101
|
Zhang W, Hara A, Sakai N, Andoh T, Yamada H, Nozawa Y. Radiosensitization and inhibition of deoxyribonucleic acid repair in rat glioma cells by long-term treatment with 12-O-tetradecanoylphorbol 13-acetate. Neurosurgery 1993; 32:432-7; discussion 437. [PMID: 8455768 DOI: 10.1227/00006123-199303000-00015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Patients with brain tumors often undergo radiotherapy, and the cellular resistance is a major obstacle. It has been suggested that protein kinase C (PKC) may be one of a number of important regulatory enzymes in cell response to ionizing radiation. We therefore investigated the effect of PKC depletion on deoxyribonucleic acid (DNA) damage and repair after radiation in C6 cells using a microgel electrophoresis method to explore the role of PKC in glioma radioresistance. When cells are embedded in agarose on slides, lysed, and subjected to an electric field, broken DNA is able to migrate toward the anode. A significant increase in the length of DNA migration was observed in the cells exposed to irradiation. Inhibition of PKC activity by prolonged treatment with 12-O-tetradecanoylphorbol 13-acetate (TPA) or staurosporine, a potent PKC inhibitor, before irradiation enhanced radiation-induced DNA damage and attenuated the repair of damaged DNA. The half-times of DNA repair in parent C6 cells and PKC-depleted C6 cells were about 30 and 60 min, respectively, and the extent of DNA migration was still seen in the PKC-depleted cells even at 120 min after irradiation. In addition, the C6 cell clonogenicity after irradiation was also attenuated by long-term exposure of the cells to 12-O-tetradecanoylphorbol 13-acetate. These data suggest that PKC may play an important role in regulating the cell response to irradiation. The inhibitors of PKC might represent a new class of pharmacological agents to manipulate the radiosensitivity of gliomas.
Collapse
Affiliation(s)
- W Zhang
- Department of Neurosurgery, Gifu University School of Medicine, Japan
| | | | | | | | | | | |
Collapse
|
102
|
Poulsen HE, Loft S, Wassermann K. Cancer risk related to genetic polymorphisms in carcinogen metabolism and DNA repair. PHARMACOLOGY & TOXICOLOGY 1993; 72 Suppl 1:93-103. [PMID: 8474997 DOI: 10.1111/j.1600-0773.1993.tb01676.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Chemical carcinogenesis involves metabolism in the body of the carcinogen to the ultimate carcinogen and its interaction with DNA. There is considerable interindividual variation in the metabolic ability to activate as well as detoxify the carcinogens and in the ability to repair the carcinogen-DNA adducts. In many cases such differences occur as genetic polymorphisms and form the basis for variation in susceptibility to carcinogens and thereby to cancer risk. The activation mechanism is particularly related to the cytochromes P-450 (CYPs), and four of these are known to activate carcinogens: CYP1A1, CYP1A2, CYP2E1, and CYP3A4. Increased cancer risk has been related to polymorphisms in the CYPs and other activating enzymes. The DNA repair mechanisms show considerable complexity, and deficient repair mechanisms in certain human disorders are clearly related to increased cancer risk. Yet, there is no unambiguous epidemiological evidence available for cancer risk among individuals in general. In vivo methods have to be refined and developed for use in epidemiological studies.
Collapse
Affiliation(s)
- H E Poulsen
- Department of Pharmacology, Health Science Faculty, University of Copenhagen, Denmark
| | | | | |
Collapse
|
103
|
Collins AR. Mutant rodent cell lines sensitive to ultraviolet light, ionizing radiation and cross-linking agents: a comprehensive survey of genetic and biochemical characteristics. Mutat Res 1993; 293:99-118. [PMID: 7678147 DOI: 10.1016/0921-8777(93)90062-l] [Citation(s) in RCA: 130] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- A R Collins
- University of Aberdeen, Department of Molecular and Cell Biology, Scotland, UK
| |
Collapse
|
104
|
Dabholkar M, Bostick-Bruton F, Weber C, Egwuagu C, Bohr VA, Reed E. Expression of excision repair genes in non-malignant bone marrow from cancer patients. Mutat Res 1993; 293:151-60. [PMID: 7678143 DOI: 10.1016/0921-8777(93)90066-p] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The patterns of expression of 3 human DNA-repair genes (ERCC1, ERCC2, ERCC6) were assessed in 52 bone-marrow specimens obtained from cancer patients prepared for autologous bone-marrow transplantation. Marrow was collected prior to the initiation of treatment in patients with sarcoma or testicular cancer; marrow was collected after initial cytoreductive therapy for patients with non-Hodgkin's lymphoma, Hodgkin's disease, and other tumors. Slot-blot analysis of marrow RNA showed a bimodal pattern of ERCC1, ERCC2 and ERCC6 gene expression with relative expression values ranging more than 200-fold. This pattern was seen in all patient groups and appeared to be independent of whether or not patients had received prior chemotherapy. In all patient groups, when expression was low for ERCC1, expression was also low for ERCC2 and ERCC6, suggesting that expression of these genes may be coordinated within an individual although they are located on two different chromosomes. Southern blot analyses of Pst I digests of DNA from 6 bone-marrow samples indicate no differences in ERCC1 gene copy number between high expressors and low expressors. There is absence of restriction fragment length polymorphism for ERCC1 suggesting that the different levels of expression in high and low expressors were not due to major deletions or rearrangements of the ERCC1 gene. We conclude that expression of these ERCC genes may vary widely between individuals, and that within an individual, their expression may be linked and coordinated by a common regulatory mechanism.
Collapse
Affiliation(s)
- M Dabholkar
- Medicine Branch, National Cancer Institute, Bethesda, MD 20892
| | | | | | | | | | | |
Collapse
|
105
|
Mori T, Rinaldy TL, Athwal RS, Kaur GP, Nikaido O, Lloyd RS, Rinaldy A. A xeroderma pigmentosum complementation group A related gene: confirmation using monoclonal antibodies against the cyclobutane dimer and (6-4) photoproduct. Mutat Res 1993; 293:143-50. [PMID: 7678142 DOI: 10.1016/0921-8777(93)90065-o] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Xeroderma pigmentosum complementation group A was partially complemented by a cosmid genomic clone containing a 42-kb human DNA insert selected with a cDNA clone that we obtained through cDNA competition between the repair-proficient and repair-deficient cell line. The relationship between these two clones was confirmed using PCR amplifications. The enhancement in DNA-repair capacity of the transformants was assessed with the monoclonal antibodies specific for cyclobutane dimers and (6-4) photoproducts and partially correct the xeroderma pigmentosum complementation group A defect. Furthermore, the level of the photoproduct-repair capacity is in agreement with the survival enhancement calculated from the D37 values. This gene was mapped to chromosome 8, suggesting that this may represent one of the defective gene(s) in xeroderma pigmentosum complementation group A.
Collapse
Affiliation(s)
- T Mori
- Nara Medical University, RI Center, Japan
| | | | | | | | | | | | | |
Collapse
|
106
|
Koken MH, Vreeken C, Bol SA, Cheng NC, Jaspers-Dekker I, Hoeijmakers JH, Eeken JC, Weeda G, Pastink A. Cloning and characterization of the Drosophila homolog of the xeroderma pigmentosum complementation-group B correcting gene, ERCC3. Nucleic Acids Res 1992; 20:5541-8. [PMID: 1454518 PMCID: PMC334384 DOI: 10.1093/nar/20.21.5541] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Previously the human nucleotide excision repair gene ERCC3 was shown to be responsible for a rare combination of the autosomal recessive DNA repair disorders xeroderma pigmentosum (complementation group B) and Cockayne's syndrome (complementation group C). The human and mouse ERCC3 proteins contain several sequence motifs suggesting that it is a nucleic acid or chromatin binding helicase. To study the significance of these domains and the overall evolutionary conservation of the gene, the homolog from Drosophila melanogaster was isolated by low stringency hybridizations using two flanking probes of the human ERCC3 cDNA. The flanking probe strategy selects for long stretches of nucleotide sequence homology, and avoids isolation of small regions with fortuitous homology. In situ hybridization localized the gene onto chromosome III 67E3/4, a region devoid of known D.melanogaster mutagen sensitive mutants. Northern blot analysis showed that the gene is continuously expressed in all stages of fly development. A slight increase (2-3 times) of ERCC3Dm transcript was observed in the later stages. Two almost full length cDNAs were isolated, which have different 5' untranslated regions (UTR). The SD4 cDNA harbours only one long open reading frame (ORF) coding for ERCC3Dm. Another clone (SD2), however, has the potential to encode two proteins: a 170 amino acids polypeptide starting at the optimal first ATG has no detectable homology with any other proteins currently in the data bases, and another ORF beginning at the suboptimal second startcodon which is identical to that of SD4. Comparison of the encoded ERCC3Dm protein with the homologous proteins of mouse and man shows a strong amino acid conservation (71% identity), especially in the postulated DNA binding region and seven 'helicase' domains. The ERCC3Dm sequence is fully consistent with the presumed functions and the high conservation of these regions strengthens their functional significance. Microinjection and DNA transfection of ERCC3Dm into human xeroderma pigmentosum (c.g. B) fibroblasts and group 3 rodent mutants did not yield detectable correction. One of the possibilities to explain these negative findings is that the D.melanogaster protein may be unable to function in a mammalian repair context.
Collapse
Affiliation(s)
- M H Koken
- Department of Cell Biology and Genetics, Erasmus University, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Vrieling H, Zhang LH, van Zeeland AA, Zdzienicka MZ. UV-induced hprt mutations in a UV-sensitive hamster cell line from complementation group 3 are biased towards the transcribed strand. Mutat Res 1992; 274:147-55. [PMID: 1378206 DOI: 10.1016/0921-8777(92)90061-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The molecular nature of 254 nm ultraviolet light (UV)-induced mutations at the hypoxanthine-guanine phosphoribosyltransferase (hprt) locus in UV24 Chinese hamster ovary (CHO) cells, which are defective in nucleotide excision repair, was determined. Sequence analysis of 19 hprt mutants showed that single base substitutions (9 mutants) and tandem base changes (7 mutants) dominated the UV mutation spectrum in this cell line. Sixty-five percent of the base substitutions were GC greater than AT transitions, whereas the rest consisted of transitions and transversions at AT base pairs. Analysis of the distribution of dipyrimidine sites over the two DNA strands, where the photoproducts causing these mutations presumably were formed, showed that 12 out of 14 mutations were located in the transcribed strand of the hprt gene. A similar strand distribution of mutagenic photoproducts as in UV24 has previously been found in two other UV-sensitive Chinese hamster cell lines (V-H1 and UV5), indicating that under defective nucleotide excision repair conditions the induction of mutations is strongly biased towards lesions in the transcribed strand of the hprt gene. A plausible explanation for this phenomenon is that during DNA replication large differences exist in the error rate with which DNA polymerase(s) bypass lesions in the templates for the leading and lagging strand, respectively.
Collapse
Affiliation(s)
- H Vrieling
- MGC-Department of Radiation Genetics and Chemical Mutagenesis, State University of Leiden, Netherlands
| | | | | | | |
Collapse
|
108
|
Murphy AJ, Kung AL, Swirski RA, Schimke RT. cDNA expression cloning in human cells using the pλDR2 episomal vector system. Methods 1992. [DOI: 10.1016/1046-2023(92)90044-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
109
|
Underhill TM, Williams FM, Murray RC, Flintoff WF. Molecular cloning of a gene involved in methotrexate uptake by DNA-mediated gene transfer. SOMATIC CELL AND MOLECULAR GENETICS 1992; 18:337-49. [PMID: 1440056 DOI: 10.1007/bf01235757] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A methotrexate-resistant Chinese hamster ovary cell line deficient in methotrexate uptake has been complemented to methotrexate sensitivity by transfection with DNA isolated from a wild-type Chinese hamster ovary genomic cosmid library. Primary and secondary transfectants, which contain a limited number of cosmid sequences, have been shown to regain methotrexate sensitivity and to take up methotrexate. Furthermore, the DNA from three cosmid clones, isolated from a primary methotrexate-sensitive transfectant, after transfection rescued the methotrexate-resistant phenotype at a high frequency. Restriction endonuclease analysis of the DNA of these cosmid clones indicated that they overlapped extensively and shared two regions of Chinese hamster ovary DNA of 6.6 kb and 20.6 kb. These observations indicate that a gene involved in methotrexate uptake is contained in its entirety within one of these regions. This is the first report of the functional molecular cloning of a gene involved in methotrexate uptake. A general strategy is also described for screening large cosmid libraries from primary transfectants.
Collapse
Affiliation(s)
- T M Underhill
- Department of Microbiology and Immunology, University of Western Ontario, London, Canada
| | | | | | | |
Collapse
|
110
|
Selfridge J, Pow AM, McWhir J, Magin TM, Melton DW. Gene targeting using a mouse HPRT minigene/HPRT-deficient embryonic stem cell system: inactivation of the mouse ERCC-1 gene. SOMATIC CELL AND MOLECULAR GENETICS 1992; 18:325-36. [PMID: 1440055 DOI: 10.1007/bf01235756] [Citation(s) in RCA: 91] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A convenient system for gene targeting that uses hypoxanthine phosphoribosyltransferase (HPRT) minigenes as the selectable marker in HPRT-deficient mouse embryonic stem (ES) cells is described. Improvements to the expression of HPRT minigenes in ES cells were achieved by promoter substitution and the provision of a strong translational initiation signal. The use of minigenes in the positive-negative selection strategy for gene targeting was evaluated and the smaller minigenes were found to be as effective as a more conventional marker--the herpes simplex virus thymidine kinase gene. Minigenes were used to target the DNA repair gene ERCC-1 in ES cells. A new HPRT-deficient ES cell line was developed that contributes with high frequency to the germ line of chimeric animals. The ability to select for and against HPRT minigene expression in the new HPRT-deficient ES cell line will make this system useful for a range of gene-targeting applications.
Collapse
Affiliation(s)
- J Selfridge
- Institute of Cell and Molecular Biology, University of Edinburgh, Scotland
| | | | | | | | | |
Collapse
|
111
|
Murray JM, Doe CL, Schenk P, Carr AM, Lehmann AR, Watts FZ. Cloning and characterisation of the S. pombe rad15 gene, a homologue to the S. cerevisiae RAD3 and human ERCC2 genes. Nucleic Acids Res 1992; 20:2673-8. [PMID: 1319571 PMCID: PMC336906 DOI: 10.1093/nar/20.11.2673] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The RAD3 gene of Saccharomyces cerevisiae encodes an ATP-dependent 5'-3' DNA helicase, which is involved in excision repair of ultraviolet radiation damage. By hybridisation of a Schizosaccharomyces pombe genomic library with a RAD3 gene probe we have isolated the S. pombe homologue of RAD3. We have also cloned the rad15 gene of S. pombe by complementation of radiation-sensitive phenotype of the rad15 mutant. Comparison of the restriction map and DNA sequence, shows that the S. pombe rad15 gene is identical to the gene homologous to S. cerevisiae RAD3, identified by hybridisation. The S. pombe rad15.P mutant is highly sensitive to UV radiation, but only slightly sensitive to ionising radiation, as expected for a mutant defective in excision repair. DNA sequence analysis of the rad15 gene indicates an open reading frame of 772 amino acids, and this is consistent with a transcript size of 2.6 kb as detected by Northern analysis. The predicted rad15 protein has 65% identity to RAD3 and 55% identity to the human homologue ERCC2. This homology is particularly striking in the regions identified as being conserved in a group of DNA helicases. Gene deletion experiments indicate that, like the S. cerevisiae RAD3 gene, the S. pombe rad15 gene is essential for viability, suggesting that the protein product has a role in cell proliferation and not solely in DNA repair.
Collapse
Affiliation(s)
- J M Murray
- School of Biological Sciences, University of Sussex, Falmer, Brighton, UK
| | | | | | | | | | | |
Collapse
|
112
|
Lombardo MC, van der Zwaan JW, Brul S, Tager JM. A procedure for selecting mammalian cells with an impairment in oxidative phosphorylation. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1138:275-81. [PMID: 1314097 DOI: 10.1016/0925-4439(92)90004-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The mitochondrial encephalomyopathies in man are characterized by heterogeneous defects leading to an impairment in the pathway of aerobic energy production. As a means of investigating the molecular and genetic mechanisms underlying these disorders we have developed a procedure for selecting mammalian cell lines with features resembling the human pathological phenotypes. The principle of the selection is the use of a fluorescent amphiphilic dye, 2,4-(dimethylamino)-1-styrylmethylpyridiniumiodine, a cation showing two main features. Firstly, it is accumulated by mitochondria to an extent correlated with the magnitude of the electrochemical gradient of protons across the mitochondrial inner membrane. Secondly, upon irradiation with UV light, it gives rise to formation of free radicals, which inflict damage to the cell. Mutant cells with an impairment in oxidative phosphorylation will have more chance to survive than wild type cells. The selection procedure was applied to a stock of mutagenized Chinese hamster ovary cells. After subcloning of the cells which survived the selection procedure, twenty-six independent clones were isolated. Eighteen of the clones had a partial deficiency of cytochrome c oxidase ranging from 30 to 60% of the activity in control cells. The properties of two of the clones are described. One clone has been cultured under non-selective conditions for at least 12 months with retention of the partial deficiency of cytochrome c oxidase.
Collapse
Affiliation(s)
- M C Lombardo
- E.C. Slater Institute for Biochemical Research, University of Amsterdam, Academic Medical Centre, The Netherlands
| | | | | | | |
Collapse
|
113
|
Requirement for ERCC-1 and ERCC-3 gene products in DNA excision repair in vitro. Complementation using rodent and human cell extracts. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)50510-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
114
|
Todo T, Ryo H. Identification of cellular factors that recognize UV-damaged DNA in Drosophila melanogaster. Mutat Res 1992; 273:85-93. [PMID: 1376438 DOI: 10.1016/0921-8777(92)90052-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Using a gel electrophoresis DNA band-shift assay, we have identified 2 DNA-binding protein complexes in wild-type Drosophila embryonic cells which have high affinity for UV-irradiated, double-stranded DNA. Screening of Drosophila mutants deficient in DNA repair led to the identification of 5 mutants which lacked either one of the 2 protein complexes. Four excision repair-deficient mutants (mus-201, phr, mus-308 and mus-205) lacked one protein complex (Factor 2). The other protein complex (Factor 1) was not detectable in the post-replication repair-deficient mutant mus-104. These findings might suggest the possible involvement of these gene products in lesion recognition and repair of UV-induced photoproducts in DNA.
Collapse
Affiliation(s)
- T Todo
- Department of Radiation Biology, Faculty of Medicine, Osaka University, Japan
| | | |
Collapse
|
115
|
Flejter WL, McDaniel LD, Johns D, Friedberg EC, Schultz RA. Correction of xeroderma pigmentosum complementation group D mutant cell phenotypes by chromosome and gene transfer: involvement of the human ERCC2 DNA repair gene. Proc Natl Acad Sci U S A 1992; 89:261-5. [PMID: 1729695 PMCID: PMC48216 DOI: 10.1073/pnas.89.1.261] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cultured cells from individuals afflicted with the genetically heterogeneous autosomal recessive disorder xeroderma pigmentosum (XP) exhibit sensitivity to UV radiation and defective nucleotide excision repair. Complementation of these mutant phenotypes after the introduction of single human chromosomes from repair-proficient cells into XP cells has provided a means of mapping the genes involved in this disease. We now report the phenotypic correction of XP cells from genetic complementation group D (XP-D) by a single human chromosome designated Tneo. Detailed molecular characterization of Tneo revealed a rearranged structure involving human chromosomes 16 and 19, including the excision repair cross-complementing 2 (ERCC2) gene from the previously described human DNA repair gene cluster at 19q13.2-q13.3. Direct transfer of a cosmid bearing the ERCC2 gene conferred UV resistance to XP-D cells.
Collapse
Affiliation(s)
- W L Flejter
- Division of Human Genetics, University of Maryland, Baltimore 21201
| | | | | | | | | |
Collapse
|
116
|
Weeda G, Ma LB, van Ham RC, van der Eb AJ, Hoeijmakers JH. Structure and expression of the human XPBC/ERCC-3 gene involved in DNA repair disorders xeroderma pigmentosum and Cockayne's syndrome. Nucleic Acids Res 1991; 19:6301-8. [PMID: 1956789 PMCID: PMC329143 DOI: 10.1093/nar/19.22.6301] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The human XPBC/ERCC-3 was cloned by virtue of its ability to correct the excision repair defect of UV-sensitive rodent mutants of complementation group 3. The gene appeared to be in addition implicated in the human, cancer prone repair disorder xeroderma pigmentosum group B, which is also associated with Cockayne's syndrome. Here we present the genomic architecture of the gene and its expression. The XPBC/ERCC-3 gene consists of at least 14 exons spread over approximately 45 kb. Notably, the donor splice site of the third exon contains a GC instead of the canonical GT dinucleotide. The promoter region, first exon and intron comprise a CpG island with several putative GC boxes. The promoter was confined to a region of 260 bp upstream of the presumed cap site and acts bidirectionally. Like the promoter of another excision repair gene, ERCC-1, it lacks classical promoter elements such as CAAT and TATA boxes, but it shares with ERCC-1 a hitherto unknown 12 nucleotide sequence element, preceding a polypyrimidine track. Despite the presence of (AU)-rich elements in the 3'-untranslated region, which are thought to be associated with short mRNA half-life actinomycin-D experiments indicate that the mRNA is very stable (t 1/2 greater than 3h). Southern blot analysis revealed the presence of XPBC/ERCC-3 cross-hybridizing fragments elsewhere in the genome, which may belong to a related gene.
Collapse
Affiliation(s)
- G Weeda
- Laboratory for Molecular Carcinogenesis, Sylvius Laboratory, Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
117
|
Belt PB, van Oosterwijk MF, Odijk H, Hoeijmakers JH, Backendorf C. Induction of a mutant phenotype in human repair proficient cells after overexpression of a mutated human DNA repair gene. Nucleic Acids Res 1991; 19:5633-7. [PMID: 1945841 PMCID: PMC328968 DOI: 10.1093/nar/19.20.5633] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Antisense and mutated cDNA of the human excision repair gene ERCC-1 were overexpressed in repair proficient HeLa cells by means of an Epstein-Barr-virus derived cDNA expression vector. Whereas antisense RNA did not influence the survival of the transfected cells, a mutated cDNA generating an ERCC-1 protein with two extra amino acids in a conserved region of its C-terminal part resulted in a significant sensitization of the HeLa transfectants to mitomycin C-induced damage. These results suggest that overexpression of the mutated ERCC-1 protein interferes with proper functioning of the excision repair pathway in repair proficient cells and is compatible with a model in which the mutated ERCC-1 protein competes with the wild-type polypeptide for a specific step in the repair process or for occupation of a site in a repair complex. Apparently, this effect is more pronounced for mitomycin C induced crosslink repair than for UV-induced DNA damage.
Collapse
Affiliation(s)
- P B Belt
- Department of Biochemistry, Gorlaeus Laboratories, Leiden University, The Netherlands
| | | | | | | | | |
Collapse
|
118
|
Belt PB, Jongmans W, de Wit J, Hoeijmakers JH, van de Putte P, Backendorf C. Efficient cDNA cloning by direct phenotypic correction of a mutant human cell line (HPRT-) using an Epstein-Barr virus-derived cDNA expression vector. Nucleic Acids Res 1991; 19:4861-6. [PMID: 1656380 PMCID: PMC328780 DOI: 10.1093/nar/19.18.4861] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Human cells are, in general, poor recipients of foreign DNA, which has severely hampered the cloning of genes by direct phenotypic correction of deficient human cell lines after DNA mediated gene transfer. In this communication a methodology is presented which largely circumvents this problems. The method relies on the use of a recently developed episomal Epstein-Barr-virus-derived cDNA expression vector (Belt et al. (1989) Gene 84, 407-417). The cloning of hypoxanthine phosphoribosyltransferase (HPRT) cDNA, corresponding to a low abundant mRNA in wild type cells is used as a model system. Size fractionated poly (A)+ RNA from wild type cells, which resulted in an approximately 10 fold enrichment in HPRT mRNA, was used to construct a cDNA library of 25,000 independent clones in the pECV25 vector. An HPRT deficient human cell line was transfected and subsequently selected with hygromycin B for DNA uptake. In a small scale experiment only 7000 hygromycin BR transfectants were sufficient to isolate 2 independent HATR clones which were shown to replicate episomes harbouring HPRT cDNA. The first insert had a 5' untranslated region (UTR) and a 3' UTR perfectly in agreement with published data. The second cDNA clone harboured an unusually long 5' UTR and a shorter 3' UTR due to alternative polyadenylation of the HPRT transcript which has not been previously recognized.
Collapse
Affiliation(s)
- P B Belt
- Department of Biochemistry, Gorlaeus Laboratories, Leiden University, The Netherlands
| | | | | | | | | | | |
Collapse
|
119
|
Hasan MT, Subbaroyan R, Chang TY. High-efficiency stable gene transfection using chloroquine-treated Chinese hamster ovary cells. SOMATIC CELL AND MOLECULAR GENETICS 1991; 17:513-7. [PMID: 1763389 DOI: 10.1007/bf01233175] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We describe a highly efficient stable gene transfection procedure for Chinese hamster ovary (CHO) cells using a modification of the calcium phosphate-DNA coprecipitation method. We have found that treatment of CHO cells with chloroquine increases the efficiency of gene transfer by up to 20-fold (from approx. 0.01% to approx. 0.2%) when transfection is done using the pSV2-neo plasmid. The optimized transfection procedure requires that CHO cells to be incubated with calcium phosphate-DNA coprecipitate and chloroquine (100 microM) for a total of 16 h. By using high-molecular-weight human genomic DNA as a DNA source for transfection, we show that this procedure is equally efficient for stably transferring a much larger gene, such as the 49-kb human hypoxanthine phosphoribosyltransferase gene.
Collapse
Affiliation(s)
- M T Hasan
- Department of Biochemistry, Dartmouth Medical School Hanover, New Hampshire 03756
| | | | | |
Collapse
|
120
|
Buchwald M, Clarke C. DNA-mediated transfer of a human gene that confers resistance to mitomycin C. J Cell Physiol 1991; 148:472-8. [PMID: 1918174 DOI: 10.1002/jcp.1041480320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Attempts to complement the defect in the mitomycin C (MMC)-sensitive Chinese hamster ovary (CHO) mutant MMC3 led to the isolation of hybrids with high resistance to the cytotoxic action of the drug. Hybrid cells selected with MMC after fusion of MMC3 cells to human diploid fibroblasts were approximately five times more resistant to MMC than wild-type CHO cells but retained the original MMC3 sensitivity to another DNA cross-linking agent, diepoxybutane. To confirm that the MMC resistance was genetically determined and was of human origin, DNA from the resistant hybrids was introduced into MMC3 cells, and transfectants were selected in MMC. These cells had the same level of MMC resistance as the hybrids. Thus we have identified a human gene that can confer MMC resistance to CHO cells. Identification of the gene should help understand the mechanisms of MMC resistance in mammalian cells.
Collapse
Affiliation(s)
- M Buchwald
- Research Institute Hospital for Sick Children, Toronto, Ontario, Canada
| | | |
Collapse
|
121
|
Fraser D, Diatloff-Zito C, Moustacchi E. Transfection of wild-type and 'Fanconi anemia-like' mouse lymphoma mutant cells by electroporation. Mutat Res 1991; 263:165-71. [PMID: 2067556 DOI: 10.1016/0165-7992(91)90057-b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
An electroporation protocol for the successful transfection of mouse lymphoblastoid cells has been developed. Two cell lines, a normal and a mutant sensitive to DNA cross-linking agents, were used. The optimum conditions of electroporation in terms of uptake of the fluorescent dye lucifer yellow coupled with low toxicity were established. Subsequently, these conditions were used to achieve stable transfection by a plasmid expression vector. The plasmid integration patterns were determined by Southern blot analysis.
Collapse
Affiliation(s)
- D Fraser
- Institut Curie-Biologie, URA 1292 du CNRS, Paris, France
| | | | | |
Collapse
|
122
|
Abstract
Important aspects of the DNA repair mechanisms in mammalian, and especially human, cells are reviewed. The DNA repair processes are essential in the maintenance of the integrity of the DNA and in the defense against cancer. It has recently been discovered that the DNA repair efficiency differs in different regions of the genome and that active genes are preferentially repaired. There is mounting evidence that DNA repair processes play a role in the development of drug resistance by tumor cells. We will discuss such data as well as further approaches to clarify the relationship between DNA repair and antineoplastic drug resistance. Specifically, there is an increasing need to investigate the intragenomic heterogeneity of DNA repair and correlate the repair efficiency in specific genes to aspects of drug resistance. We also discuss the therapeutic potential of inhibiting the DNA repair processes and thereby possibly overcoming drug resistance.
Collapse
Affiliation(s)
- R K Burt
- Clinical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | | | | | | |
Collapse
|
123
|
Brook JD, Knight SJ, Roberts SH, Harley HG, Walsh KV, Rundle SA, Freyne K, Koch MC, Epstein ND, Wieringa B. The physical map of chromosome arm 19q: some new assignments, confirmations and re-assessments. Hum Genet 1991; 87:65-72. [PMID: 2037284 DOI: 10.1007/bf01213095] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We have constructed and analysed somatic cell hybrids from cell lines containing balanced reciprocal translocations involving chromosome 19 and providing two new breakpoints on 19q. These and other hybrids have been tested with a series of markers from 19q to enhance the existing map. Several new cloned DNA sequences that map to 19q13.3-19qter are reported; the locus D19Z1 has been analysed by CHEF gel electrophoresis.
Collapse
Affiliation(s)
- J D Brook
- Institute of Medical Genetics, University of Wales College of Medicine, Heath Park, Cardiff, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Shutler G, MacKenzie AE, Brunner H, Wieringa B, de Jong P, Lohman FP, Leblond S, Bailly J, Korneluk RG. Physical and genetic mapping of a novel chromosome 19 ERCC1 marker showing close linkage with myotonic dystrophy. Genomics 1991; 9:500-4. [PMID: 1674498 DOI: 10.1016/0888-7543(91)90416-c] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Recent genetic linkage analyses have mapped the myotonic dystrophy locus to the region of 19q13.2-13.3 lying distal to the gene for creatine kinase subunit M (CKM). The human excision repair gene ERCC1 has also been mapped to this region of chromosome 19. A novel polymorphic DNA marker, pEO.8, has been isolated from a chromosome 19 ERCC1-containing cosmid that maps to a 300-kb NotI fragment encompassing both CKM and ERCC1. Genetic linkage analysis reveals close linkage between pEO.8 and myotonic dystrophy (DM) (zmax = 19.3, theta max = 0.01). Analysis of two key recombinant events suggests a mapping of DM distal to pEO.8 and CKM.
Collapse
Affiliation(s)
- G Shutler
- Division of Genetic, Children's Hospital of Eastern Ontario, Ottawa, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Smeets HJ, Hermens R, Brunner HG, Ropers HH, Wieringa B. Identification of variable simple sequence motifs in 19q13.2-qter: markers for the myotonic dystrophy locus. Genomics 1991; 9:257-63. [PMID: 1840564 DOI: 10.1016/0888-7543(91)90250-i] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Variable simple sequence motifs (VSSMs), or microsatellites, were used for the genetic delimitation of the myotonic dystrophy (DM) region at 19q. Three simple sequence motifs were identified in and around the ERCC1 DNA-repair gene at 19q13.2-13.3 and one in the vicinity of the RRAS gene at 19q13.3-qter. A (TG)n repeat, situated within the ninth intron of the ERCC1 gene, was converted into a highly informative multiallelic marker using PCR-mediated DNA amplification and high-resolution gel analysis. The structurally similar sequence motif in the RRAS gene yielded a marker system with only two alleles. Use of these VSSMs for linkage analysis and haplotyping in a selected set of DM families revealed that the DM gene is distal but close to the ERCC1 locus and can be excluded from the CKM-ERCC1 interval at 19q13.2. The order for RRAS and other distally located markers was established as DM-D19S50-[RRAS,KLK]-D19S22-ter.
Collapse
Affiliation(s)
- H J Smeets
- Department of Human Genetics, Radboud Hospital, University of Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|
126
|
Molecular cloning of the human XRCC1 gene, which corrects defective DNA strand break repair and sister chromatid exchange. Mol Cell Biol 1991. [PMID: 2247054 DOI: 10.1128/mcb.10.12.6160] [Citation(s) in RCA: 234] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We describe the cloning and function of the human XRCC1 gene, which is the first mammalian gene isolated that affects cellular sensitivity to ionizing radiation. The CHO mutant EM9 has 10-fold-higher sensitivity to ethyl methanesulfonate, 1.8-fold-higher sensitivity to ionizing radiation, a reduced capacity to rejoin single-strand DNA breaks, and a 10-fold-elevated level of sister chromatid exchange compared with the CHO parental cells. The complementing human gene was cloned from a cosmid library of a tertiary transformant. Two cosmid clones produced transformants that showed approximately 100% correction of the repair defect in EM9 cells, as determined by the kinetics of strand break repair, cell survival, and the level of sister chromatid exchange. A nearly full-length clone obtained from the pcD2 human cDNA expression library gave approximately 80% correction of EM9, as determined by the level of sister chromatid exchange. Based on an analysis of the nucleotide sequence of the cDNA insert compared with that of the 5' end of the gene from a cosmid clone, the cDNA clone appeared to be missing approximately 100 bp of transcribed sequence, including 26 nucleotides of coding sequence. The cDNA probe detected a single transcript of approximately 2.2 kb in HeLa polyadenylated RNA by Northern (RNA) blot hybridization. From the open reading frame and the positions of likely start sites for transcription and translation, the size of the putative XRCC1 protein is 633 amino acids (69.5 kDa). The size of the XRCC1 gene is 33 kb, as determined by localizing the endpoints on a restriction endonuclease site map of one cosmid clone. The deduced amino acid sequence did not show significant homology with any protein in the protein sequence data bases examined.
Collapse
|
127
|
Nairn RS, Adair GM, Christmann CB, Humphrey RM. Ultraviolet stimulation of intermolecular homologous recombination in Chinese hamster ovary cells. Mol Carcinog 1991; 4:519-26. [PMID: 1793489 DOI: 10.1002/mc.2940040616] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We previously showed that ultraviolet (UV) irradiation of cotransfected plasmid DNA molecules stimulated genetic transformation that depended on intermolecular homologous recombination in Chinese hamster ovary (CHO) cells. Repair-proficient cells and an excision repair complementation class 1 (ERCC1) UV-sensitive DNA repair-deficient mutant responded similarly to UV stimulation in cotransfections with plasmids containing linker insertion-disrupted copies of the herpes simplex virus thymidine kinase (HSV-TK) gene. In this study, we cotransfected homologous DNA molecules containing nonoverlapping deletions of the hamster adenine phosphoribosyltransferase (APRT) gene into APRT-deficient CHO ERCC1 (UVL-10) and ERCC2 (UVL-1) excision-repair mutants and parental repair-proficient CHO cells. UV damage in cotransfected circular plasmid molecules stimulated transformation in repair-proficient cells and an ERCC1 mutant, but not in an ERCC2 mutant. Linearization of plasmids prior to cotransfection greatly enhanced transformation frequencies in all three cell lines, but UV stimulation using linear recombination substrates was no longer evident. Our results suggest (i) that the ERCC1 gene defect in CHO UVL-10 cells does not affect UV stimulation of homology-dependent extra-chromosomal recombination, and (ii) that a CHO cell ERCC2 excision-repair mutant, although recombination proficient, may exhibit altered recombination in response to UV damage.
Collapse
Affiliation(s)
- R S Nairn
- University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, Smithville 78957
| | | | | | | |
Collapse
|
128
|
|
129
|
Abstract
The UV-sensitive, nucleotide excision repair-deficient Chinese hamster mutant cell line UV61 was used to identify and clone a correcting human gene, ERCC-6. UV61, belonging to rodent complementation group 6, is only moderately UV sensitive in comparison with mutant lines in groups 1 to 5. It harbors a deficiency in the repair of UV-induced cyclobutane pyrimidine dimers but permits apparently normal repair of (6-4) photoproducts. Genomic (HeLa) DNA transfections of UV61 resulted, with a very low efficiency, in six primary and four secondary UV-resistant transformants having regained wild-type UV survival. Southern blot analysis revealed that five primary and only one secondary transformant retained human sequences. The latter line was used to clone the entire 115-kb human insert. Coinheritance analysis demonstrated that five of the other transformants harbored a 100-kb segment of the cloned human insert. Since it is extremely unlikely that six transformants all retain the same stretch of human DNA by coincidence, we conclude that the ERCC-6 gene resides within this region and probably covers most of it. The large size of the gene explains the extremely low transfection frequency and makes the gene one of the largest cloned by genomic DNA transfection. Four transformants did not retain the correcting ERCC-6 gene and presumably have reverted to the UV-resistant phenotype. One of these appeared to have amplified an endogenous, mutated CHO ERCC-6 allele, indicating that the UV61 mutation is leaky and can be overcome by gene amplification.
Collapse
|
130
|
Mudgett JS, MacInnes MA. Isolation of the functional human excision repair gene ERCC5 by intercosmid recombination. Genomics 1990; 8:623-33. [PMID: 2276736 DOI: 10.1016/0888-7543(90)90248-s] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The complete human nucleotide exicision repair gene ERCC5 was isolated as a functional gene on overlapping cosmids. ERCC5 corrects the excision repair deficiency of Chinese hamster ovary cell line UV135, of complementation group 5. Cosmids that contained human sequences were obtained from a UV-resistant cell line derived from UV135 cells transformed with human genomic DNA. Individually, none of the cosmids complemented the UV135 repair defect; cosmid groups were formed to represent putative human genomic regions, and specific pairs of cosmids that effectively transformed UV135 cells to UV resistance were identified. Analysis of transformants derived from the active cosmid pairs showed that the functional 32-kbp ERCC5 gene was reconstructed by homologous intercosmid recombination. The cloned human sequences exhibited 100% concordance with the locus designated genetically as ERCC5 located on human chromosome 13q. Cosmid-transformed UV135 host cells repaired cytotoxic damage to levels about 70% of normal and repaired UV-irradiated shuttle vector DNA to levels about 82% of normal.
Collapse
Affiliation(s)
- J S Mudgett
- Genetics Group, Life Sciences Division, Los Alamos National Laboratory, New Mexico 87545
| | | |
Collapse
|
131
|
Klein B, Pastink A, Odijk H, Westerveld A, van der Eb AJ. Transformation and immortalization of diploid xeroderma pigmentosum fibroblasts. Exp Cell Res 1990; 191:256-62. [PMID: 2175267 DOI: 10.1016/0014-4827(90)90012-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Diploid xeroderma pigmentosum (XP) skin fibroblast strains from various XP-complementation groups (B, C, G, and H) were transformed with an origin-defective SV40 early region or with the pSV3 gpt plasmid. In the latter case, transfected cells were selected for their ability to express the dominant xgpt gene. Immortalized cell lines were obtained, from XP-complementation groups C (8CA, 3MA, and 20MA; XP3MA and XP20MA were formerly considered to belong to complementation group I), G (2BI and 3BR), and H (2CS). No immortalized cells could be isolated from complementation group B (11BE). The immortalization frequency of wild-type diploid fibroblasts and diploid cultures from XP patients was not significantly increased by cotransfection with the SV40 early region plus several selected viral and cellular oncogenes. In fact, co-transfection with some of the oncogenes caused a marked decrease of the transformation frequency. The observed immortalization occurred at a frequency of approximately 5 x 10(-8).
Collapse
Affiliation(s)
- B Klein
- Laboratory for Molecular Carcinogenesis, Syluius Laboratory, Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
132
|
Thompson LH, Brookman KW, Jones NJ, Allen SA, Carrano AV. Molecular cloning of the human XRCC1 gene, which corrects defective DNA strand break repair and sister chromatid exchange. Mol Cell Biol 1990; 10:6160-71. [PMID: 2247054 PMCID: PMC362891 DOI: 10.1128/mcb.10.12.6160-6171.1990] [Citation(s) in RCA: 101] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We describe the cloning and function of the human XRCC1 gene, which is the first mammalian gene isolated that affects cellular sensitivity to ionizing radiation. The CHO mutant EM9 has 10-fold-higher sensitivity to ethyl methanesulfonate, 1.8-fold-higher sensitivity to ionizing radiation, a reduced capacity to rejoin single-strand DNA breaks, and a 10-fold-elevated level of sister chromatid exchange compared with the CHO parental cells. The complementing human gene was cloned from a cosmid library of a tertiary transformant. Two cosmid clones produced transformants that showed approximately 100% correction of the repair defect in EM9 cells, as determined by the kinetics of strand break repair, cell survival, and the level of sister chromatid exchange. A nearly full-length clone obtained from the pcD2 human cDNA expression library gave approximately 80% correction of EM9, as determined by the level of sister chromatid exchange. Based on an analysis of the nucleotide sequence of the cDNA insert compared with that of the 5' end of the gene from a cosmid clone, the cDNA clone appeared to be missing approximately 100 bp of transcribed sequence, including 26 nucleotides of coding sequence. The cDNA probe detected a single transcript of approximately 2.2 kb in HeLa polyadenylated RNA by Northern (RNA) blot hybridization. From the open reading frame and the positions of likely start sites for transcription and translation, the size of the putative XRCC1 protein is 633 amino acids (69.5 kDa). The size of the XRCC1 gene is 33 kb, as determined by localizing the endpoints on a restriction endonuclease site map of one cosmid clone. The deduced amino acid sequence did not show significant homology with any protein in the protein sequence data bases examined.
Collapse
Affiliation(s)
- L H Thompson
- Biomedical Sciences Division, Lawrence Livermore National Laboratory, Livermore, California 94550
| | | | | | | | | |
Collapse
|
133
|
Diatloff-Zito C, Rosselli F, Heddle J, Moustacchi E. Partial complementation of the Fanconi anemia defect upon transfection by heterologous DNA. Phenotypic dissociation of chromosomal and cellular hypersensitivity to DNA cross-linking agents. Hum Genet 1990; 86:151-61. [PMID: 2265827 DOI: 10.1007/bf00197697] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Transfectants obtained by mouse DNA-mediated gene transfer in Fanconi anemia (FA) primary fibroblasts from the genetic complementation groups A and B were examined for the frequencies of chromosomal aberrations and cytotoxicity following treatments by cross-linking agents. Cells from group A (FA 150), which is the most sensitive to such agents, are partially corrected for both the chromosomal and cellular hypersensitivity to 8-methoxypsoralen photoaddition. In contrast, after treatment with mitomycin C (MMC), only the chromosomal sensitivity is re-established to a near normal level. The opposite is true for FA group B cells (FA 145), i.e. cell survival to MMC is partially corrected, whereas the frequency of MMC-induced chromosomal aberration remains close to that of the untransfected cells. The partial phenotypic correction of the two end points examined is interpreted as indicating either a gene dosage effect or the necessity of introducing more than one gene type in order to achieve complete recovery of a normal phenotype. The phenotypic dissociation between the clastogenic and cellular hypersensitivity to cross-linking agents may offer the opportunity of isolating separately the responsible gene(s) by conventional rescue techniques.
Collapse
|
134
|
Bouffler SD, Godfrey D, Raman MJ, Musk SR, Johnson RT. Molecular cloning of a mammalian gene involved in the fixation of UV-induced mutations. SOMATIC CELL AND MOLECULAR GENETICS 1990; 16:507-16. [PMID: 2267625 DOI: 10.1007/bf01233091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A mammalian DNA damage tolerance gene has been isolated by DNA transfection and cosmid rescue. Following cotransfection of mouse genomic DNA and pSV2neo into SVM, the UV hypersensitive mutant Indian muntjac cell line, clones with a 1.7 to 2.0-fold greater D37 value for UV killing were isolated. This trait was carried through three rounds of transfection. A neo gene and flanking sequences from a tertiary transfectant were cloned by cosmid rescue. The cosmid clone confers UV resistance to SVM and improves the ability of the cell to replicate UV damaged DNA. This replication appears to be error-prone; UV-induced 6-thioguanine-resistant mutants occur four to fivefold more frequently than in SVM or a wild-type Indian muntjac line. Thus, the gene isolated is not homologous to that defective in SVM. We believe that this is the first mammalian gene to be isolated that is directly involved in mutation fixation.
Collapse
Affiliation(s)
- S D Bouffler
- Department of Zoology, University of Cambridge, U.K
| | | | | | | | | |
Collapse
|
135
|
Troelstra C, Odijk H, de Wit J, Westerveld A, Thompson LH, Bootsma D, Hoeijmakers JH. Molecular cloning of the human DNA excision repair gene ERCC-6. Mol Cell Biol 1990; 10:5806-13. [PMID: 2172786 PMCID: PMC361360 DOI: 10.1128/mcb.10.11.5806-5813.1990] [Citation(s) in RCA: 33] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The UV-sensitive, nucleotide excision repair-deficient Chinese hamster mutant cell line UV61 was used to identify and clone a correcting human gene, ERCC-6. UV61, belonging to rodent complementation group 6, is only moderately UV sensitive in comparison with mutant lines in groups 1 to 5. It harbors a deficiency in the repair of UV-induced cyclobutane pyrimidine dimers but permits apparently normal repair of (6-4) photoproducts. Genomic (HeLa) DNA transfections of UV61 resulted, with a very low efficiency, in six primary and four secondary UV-resistant transformants having regained wild-type UV survival. Southern blot analysis revealed that five primary and only one secondary transformant retained human sequences. The latter line was used to clone the entire 115-kb human insert. Coinheritance analysis demonstrated that five of the other transformants harbored a 100-kb segment of the cloned human insert. Since it is extremely unlikely that six transformants all retain the same stretch of human DNA by coincidence, we conclude that the ERCC-6 gene resides within this region and probably covers most of it. The large size of the gene explains the extremely low transfection frequency and makes the gene one of the largest cloned by genomic DNA transfection. Four transformants did not retain the correcting ERCC-6 gene and presumably have reverted to the UV-resistant phenotype. One of these appeared to have amplified an endogenous, mutated CHO ERCC-6 allele, indicating that the UV61 mutation is leaky and can be overcome by gene amplification.
Collapse
Affiliation(s)
- C Troelstra
- Department of Cell Biology and Genetics, Erasmus University Rotterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
136
|
Zdzienicka MZ, Arwert F, Neuteboom I, Rooimans M, Simons JW. The Chinese hamster V79 cell mutant V-H4 is phenotypically like Fanconi anemia cells. SOMATIC CELL AND MOLECULAR GENETICS 1990; 16:575-81. [PMID: 2267631 DOI: 10.1007/bf01233098] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
It has been shown by genetic complementation analysis that a mitomycin C-sensitive mutant (V-H4) of Chinese hamster V79 cells is the first rodent equivalent of Fanconi anemia (FA) group A. The V-H4 mutant shows many typical characteristics of cells derived from FA patients. V-H4 cells exhibit increased sensitivity towards cross-linking agents as MMC (approximately 30-fold), cis-DDP (approximately 10-fold), DEB (approximately 10-fold), and PUVA (approximately 1.6-fold), but an only slightly increased sensitivity to monofunctional alkylating agents (EMS and MMS) and actinomycin D. V-H4 cells are also moderately sensitive to adriamycin (1.6-fold), and not sensitive to H2O2. The levels of chromosomal aberrations induced by MMC and cis-DDP treatment are higher (4- to 6-fold) in V-H4 cells than in the wild-type V79 cells. Genetic complementation analysis with other Chinese hamster mutants hypersensitive to MMC (irs1, irs1SF, UV20 and UV41) indicates clearly that V-H4 belongs to a different, new complementation group. This unique mutant is very stable and can serve as a vehicle to isolate the complementing FA-A gene from normal human DNA.
Collapse
Affiliation(s)
- M Z Zdzienicka
- Department of Radiation Genetics and Chemical Mutagenesis, State University of Leiden, Sylvius Laboratory, The Netherlands
| | | | | | | | | |
Collapse
|
137
|
Weeda G, van Ham RC, Vermeulen W, Bootsma D, van der Eb AJ, Hoeijmakers JH. A presumed DNA helicase encoded by ERCC-3 is involved in the human repair disorders xeroderma pigmentosum and Cockayne's syndrome. Cell 1990; 62:777-91. [PMID: 2167179 DOI: 10.1016/0092-8674(90)90122-u] [Citation(s) in RCA: 328] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The human gene ERCC-3 specifically corrects the defect in an early step of the DNA excision repair pathway of UV-sensitive rodent mutants of complementation group 3. The predicted 782 amino acid ERCC-3 protein harbors putative nucleotide, chromatin, and helix-turn-helix DNA binding domains and seven consecutive motifs conserved between two superfamilies of DNA and RNA helicases, strongly suggesting that it is a DNA repair helicase. ERCC-3-deficient rodent mutants phenotypically resemble the human repair syndrome xeroderma pigmentosum (XP). ERCC-3 specifically corrects the excision defect in one of the eight XP complementation groups, XP-B. The sole XP-B patient presents an exceptional conjunction of two rare repair disorders: XP and Cockayne's syndrome. This patient's DNA contains a C----A transversion in the splice acceptor sequence of the last intron of the only ERCC-3 allele that is detectably expressed, leading to a 4 bp insertion in the mRNA and an inactivating frameshift in the C-terminus of the protein. Because XP is associated with predisposition to skin cancer, ERCC-3 can be considered a tumor-preventing gene.
Collapse
Affiliation(s)
- G Weeda
- Laboratory for Molecular Carcinogenesis, Sylvius Laboratory, Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
138
|
Teitz T, Eli D, Penner M, Bakhanashvili M, Naiman T, Timme TL, Wood CM, Moses RE, Canaani D. Expression of the cDNA for the beta subunit of human casein kinase II confers partial UV resistance on xeroderma pigmentosum cells. Mutat Res 1990; 236:85-97. [PMID: 1694965 DOI: 10.1016/0921-8777(90)90036-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
An immortalized xeroderma pigmentosum cell line belonging to the complementation group D (XP-D) was transfected with a normal human cDNA clone library constructed in a mammalian expression vector. Following UV-irradiation-selection, a transformant having a stable, partially UV-resistant phenotype was isolated. A transfected cDNA of partial length was rescued from the transformant's cellular DNA by in vitro amplification, using expression-vector specific oligonucleotides as primers in a polymerase chain reaction (PCR). Expression of this cDNA complemented the UV sensitivity of the XP-D cell line to the UV-resistance levels characteristic of the primary transformant. The nucleotide sequence of the cDNA was determined. The deduced protein identified the cDNA as encoding for the beta subunit of casein kinase II (CKII-beta). Similar to the effect exerted by the truncated CKII-beta cDNA, expression of a cDNA clone encompassing the complete translated region of CKII-beta leads to XP-D cells partially resistant to UV-irradiation. However, transfection of CKII-beta cDNA could also partially complement the UV-sensitivity of a xeroderma pigmentosum cell line belonging to group C (XP-C). Analysis by Southern, Northern and RNAase mismatch cleavage techniques did not reveal any functional defect in the CKII-beta gene of cell lines derived from either 7 XP-D or 10 XP-C families. We therefore consider it unlikely that either the XP-D or the XP-C DNA repair deficiency is associated with a defect in the beta subunit of casein kinase II. Nevertheless, our findings suggest the possibility that the cell's response to DNA damage is modulated by CKII-dependent protein phosphorylation.
Collapse
Affiliation(s)
- T Teitz
- Department of Biochemistry, Tel Aviv University, Ramat Aviv, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
139
|
Molecular cloning and biological characterization of the human excision repair gene ERCC-3. Mol Cell Biol 1990. [PMID: 2111438 DOI: 10.1128/mcb.10.6.2570] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this report we present the cloning, partial characterization, and preliminary studies of the biological activity of a human gene, designated ERCC-3, involved in early steps of the nucleotide excision repair pathway. The gene was cloned after genomic DNA transfection of human (HeLa) chromosomal DNA together with dominant marker pSV3gptH to the UV-sensitive, incision-defective Chinese hamster ovary (CHO) mutant 27-1. This mutant belongs to complementation group 3 of repair-deficient rodent mutants. After selection of UV-resistant primary and secondary 27-1 transformants, human sequences associated with the induced UV resistance were rescued in cosmids from the DNA of a secondary transformant by using a linked dominant marker copy and human repetitive DNA as probes. From coinheritance analysis of the ERCC-3 region in independent transformants, we deduce that the gene has a size of 35 to 45 kilobases, of which one essential segment has so far been refractory to cloning. Conserved unique human sequences hybridizing to a 3.0-kilobase mRNA were used to isolate apparently full-length cDNA clones. Upon transfection to 27-1 cells, the ERCC-3 cDNA, inserted in a mammalian expression vector, induced specific and (virtually) complete correction of the UV sensitivity and unscheduled DNA synthesis of mutants of complementation group 3 with very high efficiency. Mutant 27-1 is, unlike other mutants of complementation group 3, also very sensitive toward small alkylating agents. This unique property of the mutant is not corrected by introduction of the ERCC-3 cDNA, indicating that it may be caused by an independent second mutation in another repair function. By hybridization to DNA of a human x rodent hybrid cell panel, the ERCC-3 gene was assigned to chromosome 2, in agreement with data based on cell fusion (L. H. Thompson, A. V. Carrano, K. Sato, E. P. Salazar, B. F. White, S. A. Stewart, J. L. Minkler, and M. J. Siciliano, Somat. Cell. Mol. Genet. 13:539-551, 1987).
Collapse
|
140
|
Wauthier EL, Hanawalt PC, Vos JM. Differential repair and replication of damaged DNA in ribosomal RNA genes in different CHO cell lines. J Cell Biochem 1990; 43:173-83. [PMID: 2380262 DOI: 10.1002/jcb.240430208] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We studied the repair of psoralen adducts in the pol I-transcribed ribosomal RNA (rRNA) genes of excision repair competent Chinese hamster ovary (CHO) cell lines, their UV sensitive mutant derivatives, and their UV resistant transformants, which express a human excision repair gene. In the parental cell line CHO-AA8, both monoadducts and interstrand crosslinks are removed efficiently from the rRNA genes, whereas neither adduct is removed in the UV sensitive derivative UV5; removal of both adducts is restored in the UV resistant transformant CHO-5T4 carrying the human excision repair gene ERCC-2. In contrast, removal of psoralen adducts from the rRNA genes is not detected in another parental CHO cell line CHO-9, neither in its UV sensitive derivative 43-3B, nor in its UV resistant transformant 83-G5 carrying the human excision repair gene ERCC-1. In contrast to such intergenomic heterogeneity of repair, persistence of psoralen monoadducts during replication of the rRNA genes occurs equally well in all CHO cell lines tested. From these data, we conclude that: 1) the repair efficiency of DNA damage in the rRNA genes varies between established parental CHO cell lines; 2) the repair pathways of intrastrand adducts and interstrand crosslinks in mammalian cells share, at least, one gene product, i.e., the excision repair gene ERCC-2; 3) replicational bypass of psoralen monoadducts at the CHO rRNA locus occurs similarly on both DNA strands.
Collapse
Affiliation(s)
- E L Wauthier
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill 27599
| | | | | |
Collapse
|
141
|
Weeda G, van Ham RC, Masurel R, Westerveld A, Odijk H, de Wit J, Bootsma D, van der Eb AJ, Hoeijmakers JH. Molecular cloning and biological characterization of the human excision repair gene ERCC-3. Mol Cell Biol 1990; 10:2570-81. [PMID: 2111438 PMCID: PMC360615 DOI: 10.1128/mcb.10.6.2570-2581.1990] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In this report we present the cloning, partial characterization, and preliminary studies of the biological activity of a human gene, designated ERCC-3, involved in early steps of the nucleotide excision repair pathway. The gene was cloned after genomic DNA transfection of human (HeLa) chromosomal DNA together with dominant marker pSV3gptH to the UV-sensitive, incision-defective Chinese hamster ovary (CHO) mutant 27-1. This mutant belongs to complementation group 3 of repair-deficient rodent mutants. After selection of UV-resistant primary and secondary 27-1 transformants, human sequences associated with the induced UV resistance were rescued in cosmids from the DNA of a secondary transformant by using a linked dominant marker copy and human repetitive DNA as probes. From coinheritance analysis of the ERCC-3 region in independent transformants, we deduce that the gene has a size of 35 to 45 kilobases, of which one essential segment has so far been refractory to cloning. Conserved unique human sequences hybridizing to a 3.0-kilobase mRNA were used to isolate apparently full-length cDNA clones. Upon transfection to 27-1 cells, the ERCC-3 cDNA, inserted in a mammalian expression vector, induced specific and (virtually) complete correction of the UV sensitivity and unscheduled DNA synthesis of mutants of complementation group 3 with very high efficiency. Mutant 27-1 is, unlike other mutants of complementation group 3, also very sensitive toward small alkylating agents. This unique property of the mutant is not corrected by introduction of the ERCC-3 cDNA, indicating that it may be caused by an independent second mutation in another repair function. By hybridization to DNA of a human x rodent hybrid cell panel, the ERCC-3 gene was assigned to chromosome 2, in agreement with data based on cell fusion (L. H. Thompson, A. V. Carrano, K. Sato, E. P. Salazar, B. F. White, S. A. Stewart, J. L. Minkler, and M. J. Siciliano, Somat. Cell. Mol. Genet. 13:539-551, 1987).
Collapse
Affiliation(s)
- G Weeda
- Laboratory for Molecular Carcinogenesis, Sylvius Laboratory, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Weber CA, Salazar EP, Stewart SA, Thompson LH. ERCC2: cDNA cloning and molecular characterization of a human nucleotide excision repair gene with high homology to yeast RAD3. EMBO J 1990; 9:1437-47. [PMID: 2184031 PMCID: PMC551832 DOI: 10.1002/j.1460-2075.1990.tb08260.x] [Citation(s) in RCA: 175] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Human ERCC2 genomic clones give efficient, stable correction of the nucleotide excision repair defect in UV5 Chinese hamster ovary cells. One clone having a breakpoint just 5' of classical promoter elements corrects only transiently, implicating further flanking sequences in stable gene expression. The nucleotide sequences of a cDNA clone and genomic flanking regions were determined. The ERCC2 translated amino acid sequence has 52% identity (73% homology) with the yeast nucleotide excision repair protein RAD3. RAD3 is essential for cell viability and encodes a protein that is a single-stranded DNA dependent ATPase and an ATP dependent helicase. The similarity of ERCC2 and RAD3 suggests a role for ERCC2 in both cell viability and DNA repair and provides the first insight into the biochemical function of a mammalian nucleotide excision repair gene.
Collapse
Affiliation(s)
- C A Weber
- Biomedical Sciences Division, Lawrence Livermore National Laboratory, Livermore, CA 94550
| | | | | | | |
Collapse
|
143
|
Regan JD, Thompson LH, Carrier WL, Weber CA, Francis AA, Zdzienicka MZ. Cyclobutane-pyrimidine dimer excision in UV-sensitive CHO mutants and the effect of the human ERCC2 repair gene. Mutat Res 1990; 235:157-63. [PMID: 2342503 DOI: 10.1016/0921-8777(90)90069-h] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Using a radiochromatographic assay, we have examined cis-syn cyclobutane-pyrimidine dimer removal after ultraviolet irradiation in cell lines representative of the first 6 complementation groups of Chinese hamster ovary DNA nucleotide excision repair mutants. AA8, the CHO cell line from which these mutants were derived, consistently showed normal dimer excision for a rodent cell. The mutants uniformly exhibited no significant dimer excision within the limits of determination. Additionally, V-H1, a mutant belonging to complementation group 2 and derived from V79 hamster cells, exhibited no dimer excision. Two UV5 derived transformants that carry the complementing human ERCC2 repair gene showed a capacity for dimer excision comparable to the AA8 wild-type cells.
Collapse
Affiliation(s)
- J D Regan
- Biology Division, Oak Ridge National Laboratory, TN 37831
| | | | | | | | | | | |
Collapse
|
144
|
Thompson LH, Bachinski LL, Stallings RL, Dolf G, Weber CA, Westerveld A, Siciliano MJ. Complementation of repair gene mutations on the hemizygous chromosome 9 in CHO: a third repair gene on human chromosome 19. Genomics 1989; 5:670-9. [PMID: 2591959 DOI: 10.1016/0888-7543(89)90107-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A human DNA repair gene, ERCC2 (Excision Repair Cross Complementing 2), was assigned to human chromosome 19 using hybrid clone panels in two different procedures. One set of cell hybrids was constructed by selecting for functional complementation of the DNA repair defect in mutant CHO UV5 after fusion with human lymphocytes. In the second analysis, DNAs from an independent hybrid panel were digested with restriction enzymes and analyzed by Southern blot hybridization using DNA probes for the three DNA repair genes that are located on human chromosome 19: ERCC1, ERCC2, and X-Ray Repair Cross Complementing 1 (XRCC1). The results from hybrids retaining different portions of this chromosome showed that ERCC2 is distal to XRCC1 and in the same region of the chromosome 19 long arm (q13.2-q13.3) as ERCC1, but on different MluI macrorestriction fragments. Similar experiments using a hybrid clone panel containing segregating Chinese hamster chromosomes revealed the hamster homologs of the three repair genes to be part of a highly conserved linkage group on Chinese hamster chromosome number 9. The known hemizygosity of hamster chromosome 9 in CHO cells can account for the high frequency at which genetically recessive mutations are recovered in these three genes in CHO cells. Thus, the conservation of linkage of the repair genes explains the seemingly disproportionate number of repair genes identified on human chromosome 19.
Collapse
Affiliation(s)
- L H Thompson
- Biomedical Sciences Division, Lawrence Livermore National Laboratory, Livermore, California 94550
| | | | | | | | | | | | | |
Collapse
|
145
|
Kaur GP, Athwal RS. Complementation of a DNA repair defect in xeroderma pigmentosum cells by transfer of human chromosome 9. Proc Natl Acad Sci U S A 1989; 86:8872-6. [PMID: 2813428 PMCID: PMC298392 DOI: 10.1073/pnas.86.22.8872] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Complementation of the repair defect in xeroderma pigmentosum cells of complementation group A was achieved by the transfer of human chromosome 9. A set of mouse-human hybrid cell lines, each containing a single Ecogpt-marked human chromosome, was used as a source of donor chromosomes. Chromosome transfer to XPTG-1 cells, a hypoxanthine/guanine phosphoribosyltransferase-deficient mutant of simian virus 40-transformed complementation group A cells, was achieved by microcell fusion and selection for Ecogpt. Chromosome-transfer clones of XPTG-1 cells, each containing a different human donor chromosome, were analyzed for complementation of sensitivity to UV irradiation. Among all the clones, increased levels of resistance to UV was observed only in clones containing chromosome 9. Since our recipient cell line XPTG-1 is hypoxanthine/guanine phosphoribosyltransferase deficient, cultivation of Ecogpt+ clones in medium containing 6-thioguanine permits selection of cells for loss of the marker and, by inference, transferred chromosome 9. Clones isolated for growth in 6-thioguanine, which have lost the Ecogpt-marked chromosome, exhibited a UV-sensitive phenotype, confirming the presence of the repair gene(s) for complementation group A on chromosome 9.
Collapse
Affiliation(s)
- G P Kaur
- Department of Microbiology and Molecular Genetics, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark 07103-2757
| | | |
Collapse
|
146
|
Moan J, Peak MJ. Effects of UV radiation of cells. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 1989; 4:21-34. [PMID: 2509659 DOI: 10.1016/1011-1344(89)80099-5] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
UV radiation interacts with mammalian cells in a very complex manner, although DNA appears to be the main chromophore. Recent literature within this field is reviewed. The review is concentrated on the following main topics: Chromophores for UV action, photoproducts in DNA, repair of UV-induced DNA damage, wavelength interactions, inactivation, mutagenesis, transformation and protection mechanisms against UV damage.
Collapse
Affiliation(s)
- J Moan
- Institute for Cancer Research, Montebello, Oslo, Norway
| | | |
Collapse
|
147
|
Torres-Garcia SJ, Cousineau L, Caplan S, Panasci L. Correlation of resistance to nitrogen mustards in chronic lymphocytic leukemia with enhanced removal of melphalan-induced DNA cross-links. Biochem Pharmacol 1989; 38:3122-3. [PMID: 2783167 DOI: 10.1016/0006-2952(89)90025-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- S J Torres-Garcia
- Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
148
|
Arrand JE, Bone NM, Johnson RT. Molecular cloning and characterization of a mammalian excision repair gene that partially restores UV resistance to xeroderma pigmentosum complementation group D cells. Proc Natl Acad Sci U S A 1989; 86:6997-7001. [PMID: 2780557 PMCID: PMC297979 DOI: 10.1073/pnas.86.18.6997] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
A hamster DNA repair gene has been isolated by cosmid rescue after two rounds of transfection of an immortalized xeroderma pigmentosum (XP) complementation group D cell line with neomycin-resistance gene (neo)-tagged normal hamster DNA and selection with G418 and ultraviolet irradiation. The functional length of the sequence has been defined as 11.5 kilobase pairs by measurement of the region of overlap between two hamster DNA-containing cosmids, cloned by selection for the integrated neo gene, that are able to confer an increase in resistance to ultraviolet irradiation on two XP-D cell line but not on an XP-A line. Detailed molecular characterization of the hamster repair gene has revealed no obvious similarities to two human excision repair genes (ERCC1 and ERCC2) that correct repair-defective hamster cells but have no effect on XP cells. Hybridization analyses of normal human and XP cell genomic DNAs and mRNAs, using a cosmid-clone probe from which repeated sequences have been removed, show that homologues are present and expressed in all cases.
Collapse
Affiliation(s)
- J E Arrand
- Department of Zoology, University of Cambridge, United Kingdom
| | | | | |
Collapse
|
149
|
Stark M, Naiman T, Canaani D. Ultraviolet light-resistant primary transfectants of xeroderma pigmentosum cells are also DNA repair-proficient. Biochem Biophys Res Commun 1989; 162:1351-6. [PMID: 2764936 DOI: 10.1016/0006-291x(89)90822-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In a previous work, an immortal xeroderma pigmentosum cell line belonging to complementation group C was complemented to a UV-resistant phenotype by transfection with a human cDNA clone library. We now report that the primary transformants selected for UV-resistance also acquired normal levels of DNA repair. This was assessed both by measurement of UV-induced [3H]thymidine incorporation and by equilibrium sedimentation analysis of repair-DNA synthesis. Therefore, the transduced DNA element which confers normal UV-resistance also corrects the excision repair defect of the xeroderma pigmentosum group C cell line.
Collapse
Affiliation(s)
- M Stark
- Department of Biochemistry, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv, Israel
| | | | | |
Collapse
|
150
|
Complementation of a methotrexate uptake defect in Chinese hamster ovary cells by DNA-mediated gene transfer. Mol Cell Biol 1989. [PMID: 2725523 DOI: 10.1128/mcb.9.4.1754] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A methotrexate-resistant Chinese hamster ovary cell line deficient in methotrexate uptake has been complemented to methotrexate sensitivity by transfection with DNA isolated from either wild-type Chinese hamster ovary or human G2 cells. Primary and secondary transfectants regained the ability to take up methotrexate in a manner similar to that of wild-type cells, and in the case of those transfected with human DNA, to contain human-specific DNA sequences. The complementation by DNA-mediated gene transfer of this methotrexate-resistant phenotype provides a basis for the cloning of a gene involved in methotrexate uptake.
Collapse
|