, the mediation varied with poultry species, and ERV and the immunity- or inflammation-related genes may be involved in the development of goose fatty liver. This study provides a potential mechanism for the connection between nutrition and immunity.
Collapse
Affiliation(s)
- Tongjun Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Ya Xing
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xue Fan
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Zhenzhen Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Chao Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Long Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Minmeng Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xuming Hu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Biao Dong
- Department of Animal Science and Technology, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China
| | - Jian Wang
- Department of Animal Science and Technology, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China
| | - Hengmi Cui
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Daoqing Gong
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Tuoyu Geng
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
112
|
Al-Yozbaki M, Jabre I, Syed NH, Wilson CM. Targeting DNA methyltransferases in non-small-cell lung cancer. Semin Cancer Biol 2021; 83:77-87. [PMID: 33486076 DOI: 10.1016/j.semcancer.2021.01.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 01/14/2021] [Accepted: 01/17/2021] [Indexed: 12/30/2022]
Abstract
Despite the advances in treatment using chemotherapy or targeted therapies, due to static survival rates, non-small cell lung cancer (NSCLC) is the major cause of cancer-related deaths worldwide. Epigenetic-based therapies have been developed for NSCLC by targeting DNA methyltransferases (DNMTs) and histone-modifying enzymes. However, treatment using single epigenetic agents on solid tumours has been inadequate; whereas, treatment with a combination of DNMTs inhibitors with chemotherapy and immunotherapy has shown great promise. Dietary sources of phytochemicals could also inhibit DNMTs and cancer stem cells, representing a novel and promising way to prevent and treat cancer. Herein, we will discuss the different DNMTs, DNA methylation profiling in NSCLC as well as current demethylating agents in ongoing clinical trials. Therefore, providing a concise overview of future developments in the field of epigenetic therapy in NSCLC.
Collapse
Affiliation(s)
- Minnatallah Al-Yozbaki
- Canterbury Christ Church University, School of Human and Life Sciences, Life Sciences Industry Liaison Lab, Sandwich, UK
| | - Ibtissam Jabre
- Dept. of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, GU2 7XH, UK
| | - Naeem H Syed
- Canterbury Christ Church University, School of Human and Life Sciences, Life Sciences Industry Liaison Lab, Sandwich, UK
| | - Cornelia M Wilson
- Canterbury Christ Church University, School of Human and Life Sciences, Life Sciences Industry Liaison Lab, Sandwich, UK; University of Liverpool, Institute of Translation Medicine, Dept of Molecular & Clinical Cancer Medicine, UK.
| |
Collapse
|
113
|
Greenberg MVC. Get Out and Stay Out: New Insights Into DNA Methylation Reprogramming in Mammals. Front Cell Dev Biol 2021; 8:629068. [PMID: 33490089 PMCID: PMC7817772 DOI: 10.3389/fcell.2020.629068] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 12/09/2020] [Indexed: 12/14/2022] Open
Abstract
Vertebrate genomes are marked by notably high levels of 5-cytosine DNA methylation (5meC). The clearest function of DNA methylation among members of the subphylum is repression of potentially deleterious transposable elements (TEs). However, enrichment in the bodies of protein coding genes and pericentromeric heterochromatin indicate an important role for 5meC in those genomic compartments as well. Moreover, DNA methylation plays an important role in silencing of germline-specific genes. Impaired function of major components of DNA methylation machinery results in lethality in fish, amphibians and mammals. Despite such apparent importance, mammals exhibit a dramatic loss and regain of DNA methylation in early embryogenesis prior to implantation, and then again in the cells specified for the germline. In this minireview we will highlight recent studies that shine light on two major aspects of embryonic DNA methylation reprogramming: (1) The mechanism of DNA methylation loss after fertilization and (2) the protection of discrete loci from ectopic DNA methylation deposition during reestablishment. Finally, we will conclude with some extrapolations for the evolutionary underpinnings of such extraordinary events that seemingly put the genome under unnecessary risk during a particularly vulnerable window of development.
Collapse
Affiliation(s)
- Maxim V C Greenberg
- Centre National de la Recherche Scientifique, Institut Jacques Monod, Université de Paris, Paris, France
| |
Collapse
|
114
|
Kang YK, Min B. SETDB1 Overexpression Sets an Intertumoral Transcriptomic Divergence in Non-small Cell Lung Carcinoma. Front Genet 2020; 11:573515. [PMID: 33343623 PMCID: PMC7738479 DOI: 10.3389/fgene.2020.573515] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022] Open
Abstract
An increasing volume of evidence suggests that SETDB1 plays a role in the tumorigenesis of various cancers, classifying SETDB1 as an oncoprotein. However, owing to its numerous protein partners and their global-scale effects, the molecular mechanism underlying SETDB1-involved oncogenesis remains ambiguous. In this study, using public transcriptome data of lung adenocarcinoma (ADC) and squamous-cell carcinoma (SCC), we compared tumors with high-level SETDB1 (SH) and those with low-level SETDB1 (comparable with normal samples; SL). The results of principal component analysis revealed a transcriptomic distinction and divergence between the SH and SL samples in both ADCs and SCCs. The results of gene set enrichment analysis indicated that genes involved in the “epithelial–mesenchymal transition,” “innate immune response,” and “autoimmunity” collections were significantly depleted in SH tumors, whereas those involved in “RNA interference” collections were enriched. Chromatin-modifying genes were highly expressed in SH tumors, and the variance in their expression was incomparably high in SCC-SH, which suggested greater heterogeneity within SCC tumors. DNA methyltransferase genes were also overrepresented in SH samples, and most differentially methylated CpGs (SH/SL) were undermethylated in a highly biased manner in ADCs. We identified interesting molecular signatures associated with the possible roles of SETDB1 in lung cancer. We expect these SETDB1-associated molecular signatures to facilitate the development of biologically relevant targeted therapies for particular types of lung cancer.
Collapse
Affiliation(s)
- Yong-Kook Kang
- Development and Differentiation Research Center, Korea Research Institute of Bioscience Biotechnology, Daejeon, South Korea.,Department of Functional Genomics, Korea University of Science and Technology, Daejeon, South Korea
| | - Byungkuk Min
- Development and Differentiation Research Center, Korea Research Institute of Bioscience Biotechnology, Daejeon, South Korea
| |
Collapse
|
115
|
Mulholland CB, Nishiyama A, Ryan J, Nakamura R, Yiğit M, Glück IM, Trummer C, Qin W, Bartoschek MD, Traube FR, Parsa E, Ugur E, Modic M, Acharya A, Stolz P, Ziegenhain C, Wierer M, Enard W, Carell T, Lamb DC, Takeda H, Nakanishi M, Bultmann S, Leonhardt H. Recent evolution of a TET-controlled and DPPA3/STELLA-driven pathway of passive DNA demethylation in mammals. Nat Commun 2020; 11:5972. [PMID: 33235224 PMCID: PMC7686362 DOI: 10.1038/s41467-020-19603-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
Genome-wide DNA demethylation is a unique feature of mammalian development and naïve pluripotent stem cells. Here, we describe a recently evolved pathway in which global hypomethylation is achieved by the coupling of active and passive demethylation. TET activity is required, albeit indirectly, for global demethylation, which mostly occurs at sites devoid of TET binding. Instead, TET-mediated active demethylation is locus-specific and necessary for activating a subset of genes, including the naïve pluripotency and germline marker Dppa3 (Stella, Pgc7). DPPA3 in turn drives large-scale passive demethylation by directly binding and displacing UHRF1 from chromatin, thereby inhibiting maintenance DNA methylation. Although unique to mammals, we show that DPPA3 alone is capable of inducing global DNA demethylation in non-mammalian species (Xenopus and medaka) despite their evolutionary divergence from mammals more than 300 million years ago. Our findings suggest that the evolution of Dppa3 facilitated the emergence of global DNA demethylation in mammals.
Collapse
Affiliation(s)
- Christopher B Mulholland
- Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Atsuya Nishiyama
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Joel Ryan
- Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Ryohei Nakamura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Merve Yiğit
- Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Ivo M Glück
- Physical Chemistry, Department of Chemistry, Center for Nanoscience, Nanosystems Initiative Munich and Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Carina Trummer
- Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Weihua Qin
- Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Michael D Bartoschek
- Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Franziska R Traube
- Center for Integrated Protein Science (CIPSM) at the Department of Chemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Edris Parsa
- Center for Integrated Protein Science (CIPSM) at the Department of Chemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Enes Ugur
- Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
- Department of Proteomics and Signal Transduction, Max Planck Institute for Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Miha Modic
- The Francis Crick Institute and UCL Queen Square Institute of Neurology, London, UK
| | - Aishwarya Acharya
- Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Paul Stolz
- Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Christoph Ziegenhain
- Department of Biology II, Anthropology and Human Genomics, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Michael Wierer
- Department of Proteomics and Signal Transduction, Max Planck Institute for Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Wolfgang Enard
- Department of Biology II, Anthropology and Human Genomics, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Thomas Carell
- Center for Integrated Protein Science (CIPSM) at the Department of Chemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Don C Lamb
- Physical Chemistry, Department of Chemistry, Center for Nanoscience, Nanosystems Initiative Munich and Center for Integrated Protein Science Munich, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Hiroyuki Takeda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Makoto Nakanishi
- Division of Cancer Cell Biology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Sebastian Bultmann
- Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany.
| | - Heinrich Leonhardt
- Department of Biology II and Center for Integrated Protein Science Munich (CIPSM), Human Biology and BioImaging, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany.
| |
Collapse
|
116
|
High levels of LINE-1 transposable elements expressed in Kaposi's sarcoma-associated herpesvirus-related primary effusion lymphoma. Oncogene 2020; 40:536-550. [PMID: 33188297 DOI: 10.1038/s41388-020-01549-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 10/13/2020] [Accepted: 10/28/2020] [Indexed: 11/08/2022]
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV, HHV-8) is a gamma herpesvirus associated with several human malignancies. Transposable elements (TEs) are ubiquitous in eukaryotic genomes, occupying about 45% of the human genome. TEs have been linked with a variety of disorders and malignancies, though the precise nature of their contribution to many of them has yet to be elucidated. Global transcriptome analysis for differentially expressed TEs in KSHV-associated primary effusion lymphoma (PEL) cells (BCBL1 and BC3) revealed large number of differentially expressed TEs. These differentially expressed TEs include LTR transposons, long interspersed nuclear elements (LINEs), and short interspersed nuclear elements (SINEs). Further analysis of LINE-1 (L1) elements revealed expression upregulation, hypo-methylation, and transition into open chromatin in PEL. In agreement with high L1 expression, PEL cells express ORF1 protein and possess high reverse transcriptase (RT)-activity. Interestingly, inhibition of this RT-activity suppressed PEL cell growth. Collectively, we identified high expression of TEs, and specifically of L1 as a critical component in the proliferation of PEL cells. This observation is relevant for the treatment of KSHV-associated malignancies since they often develop in AIDS patients that are treated with RT inhibitors with potent inhibition for both HIV and L1 RT activity.
Collapse
|
117
|
Blokhin IO, Khorkova O, Saveanu RV, Wahlestedt C. Molecular mechanisms of psychiatric diseases. Neurobiol Dis 2020; 146:105136. [PMID: 33080337 DOI: 10.1016/j.nbd.2020.105136] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 09/24/2020] [Accepted: 10/09/2020] [Indexed: 12/16/2022] Open
Abstract
For most psychiatric diseases, pathogenetic concepts as well as paradigms underlying neuropsychopharmacologic approaches currently revolve around neurotransmitters such as dopamine, serotonin, and norepinephrine. However, despite the fact that several generations of neurotransmitter-based psychotropics including atypical antipsychotics, selective serotonin reuptake inhibitors, and serotonin-norepinephrine reuptake inhibitors are available, the effectiveness of these medications is limited, and relapse rates in psychiatric diseases are relatively high, indicating potential involvement of other pathogenetic pathways. Indeed, recent high-throughput studies in genetics and molecular biology have shown that pathogenesis of major psychiatric illnesses involves hundreds of genes and numerous pathways via such fundamental processes as DNA methylation, transcription, and splicing. Current review summarizes these and other molecular mechanisms of such psychiatric illnesses as schizophrenia, major depressive disorder, and alcohol use disorder and suggests a conceptual framework for future studies.
Collapse
Affiliation(s)
- Ilya O Blokhin
- Center for Therapeutic Innovation, University of Miami, Miami, FL, United States of America; Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, United States of America; Jackson Memorial Hospital, Miami, FL, United States of America
| | - Olga Khorkova
- OPKO Health Inc., Miami, FL, United States of America
| | - Radu V Saveanu
- Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, United States of America
| | - Claes Wahlestedt
- Center for Therapeutic Innovation, University of Miami, Miami, FL, United States of America; Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, United States of America.
| |
Collapse
|
118
|
Min B, Park JS, Jeong YS, Jeon K, Kang YK. Dnmt1 binds and represses genomic retroelements via DNA methylation in mouse early embryos. Nucleic Acids Res 2020; 48:8431-8444. [PMID: 32667642 PMCID: PMC7470951 DOI: 10.1093/nar/gkaa584] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/10/2020] [Accepted: 07/03/2020] [Indexed: 12/12/2022] Open
Abstract
Genome-wide passive DNA demethylation in cleavage-stage mouse embryos is related to the cytoplasmic localization of the maintenance methyltransferase DNMT1. However, recent studies provided evidences of the nuclear localization of DNMT1 and its contribution to the maintenance of methylation levels of imprinted regions and other genomic loci in early embryos. Using the DNA adenine methylase identification method, we identified Dnmt1-binding regions in four- and eight-cell embryos. The unbiased distribution of Dnmt1 peaks in the genic regions (promoters and CpG islands) as well as the absence of a correlation between the Dnmt1 peaks and the expression levels of the peak-associated genes refutes the active participation of Dnmt1 in the transcriptional regulation of genes in the early developmental period. Instead, Dnmt1 was found to associate with genomic retroelements in a greatly biased fashion, particularly with the LINE1 (long interspersed nuclear elements) and ERVK (endogenous retrovirus type K) sequences. Transcriptomic analysis revealed that the transcripts of the Dnmt1-enriched retroelements were overrepresented in Dnmt1 knockdown embryos. Finally, methyl-CpG-binding domain sequencing proved that the Dnmt1-enriched retroelements, which were densely methylated in wild-type embryos, became demethylated in the Dnmt1-depleted embryos. Our results indicate that Dnmt1 is involved in the repression of retroelements through DNA methylation in early mouse development.
Collapse
Affiliation(s)
- Byungkuk Min
- Development and Differentiation Research Center, Korea Research Institute of Bioscience Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, South Korea
| | - Jung Sun Park
- Development and Differentiation Research Center, Korea Research Institute of Bioscience Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, South Korea
| | - Young Sun Jeong
- Development and Differentiation Research Center, Korea Research Institute of Bioscience Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, South Korea
| | - Kyuheum Jeon
- Development and Differentiation Research Center, Korea Research Institute of Bioscience Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, South Korea.,Department of Functional Genomics, Korea University of Science and Technology, Daejeon 34113, South Korea
| | - Yong-Kook Kang
- Development and Differentiation Research Center, Korea Research Institute of Bioscience Biotechnology (KRIBB), 125 Gwahak-ro, Yuseong-gu, Daejeon 34141, South Korea.,Department of Functional Genomics, Korea University of Science and Technology, Daejeon 34113, South Korea
| |
Collapse
|
119
|
Cusack M, King HW, Spingardi P, Kessler BM, Klose RJ, Kriaucionis S. Distinct contributions of DNA methylation and histone acetylation to the genomic occupancy of transcription factors. Genome Res 2020; 30:1393-1406. [PMID: 32963030 PMCID: PMC7605266 DOI: 10.1101/gr.257576.119] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 08/21/2020] [Indexed: 12/12/2022]
Abstract
Epigenetic modifications on chromatin play important roles in regulating gene expression. Although chromatin states are often governed by multilayered structure, how individual pathways contribute to gene expression remains poorly understood. For example, DNA methylation is known to regulate transcription factor binding but also to recruit methyl-CpG binding proteins that affect chromatin structure through the activity of histone deacetylase complexes (HDACs). Both of these mechanisms can potentially affect gene expression, but the importance of each, and whether these activities are integrated to achieve appropriate gene regulation, remains largely unknown. To address this important question, we measured gene expression, chromatin accessibility, and transcription factor occupancy in wild-type or DNA methylation-deficient mouse embryonic stem cells following HDAC inhibition. We observe widespread increases in chromatin accessibility at retrotransposons when HDACs are inhibited, and this is magnified when cells also lack DNA methylation. A subset of these elements has elevated binding of the YY1 and GABPA transcription factors and increased expression. The pronounced additive effect of HDAC inhibition in DNA methylation-deficient cells demonstrates that DNA methylation and histone deacetylation act largely independently to suppress transcription factor binding and gene expression.
Collapse
Affiliation(s)
- Martin Cusack
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, OX3 7DQ, United Kingdom
| | - Hamish W King
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, United Kingdom
| | - Paolo Spingardi
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, OX3 7DQ, United Kingdom
| | - Benedikt M Kessler
- Target Discovery Institute, University of Oxford, Oxford, OX3 7FZ, United Kingdom
| | - Robert J Klose
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, United Kingdom
| | - Skirmantas Kriaucionis
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, OX3 7DQ, United Kingdom;
| |
Collapse
|
120
|
Tolmacheva EN, Vasilyev SA, Lebedev IN. Aneuploidy and DNA Methylation as Mirrored Features of Early Human Embryo Development. Genes (Basel) 2020; 11:E1084. [PMID: 32957536 PMCID: PMC7564410 DOI: 10.3390/genes11091084] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/08/2020] [Accepted: 09/15/2020] [Indexed: 12/18/2022] Open
Abstract
Genome stability is an integral feature of all living organisms. Aneuploidy is the most common cause of fetal death in humans. The timing of bursts in increased aneuploidy frequency coincides with the waves of global epigenetic reprogramming in mammals. During gametogenesis and early embryogenesis, parental genomes undergo two waves of DNA methylation reprogramming. Failure of these processes can critically affect genome stability, including chromosome segregation during cell division. Abnormal methylation due to errors in the reprogramming process can potentially lead to aneuploidy. On the other hand, the presence of an entire additional chromosome, or chromosome loss, can affect the global genome methylation level. The associations of these two phenomena are well studied in the context of carcinogenesis, but here, we consider the relationship of DNA methylation and aneuploidy in early human and mammalian ontogenesis. In this review, we link these two phenomena and highlight the critical ontogenesis periods and genome regions that play a significant role in human reproduction and in the formation of pathological phenotypes in newborns with chromosomal aneuploidy.
Collapse
Affiliation(s)
- Ekaterina N. Tolmacheva
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, 634050 Tomsk, Russia; (S.A.V.); (I.N.L.)
| | | | | |
Collapse
|
121
|
Targeting the epigenetic regulation of antitumour immunity. Nat Rev Drug Discov 2020; 19:776-800. [PMID: 32929243 DOI: 10.1038/s41573-020-0077-5] [Citation(s) in RCA: 382] [Impact Index Per Article: 76.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2020] [Indexed: 01/10/2023]
Abstract
Dysregulation of the epigenome drives aberrant transcriptional programmes that promote cancer onset and progression. Although defective gene regulation often affects oncogenic and tumour-suppressor networks, tumour immunogenicity and immune cells involved in antitumour responses may also be affected by epigenomic alterations. This could have important implications for the development and application of both epigenetic therapies and cancer immunotherapies, and combinations thereof. Here, we review the role of key aberrant epigenetic processes - DNA methylation and post-translational modification of histones - in tumour immunogenicity, as well as the effects of epigenetic modulation on antitumour immune cell function. We emphasize opportunities for small-molecule inhibitors of epigenetic regulators to enhance antitumour immune responses, and discuss the challenges of exploiting the complex interplay between cancer epigenetics and cancer immunology to develop treatment regimens combining epigenetic therapies with immunotherapies.
Collapse
|
122
|
Shibata S, Kobayashi EH, Kobayashi N, Oike A, Okae H, Arima T. Unique features and emerging in vitro models of human placental development. Reprod Med Biol 2020; 19:301-313. [PMID: 33071632 PMCID: PMC7542016 DOI: 10.1002/rmb2.12347] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/21/2020] [Accepted: 08/21/2020] [Indexed: 12/13/2022] Open
Abstract
Background The placenta is an essential organ for the normal development of mammalian fetuses. Most of our knowledge on the molecular mechanisms of placental development has come from the analyses of mice, especially histopathological examination of knockout mice. Choriocarcinoma and immortalized cell lines have also been used for basic research on the human placenta. However, these cells are quite different from normal trophoblast cells. Methods In this review, we first provide an overview of mouse and human placental development with particular focus on the differences in the anatomy, transcription factor networks, and epigenetic characteristics between these species. Next, we discuss pregnancy complications associated with abnormal placentation. Finally, we introduce emerging in vitro models to study the human placenta, including human trophoblast stem (TS) cells, trophoblast and endometrium organoids, and artificial embryos. Main findings The placental structure and development differ greatly between humans and mice. The recent establishment of human TS cells and trophoblast and endometrial organoids enhances our understanding of the mechanisms underlying human placental development. Conclusion These in vitro models will greatly advance our understanding of human placental development and potentially contribute to the elucidation of the causes of infertility and other pregnancy complications.
Collapse
Affiliation(s)
- Shun Shibata
- Department of Informative Genetics Tohoku University Graduate School of Medicine Sendai Japan
| | - Eri H Kobayashi
- Department of Informative Genetics Tohoku University Graduate School of Medicine Sendai Japan
| | - Norio Kobayashi
- Department of Informative Genetics Tohoku University Graduate School of Medicine Sendai Japan
| | - Akira Oike
- Department of Informative Genetics Tohoku University Graduate School of Medicine Sendai Japan
| | - Hiroaki Okae
- Department of Informative Genetics Tohoku University Graduate School of Medicine Sendai Japan
| | - Takahiro Arima
- Department of Informative Genetics Tohoku University Graduate School of Medicine Sendai Japan
| |
Collapse
|
123
|
Analysis of 5-Carboxylcytosine Distribution Using DNA Immunoprecipitation. Methods Mol Biol 2020. [PMID: 32822041 DOI: 10.1007/978-1-0716-0876-0_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
DNA methylation (5-methylcytosine, 5mC) is involved in regulation of a wide range of biological processes. TET proteins can oxidize 5mC to 5-hydroxymethylcytosine, 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). Although both 5fC and 5caC serve as intermediates in active demethylation pathway, growing body of experimental evidence indicate that these DNA modifications may also interact with specific sets of reader proteins and therefore may represent bona fide epigenetic marks. Despite a number of single-base resolution techniques have recently been proposed for 5fC/5caC mapping, antibody-based approaches still represent a relatively simple and plausible alternative for the analysis of genomic distribution of these DNA modifications. Here, we describe a protocol for 5caC DNA immunoprecipitation (5caC DIP) that can be used for both locus-specific and genome-wide assessment of 5caC distribution. In combination with mass spectrometry-based techniques and single base resolution mapping methods, this approach may contribute to elucidating the role of 5caC in development, differentiation, and tumorigenesis.
Collapse
|
124
|
Rivera RM. Consequences of assisted reproductive techniques on the embryonic epigenome in cattle. Reprod Fertil Dev 2020; 32:65-81. [PMID: 32188559 DOI: 10.1071/rd19276] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Procedures used in assisted reproduction have been under constant scrutiny since their inception with the goal of improving the number and quality of embryos produced. However, invitro production of embryos is not without complications because many fertilised oocytes fail to become blastocysts, and even those that do often differ in the genetic output compared with their invivo counterparts. Thus only a portion of those transferred complete normal fetal development. An unwanted consequence of bovine assisted reproductive technology (ART) is the induction of a syndrome characterised by fetal overgrowth and placental abnormalities, namely large offspring syndrome; a condition associated with inappropriate control of the epigenome. Epigenetics is the study of chromatin and its effects on genetic output. Establishment and maintenance of epigenetic marks during gametogenesis and embryogenesis is imperative for the maintenance of cell identity and function. ARTs are implemented during times of vast epigenetic reprogramming; as a result, many studies have identified ART-induced deviations in epigenetic regulation in mammalian gametes and embryos. This review describes the various layers of epigenetic regulation and discusses findings pertaining to the effects of ART on the epigenome of bovine gametes and the preimplantation embryo.
Collapse
Affiliation(s)
- Rocío Melissa Rivera
- Division of Animal Science University of Missouri, Columbia, Missouri 65211, USA.
| |
Collapse
|
125
|
Geis FK, Goff SP. Silencing and Transcriptional Regulation of Endogenous Retroviruses: An Overview. Viruses 2020; 12:v12080884. [PMID: 32823517 PMCID: PMC7472088 DOI: 10.3390/v12080884] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/03/2020] [Accepted: 08/11/2020] [Indexed: 12/16/2022] Open
Abstract
Almost half of the human genome is made up of transposable elements (TEs), and about 8% consists of endogenous retroviruses (ERVs). ERVs are remnants of ancient exogenous retrovirus infections of the germ line. Most TEs are inactive and not detrimental to the host. They are tightly regulated to ensure genomic stability of the host and avoid deregulation of nearby gene loci. Histone-based posttranslational modifications such as H3K9 trimethylation are one of the main silencing mechanisms. Trim28 is one of the identified master regulators of silencing, which recruits most prominently the H3K9 methyltransferase Setdb1, among other factors. Sumoylation and ATP-dependent chromatin remodeling factors seem to contribute to proper localization of Trim28 to ERV sequences and promote Trim28 interaction with Setdb1. Additionally, DNA methylation as well as RNA-mediated targeting of TEs such as piRNA-based silencing play important roles in ERV regulation. Despite the involvement of ERV overexpression in several cancer types, autoimmune diseases, and viral pathologies, ERVs are now also appreciated for their potential positive role in evolution. ERVs can provide new regulatory gene elements or novel binding sites for transcription factors, and ERV gene products can even be repurposed for the benefit of the host.
Collapse
Affiliation(s)
- Franziska K. Geis
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, NY 10032, USA;
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA
- Howard Hughes Medical Institute, Columbia University Medical Center, New York, NY 10032, USA
| | - Stephen P. Goff
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, NY 10032, USA;
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA
- Howard Hughes Medical Institute, Columbia University Medical Center, New York, NY 10032, USA
- Correspondence: ; Tel.: +1-212-305-3794
| |
Collapse
|
126
|
Environmental Impact on Male (In)Fertility via Epigenetic Route. J Clin Med 2020; 9:jcm9082520. [PMID: 32764255 PMCID: PMC7463911 DOI: 10.3390/jcm9082520] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/21/2020] [Accepted: 07/31/2020] [Indexed: 12/14/2022] Open
Abstract
In the last 40 years, male reproductive health-which is very sensitive to both environmental exposure and metabolic status-has deteriorated and the poor sperm quality observed has been suggested to affect offspring development and its health in adult life. In this scenario, evidence now suggests that epigenetics shapes endocrine functions, linking genetics and environment. During fertilization, spermatozoa share with the oocyte their epigenome, along with their haploid genome, in order to orchestrate embryo development. The epigenetic signature of spermatozoa is the result of a dynamic modulation of the epigenetic marks occurring, firstly, in the testis-during germ cell progression-then, along the epididymis, where spermatozoa still receive molecules, conveyed by epididymosomes. Paternal lifestyle, including nutrition and exposure to hazardous substances, alters the phenotype of the next generations, through the remodeling of a sperm epigenetic blueprint that dynamically reacts to a wide range of environmental and lifestyle stressors. With that in mind, this review will summarize and discuss insights into germline epigenetic plasticity caused by environmental stimuli and diet and how spermatozoa may be carriers of induced epimutations across generations through a mechanism known as paternal transgenerational epigenetic inheritance.
Collapse
|
127
|
Zoch A, Auchynnikava T, Berrens RV, Kabayama Y, Schöpp T, Heep M, Vasiliauskaitė L, Pérez-Rico YA, Cook AG, Shkumatava A, Rappsilber J, Allshire RC, O'Carroll D. SPOCD1 is an essential executor of piRNA-directed de novo DNA methylation. Nature 2020; 584:635-639. [PMID: 32674113 PMCID: PMC7612247 DOI: 10.1038/s41586-020-2557-5] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 05/12/2020] [Indexed: 12/21/2022]
Abstract
In mammals, the acquisition of the germline from the soma provides the germline with an essential challenge: the need to erase and reset genomic methylation1. In the male germline, RNA-directed DNA methylation silences young, active transposable elements2-4. The PIWI protein MIWI2 (PIWIL4) and its associated PIWI-interacting RNAs (piRNAs) instruct DNA methylation of transposable elements3,5. piRNAs are proposed to tether MIWI2 to nascent transposable element transcripts; however, the mechanism by which MIWI2 directs the de novo methylation of transposable elements is poorly understood, although central to the immortality of the germline. Here we define the interactome of MIWI2 in mouse fetal gonocytes undergoing de novo genome methylation and identify a previously unknown MIWI2-associated factor, SPOCD1, that is essential for the methylation and silencing of young transposable elements. The loss of Spocd1 in mice results in male-specific infertility but does not affect either piRNA biogenesis or the localization of MIWI2 to the nucleus. SPOCD1 is a nuclear protein whose expression is restricted to the period of de novo genome methylation. It co-purifies in vivo with DNMT3L and DNMT3A, components of the de novo methylation machinery, as well as with constituents of the NURD and BAF chromatin remodelling complexes. We propose a model whereby tethering of MIWI2 to a nascent transposable element transcript recruits repressive chromatin remodelling activities and the de novo methylation apparatus through SPOCD1. In summary, we have identified a previously unrecognized and essential executor of mammalian piRNA-directed DNA methylation.
Collapse
Affiliation(s)
- Ansgar Zoch
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Tania Auchynnikava
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Rebecca V Berrens
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
| | - Yuka Kabayama
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Theresa Schöpp
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Madeleine Heep
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Lina Vasiliauskaitė
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Yuvia A Pérez-Rico
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, Paris, France
| | - Atlanta G Cook
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Alena Shkumatava
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, Paris, France
| | - Juri Rappsilber
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
- Bioanalytics Unit, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | - Robin C Allshire
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Dónal O'Carroll
- Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
128
|
Grosswendt S, Kretzmer H, Smith ZD, Kumar AS, Hetzel S, Wittler L, Klages S, Timmermann B, Mukherji S, Meissner A. Epigenetic regulator function through mouse gastrulation. Nature 2020; 584:102-108. [PMID: 32728215 PMCID: PMC7415732 DOI: 10.1038/s41586-020-2552-x] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 05/06/2020] [Indexed: 12/15/2022]
Abstract
During ontogeny, proliferating cells become restricted in their fate through the combined action of cell-type specific transcription factors and ubiquitous epigenetic machinery, which recognize universally available histone residues or nucleotides but are nonetheless deployed in a highly context-dependent manner1,2. The molecular functions of these regulators are generally well understood, but assigning direct developmental roles is hampered by complex mutant phenotypes that often emerge following gastrulation3,4. Recently, single-cell RNA sequencing (scRNA-seq) and analytical approaches have explored this highly conserved process across numerous model organisms5–8, including mouse9–18. To elaborate on these strategies, we investigated a panel of ten essential regulators using a combined zygotic perturbation, scRNA-seq platform where many mutant embryos can be assayed simultaneously to recover robust transcriptional and morphological information. Deeper analysis of central Polycomb Repressive Complex (PRC) 1 and 2 members indicate substantial cooperativity, but distinguishes a PRC2-dominant role in restricting the germline that emerges from gross molecular changes within the initial conceptus. We believe our experimental framework will eventually allow for a fully quantitative view of how cellular diversity emerges using an identical genetic template and from a single totipotent cell.
Collapse
Affiliation(s)
- Stefanie Grosswendt
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Helene Kretzmer
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Zachary D Smith
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.,Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Abhishek Sampath Kumar
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Sara Hetzel
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Lars Wittler
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Sven Klages
- Sequencing Core Facility, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Bernd Timmermann
- Sequencing Core Facility, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Shankar Mukherji
- Department of Physics, Washington University in St Louis, St Louis, MO, USA
| | - Alexander Meissner
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany. .,Broad Institute of MIT and Harvard, Cambridge, MA, USA. .,Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
129
|
Strain-Specific Epigenetic Regulation of Endogenous Retroviruses: The Role of Trans-Acting Modifiers. Viruses 2020; 12:v12080810. [PMID: 32727076 PMCID: PMC7472028 DOI: 10.3390/v12080810] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/21/2020] [Accepted: 07/24/2020] [Indexed: 02/07/2023] Open
Abstract
Approximately 10 percent of the mouse genome consists of endogenous retroviruses (ERVs), relics of ancient retroviral infections that are classified based on their relatedness to exogenous retroviral genera. Because of the ability of ERVs to retrotranspose, as well as their cis-acting regulatory potential due to functional elements located within the elements, mammalian ERVs are generally subject to epigenetic silencing by DNA methylation and repressive histone modifications. The mobilisation and expansion of ERV elements is strain-specific, leading to ERVs being highly polymorphic between inbred mouse strains, hinting at the possibility of the strain-specific regulation of ERVs. In this review, we describe the existing evidence of mouse strain-specific epigenetic control of ERVs and discuss the implications of differential ERV regulation on epigenetic inheritance models. We consider Krüppel-associated box domain (KRAB) zinc finger proteins as likely candidates for strain-specific ERV modifiers, drawing on insights gained from the study of the strain-specific behaviour of transgenes. We conclude by considering the coevolution of KRAB zinc finger proteins and actively transposing ERV elements, and highlight the importance of cross-strain studies in elucidating the mechanisms and consequences of strain-specific ERV regulation.
Collapse
|
130
|
Abstract
Multicellular eukaryotic genomes show enormous differences in size. A substantial part of this variation is due to the presence of transposable elements (TEs). They contribute significantly to a cell's mass of DNA and have the potential to become involved in host gene control. We argue that the suppression of their activities by methylation of the C-phosphate-G (CpG) dinucleotide in DNA is essential for their long-term accommodation in the host genome and, therefore, to its expansion. An inevitable consequence of cytosine methylation is an increase in C-to-T transition mutations via deamination, which causes CpG loss. Cytosine deamination is often needed for TEs to take on regulatory functions in the host genome. Our study of the whole-genome sequences of 53 organisms showed a positive correlation between the size of a genome and the percentage of TEs it contains, as well as a negative correlation between size and the CpG observed/expected (O/E) ratio in both TEs and the host DNA. TEs are seldom found at promoters and transcription start sites, but they are found more at enhancers, particularly after they have accumulated C-to-T and other mutations. Therefore, the methylation of TE DNA allows for genome expansion and also leads to new opportunities for gene control by TE-based regulatory sites.
Collapse
|
131
|
Cullen H, Schorn AJ. Endogenous Retroviruses Walk a Fine Line between Priming and Silencing. Viruses 2020; 12:v12080792. [PMID: 32718022 PMCID: PMC7472051 DOI: 10.3390/v12080792] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/17/2020] [Accepted: 07/20/2020] [Indexed: 12/31/2022] Open
Abstract
Endogenous retroviruses (ERVs) in mammals are closely related to infectious retroviruses and utilize host tRNAs as a primer for reverse transcription and replication, a hallmark of long terminal repeat (LTR) retroelements. Their dependency on tRNA makes these elements vulnerable to targeting by small RNAs derived from the 3′-end of mature tRNAs (3′-tRFs), which are highly expressed during epigenetic reprogramming and potentially protect many tissues in eukaryotes. Here, we review some key functions of ERV reprogramming during mouse and human development and discuss how small RNA-mediated silencing maintains genome stability when ERVs are temporarily released from heterochromatin repression. In particular, we take a closer look at the tRNA primer binding sites (PBS) of two highly active ERV families in mice and their sequence variation that is shaped by the conflict of successful tRNA priming for replication versus evasion of silencing by 3′-tRFs.
Collapse
|
132
|
Rebollo R, Galvão-Ferrarini M, Gagnier L, Zhang Y, Ferraj A, Beck CR, Lorincz MC, Mager DL. Inter-Strain Epigenomic Profiling Reveals a Candidate IAP Master Copy in C3H Mice. Viruses 2020; 12:v12070783. [PMID: 32708087 PMCID: PMC7411935 DOI: 10.3390/v12070783] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/03/2020] [Accepted: 07/13/2020] [Indexed: 12/15/2022] Open
Abstract
Insertions of endogenous retroviruses cause a significant fraction of mutations in inbred mice but not all strains are equally susceptible. Notably, most new Intracisternal A particle (IAP) ERV mutagenic insertions have occurred in C3H mice. We show here that strain-specific insertional polymorphic IAPs accumulate faster in C3H/HeJ mice, relative to other sequenced strains, and that IAP transcript levels are higher in C3H/HeJ embryonic stem (ES) cells compared to other ES cells. To investigate the mechanism for high IAP activity in C3H mice, we identified 61 IAP copies in C3H/HeJ ES cells enriched with H3K4me3 (a mark of active promoters) and, among those tested, all are unmethylated in C3H/HeJ ES cells. Notably, 13 of the 61 are specific to C3H/HeJ and are members of the non-autonomous 1Δ1 IAP subfamily that is responsible for nearly all new insertions in C3H. One copy is full length with intact open reading frames and hence potentially capable of providing proteins in trans to other 1Δ1 elements. This potential “master copy” is present in other strains, including 129, but its 5’ long terminal repeat (LTR) is methylated in 129 ES cells. Thus, the unusual IAP activity in C3H may be due to reduced epigenetic repression coupled with the presence of a master copy.
Collapse
Affiliation(s)
- Rita Rebollo
- Terry Fox Laboratory, British Columbia Cancer, Vancouver, BC V5Z1L3, Canada; (L.G.); (Y.Z.)
- University of Lyon, INSA-Lyon, INRA, BF2i, UMR0203, F-69621 Villeurbanne, France;
- Correspondence: (R.R.); (D.L.M.)
| | | | - Liane Gagnier
- Terry Fox Laboratory, British Columbia Cancer, Vancouver, BC V5Z1L3, Canada; (L.G.); (Y.Z.)
| | - Ying Zhang
- Terry Fox Laboratory, British Columbia Cancer, Vancouver, BC V5Z1L3, Canada; (L.G.); (Y.Z.)
| | - Ardian Ferraj
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA; (A.F.); (C.R.B.)
| | - Christine R. Beck
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA; (A.F.); (C.R.B.)
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, USA
| | - Matthew C. Lorincz
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T1Z3, Canada;
| | - Dixie L. Mager
- Terry Fox Laboratory, British Columbia Cancer, Vancouver, BC V5Z1L3, Canada; (L.G.); (Y.Z.)
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T1Z3, Canada;
- Correspondence: (R.R.); (D.L.M.)
| |
Collapse
|
133
|
Direct readout of heterochromatic H3K9me3 regulates DNMT1-mediated maintenance DNA methylation. Proc Natl Acad Sci U S A 2020; 117:18439-18447. [PMID: 32675241 DOI: 10.1073/pnas.2009316117] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In mammals, repressive histone modifications such as trimethylation of histone H3 Lys9 (H3K9me3), frequently coexist with DNA methylation, producing a more stable and silenced chromatin state. However, it remains elusive how these epigenetic modifications crosstalk. Here, through structural and biochemical characterizations, we identified the replication foci targeting sequence (RFTS) domain of maintenance DNA methyltransferase DNMT1, a module known to bind the ubiquitylated H3 (H3Ub), as a specific reader for H3K9me3/H3Ub, with the recognition mode distinct from the typical trimethyl-lysine reader. Disruption of the interaction between RFTS and the H3K9me3Ub affects the localization of DNMT1 in stem cells and profoundly impairs the global DNA methylation and genomic stability. Together, this study reveals a previously unappreciated pathway through which H3K9me3 directly reinforces DNMT1-mediated maintenance DNA methylation.
Collapse
|
134
|
dnmt1 function is required to maintain retinal stem cells within the ciliary marginal zone of the zebrafish eye. Sci Rep 2020; 10:11293. [PMID: 32647199 PMCID: PMC7347529 DOI: 10.1038/s41598-020-68016-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/15/2020] [Indexed: 12/22/2022] Open
Abstract
The ciliary marginal zone (CMZ) of the zebrafish retina contains a population of actively proliferating resident stem cells, which generate retinal neurons throughout life. The maintenance methyltransferase, dnmt1, is expressed within the CMZ. Loss of dnmt1 function results in gene misregulation and cell death in a variety of developmental contexts, however, its role in retinal stem cell (RSC) maintenance is currently unknown. Here, we demonstrate that zebrafish dnmt1s872 mutants possess severe defects in RSC maintenance within the CMZ. Using a combination of immunohistochemistry, in situ hybridization, and a transgenic reporter assay, our results demonstrate a requirement for dnmt1 activity in the regulation of RSC proliferation, gene expression and in the repression of endogenous retroelements (REs). Ultimately, cell death is elevated in the dnmt1−/− CMZ, but in a p53-independent manner. Using a transgenic reporter for RE transposition activity, we demonstrate increased transposition in the dnmt1−/− CMZ. Taken together our data identify a critical role for dnmt1 function in RSC maintenance in the vertebrate eye.
Collapse
|
135
|
Boulard M, Rucli S, Edwards JR, Bestor TH. Methylation-directed glycosylation of chromatin factors represses retrotransposon promoters. Proc Natl Acad Sci U S A 2020; 117:14292-14298. [PMID: 32522876 PMCID: PMC7322000 DOI: 10.1073/pnas.1912074117] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The mechanisms by which methylated mammalian promoters are transcriptionally silenced even in the presence of all of the factors required for their expression have long been a major unresolved issue in the field of epigenetics. Repression requires the assembly of a methylation-dependent silencing complex that contains the TRIM28 protein (also known as KAP1 and TIF1β), a scaffolding protein without intrinsic repressive or DNA-binding properties. The identity of the key effector within this complex that represses transcription is unknown. We developed a methylation-sensitized interaction screen which revealed that TRIM28 was complexed with O-linked β-N-acetylglucosamine transferase (OGT) only in cells that had normal genomic methylation patterns. OGT is the only glycosyltransferase that modifies cytoplasmic and nuclear protein by transfer of N-acetylglucosamine (O-GlcNAc) to serine and threonine hydroxyls. Whole-genome analysis showed that O-glycosylated proteins and TRIM28 were specifically bound to promoters of active retrotransposons and to imprinting control regions, the two major regulatory sequences controlled by DNA methylation. Furthermore, genome-wide loss of DNA methylation caused a loss of O-GlcNAc from multiple transcriptional repressor proteins associated with TRIM28. A newly developed Cas9-based editing method for targeted removal of O-GlcNAc was directed against retrotransposon promoters. Local chromatin de-GlcNAcylation specifically reactivated the expression of the targeted retrotransposon family without loss of DNA methylation. These data revealed that O-linked glycosylation of chromatin factors is essential for the transcriptional repression of methylated retrotransposons.
Collapse
Affiliation(s)
- Mathieu Boulard
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory (EMBL), 00015 Monterotondo, Italy;
| | - Sofia Rucli
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory (EMBL), 00015 Monterotondo, Italy
- Joint PhD degree program, European Molecular Biology Laboratory and Faculty of Biosciences, Heidelberg University, 69117 Heidelberg, Germany
| | - John R Edwards
- Center for Pharmacogenomics, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110;
| | - Timothy H Bestor
- Department of Genetics and Development, College of Physicians and Surgeons of Columbia University, New York, NY 10032
| |
Collapse
|
136
|
Dahlet T, Argüeso Lleida A, Al Adhami H, Dumas M, Bender A, Ngondo RP, Tanguy M, Vallet J, Auclair G, Bardet AF, Weber M. Genome-wide analysis in the mouse embryo reveals the importance of DNA methylation for transcription integrity. Nat Commun 2020; 11:3153. [PMID: 32561758 PMCID: PMC7305168 DOI: 10.1038/s41467-020-16919-w] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 05/29/2020] [Indexed: 12/20/2022] Open
Abstract
Mouse embryos acquire global DNA methylation of their genome during implantation. However the exact roles of DNA methyltransferases (DNMTs) in embryos have not been studied comprehensively. Here we systematically analyze the consequences of genetic inactivation of Dnmt1, Dnmt3a and Dnmt3b on the methylome and transcriptome of mouse embryos. We find a strict division of function between DNMT1, responsible for maintenance methylation, and DNMT3A/B, solely responsible for methylation acquisition in development. By analyzing severely hypomethylated embryos, we uncover multiple functions of DNA methylation that is used as a mechanism of repression for a panel of genes including not only imprinted and germline genes, but also lineage-committed genes and 2-cell genes. DNA methylation also suppresses multiple retrotransposons and illegitimate transcripts from cryptic promoters in transposons and gene bodies. Our work provides a thorough analysis of the roles of DNA methyltransferases and the importance of DNA methylation for transcriptome integrity in mammalian embryos.
Collapse
Affiliation(s)
- Thomas Dahlet
- University of Strasbourg, Strasbourg, France
- Biotechnology and Cell Signaling, CNRS UMR7242, 300 Bd Sébastien Brant, 67412, Illkirch, Cedex, France
| | - Andrea Argüeso Lleida
- University of Strasbourg, Strasbourg, France
- Biotechnology and Cell Signaling, CNRS UMR7242, 300 Bd Sébastien Brant, 67412, Illkirch, Cedex, France
| | - Hala Al Adhami
- University of Strasbourg, Strasbourg, France
- Biotechnology and Cell Signaling, CNRS UMR7242, 300 Bd Sébastien Brant, 67412, Illkirch, Cedex, France
| | - Michael Dumas
- University of Strasbourg, Strasbourg, France
- Biotechnology and Cell Signaling, CNRS UMR7242, 300 Bd Sébastien Brant, 67412, Illkirch, Cedex, France
| | - Ambre Bender
- University of Strasbourg, Strasbourg, France
- Biotechnology and Cell Signaling, CNRS UMR7242, 300 Bd Sébastien Brant, 67412, Illkirch, Cedex, France
| | - Richard P Ngondo
- University of Strasbourg, Strasbourg, France
- Biotechnology and Cell Signaling, CNRS UMR7242, 300 Bd Sébastien Brant, 67412, Illkirch, Cedex, France
- IBMP, CNRS UPR2357, 67084, Strasbourg, France
| | - Manon Tanguy
- University of Strasbourg, Strasbourg, France
- Biotechnology and Cell Signaling, CNRS UMR7242, 300 Bd Sébastien Brant, 67412, Illkirch, Cedex, France
| | - Judith Vallet
- University of Strasbourg, Strasbourg, France
- Biotechnology and Cell Signaling, CNRS UMR7242, 300 Bd Sébastien Brant, 67412, Illkirch, Cedex, France
| | - Ghislain Auclair
- University of Strasbourg, Strasbourg, France
- Biotechnology and Cell Signaling, CNRS UMR7242, 300 Bd Sébastien Brant, 67412, Illkirch, Cedex, France
| | - Anaïs F Bardet
- University of Strasbourg, Strasbourg, France
- Biotechnology and Cell Signaling, CNRS UMR7242, 300 Bd Sébastien Brant, 67412, Illkirch, Cedex, France
| | - Michael Weber
- University of Strasbourg, Strasbourg, France.
- Biotechnology and Cell Signaling, CNRS UMR7242, 300 Bd Sébastien Brant, 67412, Illkirch, Cedex, France.
| |
Collapse
|
137
|
DNA methylation dynamics at transposable elements in mammals. Essays Biochem 2020; 63:677-689. [PMID: 31654072 DOI: 10.1042/ebc20190039] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 09/29/2019] [Accepted: 09/30/2019] [Indexed: 12/18/2022]
Abstract
Transposable elements dominate the mammalian genome, but their contribution to genetic and epigenetic regulation has been largely overlooked. This was in part due to technical limitations, which made the study of repetitive sequences at single copy resolution difficult. The advancement of next-generation sequencing assays in the last decade has greatly enhanced our understanding of transposable element function. In some instances, specific transposable elements are thought to have been co-opted into regulatory roles during both mouse and human development, while in disease such regulatory potential can contribute to malignancy. DNA methylation is arguably the best characterised regulator of transposable element activity. DNA methylation is associated with transposable element repression, and acts to limit their genotoxic potential. In specific developmental contexts, erasure of DNA methylation is associated with a burst of transposable element expression. Developmental regulation of DNA methylation enables transposon activation, ensuring their survival and propagation throughout the host genome, and also allows the host access to regulatory sequences encoded within the elements. Here I discuss DNA methylation at transposable elements, describing its function and dynamic regulation throughout murine and human development.
Collapse
|
138
|
Thursby SJ, Lobo DK, Pentieva K, Zhang SD, Irwin RE, Walsh CP. CandiMeth: Powerful yet simple visualization and quantification of DNA methylation at candidate genes. Gigascience 2020; 9:5860739. [PMID: 32568373 PMCID: PMC7307318 DOI: 10.1093/gigascience/giaa066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 04/12/2020] [Accepted: 05/26/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND DNA methylation microarrays are widely used in clinical epigenetics and are often processed using R packages such as ChAMP or RnBeads by trained bioinformaticians. However, looking at specific genes requires bespoke coding for which wet-lab biologists or clinicians are not trained. This leads to high demands on bioinformaticians, who may lack insight into the specific biological problem. To bridge this gap, we developed a tool for mapping and quantification of methylation differences at candidate genomic features of interest, without using coding. FINDINGS We generated the workflow "CandiMeth" (Candidate Methylation) in the web-based environment Galaxy. CandiMeth takes as input any table listing differences in methylation generated by either ChAMP or RnBeads and maps these to the human genome. A simple interface then allows the user to query the data using lists of gene names. CandiMeth generates (i) tracks in the popular UCSC Genome Browser with an intuitive visual indicator of where differences in methylation occur between samples or groups of samples and (ii) tables containing quantitative data on the candidate regions, allowing interpretation of significance. In addition to genes and promoters, CandiMeth can analyse methylation differences at long and short interspersed nuclear elements. Cross-comparison to other open-resource genomic data at UCSC facilitates interpretation of the biological significance of the data and the design of wet-lab assays to further explore methylation changes and their consequences for the candidate genes. CONCLUSIONS CandiMeth (RRID:SCR_017974; Biotools: CandiMeth) allows rapid, quantitative analysis of methylation at user-specified features without the need for coding and is freely available at https://github.com/sjthursby/CandiMeth.
Collapse
Affiliation(s)
- Sara-Jayne Thursby
- Genomic Medicine Research Group, School of Biomedical Sciences, Ulster University, 1 Cromore Road, Coleraine, BT52 1SA, UK
| | - Darin K Lobo
- Genomic Medicine Research Group, School of Biomedical Sciences, Ulster University, 1 Cromore Road, Coleraine, BT52 1SA, UK
- Present address: Republic Polytechnic, 9 Woodlands Avenue 9, Singapore 738964
| | - Kristina Pentieva
- Nutrition Innovation Centre for Food & Health (NICHE), School of Biomedical Sciences, Ulster University, 1 Cromore Road, Coleraine, BT52 1SA, UK
| | - Shu-Dong Zhang
- Stratified Medicine Research Groups, School of Biomedical Sciences, Ulster University, 1 Cromore Road, Coleraine, BT52 1SA, UK
| | - Rachelle E Irwin
- Stratified Medicine Research Groups, School of Biomedical Sciences, Ulster University, 1 Cromore Road, Coleraine, BT52 1SA, UK
| | - Colum P Walsh
- Correspondence address. Colum P. Walsh, Genomic Medicine Research Group, School of Biomedical Sciences, Ulster University UK. Tel: +44 28 7012 4484; E-mail:
| |
Collapse
|
139
|
Lewis SH, Ross L, Bain SA, Pahita E, Smith SA, Cordaux R, Miska EA, Lenhard B, Jiggins FM, Sarkies P. ------Widespread conservation and lineage-specific diversification of genome-wide DNA methylation patterns across arthropods. PLoS Genet 2020; 16:e1008864. [PMID: 32584820 PMCID: PMC7343188 DOI: 10.1371/journal.pgen.1008864] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 07/08/2020] [Accepted: 05/15/2020] [Indexed: 12/23/2022] Open
Abstract
Cytosine methylation is an ancient epigenetic modification yet its function and extent within genomes is highly variable across eukaryotes. In mammals, methylation controls transposable elements and regulates the promoters of genes. In insects, DNA methylation is generally restricted to a small subset of transcribed genes, with both intergenic regions and transposable elements (TEs) depleted of methylation. The evolutionary origin and the function of these methylation patterns are poorly understood. Here we characterise the evolution of DNA methylation across the arthropod phylum. While the common ancestor of the arthropods had low levels of TE methylation and did not methylate promoters, both of these functions have evolved independently in centipedes and mealybugs. In contrast, methylation of the exons of a subset of transcribed genes is ancestral and widely conserved across the phylum, but has been lost in specific lineages. A similar set of genes is methylated in all species that retained exon-enriched methylation. We show that these genes have characteristic patterns of expression correlating to broad transcription initiation sites and well-positioned nucleosomes, providing new insights into potential mechanisms driving methylation patterns over hundreds of millions of years.
Collapse
Affiliation(s)
- Samuel H. Lewis
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
- MRC London Institute of Medical Sciences, London, United Kingdom
- Institute of Clinical Sciences, Imperial College London, London, United Kingdom
| | - Laura Ross
- Institute of Evolutionary Biology, Edinburgh, United Kingdom
| | - Stevie A. Bain
- Institute of Evolutionary Biology, Edinburgh, United Kingdom
| | - Eleni Pahita
- MRC London Institute of Medical Sciences, London, United Kingdom
- Institute of Clinical Sciences, Imperial College London, London, United Kingdom
| | - Stephen A. Smith
- Department of Biomedical Sciences and Pathobiology, Virginia Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Richard Cordaux
- Laboratoire Ecologie et Biologie des Interactions Universite de Poitiers, France
| | - Eric A. Miska
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
- Wellcome Trust/Cancer Research UK Gurdon Institute, Cambridge, United Kingdom
| | - Boris Lenhard
- MRC London Institute of Medical Sciences, London, United Kingdom
- Institute of Clinical Sciences, Imperial College London, London, United Kingdom
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Francis M. Jiggins
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Peter Sarkies
- MRC London Institute of Medical Sciences, London, United Kingdom
- Institute of Clinical Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
140
|
Fukuda K, Shinkai Y. SETDB1-Mediated Silencing of Retroelements. Viruses 2020; 12:E596. [PMID: 32486217 PMCID: PMC7354471 DOI: 10.3390/v12060596] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/28/2020] [Accepted: 05/28/2020] [Indexed: 12/11/2022] Open
Abstract
SETDB1 (SET domain bifurcated histone lysine methyltransferase 1) is a protein lysine methyltransferase and methylates histone H3 at lysine 9 (H3K9). Among other H3K9 methyltransferases, SETDB1 and SETDB1-mediated H3K9 trimethylation (H3K9me3) play pivotal roles for silencing of endogenous and exogenous retroelements, thus contributing to genome stability against retroelement transposition. Furthermore, SETDB1 is highly upregulated in various tumor cells. In this article, we describe recent advances about how SETDB1 activity is regulated, how SETDB1 represses various types of retroelements such as L1 and class I, II, and III endogenous retroviruses (ERVs) in concert with other epigenetic factors such as KAP1 and the HUSH complex and how SETDB1-mediated H3K9 methylation can be maintained during replication.
Collapse
Affiliation(s)
- Kei Fukuda
- Cellular Memory Laboratory, RIKEN Cluster for Pioneering Research, RIKEN, Wako 351-0198, Japan
| | - Yoichi Shinkai
- Cellular Memory Laboratory, RIKEN Cluster for Pioneering Research, RIKEN, Wako 351-0198, Japan
| |
Collapse
|
141
|
Luo P, Deng S, Ye H, Yu X, Deng Q, Zhang Y, Jiang L, Li J, Yu Y, Han W. The IL-33/ST2 pathway suppresses murine colon cancer growth and metastasis by upregulating CD40 L signaling. Biomed Pharmacother 2020; 127:110232. [PMID: 32559854 DOI: 10.1016/j.biopha.2020.110232] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/27/2020] [Accepted: 05/05/2020] [Indexed: 12/14/2022] Open
Abstract
Interleukin (IL)-33 is a member of the IL-1 family, participating in both helper T1 (Th1)- and Th2-type immune responses, but its ambiguous effects on tumor growth and related immune mechanisms remain unclear. Here, we report that recombinant mouse IL-33 (mIL-33) significantly inhibited colon cancer growth and metastasis to lung and liver in a murine CT26 or MC38 tumor-cell engraftment model. This effect could be associated with CD4+ T cells and CD40 L signaling, as depletion of CD4+ T cells or blocking CD40 L signaling in vivo partly abolished the antitumor function of IL-33. In addition, IL-33 treatment upregulated CD40 L expression on tumor-infiltrating lymphocytes, and promoted the activation of CD4+ T, CD8+ T and natural killer cells via CD40 L signaling. Furthermore, IL-33 was sufficient to induce the ST2 expression on CD4+ T cells, but not on CD8+ T and natural killer cells, indicating that IL-33 acted on CD4+ T cells via a positive-feedback loop. Our findings shed new light on the IL-33-mediated antitumor effects and mechanisms of Th1 action, and also suggest that IL-33 may serve as an activator to boost anticancer immune responses in singular or combinatory therapies.
Collapse
Affiliation(s)
- Ping Luo
- Laboratory of Regeneromics, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, PR China
| | - Shaorong Deng
- Laboratory of Regeneromics, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, PR China
| | - Hao Ye
- Laboratory of Regeneromics, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, PR China
| | - Xiaolan Yu
- Laboratory of Regeneromics, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, PR China
| | - Qing Deng
- Laboratory of Regeneromics, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, PR China
| | - Yinjie Zhang
- Laboratory of Regeneromics, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, PR China
| | - Liya Jiang
- Laboratory of Regeneromics, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, PR China
| | - Jingjing Li
- Laboratory of Regeneromics, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, PR China
| | - Yan Yu
- Shanghai Municipality Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China.
| | - Wei Han
- Laboratory of Regeneromics, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, PR China.
| |
Collapse
|
142
|
Transposon Reactivation in the Germline May Be Useful for Both Transposons and Their Host Genomes. Cells 2020; 9:cells9051172. [PMID: 32397241 PMCID: PMC7290860 DOI: 10.3390/cells9051172] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 12/29/2022] Open
Abstract
Transposable elements (TEs) are long-term residents of eukaryotic genomes that make up a large portion of these genomes. They can be considered as perfectly fine members of genomes replicating with resident genes and being transmitted vertically to the next generation. However, unlike regular genes, TEs have the ability to send new copies to new sites. As such, they have been considered as parasitic members ensuring their own replication. In another view, TEs may also be considered as symbiotic sequences providing shared benefits after mutualistic interactions with their host genome. In this review, we recall the relationship between TEs and their host genome and discuss why transient relaxation of TE silencing within specific developmental windows may be useful for both.
Collapse
|
143
|
Yang F, Lan Y, Pandey RR, Homolka D, Berger SL, Pillai RS, Bartolomei MS, Wang PJ. TEX15 associates with MILI and silences transposable elements in male germ cells. Genes Dev 2020; 34:745-750. [PMID: 32381626 PMCID: PMC7263141 DOI: 10.1101/gad.335489.119] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 04/03/2020] [Indexed: 12/29/2022]
Abstract
Here, Yang et al. report that TEX15, a testis-specific protein, is required for transposable element (TE) silencing. They show that loss of Tex15 causes TE desilencing with intact piRNA production, and their findings identify TEX15 as a new essential epigenetic regulator that may function as a nuclear effector of MILI to silence TEs by DNA methylation. DNA methylation is a major silencing mechanism of transposable elements (TEs). Here we report that TEX15, a testis-specific protein, is required for TE silencing. TEX15 is expressed in embryonic germ cells and functions during genome-wide epigenetic reprogramming. The Tex15 mutant exhibits DNA hypomethylation in TEs at a level similar to Mili and Dnmt3c but not Miwi2 mutants. TEX15 is associated with MILI in testis. As loss of Tex15 causes TE desilencing with intact piRNA production, our results identify TEX15 as a new essential epigenetic regulator that may function as a nuclear effector of MILI to silence TEs by DNA methylation.
Collapse
Affiliation(s)
- Fang Yang
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Yemin Lan
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Radha Raman Pandey
- Department of Molecular Biology, Science III, University of Geneva, CH-1211 Geneva 4, Switzerland
| | - David Homolka
- Department of Molecular Biology, Science III, University of Geneva, CH-1211 Geneva 4, Switzerland
| | - Shelley L Berger
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Ramesh S Pillai
- Department of Molecular Biology, Science III, University of Geneva, CH-1211 Geneva 4, Switzerland
| | - Marisa S Bartolomei
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - P Jeremy Wang
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
144
|
Lynch-Sutherland CF, Chatterjee A, Stockwell PA, Eccles MR, Macaulay EC. Reawakening the Developmental Origins of Cancer Through Transposable Elements. Front Oncol 2020; 10:468. [PMID: 32432029 PMCID: PMC7214541 DOI: 10.3389/fonc.2020.00468] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/16/2020] [Indexed: 12/12/2022] Open
Abstract
Transposable elements (TEs) have an established role as important regulators of early human development, functioning as tissue-specific genes and regulatory elements. Functional TEs are highly active during early development, and interact with important developmental genes, some of which also function as oncogenes. Dedifferentiation is a hallmark of cancer, and is characterized by genetic and epigenetic changes that enable proliferation, self-renewal and a metabolism reminiscent of embryonic stem cells. There is also compelling evidence suggesting that the path to dedifferentiation in cancer can contribute to invasion and metastasis. TEs are frequently expressed in cancer, and recent work has identified a newly proposed mechanism involving extensive recruitment of TE-derived promoters to drive expression of oncogenes and subsequently promote oncogenesis—a process termed onco-exaptation. However, the mechanism by which this phenomenon occurs, and the extent to which it contributes to oncogenesis remains unknown. Initial hypotheses have proposed that onco-exaptation events are cancer-specific and arise randomly due to the dysregulated and hypomethylated state of cancer cells and abundance of TEs across the genome. However, we suspect that exaptation-like events may not just arise due to chance activation of novel regulatory relationships as proposed previously, but as a result of the reestablishment of early developmental regulatory relationships. Dedifferentiation in cancer is well-documented, along with expression of TEs. The known interactions between TEs and pluripotency factors such as NANOG and OCTt4 during early development, along with the expression of some placental-specific TE-derived transcripts in cancer support a possible link between TEs and dedifferentiation of tumor cells. Thus, we hypothesize that onco-exaptation events can be associated with the epigenetic reawakening of early developmental TEs to regulate expression of oncogenes and promote oncogenesis. We also suspect that activation of these early developmental regulatory TEs may promote dedifferentiation, although at this stage it is hard to predict whether TE activation is one of the initial drivers of dedifferentiation. We expect that developmental TE activation occurs as a result of the establishment of an epigenetic landscape in cancer that resembles that of early development and that developmental TE activation may also enable cancers to exploit early developmental pathways, repurposing them to promote malignancy.
Collapse
Affiliation(s)
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Peter A Stockwell
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Michael R Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Erin C Macaulay
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| |
Collapse
|
145
|
Abstract
In 1993, Denise Barlow proposed that genomic imprinting might have arisen from a host defense mechanism designed to inactivate retrotransposons. Although there were few examples at hand, she suggested that there should be maternal-specific and paternal-specific factors involved, with cognate imprinting boxes that they recognized; furthermore, the system should build on conserved biochemical factors, including DNA methylation, and maternal control should predominate for imprints. Here, we revisit this hypothesis in the light of recent advances in our understanding of host defense and DNA methylation and in particular, the link with Krüppel-associated box–zinc finger (KRAB-ZF) proteins.
Collapse
Affiliation(s)
- Miroslava Ondičová
- School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, United Kingdom
| | - Rebecca J. Oakey
- Department of Medical & Molecular Genetics, King’s College London, Guy’s Hospital, London, United Kingdom
| | - Colum P. Walsh
- School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland, United Kingdom
- * E-mail:
| |
Collapse
|
146
|
Freeman DM, Lou D, Li Y, Martos SN, Wang Z. The conserved DNMT1-dependent methylation regions in human cells are vulnerable to neurotoxicant rotenone exposure. Epigenetics Chromatin 2020; 13:17. [PMID: 32178731 PMCID: PMC7076959 DOI: 10.1186/s13072-020-00338-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 03/06/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Allele-specific DNA methylation (ASM) describes genomic loci that maintain CpG methylation at only one inherited allele rather than having coordinated methylation across both alleles. The most prominent of these regions are germline ASMs (gASMs) that control the expression of imprinted genes in a parent of origin-dependent manner and are associated with disease. However, our recent report reveals numerous ASMs at non-imprinted genes. These non-germline ASMs are dependent on DNA methyltransferase 1 (DNMT1) and strikingly show the feature of random, switchable monoallelic methylation patterns in the mouse genome. The significance of these ASMs to human health has not been explored. Due to their shared allelicity with gASMs, herein, we propose that non-traditional ASMs are sensitive to exposures in association with human disease. RESULTS We first explore their conservancy in the human genome. Our data show that our putative non-germline ASMs were in conserved regions of the human genome and located adjacent to genes vital for neuronal development and maturation. We next tested the hypothesized vulnerability of these regions by exposing human embryonic kidney cell HEK293 with the neurotoxicant rotenone for 24 h. Indeed,14 genes adjacent to our identified regions were differentially expressed from RNA-sequencing. We analyzed the base-resolution methylation patterns of the predicted non-germline ASMs at two neurological genes, HCN2 and NEFM, with potential to increase the risk of neurodegeneration. Both regions were significantly hypomethylated in response to rotenone. CONCLUSIONS Our data indicate that non-germline ASMs seem conserved between mouse and human genomes, overlap important regulatory factor binding motifs, and regulate the expression of genes vital to neuronal function. These results support the notion that ASMs are sensitive to environmental factors such as rotenone and may alter the risk of neurological disease later in life by disrupting neuronal development.
Collapse
Affiliation(s)
- Dana M Freeman
- Laboratory of Environmental Epigenomes, Department of Environmental Health & Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Dan Lou
- Laboratory of Environmental Epigenomes, Department of Environmental Health & Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Yanqiang Li
- Laboratory of Environmental Epigenomes, Department of Environmental Health & Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Suzanne N Martos
- Laboratory of Environmental Epigenomes, Department of Environmental Health & Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Zhibin Wang
- Laboratory of Environmental Epigenomes, Department of Environmental Health & Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
- The State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, Hubei, China.
- Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
147
|
Abstract
DNA methylation at CpG sites is an essential epigenetic mark that regulates gene expression during mammalian development and diseases. Methylome refers to the entire set of methylation modifications present in the whole genome. Over the last several years, an increasing number of reports on brain DNA methylome reported the association between aberrant methylation and the abnormalities in the expression of critical genes known to have critical roles during aging and neurodegenerative diseases. Consequently, the role of methylation in understanding neurodegenerative diseases has been under focus. This review outlines the current knowledge of the human brain DNA methylomes during aging and neurodegenerative diseases. We describe the differentially methylated genes from fetal stage to old age and their biological functions. Additionally, we summarize the key aspects and methylated genes identified from brain methylome studies on neurodegenerative diseases. The brain methylome studies could provide a basis for studying the functional aspects of neurodegenerative diseases.
Collapse
Affiliation(s)
- Renuka Prasad
- Department of Life Science, University of Seoul, Seoul 02504, Korea
| | - Eek-Hoon Jho
- Department of Life Science, University of Seoul, Seoul 02504, Korea
| |
Collapse
|
148
|
Ishak CA, De Carvalho DD. Reactivation of Endogenous Retroelements in Cancer Development and Therapy. ANNUAL REVIEW OF CANCER BIOLOGY-SERIES 2020. [DOI: 10.1146/annurev-cancerbio-030419-033525] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Domesticated retroelements contribute extensively as regulatory elements within host gene networks. Upon germline integration, retroelement mobilization is restricted through epigenetic silencing, mutational degradation, and innate immune defenses described as the viral mimicry response. Recent discoveries reveal how early events in tumorigenesis reactivate retroelements to facilitate onco-exaptation, replication stress, retrotransposition, mitotic errors, and sterile inflammation, which collectively disrupt genome integrity. The characterization of altered epigenetic homeostasis at retroelements in cancer cells also reveals new epigenetic targets whose inactivation can bolster responses to cancer therapies. Recent discoveries reviewed here frame reactivated retroelements as both drivers of tumorigenesis and therapy responses, where their reactivation by emerging epigenetic therapies can potentiate immune checkpoint blockade, cancer vaccines, and other standard therapies.
Collapse
Affiliation(s)
- Charles A. Ishak
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada
| | - Daniel D. De Carvalho
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 2M9, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 2M9, Canada
| |
Collapse
|
149
|
Blossom SJ, Melnyk SB, Simmen FA. Complex epigenetic patterns in cerebellum generated after developmental exposure to trichloroethylene and/or high fat diet in autoimmune-prone mice. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2020; 22:583-594. [PMID: 31894794 PMCID: PMC7350281 DOI: 10.1039/c9em00514e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Trichloroethylene (TCE) is an environmental contaminant associated with immune-mediated inflammatory disorders and neurotoxicity. Based on known negative effects of developmental overnutrition on neurodevelopment, we hypothesized that developmental exposure to high fat diet (HFD) consisting of 40% kcal fat would enhance neurotoxicity of low-level (6 μg per kg per day) TCE exposure in offspring over either stressor alone. Male offspring were evaluated at ∼6 weeks of age after exposure beginning 4 weeks preconception in the dams until weaning. TCE, whether used as a single exposure or together with HFD, appeared to be more robust than HFD alone in altering one-carbon metabolites involved in glutathione redox homeostasis and methylation capacity. In contrast, opposing effects of expression of key enzymes related to DNA methylation related to HFD and TCE exposure were observed. The mice generated unique patterns of anti-brain antibodies detected by western blotting attributable to both TCE and HFD. Taken together, developmental exposure to TCE and/or HFD appear to act in complex ways to alter brain biomarkers in offspring.
Collapse
Affiliation(s)
- Sarah J Blossom
- Department of Pediatrics, University of Arkansas for Medical Sciences, Arkansas Children's Research Institute, Little Rock, AR 72202, USA.
| | | | | |
Collapse
|
150
|
Moufarrij S, Srivastava A, Gomez S, Hadley M, Palmer E, Austin PT, Chisholm S, Diab N, Roche K, Yu A, Li J, Zhu W, Lopez-Acevedo M, Villagra A, Chiappinelli KB. Combining DNMT and HDAC6 inhibitors increases anti-tumor immune signaling and decreases tumor burden in ovarian cancer. Sci Rep 2020; 10:3470. [PMID: 32103105 PMCID: PMC7044433 DOI: 10.1038/s41598-020-60409-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 02/12/2020] [Indexed: 12/12/2022] Open
Abstract
Novel therapies are urgently needed for ovarian cancer, the deadliest gynecologic malignancy. Ovarian cancer has thus far been refractory to immunotherapies that stimulate the host immune system to recognize and kill cancer cells. This may be because of a suppressive tumor immune microenvironment and lack of recruitment and activation of immune cells that kill cancer cells. Our previous work showed that epigenetic drugs including DNA methyltransferase inhibitors and histone deacetylase 6 inhibitors (DNMTis and HDAC6is) individually increase immune signaling in cancer cells. We find that combining DNMTi and HDAC6i results in an amplified type I interferon response, leading to increased cytokine and chemokine expression and higher expression of the MHC I antigen presentation complex in human and mouse ovarian cancer cell lines. Treating mice bearing ID8 Trp53-/- ovarian cancer with HDAC6i/DNMTi led to an increase in tumor-killing cells such as IFNg+ CD8, NK, and NKT cells and a reversal of the immunosuppressive tumor microenvironment with a decrease in MDSCs and PD-1hi CD4 T cells, corresponding with an increase in survival. Thus combining the epigenetic modulators DNMTi and HDAC6i increases anti-tumor immune signaling from cancer cells and has beneficial effects on the ovarian tumor immune microenvironment.
Collapse
Affiliation(s)
- Sara Moufarrij
- The George Washington University Cancer Center, The George Washington University, Washington, DC, USA
- The Department of Obstetrics & Gynecology, The George Washington University, Washington, DC, USA
| | - Aneil Srivastava
- The George Washington University Cancer Center, The George Washington University, Washington, DC, USA
- The Department of Microbiology, Immunology, & Tropical Medicine, The George Washington University, Washington, DC, USA
| | - Stephanie Gomez
- The George Washington University Cancer Center, The George Washington University, Washington, DC, USA
- The Department of Microbiology, Immunology, & Tropical Medicine, The George Washington University, Washington, DC, USA
- The Institute for Biomedical Sciences, The George Washington University, Washington, DC, 20052, USA
| | - Melissa Hadley
- The George Washington University Cancer Center, The George Washington University, Washington, DC, USA
- The Department of Microbiology, Immunology, & Tropical Medicine, The George Washington University, Washington, DC, USA
| | - Erica Palmer
- The George Washington University Cancer Center, The George Washington University, Washington, DC, USA
- The Department of Biochemistry and Molecular Medicine, The George Washington University, Washington, DC, USA
| | - Paul Tran Austin
- The George Washington University Cancer Center, The George Washington University, Washington, DC, USA
- The Department of Microbiology, Immunology, & Tropical Medicine, The George Washington University, Washington, DC, USA
| | - Sarah Chisholm
- The George Washington University Cancer Center, The George Washington University, Washington, DC, USA
- The Department of Microbiology, Immunology, & Tropical Medicine, The George Washington University, Washington, DC, USA
| | - Noor Diab
- The George Washington University Cancer Center, The George Washington University, Washington, DC, USA
| | - Kyle Roche
- The George Washington University Cancer Center, The George Washington University, Washington, DC, USA
- The Department of Microbiology, Immunology, & Tropical Medicine, The George Washington University, Washington, DC, USA
| | - Angela Yu
- The George Washington University Cancer Center, The George Washington University, Washington, DC, USA
- The Department of Microbiology, Immunology, & Tropical Medicine, The George Washington University, Washington, DC, USA
| | - Jing Li
- The George Washington University Cancer Center, The George Washington University, Washington, DC, USA
- The Department of Biochemistry and Molecular Medicine, The George Washington University, Washington, DC, USA
| | - Wenge Zhu
- The George Washington University Cancer Center, The George Washington University, Washington, DC, USA
- The Department of Biochemistry and Molecular Medicine, The George Washington University, Washington, DC, USA
| | - Micael Lopez-Acevedo
- The George Washington University Cancer Center, The George Washington University, Washington, DC, USA
- The Department of Obstetrics & Gynecology, The George Washington University, Washington, DC, USA
| | - Alejandro Villagra
- The George Washington University Cancer Center, The George Washington University, Washington, DC, USA.
- The Department of Biochemistry and Molecular Medicine, The George Washington University, Washington, DC, USA.
| | - Katherine B Chiappinelli
- The George Washington University Cancer Center, The George Washington University, Washington, DC, USA.
- The Department of Microbiology, Immunology, & Tropical Medicine, The George Washington University, Washington, DC, USA.
| |
Collapse
|