101
|
Hayashi K, Ohta S, Kawakami Y, Toda M. Activation of dendritic-like cells and neural stem/progenitor cells in injured spinal cord by GM-CSF. Neurosci Res 2009; 64:96-103. [DOI: 10.1016/j.neures.2009.01.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Revised: 01/29/2009] [Accepted: 01/30/2009] [Indexed: 12/25/2022]
|
102
|
Macrophage cell lines use CD81 in cell growth regulation. In Vitro Cell Dev Biol Anim 2009; 45:213-25. [PMID: 19184252 DOI: 10.1007/s11626-008-9167-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Accepted: 12/15/2008] [Indexed: 12/21/2022]
Abstract
CD81 is an integral membrane protein belonging to the tetraspanin superfamily. It has two extracellular domains that interact with cell surface proteins and two intracellular tails that contribute to cellular processes. Although there are considerable data about how CD81 affects T- and B-cell function, not much is known about how it impacts macrophages. To address this, we established four cell lines from mouse bone marrow in the presence of macrophage colony-stimulating factor and transfection with SV40 large T antigen. Two were CD81(-/-) (ASD1 and ASD2) and two were CD81(+/-) (2ASD1.10 and 2BSD1.10). Cells were Mac-2-, PU.1-, and c-fms-positive and all the cell lines were phagocytic indicating that they were macrophage-like. In mixtures of the two cell types in tissue culture, CD81(-/-) cells out competed CD81(+/-) cells with CD81-bearing cells being undetectable after 50 cell culture passages. Although cell divisions during log-phase growth were not significantly different between CD81(+/-) macrophage cells and CD81(-/-) macrophage cells, we found that CD81(-/-) macrophage cells reached a higher density at confluency than CD81(+/-) macrophage cells. CD81 transcript levels increased as cultures became confluent, but transcript levels of other tetraspanin-related molecules remained relatively constant. Transfection of CD81 into ASD1 (CD81(-/-)) cells reduced the density of confluent cultures of transformants compared to cells transfected with vector alone. These data suggest that CD81 potentially plays a role in macrophage cell line growth regulation.
Collapse
|
103
|
Gemelli C, Orlandi C, Zanocco Marani T, Martello A, Vignudelli T, Ferrari F, Montanari M, Parenti S, Testa A, Grande A, Ferrari S. The vitamin D3/Hox-A10 pathway supports MafB function during the monocyte differentiation of human CD34+ hemopoietic progenitors. THE JOURNAL OF IMMUNOLOGY 2008; 181:5660-72. [PMID: 18832725 DOI: 10.4049/jimmunol.181.8.5660] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although a considerable number of reports indicate an involvement of the Hox-A10 gene in the molecular control of hemopoiesis, the conclusions of such studies are quite controversial given that they support, in some cases, a role in the stimulation of stem cell self-renewal and myeloid progenitor expansion, whereas in others they implicate this transcription factor in the induction of monocyte-macrophage differentiation. To clarify this issue, we analyzed the biological effects and the transcriptome changes determined in human primary CD34(+) hemopoietic progenitors by retroviral transduction of a full-length Hox-A10 cDNA. The results obtained clearly indicated that this homeogene is an inducer of monocyte differentiation, at least partly acting through the up-regulation of the MafB gene, recently identified as the master regulator of such a maturation pathway. By using a combined approach based on computational analysis, EMSA experiments, and luciferase assays, we were able to demonstrate the presence of a Hox-A10-binding site in the promoter region of the MafB gene, which suggested the likely molecular mechanism underlying the observed effect. Stimulation of the same cells with the vitamin D(3) monocyte differentiation inducer resulted in a clear increase of Hox-A10 and MafB transcripts, indicating the existence of a precise transactivation cascade involving vitamin D(3) receptor, Hox-A10, and MafB transcription factors. Altogether, these data allow one to conclude that the vitamin D(3)/Hox-A10 pathway supports MafB function during the induction of monocyte differentiation.
Collapse
Affiliation(s)
- Claudia Gemelli
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Ikeda O, Sekine Y, Muromoto R, Ohbayashi N, Yoshimura A, Matsuda T. Enhanced c-Fms/M-CSF receptor signaling and wound-healing process in bone marrow-derived macrophages of signal-transducing adaptor protein-2 (STAP-2) deficient mice. Biol Pharm Bull 2008; 31:1790-3. [PMID: 18758078 DOI: 10.1248/bpb.31.1790] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Signal-transducing adaptor protein-2 (STAP-2) is a recently identified adaptor protein as a c-Fms/M-CSF receptor-interacting protein and constitutively expressed in macrophages. In our previous study, we examined the role of STAP-2 in the c-Fms/M-CSF receptor signaling using a murine macrophage tumor cells line, Raw264.7. Overexpression of STAP-2 in Raw264.7 cells markedly suppressed M-CSF-induced activation of extracellular signal regulated kinase and Akt. In addition, Raw264.7 overexpressing STAP-2 affected cell migration in wound-healing process. These results suggest that STAP-2 deficiency influences endogenous c-Fms/M-CSF receptor signaling. Here we show that loss of STAP-2 expression in knockout mouse macrophages results in marked enhancement of the c-Fms/M-CSF receptor signaling and wound-healing process. We therefore propose that STAP-2 acts as an endogenous regulator in normal macrophages functions.
Collapse
Affiliation(s)
- Osamu Ikeda
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-ku Kita 12 Nishi 6, Sapporo, Japan
| | | | | | | | | | | |
Collapse
|
105
|
Cell adhesion through alphaV-containing integrins is required for efficient HIV-1 infection in macrophages. Blood 2008; 113:1278-86. [PMID: 18840709 DOI: 10.1182/blood-2008-06-161869] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Monocytes and macrophages are an important reservoir of human immunodeficiency virus (HIV) and may represent the largest reservoir of this virus in tissues. Differentiation of monocytes into macrophages leads to cell attachment and susceptibility to infection and replication of HIV. Among other cell-surface molecules, integrins are overexpressed during monocyte-macrophage differentiation and may play a role in the replication cycle of envelope viruses including HIV. Here, we show that inhibition of alphaV integrin in monocyte-derived macrophages, by RNA interference or their inhibition by a selective small heterocyclic RGD-mimetic nonpeptide compound, inhibited the replication of HIV in the absence of cytotoxicity. Interference or inhibition of alphaV integrins triggered a signal transduction pathway, leading to down-regulation of nuclear factor-kappaB-dependent HIV-1 transcription. Such inhibition was mediated by a MAP-kinase signaling cascade, probably involving ERK1/2, p38-mitogen-activated protein kinases, and HSP27. In conclusion, our results reveal a significant role of integrin alphaV-mediated adhesion in HIV-1 infection of macrophages.
Collapse
|
106
|
Thomas X. New emerging applications of molgramostim in acute myeloid leukaemia. Expert Opin Drug Metab Toxicol 2008; 4:795-806. [DOI: 10.1517/17425255.4.6.795] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
107
|
Metcalf D. THE CONSEQUENCES OF EXCESS LEVELS OF HAEMOPOIETIC GROWTH FACTORS. Br J Haematol 2008. [DOI: 10.1111/j.1365-2141.1990.00001.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
108
|
Ha JE, Choi YE, Jang J, Yoon CH, Kim HY, Bae YS. FLIP and MAPK play crucial roles in the MLN51-mediated hyperproliferation of fibroblast-like synoviocytes in the pathogenesis of rheumatoid arthritis. FEBS J 2008; 275:3546-55. [DOI: 10.1111/j.1742-4658.2008.06500.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
109
|
Yamamoto T, Kaizu C, Kawasaki T, Hasegawa G, Umezu H, Ohashi R, Sakurada J, Jiang S, Shultz L, Naito M. Macrophage colony-stimulating factor is indispensable for repopulation and differentiation of Kupffer cells but not for splenic red pulp macrophages in osteopetrotic (op/op) mice after macrophage depletion. Cell Tissue Res 2008; 332:245-56. [DOI: 10.1007/s00441-008-0586-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2007] [Accepted: 01/17/2008] [Indexed: 11/29/2022]
|
110
|
Matsumoto T, Moriya M, Kiyohara H, Tabuchi Y, Yamada H. Hochuekkito, a Kampo (Traditional Japanese Herbal) Medicine, and its Polysaccharide Portion Stimulate G-CSF Secretion from Intestinal Epithelial Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2008; 7:331-40. [PMID: 18955322 PMCID: PMC2887329 DOI: 10.1093/ecam/nen007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Accepted: 01/07/2008] [Indexed: 01/28/2023]
Abstract
Kampo (traditional Japanese herbal) medicines are taken orally due to which the gastric mucosal immune system may act as one of the major targets for the expression of pharmacological activity. The inner surface of the intestinal tract possesses a large area of mucosal membranes, and the intestinal epithelial cells sit at the interface between a lumen and a lymphocyte-rich lamina propria. The cross talk that occurs between these compartments serves to maintain intestinal homeostasis, and the cytokine network plays an important role in the cross talk. In this study, the effect of Hochuekkito (HET), one of Kampo medicines, on cytokine secretion of intestinal epithelial cells was investigated. When murine normal colonic epithelial cell-line MCE301 cells were stimulated with HET, the contents of granulocyte colony-stimulating factor (G-CSF) in the conditioned medium were significantly increased in dose- and time-dependent manners. The enhanced G-CSF gene transcription in MCE301 cells by the stimulation of HET was observed by RT-PCR. The enhanced G-CSF secretion by HET was also observed in C3H/HeJ mice-derived primary cultured colonic epithelial cells. When the HET was fractionated, only the polysaccharide fraction (F-5) enhanced the G-CSF secretion of MCE301 cells, and the activity of F-5 lost after the treatment of periodate that can degrade the carbohydrate moiety. These results suggest that HET enhances secretion of G-CSF from colonic epithelial cells and the polysaccharide is one of the active ingredients of HET. The enhanced G-CSF secretion by HET may partly contribute to the clinically observed various pharmacological activities of HET including immunomodulating activity.
Collapse
Affiliation(s)
- Tsukasa Matsumoto
- Kitasato Institute for Life Sciences & Graduate School of Infection Control Sciences, Kitasato University, Tokyo 108-8641, Oriental Medicine Research Center, The Kitasato Institute, Tokyo 108-8642 and Life Science Research Center, University of Toyama, Toyama 930-0194, Japan
| | | | | | | | | |
Collapse
|
111
|
Matsumoto T, Moriya M, Sakurai MH, Kiyohara H, Tabuchi Y, Yamada H. Stimulatory effect of a pectic polysaccharide from a medicinal herb, the roots of Bupleurum falcatum L., on G-CSF secretion from intestinal epithelial cells. Int Immunopharmacol 2008; 8:581-8. [PMID: 18328450 DOI: 10.1016/j.intimp.2008.01.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Revised: 01/04/2008] [Accepted: 01/10/2008] [Indexed: 11/28/2022]
Abstract
The inner surface of the intestinal tract possesses a large area of mucosal membranes, and the intestinal epithelial cells exist at the interface between an antigen-rich lumen and a lymphocyte-rich lamina propria. The crosstalk that occurs between these compartments serves to maintain intestinal homeostasis, and the cytokine network plays an important role in the crosstalk. In this study, the effect of a pectic polysaccharide, bupleuran 2IIc from Bupleurum falcatum L., on cytokine secretion of intestinal epithelial cells was investigated in vitro. When murine normal colonic epithelial cell line MCE301 cells were stimulated with bupleuran 2IIc, the contents of granulocyte colony-stimulating factor (G-CSF) in the conditioned medium were significantly increased in dose- and time-dependent manners. The enhanced G-CSF gene transcription in MCE301 cells by the stimulation of bupleuran 2IIc was observed by RT-PCR. The enhanced G-CSF secretion by bupleuran 2IIc was also observed in C3H/HeJ mice derived primary cultured colonic epithelial cells. Bupleuran 2IIc was digested with endo-(1-->4)-alpha-D-polygalacturonase, and the resulting bupleuran 2IIc/PG-1 ("ramified" region) showed potent G-CSF secretion enhancing activity. The activity of bupleuran 2IIc/PG-1 disappeared after the removal of arabinosyl residues from bupleuran 2IIc/PG-1 by endo-(1-->5)-alpha-L-arabinanase digestion. These results suggest that the "ramified" region (bupleuran 2IIc/PG-1) is the active site for the G-CSF secretion enhancing activity of bupleuran 2IIc, and the arabinan moiety of bupleuran 2IIc/PG-1 plays an important role in expression of the activity.
Collapse
Affiliation(s)
- Tsukasa Matsumoto
- Kitasato Institute for Life Sciences & Graduate School of Infection Control Sciences, Kitasato University, Tokyo 108-8641, Japan
| | | | | | | | | | | |
Collapse
|
112
|
Fuhrman B, Partoush A, Volkova N, Aviram M. Ox-LDL induces monocyte-to-macrophage differentiation in vivo: Possible role for the macrophage colony stimulating factor receptor (M-CSF-R). Atherosclerosis 2008; 196:598-607. [PMID: 17675037 DOI: 10.1016/j.atherosclerosis.2007.06.026] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Revised: 05/30/2007] [Accepted: 06/21/2007] [Indexed: 11/29/2022]
Abstract
Monocyte-to-macrophage differentiation and LDL oxidation play a pivotal role in early atherogenesis. We thus questioned possible mechanisms for oxidized LDL (Ox-LDL)-induced monocyte-to-macrophage differentiation in vivo. Mouse peritoneal mononuclear cells, that were isolated 1, 2, or 3 days after Ox-LDL intraperitoneal injection, gradually exhibited the characteristic macrophage morphology, along with the expression of the cell-surface antigen CD11b. Molecular mechanisms involved in Ox-LDL-induced differentiation were further investigated in vitro using the THP-1 monocytic cell line. THP-1 cells incubated with Ox-LDL in the presence of as low as 1 ng/ml of PMA differentiated into macrophages, as evidenced by morphologic, phenotypic, and functional properties. Stimulation of monocyte-to-macrophage differentiation was selective to Ox-LDL (and not native LDL), was dependent on the extent of LDL oxidation, and required Ox-LDL internalization by the cells. These effects of Ox-LDL could be attributed to its major oxysterols, 7-ketocholesterol and 7beta-hydroxycholesterol. Finally, the stimulation of monocyte differentiation to macrophages by Ox-LDL was shown to require the M-CSF-receptor, since blocking the binding to the receptor abolished Ox-LDL/7beta-hydroxycholesterol-induced differentiation. Furthermore, Ox-LDL/7beta-hydroxycholesterol elicited tyrosine phosphorylation and activation of the M-CSF-R. We thus conclude that Ox-LDL induces monocyte differentiation to macrophages in vivo and this phenomenon involves activation of the M-CSF-receptor.
Collapse
Affiliation(s)
- Bianca Fuhrman
- The Lipid Research Laboratory, Technion Faculty of Medicine, The Rappaport Family Institute for Research in the Medical Sciences and Rambam Medical Center, Haifa 31096, Israel.
| | | | | | | |
Collapse
|
113
|
Shrivastav A, Varma S, Lawman Z, Yang SH, Ritchie SA, Bonham K, Singh SM, Saxena A, Sharma RK. Requirement ofN-Myristoyltransferase 1 in the Development of Monocytic Lineage. THE JOURNAL OF IMMUNOLOGY 2008; 180:1019-28. [DOI: 10.4049/jimmunol.180.2.1019] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
114
|
|
115
|
Schäbitz WR, Krüger C, Pitzer C, Weber D, Laage R, Gassler N, Aronowski J, Mier W, Kirsch F, Dittgen T, Bach A, Sommer C, Schneider A. A neuroprotective function for the hematopoietic protein granulocyte-macrophage colony stimulating factor (GM-CSF). J Cereb Blood Flow Metab 2008; 28:29-43. [PMID: 17457367 DOI: 10.1038/sj.jcbfm.9600496] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a hematopoietic cytokine responsible for the proliferation, differentiation, and maturation of cells of the myeloid lineage, which was cloned more than 20 years ago. Here we uncovered a novel function of GM-CSF in the central nervous system (CNS). We identified the GM-CSF alpha-receptor as an upregulated gene in a screen for ischemia-induced genes in the cortex. This receptor is broadly expressed on neurons throughout the brain together with its ligand and induced by ischemic insults. In primary cortical neurons and human neuroblastoma cells, GM-CSF counteracts programmed cell death and induces BCL-2 and BCL-Xl expression in a dose- and time-dependent manner. Of the signaling pathways studied, GM-CSF most prominently induced the PI3K-Akt pathway, and inhibition of Akt strongly decreased antiapoptotic activity. Intravenously given GM-CSF passes the blood-brain barrier, and decreases infarct damage in two different experimental stroke models (middle cerebral artery occlusion (MCAO), and combined common carotid/distal MCA occlusion) concomitant with induction of BCL-Xl expression. Thus, GM-CSF acts as a neuroprotective protein in the CNS. This finding is remarkably reminiscent of the recently discovered functionality of two other hematopoietic factors, erythropoietin and granulocyte colony-stimulating factor in the CNS. The identification of a third hematopoietic factor acting as a neurotrophic factor in the CNS suggests a common principle in the functional evolution of these factors. Clinically, GM-CSF now broadens the repertoire of hematopoietic factors available as novel drug candidates for stroke and neurodegenerative diseases.
Collapse
|
116
|
Abstract
Primary infection of healthy individuals with human cytomegalovirus (HCMV) is usually asymptomatic and results in the establishment of a lifelong latent infection of the host. Although no overt HCMV disease is observed in healthy carriers, due to effective immune control, severe clinical symptoms associated with HCMV reactivation are observed in immunocompromised transplant patients and HIV sufferers. Work from a number of laboratories has identified the myeloid lineage as one important site for HCMV latency and reactivation and thus has been the subject of extensive study. Attempts to elucidate the mechanisms controlling viral latency have shown that cellular transcription factors and histone proteins influence HCMV gene expression profoundly and that the type of cellular environment virus encounters upon infection may have a critical role in determining a lytic or latent infection and subsequent reactivation from latency. Furthermore, the identification of a number of viral gene products expressed during latent infection suggests a more active role for HCMV during latency. Defining the role of these viral proteins in latently infected cells will be important for our full understanding of HCMV latency and reactivation in vivo.
Collapse
|
117
|
Bv8 regulates myeloid-cell-dependent tumour angiogenesis. Nature 2007; 450:825-31. [PMID: 18064003 DOI: 10.1038/nature06348] [Citation(s) in RCA: 497] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Accepted: 10/01/2007] [Indexed: 02/04/2023]
|
118
|
Cobaleda C, Pérez-Caro M, Vicente-Dueñas C, Sánchez-García I. Function of the Zinc-Finger Transcription FactorSNAI2in Cancer and Development. Annu Rev Genet 2007; 41:41-61. [PMID: 17550342 DOI: 10.1146/annurev.genet.41.110306.130146] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Elucidation of the molecular mechanisms that underlie disease development is still a tremendous challenge for basic science, and a prerequisite to the development of new and disease-specific targeted therapies. This review focuses on the function of SNAI2, a member of the Snail family of zinc-finger transcription factors, and discusses its possible role in disease development. SNAI2 has been implicated in diseases of melanocyte development and cancer in humans. Many malignancies arise from a rare population of cells that alone have the ability to self-renew and sustain the tumor (i.e., cancer stem cells). SNAI2 controls key aspects of stem cell function in mouse and human, suggesting that similar mechanisms control normal development and cancer stem cell properties. These insights are expected to contribute significantly to the genetics of cancer and to the development of both cancer therapy and new methods for assessing treatment efficacy.
Collapse
Affiliation(s)
- César Cobaleda
- Universidad de Salamanca, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | | | | | | |
Collapse
|
119
|
Fitzgerald SP, McConnell RI, Huxley A. Simultaneous analysis of circulating human cytokines using a high-sensitivity cytokine biochip array. J Proteome Res 2007; 7:450-5. [PMID: 18020322 DOI: 10.1021/pr070409o] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Biochip array technology allows the simultaneous measurement of multiple analytes per sample using a single analytical device. This study shows its applicability to the simultaneous measurement of 12 circulating human cytokines with high-sensitivity detection. This application increases their real-time detectability, maintaining a broad concentration range and without compromising the precision. This methodology represents a very applicable tool in cytokine research when simultaneous determination of minute concentrations can be of interest.
Collapse
Affiliation(s)
- S Pete Fitzgerald
- Randox Laboratories, 55 Diamond Road, Crumlin, Co Antrim, United Kingdom BT29 4QY
| | | | | |
Collapse
|
120
|
Krüger C, Laage R, Pitzer C, Schäbitz WR, Schneider A. The hematopoietic factor GM-CSF (granulocyte-macrophage colony-stimulating factor) promotes neuronal differentiation of adult neural stem cells in vitro. BMC Neurosci 2007; 8:88. [PMID: 17953750 PMCID: PMC2233634 DOI: 10.1186/1471-2202-8-88] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Accepted: 10/22/2007] [Indexed: 11/22/2022] Open
Abstract
Background Granulocyte-macrophage colony stimulating factor (GM-CSF) is a hematopoietic growth factor involved in the generation of granulocytes, macrophages, and dendritic cells from hematopoietic progenitor cells. We have recently demonstrated that GM-CSF has anti-apoptotic functions on neurons, and is neuroprotective in animal stroke models. Results The GM-CSF receptor α is expressed on adult neural stem cells in the rodent brain, and in culture. Addition of GM-CSF to NSCs in vitro increased neuronal differentiation in a dose-dependent manner as determined by quantitative PCR, reporter gene assays, and FACS analysis. Conclusion Similar to the hematopoietic factor Granulocyte-colony stimulating factor (G-CSF), GM-CSF stimulates neuronal differentiation of adult NSCs. These data highlight the astonishingly similar functions of major hematopoietic factors in the brain, and raise the clinical attractiveness of GM-CSF as a novel drug for neurological disorders.
Collapse
Affiliation(s)
- Carola Krüger
- Sygnis Bioscience, Im Neuenheimer Feld 515, 69120 Heidelberg, Germany.
| | | | | | | | | |
Collapse
|
121
|
Weissen-Plenz G, Eschert H, Völker W, Sindermann JR, Beissert S, Robenek H, Scheld HH, Breithardt G. Granulocyte Macrophage Colony-Stimulating Factor Deficiency Affects Vascular Elastin Production and Integrity of Elastic Lamellae. J Vasc Res 2007; 45:103-10. [DOI: 10.1159/000109819] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2007] [Accepted: 07/31/2007] [Indexed: 11/19/2022] Open
|
122
|
Abstract
The clinical availability of recombinant hematopoietic growth factors was initially thought to be breakthrough in the treatment of bone marrow failure syndromes. However, in most disorders of hematopoeisis, the clinical use was rather disappointing. Only in congenital neutropenias (CNs) has the long-term administration of granulocyte colony-stimulating factor (G-CSF) led to a maintained increase in absolute neutrophil count (ANC) and a reduction of severe bacterial infections. In other disorders of hematopoiesis, the use of lineage-specific growth factors is either not possible due to mutations in the growth factor receptor or leads to a transient benefit only. Initial clinical trials with multilineage hematopoietic growth factors, such as stem cell factor (SCF; c-kit ligand) were discontinued due to adverse events. It is well known that bone marrow failure syndromes are pre-leukemic disorders. So far, there is no evidence for induction of leukemia by hematopoietic growth factors. However, it has been shown in patients with CN and Fanconi anemia that hematopoietic growth factors might induce preferential outgrowth of already transformed cells. Thus, it is strongly recommended to monitor patients for clonal aberrations prior to and during long-term treatment with hematopoietic growth factors.
Collapse
Affiliation(s)
- Cornelia Zeidler
- Department of Pediatric Hematology/Oncology, Medical School Hannover, Hannover, Germany
| | | |
Collapse
|
123
|
Ferrari F, Bortoluzzi S, Coppe A, Basso D, Bicciato S, Zini R, Gemelli C, Danieli GA, Ferrari S. Genomic expression during human myelopoiesis. BMC Genomics 2007; 8:264. [PMID: 17683550 PMCID: PMC2045681 DOI: 10.1186/1471-2164-8-264] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2007] [Accepted: 08/03/2007] [Indexed: 01/01/2023] Open
Abstract
Background Human myelopoiesis is an exciting biological model for cellular differentiation since it represents a plastic process where multipotent stem cells gradually limit their differentiation potential, generating different precursor cells which finally evolve into distinct terminally differentiated cells. This study aimed at investigating the genomic expression during myeloid differentiation through a computational approach that integrates gene expression profiles with functional information and genome organization. Results Gene expression data from 24 experiments for 8 different cell types of the human myelopoietic lineage were used to generate an integrated myelopoiesis dataset of 9,425 genes, each reliably associated to a unique genomic position and chromosomal coordinate. Lists of genes constitutively expressed or silent during myelopoiesis and of genes differentially expressed in commitment phase of myelopoiesis were first identified using a classical data analysis procedure. Then, the genomic distribution of myelopoiesis genes was investigated integrating transcriptional and functional characteristics of genes. This approach allowed identifying specific chromosomal regions significantly highly or weakly expressed, and clusters of differentially expressed genes and of transcripts related to specific functional modules. Conclusion The analysis of genomic expression during human myelopoiesis using an integrative computational approach allowed discovering important relationships between genomic position, biological function and expression patterns and highlighting chromatin domains, including genes with coordinated expression and lineage-specific functions.
Collapse
Affiliation(s)
- Francesco Ferrari
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, via G. Campi 287, 41100, Modena, Italy
| | - Stefania Bortoluzzi
- Department of Biology, University of Padova, via G. Colombo 3, 35131, Padova, Italy
| | - Alessandro Coppe
- Department of Biology, University of Padova, via G. Colombo 3, 35131, Padova, Italy
| | - Dario Basso
- Department of Chemical Engineering Processes, University of Padova via F. Marzolo 9, 35131, Padova, Italy
| | - Silvio Bicciato
- Department of Chemical Engineering Processes, University of Padova via F. Marzolo 9, 35131, Padova, Italy
| | - Roberta Zini
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, via G. Campi 287, 41100, Modena, Italy
| | - Claudia Gemelli
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, via G. Campi 287, 41100, Modena, Italy
| | - Gian Antonio Danieli
- Department of Biology, University of Padova, via G. Colombo 3, 35131, Padova, Italy
| | - Sergio Ferrari
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, via G. Campi 287, 41100, Modena, Italy
| |
Collapse
|
124
|
Chen L, Gao Z, Zhu J, Rodgers GP. Identification of CD13+CD36+ cells as a common progenitor for erythroid and myeloid lineages in human bone marrow. Exp Hematol 2007; 35:1047-55. [PMID: 17588473 PMCID: PMC2693325 DOI: 10.1016/j.exphem.2007.04.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Revised: 04/02/2007] [Accepted: 04/04/2007] [Indexed: 10/23/2022]
Abstract
OBJECTIVE To identify bipotential precursor cells of erythroid and myeloid development in human bone marrow. MATERIALS AND METHODS Cells coexpressing CD13 and CD36 (CD13+CD36+) were investigated by analyzing cell-surface marker expression during erythroid development (induced with a combination of cytokines plus erythropoietin), or myeloid development (induced with the same cocktail of cytokines plus granulocyte colony-stimulating factor of bone marrow-derived CD133 cells in liquid cultures. CD13+CD36+ subsets were also isolated on the 14(th) day of cultures and further evaluated for their hematopoietic clonogenic capacity in methylcellulose. RESULTS Colony-forming analysis of sorted CD13+CD36+ cells of committed erythroid and myeloid lineages demonstrated that these cells were able to generate erythroid, granulocyte, and mixed erythroid-granulocyte colonies. In contrast, CD13+CD36- or CD13-CD36+ cells exclusively committed to granulocyte/monocyte or erythroid colonies, respectively, but failed to form mixed erythroid-granulocyte colonies; no colonies were detected in CD13-CD36- cells with lineage-supporting cytokines. In addition, our data confirmed that erythropoietin induced both erythroid and myeloid commitment, while granulocyte colony-stimulating factor only supported the differentiation of the myeloid lineage. CONCLUSIONS The present data identify some CD13+CD36+ cells as bipotential precursors of erythroid and myeloid commitment in normal hematopoiesis. They provide a physiological explanation for the cell identification of myeloid and erythroid lineages observed in hematopoietic diseases. This unique fraction of CD13+CD36+ cells may be useful for further studies on regulating erythroid and myeloid differentiation during normal and malignant hematopoiesis.
Collapse
Affiliation(s)
- Ling Chen
- Molecular and Clinical Hematology Branch (MCHB), National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, Maryland, USA
- Department of Medicine, First Affiliated Hospital, Zunyi Medical College, Zunyi, Guizhou, China
| | - Zhigang Gao
- Molecular and Clinical Hematology Branch (MCHB), National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, Maryland, USA
| | - Jianqiong Zhu
- Molecular and Clinical Hematology Branch (MCHB), National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, Maryland, USA
| | - Griffin P. Rodgers
- Molecular and Clinical Hematology Branch (MCHB), National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, Maryland, USA
- Correspondence: Dr. Griffin P. Rodgers, M.D., Molecular and Clinical Hematology Branch, NIDDK, NIH, Bldg. 10, Rm. 9N119, 9000 Rockville Pike, Bethesda, MD, 20892. Telephone: 301-402-2418; Fax: 301-480-1373; e-mail:
| |
Collapse
|
125
|
Ikeda O, Sekine Y, Kakisaka M, Tsuji S, Muromoto R, Ohbayashi N, Oritani K, Yoshimura A, Matsuda T. STAP-2 regulates c-Fms/M-CSF receptor signaling in murine macrophage Raw 264.7 cells. Biochem Biophys Res Commun 2007; 358:931-7. [PMID: 17512498 DOI: 10.1016/j.bbrc.2007.05.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2007] [Accepted: 05/05/2007] [Indexed: 10/23/2022]
Abstract
Signal-transducing adaptor protein-2 (STAP-2) is a recently identified adaptor protein as a c-Fms/M-CSF receptor-interacting protein and constitutively expressed in macrophages. Our previous studies also revealed that STAP-2 binds to MyD88 and IKK-alpha/beta, and modulates NF-kappaB signaling in macrophages. In the present study, we examined physiological roles of the interaction between STAP-2 and c-Fms in Raw 264.7 macrophage cells. Our immunoprecipitation has revealed that c-Fms directly interacts with the PH domain of STAP-2 independently on M-CSF-stimulation. Ectopic expression of STAP-2 markedly suppressed M-CSF-induced tyrosine phosphorylation of c-Fms as well as activation of Akt and extracellular signal regulated kinase. In addition, Raw 264.7 cells over-expressing STAP-2 showed impaired migration in response to M-CSF and wound-healing process. Taken together, our findings demonstrate that STAP-2 directly binds to c-Fms and interferes with the PI3K signaling, which leads to macrophage motility, in Raw 264.7 cells.
Collapse
Affiliation(s)
- Osamu Ikeda
- Department of Immunology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-Ku Kita 12 Nishi 6, Sapporo 060-0812, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Zaveckas M, Zvirbliene A, Zvirblis G, Chmieliauskaite V, Bumelis V, Pesliakas H. Effect of surface histidine mutations and their number on the partitioning and refolding of recombinant human granulocyte-colony stimulating factor (Cys17Ser) in aqueous two-phase systems containing chelated metal ions. J Chromatogr B Analyt Technol Biomed Life Sci 2007; 852:409-19. [PMID: 17339136 DOI: 10.1016/j.jchromb.2007.01.051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2006] [Revised: 01/13/2007] [Accepted: 01/29/2007] [Indexed: 10/23/2022]
Abstract
High-level expression of recombinant proteins in Escherichia coli frequently leads to the formation of insoluble protein aggregates, termed inclusion bodies. In order to recover a native protein from inclusion bodies, various protein refolding techniques have been developed. Column-based refolding methods and refolding in aqueous two-phase systems are often an attractive alternative to dilution refolding due to simultaneous purification and improved refolding yields. In this work, the effect of surface histidine mutations and their number on the partitioning and refolding of recombinant human granulocyte-colony stimulating factor Cys17Ser variant (rhG-CSF (C17S)) from solubilized inclusion bodies in aqueous two-phase systems polyethylene glycol (PEG)-dextran, containing metal ions, chelated by dye Light Resistant Yellow 2KT (LR Yellow 2KT)-PEG derivative, was investigated. Human G-CSF is a growth factor that regulates the production of mature neutrophilic granulocytes from the precursor cells. Initially, the role of His156 and His170 residues in the interaction of rhG-CSF (C17S) with Cu(II), Ni(II) and Hg(II) ions, chelated by LR Yellow 2KT-PEG, was investigated at pH 7.0 by means of affinity partitioning of purified, correctly folded rhG-CSF (C17S) mutants. It was determined that both His156 and His170 mutations reduced the affinity of rhG-CSF (C17S) for chelated Cu(II) ions at pH 7.0. His170 mutation significantly reduced the affinity of protein for chelated Ni(II) ions. However, histidine mutations had only a small effect on the affinity of protein for Hg(II) ions. The influence of His156 and His170 mutations on the refolding of rhG-CSF (C17S) from solubilized inclusion bodies in aqueous two-phase systems PEG-dextran, containing chelated Ni(II) and Hg(II) ions, was investigated. Reversible interaction of protein mutants with chelated metal ions was used for refolding in aqueous two-phase systems. Both histidine mutations resulted in a significant decrease of protein refolding efficiency in two-phase systems containing chelated Ni(II) ions, while in the presence of chelated Hg(II) ions their effect on protein refolding was negligible. Refolding studies of rhG-CSF variants with different number of histidine mutations revealed that a direct correlation exists between the number of surface histidine residues and refolding efficiency of rhG-CSF variant in two-phase systems containing chelated Ni(II) ions. This method of protein refolding in aqueous two-phase systems containing chelated metal ions should be applicable to other recombinant proteins that contain accessible histidine residues.
Collapse
|
127
|
Sugimoto Y, Katayama N, Masuya M, Miyata E, Ueno M, Ohishi K, Nishii K, Takakura N, Shiku H. Differential cell division history between neutrophils and macrophages in their development from granulocyte-macrophage progenitors. Br J Haematol 2007; 135:725-31. [PMID: 17107354 DOI: 10.1111/j.1365-2141.2006.06367.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The appearance of monocytes before neutrophils in the blood during haematopoietic recovery in myelosuppressive patients is commonly observed, thus suggesting a difference in the cell division history between these two lineages in the differentiation from granulocyte-macrophage (GM) progenitors. We investigated the cell division histories of murine GM progenitors. When analysed by the dye dilution method, GM progenitors gave rise to Gr-1+Fms+ and Gr-1+Fms- cells that passed through similar rounds of cell division during initial 5 d of culture. The Gr-1+Fms+ cells showed morphological features of monocytes, while Gr-1+Fms- cells exhibited an immature morphology of neutrophils. In the subsequent culture, a decline in the number of Gr-1+Fms+ cells was observed, while Gr-1+Fms- cells increased. The proliferation of Gr-1+Fms- cells and no cell division of Gr-1+Fms+ cells were confirmed by DNA staining, Ki-67 expression, membrane dye staining and bromodeoxyuridine incorporation. These Gr-1+Fms- cells acquired mature neutrophil morphology, whereas Gr-1+Fms+ cells became macrophages. These results demonstrate that GM progenitors generate postmitotic monocytes earlier than mature neutrophils. Our data may also offer one explanation for the rapid recovery of monocytes in comparison with neutrophils in the early phase of haematopoietic regeneration.
Collapse
Affiliation(s)
- Yuka Sugimoto
- Department of Haematology and Oncology, Mie University Graduate School of Medicine, Mie, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Bauvois B, Laouar A. Distinct cellular functions mediated by haemopoietic cell-surface proteases. ACTA ACUST UNITED AC 2007; 3:171-181. [PMID: 32288365 PMCID: PMC7135526 DOI: 10.1016/s0960-5428(05)80019-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- B Bauvois
- U365 INSERM, Institut Curie, Paris, France
| | - A Laouar
- U365 INSERM, Institut Curie, Paris, France
| |
Collapse
|
129
|
Abstract
OBJECTIVES To provide a comprehensive literature review describing recent developments of the recombinant adeno-associated virus (rAAV) vector and exploring the therapeutic application of rAAV for bone defects, cartilage lesions and rheumatoid arthritis. DESIGN Narrative review. RESULT The review outlines the serotypes and genome of AAV, integration and life cycle of the rAAV vectors, the immune response and regulating system for AAV gene therapy. Furthermore, the advancements of rAAV gene therapy for bone growth together with cartilage repair are summarized. CONCLUSION Recombinant adeno-associated virus vector is perceived to be one of the most promising vector systems for bone and cartilage gene therapy approaches and further investigations need to be carried out for craniofacial research.
Collapse
Affiliation(s)
- Juan Dai
- The Biomedical and Tissue Engineering Group, Department of Orthodontics, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | | |
Collapse
|
130
|
Araki H, Yoshinaga K, Boccuni P, Zhao Y, Hoffman R, Mahmud N. Chromatin-modifying agents permit human hematopoietic stem cells to undergo multiple cell divisions while retaining their repopulating potential. Blood 2006; 109:3570-8. [PMID: 17185465 DOI: 10.1182/blood-2006-07-035287] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Abstract
Human hematopoietic stem cells (HSCs) exposed to cytokines in vitro rapidly divide and lose their characteristic functional properties presumably due to the alteration of a genetic program that determines the properties of an HSC. We have attempted to reverse the silencing of this HSC genetic program by the sequential treatment of human cord blood CD34+ cells with the chromatin-modifying agents, 5-aza-2′-deoxycytidine (5azaD) and trichostatin A (TSA). We determined that all CD34+CD90+ cells treated with 5azaD/TSA and cytokines after 9 days of incubation divide, but to a lesser degree than cells exposed to only cytokines. When CD34+CD90+ cells that have undergone extensive number of cell divisions (5-10) in the presence of cytokines alone were transplanted into immunodeficient mice, donor cell chimerism was not detectable. By contrast, 5azaD/TSA-treated cells that have undergone similar numbers of cell divisions retained their marrow repopulating potential. The expression of several genes and their products previously implicated in HSC self-renewal were up-regulated in the cells treated with 5azaD/TSA as compared to cells exposed to cytokines alone. These data indicate that HSC treated with chromatin-modifying agents are capable of undergoing repeated cell divisions in vitro while retaining their marrow-repopulating potential.
Collapse
Affiliation(s)
- Hiroto Araki
- Section of Hematology/Oncology, Department of Medicine, University of Illinois at Chicago, 909 S. Wolcott Avenue, Chicago, IL 60612, USA
| | | | | | | | | | | |
Collapse
|
131
|
Birkenkamp KU, Essafi A, van der Vos KE, da Costa M, Hui RCY, Holstege F, Koenderman L, Lam EWF, Coffer PJ. FOXO3a induces differentiation of Bcr-Abl-transformed cells through transcriptional down-regulation of Id1. J Biol Chem 2006; 282:2211-20. [PMID: 17132628 DOI: 10.1074/jbc.m606669200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Leukemic transformation often requires activation of protein kinase B (PKB/c-Akt) and is characterized by increased proliferation, decreased apoptosis, and a differentiation block. PKB phosphorylates and inactivates members of the FOXO subfamily of Forkhead transcription factors. It has been suggested that hyperactivation of PKB maintains the leukemic phenotype through actively repressing FOXO-mediated regulation of specific genes. We have found expression of the transcriptional repressor Id1 (inhibitor of DNA binding 1) to be abrogated by FOXO3a activation. Inhibition of PKB activation or growth factor deprivation also resulted in strong down-regulation of Id1 promoter activity, Id1 mRNA, and protein expression. Id1 is highly expressed in Bcr-Abl-transformed K562 cells, correlating with high PKB activation and FOXO3a phosphorylation. Inhibition of Bcr-Abl by the chemical inhibitor STI571 resulted in activation of FOXO3a and down-regulation of Id1 expression. By performing chromatin immunoprecipitation assays and promoter-mutation analysis, we demonstrate that FOXO3a acts as a transcriptional repressor by directly binding to the Id1 promoter. STI571 treatment, or expression of constitutively active FOXO3a, resulted in erythroid differentiation of K562 cells, which was inhibited by ectopic expression of Id1. Taken together our data strongly suggest that high expression of Id1, through PKB-mediated inhibition of FOXO3a, is critical for maintenance of the leukemic phenotype.
Collapse
Affiliation(s)
- Kim U Birkenkamp
- Molecular Immunology Laboratory, Department of Immunology, University Medical Center, KC.02.085.2, Lundiaan 6, 3584-CX Utrecht, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
132
|
Abstract
Since Medawar's initial contemplations in 1953 on the mechanisms of immune evasion allowing for the survival of the allogeneic conceptus in an immunologically competent mother, physicians and immunologists alike have struggled to understand the immunological paradox of pregnancy. Ultimately, our attempts to define the immunology of normal pregnancy have broadened our appreciation of the myriad mechanisms at play that enable the promotion of implantation and maintenance of pregnancy. In this review, we summarise what is known regarding the immunology of normal pregnancy, with special emphasis on the relation to common disorders of pregnancy.
Collapse
Affiliation(s)
- Kjersti M Aagaard-Tillery
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Utah Health Sciences, 30 North 1900 East, SOM 2B200, Salt Lake City, UT 84132, USA.
| | | | | |
Collapse
|
133
|
Smith JW, Gamelli RL, Jones SB, Shankar R. Immunologic responses to critical injury and sepsis. J Intensive Care Med 2006; 21:160-72. [PMID: 16672638 DOI: 10.1177/0885066605284330] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Almost 2 million patients are admitted to hospitals in the United States each year for treatment of traumatic injuries, and these patients are at increased risk of late infections and complications of systemic inflammation as a result of injury. Host response to injury involves a general activation of multiple systems in defending the organism from hemorrhagic or infectious death. Clinicians have the capability to support the critically injured through their traumatic insult with surgery and improved critical care, but the inflammatory response generated by such injuries creates new challenges in the management of these patients. It has long been known that local tissue injury induces systemic changes in the traumatized patient that are often maladaptive. This article reviews the effects of injury on the function of immune system cells and highlights some of the clinical sequelae of this deranged inflammatory-immune interaction.
Collapse
Affiliation(s)
- Jason W Smith
- Department of Surgery and Burn & Shock Trauma Institute, Loyola University Medical Center, Maywood, IL 60153, USA
| | | | | | | |
Collapse
|
134
|
Ceredig R, Rauch M, Balciunaite G, Rolink AG. Increasing Flt3L availability alters composition of a novel bone marrow lymphoid progenitor compartment. Blood 2006; 108:1216-22. [PMID: 16675711 DOI: 10.1182/blood-2005-10-006643] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Abstract
We have recently described a CD19– B220+CD117low bone marrow subpopulation with B, T, and myeloid developmental potential, which we have called “early progenitors with lymphoid and myeloid potential” or EPLM. These cells also expressed Fms-like tyrosine kinase 3, Flt3, or CD135. Treatment of mice with the corresponding ligand, Flt3L, showed a 50-fold increase in EPLM. In addition to the expected increase in dendritic cell numbers, Flt3L treatment had a reversible inhibitory effect on B lymphopoiesis. Limiting dilution analysis of sorted EPLM from Flt3L-treated mice showed that B-lymphocyte progenitor activity was reduced 20-fold, but that myeloid and T-cell progenitor activity was largely preserved. EPLM from treated mice transiently reconstituted the thymus and bone marrow of recipient mice, generating cohorts of functional T and B cells in peripheral lymphoid organs. Thus, Flt3L treatment results in a dramatic increase in a novel bone marrow cell with lymphoid and myeloid progenitor activity.
Collapse
Affiliation(s)
- Rhodri Ceredig
- Department of Clinical and Biological Sciences, University of Basel, Mattenstrasse 28, CH-4058 Basel, Switzerland
| | | | | | | |
Collapse
|
135
|
Abstract
Human cytomegalovirus (HCMV) persists as a subclinical, lifelong infection in the normal human host, maintained at least in part by its carriage in the absence of detectable infectious virus – the hallmark of latent infection. Reactivation from latency in immunocompromised individuals, in contrast, often results in serious disease. Latency and reactivation are defining characteristics of the herpesviruses and key to understanding their biology. However, the precise cellular sites in which HCMV is carried and the mechanisms regulating its latency and reactivation during natural infection remain poorly understood. This review will detail our current knowledge of where HCMV is carried in healthy individuals, which viral genes are expressed upon carriage of the virus and what effect this has on cellular gene expression. It will also address the accumulating evidence suggesting that reactivation of HCMV from latency appears to be linked intrinsically to the differentiation status of the myeloid cell, and how the cellular mechanisms that normally control host gene expression play a critical role in the differential regulation of viral gene expression during latency and reactivation.
Collapse
Affiliation(s)
- John Sinclair
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK
| | - Patrick Sissons
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK
| |
Collapse
|
136
|
Moon HW, Shin S, Kim HY, Kim YR, Cho HI, Yoon SS, Park S, Kim BK, Chun H, Kim HC, Park CJ, Min YH, Lee DS. Therapeutic use of granulocyte-colony stimulating factor could conceal residual malignant cells in patients with AML1/ETO+ acute myelogenous leukemia. Leukemia 2006; 20:1408-13. [PMID: 16791271 DOI: 10.1038/sj.leu.2404286] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We have experienced a number of cases of AML1/ETO+ acute myelogenous leukemia that showed remission based on bone marrow (BM) morphological criteria, but that revealed clonal abnormalities in most cells by fluorescence in situ hybridization (FISH). Interestingly, most of these cases had AML with AML1/ETO rearrangement. The malignant cells were differentiated and considered mature cells after granulocyte-colony stimulating factor (G-CSF) treatment. To clarify the possible mechanisms underlying this phenomenon, we investigated the expression levels of G-CSFR in AML cells with AML1/ETO rearrangement by flow cytometry and real-time polymerase chain reaction (PCR). The number of AML1/ETO+ cells expressing G-CSFR at baseline was significantly higher than that of AML1/ETO- AML cells (2673 vs 522). In addition, the G-CSFR gene was more highly expressed in AML1/ETO+ cells than in AML1/ETO- cells by real-time PCR. This study reveals that cases showing remission after treatment with G-CSF mostly had leukemia with AML1/ETO rearrangement. This finding might be explained by the higher expression of G-CSF receptor in AML1/ETO+ cells than in AML1/ETO- cells. We recommend that remission should be confirmed by FISH, because malignant clones can be differentiated and masked in morphological examination or chromosome test, especially for AML with AML1/ETO rearrangement.
Collapse
Affiliation(s)
- H W Moon
- Department of Laboratory Medicine, Ewha Womens University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Gupta SK, Gupta M, Hoffman B, Liebermann DA. Hematopoietic cells from gadd45a-deficient and gadd45b-deficient mice exhibit impaired stress responses to acute stimulation with cytokines, myeloablation and inflammation. Oncogene 2006; 25:5537-46. [PMID: 16732331 DOI: 10.1038/sj.onc.1209555] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The gadd45 family of gene(s) is rapidly induced by genotoxic stress or by differentiation-inducing cytokines. Using bone marrow (BM) from gadd45a-/-, gadd45b-/- and wild-type (wt) mice, we investigated their role in stress responses of myeloid cells to acute stimulation with differentiating cytokines, myelotoxic agents and inflammatory substances. Bone marrow cells from gadd45a-/- and gadd45b-/- mice displayed compromised myeloid differentiation and higher apoptosis in vitro, following acute stimulation with a variety of differentiating cytokines. Intriguingly, gadd45a-/- and gadd45b-/- colony forming units granulocyte/macrophage progenitors displayed prolonged proliferation capacity compared to wt controls upon re-plating in methylcellulose supplemented with interleukin-3. The recovery of the BM myeloid compartment following 5-Fluorouracil-induced myelo-ablation was much slower in gadd45a-/- and gadd45b-/- mice compared to wt controls. Furthermore, the response of myeloid cells to inflammatory stress, inflicted via intraperitoneal administration of sodium caseinate was impaired in gadd45a-/- and gadd45b-/- mice compared to age-matched wt mice, as indicated by lower percentage of Gr-1-positive cells in the BM and lower number of myeloid cells in peritoneal exudates. Overall, these data indicate that both gadd45a and gadd45b play a role in modulating physiological stress responses of myeloid cells to acute stimulation with differentiating cytokines, myelo-ablation and inflammation. These findings should aid in understanding the response of normal and malignant hematopoietic cells to physiological and chemical stressors including anticancer agents.
Collapse
Affiliation(s)
- S K Gupta
- Department of Biochemistry, Fels Institute for Cancer Research & Molecular Biology, Temple University School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
138
|
Guais A, Siegrist S, Solhonne B, Jouault H, Guellaën G, Bulle F. h-Goliath, paralog of GRAIL, is a new E3 ligase protein, expressed in human leukocytes. Gene 2006; 374:112-20. [PMID: 16549277 DOI: 10.1016/j.gene.2006.01.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2005] [Revised: 01/19/2006] [Accepted: 01/25/2006] [Indexed: 11/28/2022]
Abstract
In Drosophila, the RING finger protein d-Goliath was originally identified as a transcription factor involved in the embryo mesoderm formation [Bouchard, M.L., Cote, S., 1993. The Drosophila melanogaster developmental gene g1 encodes a variant zinc-finger-motif protein. Gene 125, 205-209]. In mouse, the m-Goliath mRNA level was shown to be increased in growth factor withdrawal-induced apoptosis of myeloid cells [Baker, S.J., Reddy, E.P., 2000. Cloning of murine G1RP, a novel gene related to Drosophila melanogaster g1. Gene 248, 33-40]. Due to its putative function of transcription factor in apoptosis, we cloned the human cDNA for h-Goliath and characterized the expression of the protein in blood and bone marrow cells. The human protein of 419 aa (44 kDa) contains a protease-associated domain, a transmembrane domain and a RING-H2 motif. This structure classifies h-Goliath as a new member of a human family of ubiquitin ligases with GRAIL (gene related to anergy in lymphocytes) as founder. This E3 ligase controls the development of T cell clonal anergy by ubiquitination [Anandasabapathy, N., Ford, G.S., Bloom, D., Holness, C., Paragas, V., Seroogy, C., Skrenta, H., Hollenhorst, M., Fathman, C.G., Soares, L., 2003. GRAIL: an E3 ubiquitin ligase that inhibits cytokine gene transcription is expressed in anergic CD4+ T cells. Immunity 18, 535-547]. In vitro ubiquitination studies support the E3 ubiquitin ligase activity of h-Goliath. In human, the protein is expressed under 3 isoforms, a major one at 28 kDa and two others at 46 and 55 kDa. These proteins come from a common precursor (44 kDa) as we observed using in vitro transcription-translation. Using immunohistochemistry on blood or bone marrow smears, of healthy or leukemia samples, we found that the protein expression was restricted to the cytoplasm of progenitors and fully differentiated leukocyte populations. We did not observe any modification of h-Goliath expression or localization in leukemia. In these cells, this new E3 ubiquitin ligase protein does not seem associated with a differentiation state of the cell or with apoptosis.
Collapse
Affiliation(s)
- Adeline Guais
- INSERM U581, Hôpital H. Mondor, 94010 Créteil, France
| | | | | | | | | | | |
Collapse
|
139
|
Wu W, Vieira J, Fiore N, Banerjee P, Sieburg M, Rochford R, Harrington W, Feuer G. KSHV/HHV-8 infection of human hematopoietic progenitor (CD34+) cells: persistence of infection during hematopoiesis in vitro and in vivo. Blood 2006; 108:141-51. [PMID: 16543476 PMCID: PMC1895828 DOI: 10.1182/blood-2005-04-1697] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The cellular reservoir for Kaposi sarcoma-associated herpesvirus (KSHV) infection in the hematopoietic compartment and mechanisms governing latent infection and reactivation remain undefined. To determine susceptibility of human CD34+ hematopoietic progenitor cells (HPCs) to infection with KSHV, purified HPCs were exposed to KSHV, and cells were differentiated in vitro and in vivo. Clonogenic colony-forming activity was significantly suppressed in KSHV-infected CD34+ cells, and viral DNA was predominantly localized to granulocyte-macrophage colonies differentiated in vitro. rKSHV.219 is a recombinant KSHV construct that expresses green fluorescent protein from a cellular promoter active during latency and red fluorescent protein from a viral lytic promoter. Infection of CD34+ HPCs with rKSHV.219 showed similar patterns of infection, persistence, and hematopoietic suppression in vitro in comparison with KSHV. rKSHV.219 infection was detected in human CD14+ and CD19+ cells recovered from NOD/SCID mouse bone marrow and spleen following reconstitution with rKSHV.219-infected CD34+ HPCs. These results suggest that rKSHV.219 establishes persistent infection in NOD/SCID mice and that virus may be disseminated following differentiation of infected HPCs into the B-cell and monocyte lineages. CD34+ HPCs may be a reservoir for KSHV infection and may provide a continuous source of virally infected cells in vivo.
Collapse
Affiliation(s)
- William Wu
- Department of Microbiology and Immunology, State University New York (SUNY) Upstate Medical University, Syracuse, NY, USA
| | | | | | | | | | | | | | | |
Collapse
|
140
|
Tamada T, Honjo E, Maeda Y, Okamoto T, Ishibashi M, Tokunaga M, Kuroki R. Homodimeric cross-over structure of the human granulocyte colony-stimulating factor (GCSF) receptor signaling complex. Proc Natl Acad Sci U S A 2006; 103:3135-40. [PMID: 16492764 PMCID: PMC1413920 DOI: 10.1073/pnas.0511264103] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A crystal structure of the signaling complex between human granulocyte colony-stimulating factor (GCSF) and a ligand binding region of GCSF receptor (GCSF-R), has been determined to 2.8 A resolution. The GCSF:GCSF-R complex formed a 2:2 stoichiometry by means of a cross-over interaction between the Ig-like domains of GCSF-R and GCSF. The conformation of the complex is quite different from that between human GCSF and the cytokine receptor homologous domain of mouse GCSF-R, but similar to that of the IL-6/gp130 signaling complex. The Ig-like domain cross-over structure necessary for GCSF-R activation is consistent with previously reported thermodynamic and mutational analyses.
Collapse
Affiliation(s)
- Taro Tamada
- *Research Group for Molecular Structural Biology, Quantum Beam Science Directorate, Japan Atomic Energy Agency, 2-4 Shirakata-Shirane, Tokai, Ibaraki 319-1195, Japan
| | - Eijiro Honjo
- Pharmaceutical Research Laboratory, Kirin Brewery Co. Ltd., 3 Miyahara-cho, Takasaki 370-1295,Japan; and
| | - Yoshitake Maeda
- Pharmaceutical Research Laboratory, Kirin Brewery Co. Ltd., 3 Miyahara-cho, Takasaki 370-1295,Japan; and
| | - Tomoyuki Okamoto
- Pharmaceutical Research Laboratory, Kirin Brewery Co. Ltd., 3 Miyahara-cho, Takasaki 370-1295,Japan; and
| | - Matsujiro Ishibashi
- Laboratory of Applied Microbiology, Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065,Japan
| | - Masao Tokunaga
- Laboratory of Applied Microbiology, Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065,Japan
| | - Ryota Kuroki
- *Research Group for Molecular Structural Biology, Quantum Beam Science Directorate, Japan Atomic Energy Agency, 2-4 Shirakata-Shirane, Tokai, Ibaraki 319-1195, Japan
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
141
|
Gemelli C, Montanari M, Tenedini E, Zanocco Marani T, Vignudelli T, Siena M, Zini R, Salati S, Tagliafico E, Manfredini R, Grande A, Ferrari S. Virally mediated MafB transduction induces the monocyte commitment of human CD34+ hematopoietic stem/progenitor cells. Cell Death Differ 2006; 13:1686-96. [PMID: 16456583 DOI: 10.1038/sj.cdd.4401860] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Upregulation of specific transcription factors is a generally accepted mechanism to explain the commitment of hematopoietic stem cells along precise maturation lineages. Based on this premise, transduction of primary hematopoietic stem/progenitor cells with viral vectors containing the investigated transcription factors appears as a suitable experimental model to identify such regulators. Although MafB transcription factor is believed to play a role in the regulation of monocytic commitment, no demonstration is, to date, available supporting this function in normal human hematopoiesis. To address this issue, we retrovirally transduced cord blood CD34+ hematopoietic progenitors with a MafB cDNA. Immunophenotypic and morphological analysis of transduced cells demonstrated the induction of a remarkable monomacrophage differentiation. Microarray analysis confirmed these findings and disclosed the upregulation of macrophage-related transcription factors belonging to the AP-1, MAF, PPAR and MiT families. Altogether our data allow to conclude that MafB is a key regulator of human monocytopoiesis.
Collapse
Affiliation(s)
- C Gemelli
- Department of Biomedical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Miranda MB, Xu H, Torchia JA, Johnson DE. Cytokine-induced myeloid differentiation is dependent on activation of the MEK/ERK pathway. Leuk Res 2005; 29:1293-306. [PMID: 16164983 DOI: 10.1016/j.leukres.2005.03.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2004] [Accepted: 03/14/2005] [Indexed: 11/30/2022]
Abstract
The intracellular signaling pathways that mediate cytokine-induced granulocytic and monocytic differentiation are incompletely understood. In this study, we examined the importance of the MEK/ERK signal transduction pathway in granulocyte-colony stimulating factor (G-CSF)-induced granulocytic differentiation of murine 32 Dc l3 cells, and in interleukin-6 (IL-6)-induced monocytic differentiation of murine M1 cells. Induction of granulocytic differentiation with G-CSF, or monocytic differentiation with IL-6, led to rapid and sustained activation of the MEK-1/-2 and ERK-1/-2 enzymes. Inhibition of the MEK/ERK pathway by pretreatment with the MEK inhibitor U 0126 dramatically attenuated G-CSF-induced granulocytic differentiation and IL-6-induced monocytic differentiation. Inhibition of MEK/ERK signaling also significantly reduced cytokine-induced DNA binding activities of STAT 3 and PU.1, transcription factors that have been implicated in myeloid differentiation. Additionally, interleukin-3, which inhibits G-CSF-induced differentiation of 32 Dc l3 cells, also inhibited the ability of G-CSF to stimulate prolonged MEK/ERK activation. Thus, the opposing actions of different hematopoietic cytokines on myeloid progenitors may be mediated at the level of MEK/ERK activation. Taken together, these studies demonstrate an important requirement for MEK/ERK activation during cytokine-induced granulocytic and monocytic differentiation.
Collapse
Affiliation(s)
- Michelle B Miranda
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | | | |
Collapse
|
143
|
Honjo E, Tamada T, Maeda Y, Koshiba T, Matsukura Y, Okamoto T, Ishibashi M, Tokunaga M, Kuroki R. Crystallization of a 2:2 complex of granulocyte-colony stimulating factor (GCSF) with the ligand-binding region of the GCSF receptor. Acta Crystallogr Sect F Struct Biol Cryst Commun 2005; 61:788-90. [PMID: 16511159 PMCID: PMC1952362 DOI: 10.1107/s1744309105023080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2005] [Accepted: 07/19/2005] [Indexed: 11/11/2022]
Abstract
The granulocyte-colony stimulating factor (GCSF) receptor receives signals for regulating the maturation, proliferation and differentiation of the precursor cells of neutrophilic granulocytes. The signalling complex composed of two GCSFs (GCSF, 19 kDa) and two GCSF receptors (GCSFR, 34 kDa) consisting of an Ig-like domain and a cytokine-receptor homologous (CRH) domain was crystallized. A crystal of the complex was grown in 1.0 M sodium formate and 0.1 M sodium acetate pH 4.6 and belongs to space group P4(1)2(1)2 (or its enantiomorph P4(3)2(1)2), with unit-cell parameters a = b = 110.1, c = 331.8 A. Unfortunately, this crystal form did not diffract beyond 5 A resolution. Since the heterogeneity of GCSF receptor appeared to prevent the growth of good-quality crystals, the GCSF receptor was fractionated by anion-exchange chromatography. Crystals of the GCSF-fractionated GCSF receptor complex were grown as a new crystal form in 0.2 M ammonium phosphate. This new crystal form diffracted to beyond 3.0 A resolution and belonged to space group P3(1)21 (or its enantiomorph P3(2)21), with unit-cell parameters a = b = 134.8, c = 105.7 A.
Collapse
Affiliation(s)
- Eijiro Honjo
- Pharmaceutical Research Laboratory, Kirin Brewery Co. Ltd, 3 Miyahara-cho, Takasaki 370-1295, Japan
| | - Taro Tamada
- Pharmaceutical Research Laboratory, Kirin Brewery Co. Ltd, 3 Miyahara-cho, Takasaki 370-1295, Japan
| | - Yoshitake Maeda
- Pharmaceutical Research Laboratory, Kirin Brewery Co. Ltd, 3 Miyahara-cho, Takasaki 370-1295, Japan
| | - Takumi Koshiba
- Central Laboratories for Key Technology, Kirin Brewery Co. Ltd, 1-13-5 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Yasuko Matsukura
- Pharmaceutical Research Laboratory, Kirin Brewery Co. Ltd, 3 Miyahara-cho, Takasaki 370-1295, Japan
| | - Tomoyuki Okamoto
- Pharmaceutical Research Laboratory, Kirin Brewery Co. Ltd, 3 Miyahara-cho, Takasaki 370-1295, Japan
| | - Matsujiro Ishibashi
- Laboratory of Applied Microbiology, Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Masao Tokunaga
- Laboratory of Applied Microbiology, Faculty of Agriculture, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Ryota Kuroki
- Pharmaceutical Research Laboratory, Kirin Brewery Co. Ltd, 3 Miyahara-cho, Takasaki 370-1295, Japan
| |
Collapse
|
144
|
Dimitriadis E, White CA, Jones RL, Salamonsen LA. Cytokines, chemokines and growth factors in endometrium related to implantation. Hum Reprod Update 2005; 11:613-30. [PMID: 16006437 DOI: 10.1093/humupd/dmi023] [Citation(s) in RCA: 347] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The complexity of the events of embryo implantation and placentation is exemplified by the number and range of cytokines with demonstrated roles in these processes. Disturbance of the normal expression or action of these cytokines results in complete or partial failure of implantation and abnormal placental formation in mice or humans. Of known importance are members of the gp130 family such as interleukin-11 (IL-11) and leukaemia inhibitory factor (LIF), the transforming growth factor beta (TGFbeta) superfamily including the activins, the colony-stimulating factors (CSF), the IL-1 system and IL-15 system. New data are also emerging for roles for a number of chemokines (chemoattractive cytokines) both in recruiting specific cohorts of leukocytes to implantation sites and in trophoblast differentiation and trafficking. This review focuses on those cytokines and chemokines whose expression pattern in the human endometrium is consistent with a potential role in implantation and placentation and for which some relevant actions are known. It examines what is known of their regulation and action along with alterations in clinically relevant situations.
Collapse
Affiliation(s)
- E Dimitriadis
- Prince Henry's Institute of Medical Research, P.O. Box 5152, Clayton, Victoria 3168, Australia.
| | | | | | | |
Collapse
|
145
|
Montanari M, Gemelli C, Tenedini E, Zanocco Marani T, Vignudelli T, Siena M, Zini R, Salati S, Chiossi G, Tagliafico E, Manfredini R, Grande A, Ferrari S. Correlation between differentiation plasticity and mRNA expression profiling of CD34+-derived CD14− and CD14+ human normal myeloid precursors. Cell Death Differ 2005; 12:1588-600. [PMID: 15947790 DOI: 10.1038/sj.cdd.4401679] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In spite of their apparently restricted differentiation potentiality, hematopoietic precursors are plastic cells able to trans-differentiate from a maturation lineage to another. To better characterize this differentiation plasticity, we purified CD14- and CD14+ myeloid precursors generated by 'in vitro' culture of human CD34+ hematopoietic progenitors. Morphological analysis of the investigated cell populations indicated that, as expected, they consisted of granulocyte and monocyte precursors, respectively. Treatment with differentiation inducers revealed that CD14- cells were bipotent granulo-monocyte precursors, while CD14+ cells appeared univocally committed to a terminal macrophage maturation. Flow cytometry analysis demonstrated that the conversion of granulocyte precursors to the mono-macrophage maturation lineage occurs through a differentiation transition in which the granulocyte-related myeloperoxidase enzyme and the monocyte-specific CD14 antigen are co-expressed. Expression profiling evidenced that the observed trans-differentiation process was accompanied by a remarkable upregulation of the monocyte-related MafB transcription factor.
Collapse
Affiliation(s)
- M Montanari
- Dipartimento di Scienze Biomediche, Sezione di Chimica Biologica, Università di Modena e Reggio Emilia, Modena, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Pérez-Mancera PA, González-Herrero I, Pérez-Caro M, Gutiérrez-Cianca N, Flores T, Gutiérrez-Adán A, Pintado B, Sánchez-Martín M, Sánchez-García I. SLUG in cancer development. Oncogene 2005; 24:3073-82. [PMID: 15735690 DOI: 10.1038/sj.onc.1208505] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The SNAIL-related zinc-finger transcription factor, SLUG (SNAI2), is critical for the normal development of neural crest-derived cells and loss-of-function SLUG mutations have been proven to contribute to piebaldism and Waardenburg syndrome type 2 in a dose-dependent fashion. While aberrant induction of SLUG has been documented in cancer cells, relatively little is known about the consequences of SLUG overexpression in malignancy. To investigate the potential role of SLUG overexpression in development and in cancer, we generated mice carrying a tetracycline-repressible Slug transgene. These mice were morphologically normal at birth, and developed mesenchymal tumours (leukaemia and sarcomas) in almost all cases examined. Suppression of the Slug transgene did not rescue the malignant phenotype. Furthermore, the BCR-ABL oncogene, which induces Slug expression in leukaemic cells, did not induce leukaemia in Slug-deficient mice, implicating Slug in BCR-ABL leukaemogenesis in vivo. Overall, the findings indicate that while Slug overexpression is not sufficient to cause overt morphogenetic defects in mice, they demonstrate a specific and critical role for Slug in the pathogenesis of mesenchymal tumours.
Collapse
Affiliation(s)
- Pedro Antonio Pérez-Mancera
- Laboratorio 13, Instituto de Biología Molecular y Celular del Cáncer, CSIC/Universidad de Salamanca, Campus Unamuno, 37007-Salamanca, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
147
|
Gonçalves MAFV. A concise peer into the background, initial thoughts and practices of human gene therapy. Bioessays 2005; 27:506-17. [PMID: 15832383 DOI: 10.1002/bies.20218] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The concept of human gene therapy came on the heels of fundamental discoveries on the nature and working of the gene. However, realistic prospects to correct the underlying cause of recessive genetic disorders through the transfer of wild-type alleles of defective genes had to wait for the arrival of recombinant DNA technology. These techniques permitted the isolation and insertion of genes into the first recombinant delivery systems. The realization that viruses are natural gene carriers provided inspiration for gene therapy and, as engineered vectors, viruses became prominent gene delivery vehicles. Nonetheless, when put in the context of human and non-human primate studies, all vectors fell short of success regardless of their viral or non-viral origin. Recognition of issues such as inefficient gene transfer and short-lived or scant expression in the relevant cell type(s) prompted researchers to refine and develop several gene delivery systems, in particular those based on retroviruses, adeno-associated viruses and adenoviruses. Concomitantly, available technology was deployed to tackle disorders that require few genetically corrected cells to attain therapy.
Collapse
Affiliation(s)
- Manuel A F V Gonçalves
- Gene Therapy Section, Department of Molecular Cell Biology, Leiden University Medical Center, Wassenaarseweg 72, 2333 AL Leiden, the Netherlands.
| |
Collapse
|
148
|
Singal P, Singh PP. Leishmania donovani amastigote components-induced colony-stimulating factors production. Parasitol Int 2005; 54:9-20. [PMID: 15710545 DOI: 10.1016/j.parint.2004.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2004] [Indexed: 11/28/2022]
Abstract
Increased hematopoiesis, driven by colony-stimulating factors (CSFs), is known to occur in infectious diseases. However, whether Leishmania donovani component(s) can directly induce the synthesis and secretion of CSFs is not known. We report that L. donovani amastigote antigens soluble in culture medium (LDAA; 0.01-10 mg/kg), injected intravenously in BALB/c mice, induced the production of serum CSFs; maximum induction (128>16 colonies) occurred at 1 mg/kg. In vitro also, LDAA (0.01-1 mg/ml) induced mouse peritoneal macrophages (MØs) to elaborate CSFs in the conditioned medium (CM); 0.1 mg/ml LDAA appeared optimal (68+/-9 colonies). Both in vivo and in vitro, the kinetics of CSF production were similar with peak response occurring 24 h after stimulation and return to background levels by 72 h. A predominant approximately 12 kDa LDAA protein (LDAA-12) also induced CSF production, both in serum and CM, in a dose-and time-dependent manner. Rabbit anti-LDAA-12 antibody significantly (p<0.05) reduced both the LDAA-and LDAA-12-induced CSF production, in vitro. Functionally, the LDAA-12-induced CSFs, both in the serum and CM, appeared to be similar as they supported the formation of granulocyte (G), MØ (M) and GM colonies, in vitro, in similar proportion; GM colonies were maximum (>80%). Further, LDAA-12 induced significantly (p<0.05) high GM-CSF levels both in serum and CM (19+/-3 and 15+/-2 ng/ml, respectively), as compared to the controls. Neutralizing (100%) goat anti-mouse tumour necrosis factor-alpha (TNF-alpha) immunoglobulin G did not affect the LDAA-12-induced CSF production by MØs, indicating it to be TNF-alpha-independent. LDAA-12 induced de novo CSF production, as MØs co-treated with LDAA-12 and cycloheximide (50 microg/ml) did not elaborate CSFs. The CSF-inducing capability of LDAA-12 appeared to be heat (70 C; 1 h)-labile, destroyed by proteases (pronase E and trypsin) and was unaffected by sodium periodate treatment. In LDAA-12-treated mice, the splenic and femur colony forming unit-GM counts showed a maximum of 2.2- and 1.9-fold increase, respectively, as compared to the controls. These data are the first to directly demonstrate that L. donovani amastigote components can induce the production of CSFs that may play important role(s) in the pathogenesis of visceral leishmaniasis.
Collapse
Affiliation(s)
- P Singal
- National Institute of Pharmaceutical Education and Research, Department of Biotechnology, Sector-67, Phase-X, S.A.S. Nagar 160 062, India
| | | |
Collapse
|
149
|
Abstract
Programmed cell death--also known as apoptosis--has a crucial role in the immune system of mammals and other animals. It removes useless cells and potentially dangerous cells, including lymphocytes, and is involved in killing pathogen-infected or damaged cells. Defects in this process have been found to cause or contribute to diseases of the immune system, including immunodeficiency, autoimmunity, lymphoma and leukaemia. This review describes BH3-only proteins, a pro-apoptotic subgroup of the BCL-2 family, and their role in the development and function of the immune system.
Collapse
Affiliation(s)
- Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia.
| |
Collapse
|
150
|
Iida S, Kohro T, Kodama T, Nagata S, Fukunaga R. Identification of CCR2, flotillin, and gp49B genes as new G-CSF targets during neutrophilic differentiation. J Leukoc Biol 2005; 78:481-90. [PMID: 15894583 DOI: 10.1189/jlb.0904515] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Granulocyte colony-stimulating factor (G-CSF) is a cytokine that stimulates myeloid progenitor cells to proliferate and differentiate into neutrophilic granulocytes. To identify genes induced by G-CSF during neutrophil differentiation, interleukin-3-dependent murine myeloid precursor FDC-P1 cells expressing the G-CSF receptor were stimulated with G-CSF, and the gene expression profile was characterized by DNA microarray analysis. In addition to known signal transducer and activator of transcription-3 target genes, such as suppressor of cytokine signaling-3 (SOCS3), JunB, and p19(INK4D), we newly identified several G-CSF targets, including genes for the CC chemokine receptor-2 (CCR2), raft proteins flotillin-1 and flotillin-2, and immunoglobulin-like receptor gp49B. Real-time, quantitative polymerase chain reaction analyses revealed that the expression of these genes was induced in various myeloid cell lines by G-CSF. Furthermore, when HoxA9-immortalized bone marrow progenitors were induced by G-CSF to differentiate into mature neutrophils, all of these genes were strongly activated. These genes could be categorized into three groups based on their time-course of expression: immediate-early (approximately 20 min, SOCS3), mid-early (2-4 h, flotillin-1/2 and gp49B), and late (>12 h, CCR2). This suggests that different transcriptional mechanisms are involved in the regulation of these genes. We show that bone marrow neutrophils express functional CCR2, which suggest that CC chemokines may play previously unknown roles in neutrophil activation and chemotaxis.
Collapse
Affiliation(s)
- Satoshi Iida
- Department of Genetics, B-3, Graduate School of Frontier Biosciences, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | |
Collapse
|