101
|
Lu Y, Chanroj S, Zulkifli L, Johnson MA, Uozumi N, Cheung A, Sze H. Pollen tubes lacking a pair of K+ transporters fail to target ovules in Arabidopsis. THE PLANT CELL 2011; 23:81-93. [PMID: 21239645 PMCID: PMC3051242 DOI: 10.1105/tpc.110.080499] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Flowering plant reproduction requires precise delivery of the sperm cells to the ovule by a pollen tube. Guidance signals from female cells are being identified; however, how pollen responds to those cues is largely unknown. Here, we show that two predicted cation/proton exchangers (CHX) in Arabidopsis thaliana, CHX21 and CHX23, are essential for pollen tube guidance. Male fertility was unchanged in single chx21 or chx23 mutants. However, fertility was impaired in chx21 chx23 double mutant pollen. Wild-type pistils pollinated with a limited number of single and double mutant pollen producing 62% fewer seeds than those pollinated with chx23 single mutant pollen, indicating that chx21 chx23 pollen is severely compromised. Double mutant pollen grains germinated and grew tubes down the transmitting tract, but the tubes failed to turn toward ovules. Furthermore, chx21 chx23 pollen tubes failed to enter the micropyle of excised ovules. Green fluorescent protein-tagged CHX23 driven by its native promoter was localized to the endoplasmic reticulum of pollen tubes. CHX23 mediated K(+) transport, as CHX23 expression in Escherichia coli increased K(+) uptake and growth in a pH-dependent manner. We propose that by modifying localized cation balance and pH, these transporters could affect steps in signal reception and/or transduction that are critical to shifting the axis of polarity and directing pollen growth toward the ovule.
Collapse
Affiliation(s)
- Yongxian Lu
- Department of Cell Biology and Molecular Genetics and the Maryland Agricultural Experiment Station, University of Maryland, College Park, Maryland 20742
| | - Salil Chanroj
- Department of Cell Biology and Molecular Genetics and the Maryland Agricultural Experiment Station, University of Maryland, College Park, Maryland 20742
| | - Lalu Zulkifli
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
| | - Mark A. Johnson
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, Rhode Island 02912
| | - Nobuyuki Uozumi
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
| | - Alice Cheung
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003
| | - Heven Sze
- Department of Cell Biology and Molecular Genetics and the Maryland Agricultural Experiment Station, University of Maryland, College Park, Maryland 20742
- Address correspondence to
| |
Collapse
|
102
|
Interspecific reproductive barriers in the tomato clade: opportunities to decipher mechanisms of reproductive isolation. ACTA ACUST UNITED AC 2010; 24:171-87. [PMID: 21076968 DOI: 10.1007/s00497-010-0155-7] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Accepted: 10/23/2010] [Indexed: 02/06/2023]
Abstract
The tomato clade within the genus Solanum has numerous advantages for mechanistic studies of reproductive isolation. Its thirteen closely related species, along with four closely allied Solanum species, provide a defined group with diverse mating systems that display complex interspecific reproductive barriers. Several kinds of pre- and postzygotic barriers have already been identified within this clade. Well-developed genetic maps, introgression lines, interspecific bridging lines, and the newly available draft genome sequence of the domesticated tomato (Solanum lycopersicum) are valuable tools for the genetic analysis of interspecific reproductive barriers. The excellent chromosome morphology of these diploid species allows detailed cytological analysis of interspecific hybrids. Transgenic methodologies, well developed in the Solanaceae, allow the functional testing of candidate reproductive barrier genes as well as live imaging of pollen rejection events through the use of fluorescently tagged proteins. Proteomic and transcriptomics approaches are also providing new insights into the molecular nature of interspecific barriers. Recent progress toward understanding reproductive isolation mechanisms using these molecular and genetic tools is assessed in this review.
Collapse
|
103
|
|
104
|
Tebbji F, Nantel A, Matton DP. Transcription profiling of fertilization and early seed development events in a solanaceous species using a 7.7 K cDNA microarray from Solanum chacoense ovules. BMC PLANT BIOLOGY 2010; 10:174. [PMID: 20704744 PMCID: PMC3095305 DOI: 10.1186/1471-2229-10-174] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 08/12/2010] [Indexed: 05/09/2023]
Abstract
BACKGROUND To provide a broad analysis of gene expression changes in developing embryos from a solanaceous species, we produced amplicon-derived microarrays with 7741 ESTs isolated from Solanum chacoense ovules bearing embryos from all developmental stages. Our aims were to: 1) identify genes expressed in a tissue-specific and temporal-specific manner; 2) define clusters of genes showing similar patterns of spatial and temporal expression; and 3) identify stage-specific or transition-specific candidate genes for further functional genomic analyses. RESULTS We analyzed gene expression during S. chacoense embryogenesis in a series of experiments with probes derived from ovules isolated before and after fertilization (from 0 to 22 days after pollination), and from leaves, anthers, and styles. From the 6374 unigenes present in our array, 1024 genes were differentially expressed (>or= +/- 2 fold change, p value <or= 0.01) in fertilized ovules compared to unfertilized ovules and only limited expression overlap was observed between these genes and the genes expressed in the other tissues tested, with the vast majority of the fertilization-regulated genes specifically or predominantly expressed in ovules (955 genes). During embryogenesis three major expression profiles corresponding to early, middle and late stages of embryo development were identified. From the early and middle stages, a large number of genes corresponding to cell cycle, DNA processing, signal transduction, and transcriptional regulation were found. Defense and stress response-related genes were found in all stages of embryo development. Protein biosynthesis genes, genes coding for ribosomal proteins and other components of the translation machinery were highly expressed in embryos during the early stage. Genes for protein degradation were overrepresented later in the middle and late stages of embryo development. As expected, storage protein transcripts accumulated predominantly in the late stage of embryo development. CONCLUSION Our analysis provides the first study in a solanaceous species of the transcriptional program that takes place during the early phases of plant reproductive development, including all embryogenesis steps during a comprehensive time-course. Our comparative expression profiling strategy between fertilized and unfertilized ovules identified a subset of genes specifically or predominantly expressed in ovules while a closer analysis between each consecutive time point allowed the identification of a subset of stage-specific and transition-specific genes.
Collapse
Affiliation(s)
- Faiza Tebbji
- Institut de recherche en biologie végétale, Département de sciences biologiques, Université de Montréal, 4101 rue Sherbrooke est, Montréal, Québec, H1X 2B2, Canada
- Biotechnology Research Institute, National Research Council, 6100 Royalmount Avenue, Montreal, QC, H4P 2R2, Canada
| | - André Nantel
- Institut de recherche en biologie végétale, Département de sciences biologiques, Université de Montréal, 4101 rue Sherbrooke est, Montréal, Québec, H1X 2B2, Canada
- Biotechnology Research Institute, National Research Council, 6100 Royalmount Avenue, Montreal, QC, H4P 2R2, Canada
| | - Daniel P Matton
- Institut de recherche en biologie végétale, Département de sciences biologiques, Université de Montréal, 4101 rue Sherbrooke est, Montréal, Québec, H1X 2B2, Canada
| |
Collapse
|
105
|
|
106
|
Zonia L. Spatial and temporal integration of signalling networks regulating pollen tube growth. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:1939-57. [PMID: 20378665 DOI: 10.1093/jxb/erq073] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The overall function of a cell is determined by its contingent of active signal transduction cascades interacting on multiple levels with metabolic pathways, cytoskeletal organization, and regulation of gene expression. Much work has been devoted to analysis of individual signalling cascades interacting with unique cellular targets. However, little is known about how cells integrate information across hierarchical signalling networks. Recent work on pollen tube growth indicates that several key signalling cascades respond to changes in cell hydrodynamics and apical volume. Combined with known effects on cytoarchitecture and signalling from other cell systems, hydrodynamics has the potential to integrate and synchronize the function of the broader signalling network in pollen tubes. This review will explore recent work on cell hydrodynamics in a variety of systems including pollen, and discuss hydrodynamic regulation of cell signalling and function including exocytosis and endocytosis, actin cytoskeleton reorganization, cell wall deposition and assembly, phospholipid and inositol polyphosphate signalling, ion flux, small G-proteins, fertilization, and self-incompatibility. The combined data support a newly emerging model of pollen tube growth.
Collapse
Affiliation(s)
- Laura Zonia
- University of Amsterdam, Swammerdam Institute for Life Sciences, Section of Plant Physiology, Kruislaan 904, 1098 XH Amsterdam, The Netherlands.
| |
Collapse
|
107
|
Cheung AY, Boavida LC, Aggarwal M, Wu HM, Feijó JA. The pollen tube journey in the pistil and imaging the in vivo process by two-photon microscopy. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:1907-15. [PMID: 20363865 DOI: 10.1093/jxb/erq062] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The process of pollen germination and tube growth in the pistil involves a series of cell-cell interactions, some facilitating fertilization while others prohibiting pollen tube access to the female gametophyte, either because of incompatibility or as a result of mechanisms to avert polyspermy and to ensure reproductive success. Understanding pollen tube growth and guidance to the female gametophyte has long been a pursuit among plant biologists, and observations indicate that diverse strategies may be adopted by different plant species. Recent studies in Arabidopsis, maize, and Torenia fournieri suggest that low molecular weight secretory molecules probably play major roles in the short-range attraction of pollen tubes to the female gametophyte. The process of pollen tube growth in the pistil occurs beneath several cell layers so much of the information that conveys the intimate partnership between penetrating pollen tubes and the female tissues has come from fixed samples and observations of in vitro pollen tube growth responses to female factors. A unique glimpse of the in vivo pollen germination and tube growth process is provided here by intra-vital two-photon excitation (TPE) microscopy of pollinated Arabidopsis pistils that remained on intact plants. Further discoveries of critical factors of male or female origins and how they control the pollen tube growth and fertilization process will broaden our understanding of the common themes and diverse strategies that plants have evolved to ensure reproductive success. The advancement of imaging technology to monitor pollination and fertilization and the development of probes to monitor various aspects of the pollen tube growth process, including pollen intracellular dynamics, will allow us to superimpose details obtained from studying pollen tube growth in culture conditions to interpret and understand the in vivo events.
Collapse
Affiliation(s)
- Alice Y Cheung
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Lederle Graduate Research Tower, Amherst, MA 01003, USA.
| | | | | | | | | |
Collapse
|
108
|
Chapman LA, Goring DR. Pollen-pistil interactions regulating successful fertilization in the Brassicaceae. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:1987-99. [PMID: 20181663 DOI: 10.1093/jxb/erq021] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
In the Brassicaceae, the acceptance of compatible pollen and the rejection of self-incompatible pollen by the pistil involves complex molecular communication systems between the pollen grain and the female reproductive structures. Preference towards species related-pollen combined with self-recognition systems, function to select the most desirable pollen; and thus, increase the plant's chances for the maximum number of successful fertilizations and vigorous offspring. The Brassicaceae is an ideal group for studying pollen-pistil interactions as this family includes a diverse group of agriculturally relevant crops as well as several excellent model organisms for studying both compatible and self-incompatible pollinations. This review will describe the cellular systems in the pistil that guide the post-pollination events, from pollen capture on the stigmatic papillae to pollen tube guidance to the ovule, with the final release of the sperm cells to effect fertilization. The interplay of other recognition systems, such as the self-incompatibility response and interspecific interactions, on regulating post-pollination events and selecting for compatible pollen-pistil interactions will also be explored.
Collapse
Affiliation(s)
- Laura A Chapman
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | | |
Collapse
|
109
|
Kumar A, McClure B. Pollen-pistil interactions and the endomembrane system. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:2001-13. [PMID: 20363870 DOI: 10.1093/jxb/erq065] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The endomembrane system offers many potential points where plant mating can be effectively controlled. This results from two basic features of angiosperm reproduction: the requirement for pollen tubes to pass through sporophytic tissues to gain access to ovules and the physiology of pollen tube growth that provides it with the capacity to do so. Rapid pollen tube growth requires extravagant exocytosis and endocytosis activity as cell wall material is deposited and membrane is recovered from the actively growing tip. Moreover, recent results show that pollen tubes take up a great deal of material from the pistil extracellular matrix. Regarding the stigma and style as organs specialized for mate selection focuses attention on their complementary roles in secreting material to support the growth of compatible pollen tubes and discourage the growth of undesirable pollen. Since these processes also involve regulated activities of the endomembrane system, the potential for regulating mating by controlling endomembrane events exists in both pollen and pistil.
Collapse
Affiliation(s)
- Aruna Kumar
- Division of Biochemistry, Interdisciplinary Plant Group, 117 Schweitzer Hall, University of Missouri, Columbia, MO 65211-7310, USA
| | | |
Collapse
|
110
|
Wengier DL, Mazzella MA, Salem TM, McCormick S, Muschietti JP. STIL, a peculiar molecule from styles, specifically dephosphorylates the pollen receptor kinase LePRK2 and stimulates pollen tube growth in vitro. BMC PLANT BIOLOGY 2010; 10:33. [PMID: 20175921 PMCID: PMC2844069 DOI: 10.1186/1471-2229-10-33] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Accepted: 02/22/2010] [Indexed: 05/06/2023]
Abstract
BACKGROUND LePRK1 and LePRK2 are two pollen receptor kinases localized to the plasma membrane, where they are present in a high molecular weight complex (LePRK complex). LePRK2 is phosphorylated in mature and germinated pollen, but is dephosphorylated when pollen membranes are incubated with tomato or tobacco style extracts. RESULTS Here we show that LePRK2 dephosphorylation is mediated by a heat-, acid-, base-, DTT- and protease-resistant component from tobacco styles. Using LePRK2 phosphorylation as a tracking assay for purification, style exudates were subjected to chloroform extraction, anionic exchange, and C18 reverse-phase chromatography columns. We finally obtained a single ~3,550 Da compound (as determined by UV-MALDI-TOF MS) that we named STIL (for Style Interactor for LePRKs). STIL increased pollen tube lengths of in vitro germinated pollen in a dose-dependent manner. CONCLUSION We propose that the LePRK complex perceives STIL, resulting in LePRK2 dephosphorylation and an increase in pollen tube growth.
Collapse
Affiliation(s)
- Diego L Wengier
- Instituto de Ingeniería Genética y Biología Molecular (INGEBI), CONICET, Vuelta de Obligado 2490, 1428 Buenos Aires, Argentina
| | - María A Mazzella
- Instituto de Ingeniería Genética y Biología Molecular (INGEBI), CONICET, Vuelta de Obligado 2490, 1428 Buenos Aires, Argentina
| | - Tamara M Salem
- Instituto de Ingeniería Genética y Biología Molecular (INGEBI), CONICET, Vuelta de Obligado 2490, 1428 Buenos Aires, Argentina
| | - Sheila McCormick
- Plant Gene Expression Center, United States Department of Agriculture/Agricultural Research Service, 800 Buchanan Street, Albany, California 94710, USA
- Department of Plant and Microbial Biology, University of California at Berkeley, Berkeley, California 94720, USA
| | - Jorge P Muschietti
- Instituto de Ingeniería Genética y Biología Molecular (INGEBI), CONICET, Vuelta de Obligado 2490, 1428 Buenos Aires, Argentina
- Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
111
|
Coimbra S, Costa M, Mendes MA, Pereira AM, Pinto J, Pereira LG. Early germination of Arabidopsis pollen in a double null mutant for the arabinogalactan protein genes AGP6 and AGP11. ACTA ACUST UNITED AC 2010; 23:199-205. [PMID: 20162305 DOI: 10.1007/s00497-010-0136-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Accepted: 02/01/2010] [Indexed: 12/25/2022]
Abstract
The pollen specificity of the Arabidopsis arabinogalactan protein (AGP) genes AGP6 and AGP11 suggests that they are integral to pollen biogenesis, and their high percent of sequence similarity may indicate a potential for overlapping function. Arabidopsis agp6 agp11 double null mutants have been studied in our laboratory, and in the present work, we characterize the germination and growth of its pollen. When compared to wild type, mutant agp6 agp11 pollen displayed reduced germination and elongation, both in vivo and in vitro, and precocious germination inside the anthers, provided that sufficient moisture was available. This characteristic was not observed in wild type plants, even in water content conditions which for the mutant were sufficient for pollen germination. Therefore, an additional distinctive phenotypic trait of arabinogalactan proteins AGP6 and AGP11 may be to avert untimely germination of pollen. Such AGPs may control germination through water uptake, suggesting an important biological function of this gene family in pollen.
Collapse
Affiliation(s)
- Sílvia Coimbra
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Edifício FC4 Rua do Campo Alegre s/n, 4169-007, Porto, Portugal.
| | | | | | | | | | | |
Collapse
|
112
|
Obtaining new hydrophobic bases from various fats and oils for soft medicinal forms. Pharm Chem J 2010. [DOI: 10.1007/s11094-010-0356-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
113
|
Abstract
Plant fertilization is achieved through the involvement of various pollen-pistil interactions. Self-/non-self-recognition in pollination is important to avoid inbreeding, and directional and sustainable control of pollen tube growth is critical for the pollen tube to deliver male germ cells. Recently, various secreted peptides (polypeptides) have been reported to be involved in cell-cell communication of pollen-pistil interactions. These include determinants of self-incompatibility, factors for pollen germination and tube growth, and pollen tube attractants. Interestingly, many of them are cysteine-rich peptides/polypeptides (CRPs). In this review, I focus on the peptides involved in pollen-pistil interactions and discuss properties of peptide signaling in each step from pollination to fertilization.
Collapse
Affiliation(s)
- Tetsuya Higashiyama
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602 Aichi, Japan/PRESTO, JST.
| |
Collapse
|
114
|
Shakya R, Bhatla SC. A comparative analysis of the distribution and composition of lipidic constituents and associated enzymes in pollen and stigma of sunflower. ACTA ACUST UNITED AC 2009; 23:163-72. [PMID: 20490969 DOI: 10.1007/s00497-009-0125-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Accepted: 11/30/2009] [Indexed: 11/25/2022]
Abstract
Spatial distribution and compositional analyses of the lipidic constituents in pollen and stigma of sunflower (Helianthus annuus L. cv. Morden) were conducted using ultrastructural, histochemical, and biochemical analysis. Detection of secretions at the base of stigmatic papillae and neutral lipid accumulations on the surface of stigmatic papillae and between adjacent pseudopapillae demonstrates the semidry nature of stigma surface in sunflower. Pollen coat is richer in lipids (8%) than stigma (2.2%) on fresh weight basis. Nile Red-fluorescing neutral lipids are preferentially localized in the pollen coat. Neutral esters and triacylglycerols (TAGs) are the major lipidic constituents in pollen grains and stigma, respectively. Lignoceric acid (24:0) and cis-11-eicosenoic acid (20:1) are specifically expressed only in the pollen coat. Similar long-chain fatty acids have earlier been demonstrated to play a significant role during the initial signaling mechanism leading to hydration of pollen grains on the stigma surface. Lipase (EC 3.1.1.3) activity is expressed both in pollen grains and stigma. Stigma exhibits a better expression of acyl-ester hydrolase (EC 3.1.1.1) activity than that of observed in both the pollen fractions. Expression of two acyl-ester hydrolases (41 and 38 kDa) has been found to be specific to pollen coat. Specific expression of lignoceric acid (24:0) in pollen coat and localization of lipase in pollen and stigma have been discussed to assign possible roles that they might play during pollen-stigma interaction.
Collapse
Affiliation(s)
- Rashmi Shakya
- Department of Botany, Miranda House, University of Delhi, North Campus, Delhi, 110007, India.
| | | |
Collapse
|
115
|
Zhang M, Fan J, Taylor DC, Ohlrogge JB. DGAT1 and PDAT1 acyltransferases have overlapping functions in Arabidopsis triacylglycerol biosynthesis and are essential for normal pollen and seed development. THE PLANT CELL 2009; 21:3885-901. [PMID: 20040537 PMCID: PMC2814504 DOI: 10.1105/tpc.109.071795] [Citation(s) in RCA: 362] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2009] [Revised: 11/20/2009] [Accepted: 12/11/2009] [Indexed: 05/15/2023]
Abstract
Triacylglycerol (TAG) biosynthesis is a principal metabolic pathway in most organisms, and TAG is the major form of carbon storage in many plant seeds. Acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1) is the only acyltransferase enzyme that has been confirmed to contribute to TAG biosynthesis in Arabidopsis thaliana seeds. However, dgat1 null mutants display only a 20 to 40% decrease in seed oil content. To determine whether other enzymes contribute to TAG synthesis, candidate genes were expressed in TAG-deficient yeast, candidate mutants were crossed with the dgat1-1 mutant, and target genes were suppressed by RNA interference (RNAi). An in vivo role for phospholipid:diacylglycerol acyltransferase 1 (PDAT1; At5g13640) in TAG synthesis was revealed in this study. After failing to obtain double homozygous plants from crossing dgat1-1 and pdat1-2, further investigation showed that the dgat1-1 pdat1-2 double mutation resulted in sterile pollen that lacked visible oil bodies. RNAi silencing of PDAT1 in a dgat1-1 background or DGAT1 in pdat1-1 background resulted in 70 to 80% decreases in oil content per seed and in disruptions of embryo development. These results establish in vivo involvement of PDAT1 in TAG biosynthesis, rule out major contributions by other candidate enzymes, and indicate that PDAT1 and DGAT1 have overlapping functions that are essential for normal pollen and seed development of Arabidopsis.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - Jilian Fan
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - David C. Taylor
- National Research Council of Canada, Plant Biotechnology Institute, Saskatoon S7N 0W9, Canada
| | - John B. Ohlrogge
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
116
|
Han J, Clement JM, Li J, King A, Ng S, Jaworski JG. The cytochrome P450 CYP86A22 is a fatty acyl-CoA omega-hydroxylase essential for Estolide synthesis in the stigma of Petunia hybrida. J Biol Chem 2009; 285:3986-3996. [PMID: 19940120 DOI: 10.1074/jbc.m109.050765] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The stigmatic estolide is a lipid-based polyester constituting the major component of exudate in solanaceous plants. Although the exudate is believed to play important roles in the pollination process, the biosynthetic pathway of stigmatic estolide, including genes encoding the key enzymes, remains unknown. Here we report the cloning and characterization of the cytochrome P450 gene CYP86A22, which encodes a fatty acyl-CoA omega-hydroxylase involved in estolide biosynthesis in the stigma of Petunia hybrida. A CYP86A22 cDNA was isolated from a developing stigma cDNA library, and the corresponding gene was shown to express predominantly in the developing stigma. Among six P450 genes isolated from this library, only CYP86A22 was implicated in omega-hydroxylation following RNA interference (RNAi)-mediated suppression. Unlike wild-type plants in which omega-hydroxy fatty acids (mainly in the form of 18-hydroxy oleic acid and 18-hydroxy linoleic acid) compose 96% of total stigma fatty acids, the omega-hydroxy fatty acids were essentially absent in the stigmas from 18 of 46 CYP86A22-RNAi transgenic plants and had varying levels of suppression in the remaining 28 plants. Furthermore, lipids in the 18 CYP86A22-RNAi stigmas were predominantly triacylglycerols and diacylglycerols instead of the estolides, which characterize the wild-type stigma. Analyses of recombinant CYP86A22 conclusively demonstrated that this P450 is a omega-hydroxylase with a substrate preference for both saturated and unsaturated acyl-CoAs rather than free fatty acids. We conclude that the cytochrome P450 enzyme CYP86A22 is the key fatty acyl-CoA omega-hydroxylase essential for the production of omega-hydroxy fatty acids and the biosynthesis of triacylglycerol-/diacylglycerol-based estolide polyesters in the petunia stigma.
Collapse
Affiliation(s)
- Jixiang Han
- From the Donald Danforth Plant Science Center, St. Louis, Missouri 63132
| | - Joel M Clement
- From the Donald Danforth Plant Science Center, St. Louis, Missouri 63132
| | - Jia Li
- From the Donald Danforth Plant Science Center, St. Louis, Missouri 63132
| | - Andrew King
- From the Donald Danforth Plant Science Center, St. Louis, Missouri 63132
| | - Shirley Ng
- From the Donald Danforth Plant Science Center, St. Louis, Missouri 63132
| | - Jan G Jaworski
- From the Donald Danforth Plant Science Center, St. Louis, Missouri 63132.
| |
Collapse
|
117
|
Suzuki G. Recent progress in plant reproduction research: the story of the male gametophyte through to successful fertilization. PLANT & CELL PHYSIOLOGY 2009; 50:1857-64. [PMID: 19825944 DOI: 10.1093/pcp/pcp142] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Sexual reproduction is an important biological event not only for evolution but also for breeding in plants. It is a well known fact that Charles Darwin (1809-1882) was interested in the reproduction system of plants as part of his concept of 'species' and 'evolution.' His keen observation and speculation is timeless even in the current post-genome era. In the Darwin anniversary year of 2009, I have summarized recent molecular genetic studies of plant reproduction, focusing especially on male gametophyte development, pollination and fertilization. We are just beginning to understand the molecular mechanisms of the elaborate reproduction system in flowering plants, which have been a mystery for >100 years.
Collapse
Affiliation(s)
- Go Suzuki
- Division of Natural Science, Osaka Kyoiku University, Kashiwara, 582-8582 Japan.
| |
Collapse
|
118
|
Gilles S, Mariani V, Bryce M, Mueller MJ, Ring J, Behrendt H, Jakob T, Traidl-Hoffmann C. Pollen allergens do not come alone: pollen associated lipid mediators (PALMS) shift the human immune systems towards a T(H)2-dominated response. Allergy Asthma Clin Immunol 2009; 5:3. [PMID: 19946407 PMCID: PMC2776232 DOI: 10.1186/1710-1492-5-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2009] [Accepted: 10/22/2009] [Indexed: 12/17/2022] Open
Abstract
Pollen allergy is characterized by a T(H)2-biased immune response to pollen-derived allergens. However, pollen-exposed epithelia do not encounter pure allergen but rather a plethora of protein and non-protein substances. We demonstrated that pollen liberate lipids with chemical and functional similarities to leukotriens and prostaglandins--the pollen associated lipid mediators (PALMs). To date, two main groups of PALMs have been characterized: The immunostimulatory PALMs activating innate immune cells such as neutrophils and eosinophils, and the immunomodulatory E(1)-phytoprostanes blocking IL-12 production of dendritic cells, resulting in the preferential induction of T(H)2 responses. This article reviews our work in the field of PALMs and their effects on cells of the innate and adoptive immune system. From recent results a general picture starts to emerge in which PALMs (and possibly other pollen-associated substances) may--independently from protein allergens--propagate an overall T(H)2 favoring micromilieu in pollen exposed tissue of predisposed individuals.
Collapse
Affiliation(s)
- Stefanie Gilles
- ZAUM-Center for Allergy and Environment, Division of Environmental Dermatology, Biedersteiner Str. 29, 80802 Munich, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
119
|
Boisson-Dernier A, Roy S, Kritsas K, Grobei MA, Jaciubek M, Schroeder JI, Grossniklaus U. Disruption of the pollen-expressed FERONIA homologs ANXUR1 and ANXUR2 triggers pollen tube discharge. Development 2009; 136:3279-88. [PMID: 19736323 PMCID: PMC2739144 DOI: 10.1242/dev.040071] [Citation(s) in RCA: 251] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2009] [Indexed: 11/20/2022]
Abstract
The precise delivery of male to female gametes during reproduction in eukaryotes requires complex signal exchanges and a flawless communication between male and female tissues. In angiosperms, molecular mechanisms have recently been revealed that are crucial for the dialog between male (pollen tube) and female gametophytes required for successful sperm delivery. When pollen tubes reach the female gametophyte, they arrest growth, burst and discharge their sperm cells. These processes are under the control of the female gametophyte via the receptor-like serine-threonine kinase (RLK) FERONIA (FER). However, the male signaling components that control the sperm delivery remain elusive. Here, we show that ANXUR1 and ANXUR2 (ANX1, ANX2), which encode the closest homologs of the FER-RLK in Arabidopsis, are preferentially expressed in pollen. Moreover, ANX1-YFP and ANX2-YFP fusion proteins display polar localization to the plasma membrane at the tip of the pollen tube. Finally, genetic analyses demonstrate that ANX1 and ANX2 function redundantly to control the timing of pollen tube discharge as anx1 anx2 double-mutant pollen tubes cease their growth and burst in vitro and fail to reach the female gametophytes in vivo. We propose that ANX-RLKs constitutively inhibit pollen tube rupture and sperm discharge at the tip of growing pollen tubes to sustain their growth within maternal tissues until they reach the female gametophytes. Upon arrival, the female FER-dependent signaling cascade is activated to mediate pollen tube reception and fertilization, while male ANX-dependent signaling is deactivated, enabling the pollen tube to rupture and deliver its sperm cells to effect fertilization.
Collapse
Affiliation(s)
- Aurélien Boisson-Dernier
- Institute of Plant Biology and Zürich-Basel Plant Science Center, University of Zürich, Zollikerstrasse 107, 8008 Zürich, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
120
|
Updegraff EP, Zhao F, Preuss D. The extracellular lipase EXL4 is required for efficient hydration of Arabidopsis pollen. ACTA ACUST UNITED AC 2009; 22:197-204. [PMID: 20033440 DOI: 10.1007/s00497-009-0104-5] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Accepted: 07/01/2009] [Indexed: 11/27/2022]
Abstract
Pollination in species with dry stigmas begins with the hydration of desiccated pollen grains on the stigma, a highly regulated process involving the proteins and lipids of the pollen coat and stigma cuticle. Self-incompatible species of the Brassicaceae block pollen hydration, and while the early signaling steps of the self-incompatibility response are well studied, the precise mechanisms controlling pollen hydration are poorly understood. Both lipids and proteins are important for hydration; loss of pollen coat lipids and proteins results in defective or delayed hydration on the stigma surface. Here, we examine the role of the pollen coat protein extracellular lipase 4 (EXL4), in the initial steps of pollination, namely hydration on the stigma. We identify a mutant allele, exl4-1, that shows a reduced rate of pollen hydration. exl4-1 pollen is normal with respect to pollen morphology and the downstream steps in pollination, including pollen tube germination, growth, and fertilization of ovules. However, owing to the delay in hydration, exl4-1 pollen is at a disadvantage when competed with wild-type pollen. EXL4 also functions in combination with GRP17 to promote the initiation of hydration. EXL4 is similar to GDSL lipases, and we show that it functions in hydrolyzing ester bonds. We report a previously unknown function for EXL4, an abundant pollen coat protein, in promoting pollen hydration on the stigma. Our results indicate that changes in lipid composition at the pollen-stigma interface, possibly mediated by EXLs, are required for efficient pollination in species with dry stigmas.
Collapse
Affiliation(s)
- Emily P Updegraff
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA.
| | | | | |
Collapse
|
121
|
Yang B, Thorogood D, Armstead IP, Franklin FCH, Barth S. Identification of genes expressed during the self-incompatibility response in perennial ryegrass (Lolium perenne L.). PLANT MOLECULAR BIOLOGY 2009; 70:709-23. [PMID: 19484189 DOI: 10.1007/s11103-009-9501-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Accepted: 05/16/2009] [Indexed: 05/25/2023]
Abstract
Self-incompatibility (SI) in Lolium perenne is controlled gametophytically by the S-Z two-locus system. S and Z loci mapped to L. perenne linkage groups 1 and 2, respectively, with their corresponding putative-syntenic regions on rice chromosome 5 (R5) and R4. None of the gene products of S and Z have yet been identified. SI cDNA libraries were developed to enrich for SI expressed genes in L. perenne. Transcripts were identified from the SI libraries that were orthologous to sequences on rice R4 and R5. These represent potential SI candidate genes. Altogether ten expressed SI candidate genes were identified. A rapid increase in gene expression within two minutes after pollen-stigma contact was revealed, reaching a maximum between 2 and 10 min. The potential involvement of these genes in the SI reactions is discussed.
Collapse
Affiliation(s)
- Bicheng Yang
- Teagasc Crops Research Centre, Oak Park, Carlow, Ireland
| | | | | | | | | |
Collapse
|
122
|
|
123
|
Castro S, Silva S, Stanescu I, Silveira P, Navarro L, Santos C. Pistil anatomy and pollen tube development in Polygala vayredae Costa (Polygalaceae). PLANT BIOLOGY (STUTTGART, GERMANY) 2009; 11:405-416. [PMID: 19470111 DOI: 10.1111/j.1438-8677.2008.00126.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Low seed ovule ratios have been observed in natural populations of Polygala vayredae Costa, a narrowly endemic species from the oriental pre-Pyrenees. To evaluate physical and nutritional constraints and pollen tube attrition in this endemic species, stigma and style anatomy, as well as pollen tube development along the pistil were investigated using light and fluorescence microscopy. The structural morphology of the stigmatic region was also examined with scanning electron microscopy. Pollen grains that reached the stigmatic papillae came into contact with a lipid-rich exudate and germinated easily. Although a large number of pollen grains reach the stigmatic papillae, few pollen tubes were able to grow into the style towards the ovary. The style was hollow, with the stylar channel beginning a few cells below the stigmatic papillae. Initially, the stylar channel area was small compared to other levels of the style, and was surrounded by lipid-rich, highly metabolic active cells. Furthermore, lipid-rich mucilage was detected inside the stylar channel. At subsequent style levels towards the ovary, no major reserves were detected histochemically. The reduced intercellular spaces below the stigmatic papillae and the reduced area of the stylar channel at its commencement are suggested to physically constrain the number of pollen tubes that can develop. In subsequent levels of the style, the stylar channel could physically support a larger number of pollen tubes, but the lack of nutritional reserves cannot be disregarded as a cause of pollen tube attrition. Finally, the number of pollen tubes entering the ovary was greater than the number of ovules, suggesting that interactions occurring at this level play a major role in the final reproductive outcome in this species.
Collapse
Affiliation(s)
- S Castro
- Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal.
| | | | | | | | | | | |
Collapse
|
124
|
Defensin-like polypeptide LUREs are pollen tube attractants secreted from synergid cells. Nature 2009; 458:357-61. [PMID: 19295610 DOI: 10.1038/nature07882] [Citation(s) in RCA: 431] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Accepted: 02/10/2009] [Indexed: 11/08/2022]
Abstract
For more than 140 years, pollen tube guidance in flowering plants has been thought to be mediated by chemoattractants derived from target ovules. However, there has been no convincing evidence of any particular molecule being the true attractant that actually controls the navigation of pollen tubes towards ovules. Emerging data indicate that two synergid cells on the side of the egg cell emit a diffusible, species-specific signal to attract the pollen tube at the last step of pollen tube guidance. Here we report that secreted, cysteine-rich polypeptides (CRPs) in a subgroup of defensin-like proteins are attractants derived from the synergid cells. We isolated synergid cells of Torenia fournieri, a unique plant with a protruding embryo sac, to identify transcripts encoding secreted proteins as candidate molecules for the chemoattractant(s). We found two CRPs, abundantly and predominantly expressed in the synergid cell, which are secreted to the surface of the egg apparatus. Moreover, they showed activity in vitro to attract competent pollen tubes of their own species and were named as LUREs. Injection of morpholino antisense oligomers against the LUREs impaired pollen tube attraction, supporting the finding that LUREs are the attractants derived from the synergid cells of T. fournieri.
Collapse
|
125
|
Quiapim AC, Brito MS, Bernardes LAS, Dasilva I, Malavazi I, DePaoli HC, Molfetta-Machado JB, Giuliatti S, Goldman GH, Goldman MHS. Analysis of the Nicotiana tabacum stigma/style transcriptome reveals gene expression differences between wet and dry stigma species. PLANT PHYSIOLOGY 2009; 149:1211-30. [PMID: 19052150 PMCID: PMC2649396 DOI: 10.1104/pp.108.131573] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Accepted: 11/28/2008] [Indexed: 05/22/2023]
Abstract
The success of plant reproduction depends on pollen-pistil interactions occurring at the stigma/style. These interactions vary depending on the stigma type: wet or dry. Tobacco (Nicotiana tabacum) represents a model of wet stigma, and its stigmas/styles express genes to accomplish the appropriate functions. For a large-scale study of gene expression during tobacco pistil development and preparation for pollination, we generated 11,216 high-quality expressed sequence tags (ESTs) from stigmas/styles and created the TOBEST database. These ESTs were assembled in 6,177 clusters, from which 52.1% are pistil transcripts/genes of unknown function. The 21 clusters with the highest number of ESTs (putative higher expression levels) correspond to genes associated with defense mechanisms or pollen-pistil interactions. The database analysis unraveled tobacco sequences homologous to the Arabidopsis (Arabidopsis thaliana) genes involved in specifying pistil identity or determining normal pistil morphology and function. Additionally, 782 independent clusters were examined by macroarray, revealing 46 stigma/style preferentially expressed genes. Real-time reverse transcription-polymerase chain reaction experiments validated the pistil-preferential expression for nine out of 10 genes tested. A search for these 46 genes in the Arabidopsis pistil data sets demonstrated that only 11 sequences, with putative equivalent molecular functions, are expressed in this dry stigma species. The reverse search for the Arabidopsis pistil genes in the TOBEST exposed a partial overlap between these dry and wet stigma transcriptomes. The TOBEST represents the most extensive survey of gene expression in the stigmas/styles of wet stigma plants, and our results indicate that wet and dry stigmas/styles express common as well as distinct genes in preparation for the pollination process.
Collapse
Affiliation(s)
- Andréa C Quiapim
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901 São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
126
|
Minic Z, Jamet E, San-Clemente H, Pelletier S, Renou JP, Rihouey C, Okinyo DPO, Proux C, Lerouge P, Jouanin L. Transcriptomic analysis of Arabidopsis developing stems: a close-up on cell wall genes. BMC PLANT BIOLOGY 2009; 9:6. [PMID: 19149885 PMCID: PMC2649120 DOI: 10.1186/1471-2229-9-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2008] [Accepted: 01/16/2009] [Indexed: 05/17/2023]
Abstract
BACKGROUND Different strategies (genetics, biochemistry, and proteomics) can be used to study proteins involved in cell biogenesis. The availability of the complete sequences of several plant genomes allowed the development of transcriptomic studies. Although the expression patterns of some Arabidopsis thaliana genes involved in cell wall biogenesis were identified at different physiological stages, detailed microarray analysis of plant cell wall genes has not been performed on any plant tissues. Using transcriptomic and bioinformatic tools, we studied the regulation of cell wall genes in Arabidopsis stems, i.e. genes encoding proteins involved in cell wall biogenesis and genes encoding secreted proteins. RESULTS Transcriptomic analyses of stems were performed at three different developmental stages, i.e., young stems, intermediate stage, and mature stems. Many genes involved in the synthesis of cell wall components such as polysaccharides and monolignols were identified. A total of 345 genes encoding predicted secreted proteins with moderate or high level of transcripts were analyzed in details. The encoded proteins were distributed into 8 classes, based on the presence of predicted functional domains. Proteins acting on carbohydrates and proteins of unknown function constituted the two most abundant classes. Other proteins were proteases, oxido-reductases, proteins with interacting domains, proteins involved in signalling, and structural proteins. Particularly high levels of expression were established for genes encoding pectin methylesterases, germin-like proteins, arabinogalactan proteins, fasciclin-like arabinogalactan proteins, and structural proteins. Finally, the results of this transcriptomic analyses were compared with those obtained through a cell wall proteomic analysis from the same material. Only a small proportion of genes identified by previous proteomic analyses were identified by transcriptomics. Conversely, only a few proteins encoded by genes having moderate or high level of transcripts were identified by proteomics. CONCLUSION Analysis of the genes predicted to encode cell wall proteins revealed that about 345 genes had moderate or high levels of transcripts. Among them, we identified many new genes possibly involved in cell wall biogenesis. The discrepancies observed between results of this transcriptomic study and a previous proteomic study on the same material revealed post-transcriptional mechanisms of regulation of expression of genes encoding cell wall proteins.
Collapse
Affiliation(s)
- Zoran Minic
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada
- Laboratoire de Biologie Cellulaire, Institut National de la Recherche Agronomique (INRA), Route de St-Cyr, 78026 Versailles Cedex, France
| | - Elisabeth Jamet
- Surfaces Cellulaires et Signalisation chez les Végétaux, UMR 5546 CNRS-UPS, Université de Toulouse, 24 Chemin de Borde Rouge, BP42617, 31326-Castanet-Tolosan, France
| | - Hélène San-Clemente
- Surfaces Cellulaires et Signalisation chez les Végétaux, UMR 5546 CNRS-UPS, Université de Toulouse, 24 Chemin de Borde Rouge, BP42617, 31326-Castanet-Tolosan, France
| | - Sandra Pelletier
- Unité de Recherche en Génomique Végétale, UMR INRA 1165-CNRS 8114, UEVE, 91057 Evry cedex, France
| | - Jean-Pierre Renou
- Unité de Recherche en Génomique Végétale, UMR INRA 1165-CNRS 8114, UEVE, 91057 Evry cedex, France
| | - Christophe Rihouey
- Faculté des Sciences, FRE CNRS 3090, IFRMP23, Université de Rouen, F-76821 Mont Saint Aignan Cedex, France
| | - Denis PO Okinyo
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada
| | - Caroline Proux
- Unité de Recherche en Génomique Végétale, UMR INRA 1165-CNRS 8114, UEVE, 91057 Evry cedex, France
| | - Patrice Lerouge
- Faculté des Sciences, FRE CNRS 3090, IFRMP23, Université de Rouen, F-76821 Mont Saint Aignan Cedex, France
| | - Lise Jouanin
- Laboratoire de Biologie Cellulaire, Institut National de la Recherche Agronomique (INRA), Route de St-Cyr, 78026 Versailles Cedex, France
| |
Collapse
|
127
|
Sage TL, Hristova-Sarkovski K, Koehl V, Lyew J, Pontieri V, Bernhardt P, Weston P, Bagha S, Chiu G. Transmitting tissue architecture in basal-relictual angiosperms: Implications for transmitting tissue origins. AMERICAN JOURNAL OF BOTANY 2009; 96:183-206. [PMID: 21628183 DOI: 10.3732/ajb.0800254] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Carpel transmitting tissue is a major floral innovation that is essential for angiosperm success. It facilitates the rapid adhesion, hydration, and growth of the male gametophyte to the female gametophyte. As well, it functions as a molecular screen to promote male gametophytic competition and species-specific recognition and compatibility. Here, we characterize the transmitting tissue extracellular matrix (ECM) and pollen tube growth in basal-relictual angiosperms and test the hypothesis that a freely flowing ECM (wet stigma) was ancestral to a cuticle-bound ECM (dry stigma). We demonstrate that the most recent common ancestor of extant angiosperms produced an ECM that was structurally and functionally equivalent to a dry stigma. Dry stigmas are composed of a cuticle and primary wall that contains compounds that facilitate the adhesion and growth of the male gametophyte. These compounds include methyl-esterified homogalacturonans, arabinogalactan-proteins, and lipids. We propose that transmitting tissue evolved in concert with an increase in cuticle permeability that resulted from modifications in the biosynthesis and secretion of fatty acids needed for cuticle construction. Increased cuticle permeability exposed the male gametophyte to pre-existing molecules that enabled rapid male gametophyte adhesion, hydration, and growth as well as species-specific recognition and compatibility.
Collapse
Affiliation(s)
- Tammy L Sage
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada M5S 3B2
| | | | | | | | | | | | | | | | | |
Collapse
|
128
|
Hanhineva K, Rogachev I, Kokko H, Mintz-Oron S, Venger I, Kärenlampi S, Aharoni A. Non-targeted analysis of spatial metabolite composition in strawberry (Fragariaxananassa) flowers. PHYTOCHEMISTRY 2008; 69:2463-81. [PMID: 18774147 DOI: 10.1016/j.phytochem.2008.07.009] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Revised: 07/17/2008] [Accepted: 07/17/2008] [Indexed: 05/20/2023]
Abstract
Formation of flower organs and the subsequent pollination process require a coordinated spatial and temporal regulation of particular metabolic pathways. In this study a comparison has been made between the metabolite composition of individual flower organs of strawberry (Fragariaxananassa) including the petal, sepal, stamen, pistil and the receptacle that gives rise to the strawberry fruit. Non-targeted metabolomics analysis of the semi-polar secondary metabolites by the use of UPLC-qTOF-MS was utilized in order to localize metabolites belonging to various chemical classes (e.g. ellagitannins, proanthocyanidins, flavonols, terpenoids, and spermidine derivatives) to the different flower organs. The vast majority of the tentatively identified metabolites were ellagitannins that accumulated in all five parts of the flower. Several metabolite classes were detected predominantly in certain flower organs, as for example spermidine derivatives were present uniquely in the stamen and pistil, and the proanthocyanidins were almost exclusively detected in the receptacle and sepals. The latter organ was also rich in terpenoids (i.e. triterpenoid and sesquiterpenoid derivatives) whereas phenolic acids and flavonols were the predominant classes of compounds detected in the petals. Furthermore, we observed extensive variation in the accumulation of metabolites from the same class in a single organ, particularly in the case of ellagitannins, and the flavonols quercetin, kaempferol and isorhamnetin. These results allude to spatially-restricted production of secondary metabolite classes and specialized derivatives in flowers that take part in implementing the unique program of individual organs in the floral life cycle.
Collapse
Affiliation(s)
- Kati Hanhineva
- Department of Plant Sciences, Weizmann Institute of Science, P.O. Box 26, Rehovot 76100, Israel
| | | | | | | | | | | | | |
Collapse
|
129
|
Xu J, Francis T, Mietkiewska E, Giblin EM, Barton DL, Zhang Y, Zhang M, Taylor DC. Cloning and characterization of an acyl-CoA-dependent diacylglycerol acyltransferase 1 (DGAT1) gene from Tropaeolum majus, and a study of the functional motifs of the DGAT protein using site-directed mutagenesis to modify enzyme activity and oil content. PLANT BIOTECHNOLOGY JOURNAL 2008; 6:799-818. [PMID: 18631243 DOI: 10.1111/j.1467-7652.2008.00358.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
A full-length cDNA encoding a putative diacylglycerol acyltransferase 1 (DGAT1, EC 2.3.1.20) was obtained from Tropaeolum majus (garden nasturtium). The 1557-bp open reading frame of this cDNA, designated TmDGAT1, encodes a protein of 518 amino acids showing high homology to other plant DGAT1s. The TmDGAT1 gene was expressed exclusively in developing seeds. Expression of recombinant TmDGAT1 in the yeast H1246MATalpha quadruple mutant (DGA1, LRO1, ARE1, ARE2) restored the capability of the mutant host to produce triacylglycerols (TAGs). The recombinant TmDGAT1 protein was capable of utilizing a range of (14)C-labelled fatty acyl-CoA donors and diacylglycerol acceptors, and could synthesize (14)C-trierucin. Collectively, these findings confirm that the TmDGAT1 gene encodes an acyl-CoA-dependent DGAT1. In plant transformation studies, seed-specific expression of TmDGAT1 was able to complement the low TAG/unusual fatty acid phenotype of the Arabidopsis AS11 (DGAT1) mutant. Over-expression of TmDGAT1 in wild-type Arabidopsis and high-erucic-acid rapeseed (HEAR) and canola Brassica napus resulted in an increase in oil content (3.5%-10% on a dry weight basis, or a net increase of 11%-30%). Site-directed mutagenesis was conducted on six putative functional regions/motifs of the TmDGAT1 enzyme. Mutagenesis of a serine residue in a putative SnRK1 target site resulted in a 38%-80% increase in DGAT1 activity, and over-expression of the mutated TmDGAT1 in Arabidopsis resulted in a 20%-50% increase in oil content on a per seed basis. Thus, alteration of this putative serine/threonine protein kinase site can be exploited to enhance DGAT1 activity, and expression of mutated DGAT1 can be used to enhance oil content.
Collapse
MESH Headings
- Acyl Coenzyme A/metabolism
- Amino Acid Motifs
- Amino Acid Sequence
- Cloning, Molecular
- DNA, Complementary/genetics
- DNA, Plant/genetics
- Diacylglycerol O-Acyltransferase/genetics
- Erucic Acids
- Gene Library
- Genes, Plant
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Plant Oils/metabolism
- Plant Proteins/genetics
- Plants, Genetically Modified/enzymology
- Plants, Genetically Modified/genetics
- Recombinant Proteins/genetics
- Saccharomyces cerevisiae/enzymology
- Saccharomyces cerevisiae/genetics
- Sequence Analysis, Protein
- Sequence Homology, Amino Acid
- Transformation, Genetic
- Triglycerides/biosynthesis
- Tropaeolum/enzymology
- Tropaeolum/genetics
Collapse
Affiliation(s)
- Jingyu Xu
- National Research Council of Canada, Plant Biotechnology Institute, 110 Gymnasium Place, Saskatoon, Canada
| | | | | | | | | | | | | | | |
Collapse
|
130
|
Hiscock SJ, Allen AM. Diverse cell signalling pathways regulate pollen-stigma interactions: the search for consensus. THE NEW PHYTOLOGIST 2008; 179:286-317. [PMID: 19086285 DOI: 10.1111/j.1469-8137.2008.02457.x] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Siphonogamy, the delivery of nonmotile sperm to the egg via a pollen tube, was a key innovation that allowed flowering plants (angiosperms) to carry out sexual reproduction on land without the need for water. This process begins with a pollen grain (male gametophyte) alighting on and adhering to the stigma of a flower. If conditions are right, the pollen grain germinates to produce a pollen tube. The pollen tube invades the stigma and grows through the style towards the ovary, where it enters an ovule, penetrates the embryo sac (female gametophyte) and releases two sperm cells, one of which fertilizes the egg, while the other fuses with the two polar nuclei of the central cell to form the triploid endosperm. The events before fertilization (pollen-pistil interactions) comprise a series of complex cellular interactions involving a continuous exchange of signals between the haploid pollen and the diploid maternal tissue of the pistil (sporophyte). In recent years, significant progress has been made in elucidating the molecular identity of these signals and the cellular interactions that they regulate. Here we review our current understanding of the cellular and molecular interactions that mediate the earliest of these interactions between the pollen and the pistil that occur on or within the stigma - the 'pollen-stigma interaction'.
Collapse
Affiliation(s)
- Simon J Hiscock
- School of Biological Sciences, University of Bristol, Woodland Road, Bristol BS8 1UG, UK
| | - Alexandra M Allen
- School of Biological Sciences, University of Bristol, Woodland Road, Bristol BS8 1UG, UK
| |
Collapse
|
131
|
Andersson M, Greiff L, Wollmer P. Nasal treatment with a microemulsion reduces allergen challenge-induced symptoms and signs of allergic rhinitis. Acta Otolaryngol 2008; 128:666-9. [PMID: 18568502 DOI: 10.1080/00016480701642197] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
CONCLUSIONS Intranasal microemulsion treatment can attenuate allergen challenge-induced nasal symptoms and plasma exudation in allergic rhinitis. We hypothesize that the mechanism of action involves modification of the allergen-mucosa interaction. The present observation suggests a novel principle for prevention in allergic rhinitis. OBJECTIVE To evaluate a specific microemulsion as a treatment for allergic rhinitis in an acute allergen challenge model. PATIENTS AND METHODS Patients with allergic rhinitis were examined out of the pollen season. Treatment with a single dose of a specific microemulsion was given in a single-blind, placebo-controlled, and crossover design using a nasal pool device. Nasal allergen challenges were carried out and symptoms of allergic rhinitis were scored. Furthermore, nasal lavages were performed and levels of the plasma protein alpha 2-macroglobulin were measured as an index of exudative inflammation. RESULTS The allergen challenges produced significant increases in nasal symptoms (p=0.007) and in nasal lavage fluid levels of alpha 2-macroglobulin (p=0.008). The challenge-induced symptoms as well as the plasma exudation were attenuated by treatment with the microemulsion (p=0.016 and 0.012, respectively, compared with placebo).
Collapse
|
132
|
Atomic force microscopic view of the fine topography on the tobacco stigma surface during its response to pollination. Sci Bull (Beijing) 2008. [DOI: 10.1007/s11434-008-0154-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
133
|
Grote M, Westritschnig K, Valenta R. Immunogold electron microscopic localization of the 2 EF-hand calcium-binding pollen allergen Phl p 7 and its homologues in pollens of grasses, weeds and trees. Int Arch Allergy Immunol 2008; 146:113-21. [PMID: 18204277 DOI: 10.1159/000113514] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Accepted: 10/18/2007] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The 2 EF-hand calcium-binding allergen from timothy grass pollen, Phl p 7, contains the majority of relevant IgE epitopes among calcium-binding allergens occurring in pollen species of different plants. OBJECTIVE To describe the ultrastructural localization of Phl p 7 allergen in timothy grass pollen and its homologues in a broad spectrum of allergologically relevant pollens from grasses (timothy grass, rye grass), trees (birch, alder, olive) and weeds (mugwort, ribwort, ragweed) commonly growing in Europe. MATERIALS AND METHODS Mature pollens from 8 different plant species were collected and anhydrously prepared for transmission electron microscopy. In ultrathin sections, allergens were localized using an antibody prepared against a Phl p 7-derived peptide comprising the C-terminal half of the Phl p 7 wild-type molecule in combination with a secondary antibody coupled to 10-nm colloidal gold particles. RESULTS Phl p 7 and Phl p 7 homologues were detected in pollen from each of the 8 pollen species investigated. The allergens were found in the cytoplasm of the pollen grains (cytoplasmic matrix, mitochondria, nuclei) and in the pollen wall (preferably the exine). Reserve materials were unlabeled. CONCLUSIONS The 2 EF-hand calcium-binding allergen Phl p 7 from timothy grass and its homologues can be localized in all pollen species under investigation. This finding confirms that Phl p 7 is a marker allergen for sensitization of patients to a novel family of 2 EF-hand calcium-binding pollen allergens occurring in a number of important allergenic plants in Europe.
Collapse
Affiliation(s)
- Monika Grote
- Institute of Medical Physics and Biophysics, University of Münster, Münster, Germany.
| | | | | |
Collapse
|
134
|
|
135
|
Chen YH, Li HJ, Shi DQ, Yuan L, Liu J, Sreenivasan R, Baskar R, Grossniklaus U, Yang WC. The central cell plays a critical role in pollen tube guidance in Arabidopsis. THE PLANT CELL 2007; 19:3563-77. [PMID: 18055609 PMCID: PMC2174880 DOI: 10.1105/tpc.107.053967] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Revised: 10/28/2007] [Accepted: 11/04/2007] [Indexed: 05/18/2023]
Abstract
The sperm cell of flowering plants cannot migrate unaided and must be transported by the pollen tube cell of the male gametophyte to achieve successful fertilization. Long-distance pollen tube guidance is controlled by the seven-celled female gametophyte, the embryo sac. Previous reports showed that the synergid cell of the embryo sac is essential for pollen tube guidance. Here, we report the identification of a central cell guidance (ccg) mutant, which is defective in micropylar pollen tube guidance. CCG encodes a nuclear protein with an N-terminal conserved zinc beta-ribbon domain that is functionally interchangeable with that of TFIIB in yeast. This suggests that CCG might act as a transcription regulator for pollen tube guidance. CCG is expressed in the central cell of the female gametophyte. Expression of CCG in the central cell alone is sufficient to restore the normal pollen tube guidance phenotype, demonstrating that the central cell plays a critical role in pollen tube guidance.
Collapse
Affiliation(s)
- Yan-Hong Chen
- Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | | | |
Collapse
|
136
|
Footitt S, Dietrich D, Fait A, Fernie AR, Holdsworth MJ, Baker A, Theodoulou FL. The COMATOSE ATP-binding cassette transporter is required for full fertility in Arabidopsis. PLANT PHYSIOLOGY 2007; 144:1467-80. [PMID: 17468211 PMCID: PMC1914130 DOI: 10.1104/pp.107.099903] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/23/2007] [Accepted: 04/17/2007] [Indexed: 05/15/2023]
Abstract
COMATOSE (CTS) encodes a peroxisomal ATP-binding cassette transporter required not only for beta-oxidation of storage lipids during germination and establishment, but also for biosynthesis of jasmonic acid and conversion of indole butyric acid to indole acetic acid. cts mutants exhibited reduced fertilization, which was rescued by genetic complementation, but not by exogenous application of jasmonic acid or indole acetic acid. Reduced fertilization was also observed in thiolase (kat2-1) and peroxisomal acyl-Coenzyme A synthetase mutants (lacs6-1,lacs7-1), indicating a general role for beta-oxidation in fertility. Genetic analysis revealed reduced male transmission of cts alleles and both cts pollen germination and tube growth in vitro were impaired in the absence of an exogenous carbon source. Aniline blue staining of pollinated pistils demonstrated that pollen tube growth was affected only when both parents bore the cts mutation, indicating that expression of CTS in either male or female tissues was sufficient to support pollen tube growth in vivo. Accordingly, abundant peroxisomes were detected in a range of maternal tissues. Although gamma-aminobutyric acid levels were reduced in flowers of cts mutants, they were unchanged in kat2-1, suggesting that alterations in gamma-aminobutyric acid catabolism do not contribute to the reduced fertility phenotype through altered pollen tube targeting. Taken together, our data support an important role for beta-oxidation in fertility in Arabidopsis (Arabidopsis thaliana) and suggest that this pathway could play a role in the mobilization of lipids in both pollen and female tissues.
Collapse
Affiliation(s)
- Steven Footitt
- Crop Performance and Improvement Division, Rothamsted Research, Harpenden, Hertfordshire, UK
| | | | | | | | | | | | | |
Collapse
|
137
|
Johnson ED, Miller EA, Anderson MA. Dual location of a family of proteinase inhibitors within the stigmas of Nicotiana alata. PLANTA 2007; 225:1265-76. [PMID: 17053891 DOI: 10.1007/s00425-006-0418-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2006] [Accepted: 09/26/2006] [Indexed: 05/07/2023]
Abstract
Reproductive and storage tissues of many plants produce large amounts of serine proteinase inhibitors (PIs). The ornamental tobacco, Nicotiana alata, produces a series of 6 kDa chymotrypsin and trypsin inhibitors that accumulate to up to 30% of soluble protein in the stigma. These inhibitors are derived by proteolytic processing of two closely related multidomain precursor proteins. Using immunogold electron microscopy, we find that the stigmatic PIs accumulate in both the central vacuole and in the extracellular mucilage. Labelling with antibodies specific for the C-terminal vacuolar targeting peptide (VTS) of each precursor confirms earlier biochemical data showing that the VTS is removed during passage through the secretory pathway. We have isolated and characterised the extracellular population of PIs, which are largely identical to PIs isolated from whole stigmas and are functional inhibitors of serine proteases. Subcellular fractionation of immature stigmas reveals that a sub-population of the PI precursor protein is proteolytically processed within the endoplasmic reticulum. This proteolysis results in the removal of the vacuolar sorting information, causing secretion of this PI population. We propose a novel mechanism whereby a single gene product may be simultaneously trafficked to two separate compartments mediated by proteolysis early in the secretory pathway.
Collapse
Affiliation(s)
- Elizabeth D Johnson
- Department of Biochemistry, La Trobe University, 3086, Melbourne, VIC, Australia.
| | | | | |
Collapse
|
138
|
Abstract
The ATP-binding cassette (ABC) protein superfamily is one of the largest known, with over 120 members in both Arabidopsis thaliana and rice (Oryza sativa). Most, but not all, ABC proteins are modularly organized membrane proteins ("ABC transporters") that mediate MgATP-energized transmembrane transport and/or regulate other transporters. The range of processes in which members of the various subclasses of plant ABC transporters have been implicated encompasses polar auxin transport, lipid catabolism, xenobiotic detoxification, disease resistance, and stomatal function. Although it is often possible to predict the likely function of a plant ABC transporter on the basis of its subfamily membership, there are many whose capabilities deviate from what would be predicted from the properties of even their most sequence-related counterparts. When taking account of this and the disparate processes in which the few that have been characterized participate, it is likely that elucidation of the mechanistic basis of any given plant process will necessitate consideration of at least one ABC transporter.
Collapse
Affiliation(s)
- Philip A Rea
- Plant Science Institute, Department of Biology, Carolyn Hoff Lynch Biology Laboratory, University of Pennsylvania, Philadelphia, PA 19104-6018, USA.
| |
Collapse
|
139
|
von Besser K, Frank AC, Johnson MA, Preuss D. Arabidopsis HAP2 (GCS1) is a sperm-specific gene required for pollen tube guidance and fertilization. Development 2006; 133:4761-9. [PMID: 17079265 DOI: 10.1242/dev.02683] [Citation(s) in RCA: 232] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In flowering plants, sperm cells develop in the pollen cytoplasm and are transported through floral tissues to an ovule by a pollen tube, a highly polarized cellular extension. After targeting an ovule, the pollen tube bursts, releasing two sperm that fertilize an egg and a central cell. Here, we identified the gene encoding Arabidopsis HAP2, demonstrating that it is allelic to GCS1. HAP2 is expressed only in the haploid sperm and is required for efficient pollen tube guidance to ovules. We identified an insertion (hap2-1) that disrupts the C-terminal portion of the protein and tags mutant pollen grains with the beta-glucuronidase reporter. By monitoring reporter expression, we showed that hap2-1 does not diminish pollen tube length in vitro or in the pistil, but it reduces ovule targeting by twofold. In addition, we show that the hap2 sperm that are delivered to ovules fail to initiate fertilization. HAP2 is predicted to encode a protein with an N-terminal secretion signal, a single transmembrane domain and a C-terminal histidine-rich domain. These results point to a dual role for HAP2, functioning in both pollen tube guidance and in fertilization. Moreover, our findings suggest that sperm, long considered to be passive cargo, are involved in directing the pollen tube to its target.
Collapse
Affiliation(s)
- Kiera von Besser
- Howard Hughes Medical Institute, Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, Il 60637, USA
| | | | | | | |
Collapse
|
140
|
Higashiyama T, Inatsugi R, Sakamoto S, Sasaki N, Mori T, Kuroiwa H, Nakada T, Nozaki H, Kuroiwa T, Nakano A. Species preferentiality of the pollen tube attractant derived from the synergid cell of Torenia fournieri. PLANT PHYSIOLOGY 2006; 142:481-91. [PMID: 16935992 PMCID: PMC1586061 DOI: 10.1104/pp.106.083832] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Accepted: 08/14/2006] [Indexed: 05/03/2023]
Abstract
The synergid cell of Torenia fournieri attracts pollen tubes by a diffusible but yet unknown chemical attractant. Here we investigated the species difference of the attractant using five closely related species in two genera, namely T. fournieri, Torenia baillonii, Torenia concolor, Lindernia (Vandellia) crustacea, and Lindernia micrantha. These five species have an exserted embryo sac, and ablation experiments confirmed that their synergid cells attracted the pollen tube. When ovules of T. fournieri and one of the other species were cultivated together with pollen tubes of each species, pollen tubes were significantly more attracted to synergid cells of the corresponding species. The attraction was not affected by the close proximity of embryo sacs of different species. This suggests that the attractant is a species-preferential molecule that is likely synthesized in the synergid cell. The calcium ion, long considered a potential attractant, could not serve as the sole attractant in these species, because elevation of the calcium ion concentration did not affect the observed attraction. In vivo crossing experiments also showed that the attraction of the pollen tube to the embryo sac was impaired when pollen tubes of different species arrived around the embryo sac, suggesting that the species preferentiality of the attractant may serve as a reproductive barrier in the final step of directional control of the pollen tube.
Collapse
Affiliation(s)
- Tetsuya Higashiyama
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Tokyo 113-0033, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
141
|
Abstract
The most well-known molecular paradigm of antigen recognition by T cells involves partial digestion of proteins to generate small peptides, which bind to major histocompatibility complex (MHC) proteins. Recent studies of CD1, an MHC class I homolog encoded outside the MHC, have revealed that it presents diverse glycolipids to T cells. The molecular mechanism for lipid antigen recognition involves insertion of the lipid portion of antigens into a hydrophobic groove to form CD1-lipid complexes, which contact T-cell receptors (TCRs). Here, we examine the known antigen structures presented by CD1, the majority of which have sugar moieties that are capable of interacting with TCRs. Recognition of carbohydrate epitopes is precise, and lipid-reactive T cells alter systemic immune responses in models of infectious and autoimmune disease. These findings provide a previously unrecognized mechanism by which the cellular immune system can recognize alterations in many types of carbohydrate structures.
Collapse
Affiliation(s)
- David C Young
- Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital and Harvard Medical School, Smith Building Room 514, 1 Jimmy Fund Way, Boston, MA 02115, USA.
| | | |
Collapse
|
142
|
Bosch M, Hepler PK. Silencing of the tobacco pollen pectin methylesterase NtPPME1 results in retarded in vivo pollen tube growth. PLANTA 2006; 223:736-45. [PMID: 16208487 DOI: 10.1007/s00425-005-0131-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2005] [Accepted: 09/08/2005] [Indexed: 05/04/2023]
Abstract
Sperm delivery in flowering plants requires extensive pollen tube growth through the female sporophytic tissues of the pistil. The apical cell wall emerges as a central player in the control of pollen tube growth, since it provides strength to withstand the internal turgor pressure, while imparting sufficient plasticity to allow cell wall extension through the incorporation of new membrane and wall material. Within this scenario, pectin methylesterases (PMEs; EC 3.1.1.11) emerge as crucial regulators in determining the mechanical properties of pectins, the major component of the apical pollen tube wall. We previously identified NtPPME1, a pollen specific PME from Nicotiana tabacum. Here we show that silencing of NtPPME1 results in a mild but significant decrease of in vivo pollen tube growth while the overall PME activity in pollen is not significantly affected. Although the precise mechanisms responsible for the observed phenotype are not known, it seems likely that the cell must maintain a closely regulated level of PME activity in order to maintain the equilibrium between strength and plasticity in the apical cell wall. A relatively minor disturbance of this equilibrium, as caused by NtPPME1 silencing, compromises pollen tube growth.
Collapse
Affiliation(s)
- Maurice Bosch
- Biology Department, University of Massachusetts, Amherst, 01003, USA.
| | | |
Collapse
|
143
|
McInnis SM, Desikan R, Hancock JT, Hiscock SJ. Production of reactive oxygen species and reactive nitrogen species by angiosperm stigmas and pollen: potential signalling crosstalk? THE NEW PHYTOLOGIST 2006; 172:221-8. [PMID: 16995910 DOI: 10.1111/j.1469-8137.2006.01875.x] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Angiosperm stigmas exhibit high levels of peroxidase activity when receptive to pollen. To explore possible function(s) of this peroxidase activity we investigated amounts of reactive oxygen species (ROS), particularly hydrogen peroxide, in stigmas and pollen. Because nitric oxide (NO) was recently implicated in pollen tube growth, we also investigated amounts of NO in pollen and stigmas. Reactive oxygen species accumulation was assessed with confocal microscopy and light microscopy using ROS probes DCFH2-DA and TMB, respectively. NO was assayed using the NO probe DAF-2DA and confocal microscopy. Stigmas from various different angiosperms were found to accumulate ROS, predominantly H2O2, constitutively. In Senecio squalidus and Arabidopsis thaliana high amounts of ROS/H2O2 were localized to stigmatic papillae. ROS/H2O2 amounts appeared reduced in stigmatic papillae to which pollen grains had adhered. S. squalidus and A. thaliana pollen produced relatively high amounts of NO compared with stigmas; treating stigmas with NO resulted in reduced amounts of stigmatic ROS/H2O2. Constitutive accumulation of ROS/H2O2 appears to be a feature of angiosperm stigmas. This novel finding is discussed in terms of a possible role for stigmatic ROS/H2O2 and pollen-derived NO in pollen-stigma interactions and defence.
Collapse
Affiliation(s)
- Stephanie M McInnis
- School of Biological Sciences, University of Bristol, Woodland Road, Bristol BS8 1UG, UK
| | | | | | | |
Collapse
|
144
|
Pereira LG, Coimbra S, Oliveira H, Monteiro L, Sottomayor M. Expression of arabinogalactan protein genes in pollen tubes of Arabidopsis thaliana. PLANTA 2006; 223:374-80. [PMID: 16228244 DOI: 10.1007/s00425-005-0137-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Accepted: 09/02/2005] [Indexed: 05/04/2023]
Abstract
The expression of "classical" arabinogalactan protein genes in pollen tubes of Arabidopsis thaliana was characterized by RT-PCR. Transcripts of Agp6 and Agp11 were consistently found to be more abundant in pollen tubes and seem to be pollen-specific. Transcripts of other AGP genes were also detected in pollen but in lesser amounts and in a non-specific fashion. Two reference genes, ubiquitin-conjugating enzyme 9 and tubulin beta-4 chain, were evaluated and selected for gene expression studies in pollen. Expression characterization was complemented with immunolocalization studies using monoclonal antibodies specific to several glycosidic epitopes of AGPs. These studies were performed on in vitro germinated pollen tubes with the antibodies MAC207 and LM2. MAC207 produced labelling at the tip of the pollen tube, while LM2 produced a ring-like fluorescence around the emerging region of the tube, suggesting a role of AGPs during Arabidopsis pollen tube germination. To our knowledge, this is the first report establishing the presence of AGPs on Arabidopsis pollen tubes.
Collapse
Affiliation(s)
- Luís Gustavo Pereira
- Instituto de Biologia Molecular e Celular, Universidade do Porto, R. Campo Alegre 823 Porto, Portugal.
| | | | | | | | | |
Collapse
|
145
|
The role of allergenic proteins Pla a 1 and Pla a 2 in the germination of Platanus acerifolia pollen grains. ACTA ACUST UNITED AC 2005. [DOI: 10.1007/s00497-005-0002-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
146
|
Lan L, Li M, Lai Y, Xu W, Kong Z, Ying K, Han B, Xue Y. Microarray analysis reveals similarities and variations in genetic programs controlling pollination/fertilization and stress responses in rice (Oryza sativa L.). PLANT MOLECULAR BIOLOGY 2005; 59:151-64. [PMID: 16217609 DOI: 10.1007/s11103-005-3958-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2004] [Accepted: 03/15/2005] [Indexed: 05/04/2023]
Abstract
Previously, we identified 253 cDNAs that are regulated by pollination/fertilization in rice by using a 10K cDNA microarray. In addition, many of them also appeared to be involved in drought and wounding responses. To investigate this relationship, we obtained their expression profiles after dehydration and wounding treatments in this study. Venn diagram analysis indicated that 53.8% (136/253) and 21% (57/253) of the pollination/fertilization-related genes are indeed regulated by dehydration and wounding, respectively, and nearly half of the genes expressed preferentially in unpollinated pistils (UP) are responsive to dehydration. These results indicated that an extensive gene set is shared among these responses, suggesting that the genetic programs regulating them are likely related. Among them, the genetic network of water stress control may be a key player in pollination and fertilization. Additionally, 39.5% (100/253) cDNAs that are related to pollination/fertilization appear not to be regulated by the stress treatments (dehydration and wounding), suggesting that the existence of additional genetic networks are involved in pollination/fertilization. Furthermore, comparative analysis of the expression profiles of the 253 cDNAs under 18 different conditions (various tissues, treatments and developmental status) revealed that the genetic networks regulating photosynthesis, starch metabolisms, GA- and defense-responses are involved in pollination and fertilization. Taken together, these results provided some clues to elucidate the molecular mechanisms of pollination and fertilization in rice.
Collapse
Affiliation(s)
- Lefu Lan
- Institute of Genetics and Development Biology, Laboratory of Molecular and Developmental Biology, Chinese Academy of Science and National Center for Plant Gene Research, 100080, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
147
|
BOHNE GUIDO, WOEHLECKE HOLGER, EHWALD RUDOLF. Water relations of the pine exine. ANNALS OF BOTANY 2005; 96:201-8. [PMID: 15897205 PMCID: PMC4246869 DOI: 10.1093/aob/mci169] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
BACKGROUND AND AIMS Water adhesion forces, water absorption capacity and permeability of the pine exine were investigated to consider a possible function of sporopollenin coatings in the control of water transport. METHODS The experiments were carried out with sporopollenin capsules obtained from pine pollen consisting of an empty central capsule and two sacci. Changes in the concentration of excluded dextran molecules in the medium were analysed to quantify water absorption by purified exine fragments and the osmotic volume flow out of the intact central capsule. KEY RESULTS The contact angle of sporopollenin to water is higher than the one to ethanol and lower than the one to n-heptane. The water-filled pore space in pine sporopollenin amounts to only 20.6 % of the matrix volume. A monosaccharide was excluded from 15 % and a trisaccharide from about 38 % of this space. Shrinkage of the central capsule induced by permeable osmotica was transient, whereas that induced by sodium polyacrylate (2100 g mol(-1)) was stable. Values obtained for the hydraulic conductance L(P) of the exine (0.39-0.48 microm s(-1) MPa(-1)) are comparable in size to those of biomembranes. Sodium sulfate solutions induced a significant osmotic flow through the exine (reflection coefficient at least 0.6). The exine around the central capsule can be ruptured by equilibration of its lumen with a concentrated electrolyte solution and subsequent transfer to water. The denatured protoplast along with the intact intine was ejected when pollen grains were subjected to this osmotic shock treatment. CONCLUSIONS The pine exine is easily wetted with water and does not represent a significant barrier to water exchange either liquid or gaseous. Through osmotic burst, it can be separated from the intine. The effect of salts and small solute molecules on water fluxes may be functionally significant for rehydration upon pollination.
Collapse
Affiliation(s)
- GUIDO BOHNE
- Institute of Biology, Humboldt-University Berlin, Invalidenstr. 42, 10115 Berlin, Germany
| | | | - RUDOLF EHWALD
- Institute of Biology, Humboldt-University Berlin, Invalidenstr. 42, 10115 Berlin, Germany
- For correspondence. E-mail
| |
Collapse
|
148
|
Agea E, Russano A, Bistoni O, Mannucci R, Nicoletti I, Corazzi L, Postle AD, De Libero G, Porcelli SA, Spinozzi F. Human CD1-restricted T cell recognition of lipids from pollens. ACTA ACUST UNITED AC 2005; 202:295-308. [PMID: 16009719 PMCID: PMC2213012 DOI: 10.1084/jem.20050773] [Citation(s) in RCA: 193] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Plant pollens are an important source of environmental antigens that stimulate allergic responses. In addition to acting as vehicles for foreign protein antigens, they contain lipids that incorporate saturated and unsaturated fatty acids, which are necessary in the reproduction of higher plants. The CD1 family of nonpolymorphic major histocompatibility complex–related molecules is highly conserved in mammals, and has been shown to present microbial and self lipids to T cells. Here, we provide evidence that pollen lipids may be recognized as antigens by human T cells through a CD1-dependent pathway. Among phospholipids extracted from cypress grains, phosphatidyl-choline and phosphatidyl-ethanolamine were able to stimulate the proliferation of T cells from cypress-sensitive subjects. Recognition of phospholipids involved multiple cell types, mostly CD4+ T cell receptor for antigen (TCR)αβ+, some CD4−CD8− TCRγδ+, but rarely Vα24i+ natural killer–T cells, and required CD1a+ and CD1d+ antigen presenting cell. The responding T cells secreted both interleukin (IL)-4 and interferon-γ, in some cases IL-10 and transforming growth factor-β, and could provide help for immunoglobulin E (IgE) production. Responses to pollen phospholipids were maximally evident in blood samples obtained from allergic subjects during pollinating season, uniformly absent in Mycobacterium tuberculosis–exposed health care workers, but occasionally seen in nonallergic subjects. Finally, allergic, but not normal subjects, displayed circulating specific IgE and cutaneous weal and flare reactions to phospholipids.
Collapse
Affiliation(s)
- Elisabetta Agea
- Experimental Immunology and Allergy, Department of Clinical and Experimental Medicine, University of Perugia, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Nieuwland J, Feron R, Huisman BAH, Fasolino A, Hilbers CW, Derksen J, Mariani C. Lipid transfer proteins enhance cell wall extension in tobacco. THE PLANT CELL 2005; 17:2009-19. [PMID: 15937228 PMCID: PMC1167548 DOI: 10.1105/tpc.105.032094] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2005] [Revised: 05/13/2005] [Accepted: 05/13/2005] [Indexed: 05/02/2023]
Abstract
Plant cells are enclosed by a rigid cell wall that counteracts the internal osmotic pressure of the vacuole and limits the rate and direction of cell enlargement. When developmental or physiological cues induce cell extension, plant cells increase wall plasticity by a process called loosening. It was demonstrated previously that a class of proteins known as expansins are mediators of wall loosening. Here, we report a type of cell wall-loosening protein that does not share any homology with expansins but is a member of the lipid transfer proteins (LTPs). LTPs are known to bind a large range of lipid molecules to their hydrophobic cavity, and we show here that this cavity is essential for the cell wall-loosening activity of LTP. Furthermore, we show that LTP-enhanced wall extension can be described by a logarithmic time function. We hypothesize that LTP associates with hydrophobic wall compounds, causing nonhydrolytic disruption of the cell wall and subsequently facilitating wall extension.
Collapse
Affiliation(s)
- Jeroen Nieuwland
- Institute for Wetland and Water Research, Department of Experimental Botany, Radboud University Nijmegen, 6525 ED Nijmegen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
150
|
Dong J, Kim ST, Lord EM. Plantacyanin plays a role in reproduction in Arabidopsis. PLANT PHYSIOLOGY 2005; 138:778-89. [PMID: 15908590 PMCID: PMC1150396 DOI: 10.1104/pp.105.063388] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Plantacyanins belong to the phytocyanin family of blue copper proteins. In the Arabidopsis (Arabidopsis thaliana) genome, only one gene encodes plantacyanin. The T-DNA-tagged mutant is a knockdown mutant that shows no visible phenotype. We used both promoter-beta-glucuronidase transgenic plants and immunolocalization to show that Arabidopsis plantacyanin is expressed most highly in the inflorescence and, specifically, in the transmitting tract of the pistil. Protein levels show a steep gradient in expression from the stigma into the style and ovary. Overexpression plants were generated using cauliflower mosaic virus 35S, and protein levels in the pistil were examined as well as the pollination process. Seed set in these plants is highly reduced mainly due to a lack of anther dehiscence, which is caused by degeneration of the endothecium. Callose deposits occur on the pollen walls in plants that overexpress plantacyanin, and a small percentage of these pollen grains germinate in the closed anthers. When wild-type pollen was used on the overexpression stigma, seed set was still decreased compared to the control pollinations. We detected an increase in plantacyanin levels in the overexpression pistil, including the transmitting tract. Guidance of the wild-type pollen tube on the overexpression stigma is disrupted as evidenced by the growth behavior of pollen tubes after they penetrate the papillar cell. Normally, pollen tubes travel down the papilla cell and into the style. Wild-type pollen tubes on the overexpression stigma made numerous turns around the papilla cell before growing toward the style. In some rare cases, pollen tubes circled up the papilla cell away from the style and were arrested there. We propose that when plantacyanin levels in the stigma are increased, pollen tube guidance into the style is disrupted.
Collapse
Affiliation(s)
- Juan Dong
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, California 92521, USA
| | | | | |
Collapse
|