101
|
Martínez-Negro M, Barrán-Berdón AL, Aicart-Ramos C, Moyá ML, de Ilarduya CT, Aicart E, Junquera E. Transfection of plasmid DNA by nanocarriers containing a gemini cationic lipid with an aromatic spacer or its monomeric counterpart. Colloids Surf B Biointerfaces 2017; 161:519-527. [PMID: 29128838 DOI: 10.1016/j.colsurfb.2017.11.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 10/16/2017] [Accepted: 11/07/2017] [Indexed: 11/25/2022]
Abstract
This study performed a biophysical characterization (electrochemistry, structure and morphology) and assessment of the biological activity and cell biocompatibility of GCL/DOPE-pDNA lipoplexes comprised of plasmid DNA and a mixed lipid formed by a DOPE zwitterionic lipid and a gemini cationic lipid N-N'-(1,3-phenylene bis (methylene)) bis (N,N-dimethyl-N-(1-dodecyl) ammonium dibromide (12PH12) containing an aromatic spacer or its monomeric counterpart surfactant, N-benzyl-N,N-dimethyl-N-(1-dodecyl) ammonium bromide (12PH). Electrochemical results reveal that i) the gemini cationic lipid (12PH12) and the plasmid pDNA yield effective charges less than their nominal charges (+2 and -2/bp, respectively) and that ii) both vectors (12PH12/DOPE and 12PH/DOPE) could compact pDNA and protect it from DNase I degradation. SAXS and cryo-TEM experiments indicate the presence of a lamellar lyotropic liquid crystal phase represented as alternating layers of mixed lipid and plasmid. Transfection efficiency (by FACS and luminometry) and cell viability assay in COS-7 cells, performed with two plasmid DNAs (pEGFP-C3 and pCMV-Luc VR1216), confirm the goodness of the proposed formulations (12PH12/DOPE and 12PH/DOPE) to transport genetic material, with efficiencies and biocompatibilities comparable to or better than those exhibited by the control Lipofectamine 2000*. In conclusion, although major attention has been paid to gemini cationic lipids in the literature, due to the large variety of modifications that their structures may support to improve the biological activity of the resulting lipoplexes, it is remarkable that the monomeric counterpart surfactant with an aromatic group analyzed in the present work also exhibits good biological activity. The in vitro results reported here indicate that the optimum formulations of the gene vectors studied in this work efficiently transfect plasmid DNA with very low toxicity levels and, thus, may be used in forthcoming in vivo experiments.
Collapse
Affiliation(s)
- María Martínez-Negro
- Grupo de Química Coloidal y Supramolecular, Departamento de Química Física I, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Ana L Barrán-Berdón
- Grupo de Química Coloidal y Supramolecular, Departamento de Química Física I, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Clara Aicart-Ramos
- Dpto. Bioquímica y Biología Molecular I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - María L Moyá
- Grupo de Química Coloidal y Catálisis Micelar, Departamento de Química Física I, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | | | - Emilio Aicart
- Grupo de Química Coloidal y Supramolecular, Departamento de Química Física I, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| | - Elena Junquera
- Grupo de Química Coloidal y Supramolecular, Departamento de Química Física I, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
102
|
Mora AL, Rojas M, Pardo A, Selman M. Emerging therapies for idiopathic pulmonary fibrosis, a progressive age-related disease. Nat Rev Drug Discov 2017; 16:810. [PMID: 29081515 DOI: 10.1038/nrd.2017.225] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
103
|
Abstract
Cloaking its carboxyl groups with a hydrophobic moiety is shown to enable a protein to enter the cytosol of a mammalian cell. Diazo compounds derived from (p-methylphenyl)glycine were screened for the ability to esterify the green fluorescent protein (GFP) in an aqueous environment. Esterification of GFP with 2-diazo-2-(p-methylphenyl)-N,N-dimethylacetamide was efficient. The esterified protein entered the cytosol by traversing the plasma membrane directly, like a small-molecule prodrug. As with prodrugs, the nascent esters are substrates for endogenous esterases, which regenerate native protein. Thus, esterification could provide a general means to deliver native proteins to the cytosol.
Collapse
Affiliation(s)
- Kalie A. Mix
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jo E. Lomax
- Program in Cellular and Molecular Biology, University of Wisconsin–Madison, Madison, Wisconsin 53706, United States
| | - Ronald T. Raines
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, United States
- Department of Chemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, United States
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
104
|
Mora AL, Rojas M, Pardo A, Selman M. Emerging therapies for idiopathic pulmonary fibrosis, a progressive age-related disease. Nat Rev Drug Discov 2017; 16:755-772. [DOI: 10.1038/nrd.2017.170] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
105
|
Kim YM, Park SC, Jang MK. Targeted gene delivery of polyethyleneimine-grafted chitosan with RGD dendrimer peptide in αvβ3 integrin-overexpressing tumor cells. Carbohydr Polym 2017; 174:1059-1068. [DOI: 10.1016/j.carbpol.2017.07.035] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 07/11/2017] [Accepted: 07/12/2017] [Indexed: 12/26/2022]
|
106
|
De A, Kuppusamy G, Karri VVSR. Affibody molecules for molecular imaging and targeted drug delivery in the management of breast cancer. Int J Biol Macromol 2017; 107:906-919. [PMID: 28935537 DOI: 10.1016/j.ijbiomac.2017.09.059] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 09/09/2017] [Accepted: 09/17/2017] [Indexed: 12/29/2022]
Abstract
Breast cancer is one of the leading reasons for the morbidity and mortality of cancer related death globally. The modern therapies are basically the combination of the breast-preserving surgeries or ablation with or without node biopsy or destroying the carcinoma cells adjuvant with chemotherapy, radiotherapy, hormonal or biological therapies depending upon the nature of the receptor of the cancerous cells, nature of the lymph node, as well as the tendency of the recurrence. For decade's carcinoma management suffered by the limitation of imagining, targeting and penetrability problem associated with management and cure of this deadly disease leads to unwanted chemo-toxicity and side effects. Alike other antibody mimetics, affibodies are designed with the combinatorial protein engineering approaches which are small and robust protein scaffolds retaining the favorable folding and stability. Affibody is one of the significantly important tools for imaging and diagnosis of the affinity specific over expressed proteins in the breast cancer management. The review summarizes the various affibody strategies uses in the management of breast cancer.
Collapse
Affiliation(s)
- Anindita De
- JSS College of Pharmacy, Ootacamund, Jagadguru Sri Shivarathreeshwara University, Mysuru, Karnataka, India.
| | - Gowthamarajan Kuppusamy
- JSS College of Pharmacy, Ootacamund, Jagadguru Sri Shivarathreeshwara University, Mysuru, Karnataka, India.
| | | |
Collapse
|
107
|
Cavalli R, Primo L, Sessa R, Chiaverina G, di Blasio L, Alongi J, Manfredi A, Ranucci E, Ferruti P. The AGMA1 polyamidoamine mediates the efficient delivery of siRNA. J Drug Target 2017; 25:891-898. [PMID: 28817973 DOI: 10.1080/1061186x.2017.1363215] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
AGMA1, a prevailingly cationic, guanidine-bearing, linear, amphoteric polyamidoamine is an effective siRNA condensing agent. Here two AGMA1 samples of different molecular weight, i.e. AGMA1-5 and AGMA1-10 were evaluated as siRNA condensing agents and transfection promoters. AGMA1-10 formed stable polyplexes with a size lower than 50 nm and positive zeta potential. AGMA1-5 polyplexes were larger, about 100 nm in size. AGMA1-10 polyplexes, but not AGMA1-5 proved to be an effective intracellular siRNA carrier, able to trigger gene silencing in Hela and PC3 cell lines without eliciting cytotoxic effects. AGMA1-10 knocked down AKT-1 expression upon transfection with an AKT-1 specific siRNA. The polyplex entry mechanism was investigated and was mediated by macropinocytosis. In conclusion, AGMA1 has potential as an efficient, non-toxic tool for the intracellular delivery of siRNA and warrants further investigation.
Collapse
Affiliation(s)
- Roberta Cavalli
- a Drug Science and Technology Department , University of Torino , Torino , Italy
| | - Luca Primo
- b Candiolo Cancer Institute FPO-IRCCS , Candiolo , Italy.,c Department of Oncology , University of Torino , Torino , Italy
| | - Roberto Sessa
- d University of California, Cardiovascular Research Institute , Berkeley , USA
| | | | | | - Jenny Alongi
- e Department of Chemistry , Università degli Studi di Milano , Milano , Italy
| | - Amedea Manfredi
- e Department of Chemistry , Università degli Studi di Milano , Milano , Italy
| | - Elisabetta Ranucci
- e Department of Chemistry , Università degli Studi di Milano , Milano , Italy
| | - Paolo Ferruti
- e Department of Chemistry , Università degli Studi di Milano , Milano , Italy
| |
Collapse
|
108
|
Bera A, Sen D. Promise of adeno-associated virus as a gene therapy vector for cardiovascular diseases. Heart Fail Rev 2017; 22:795-823. [DOI: 10.1007/s10741-017-9622-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
109
|
Batabyal S, Kim YT, Mohanty S. Ultrafast laser-assisted spatially targeted optoporation into cortical axons and retinal cells in the eye. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:60504. [PMID: 28662241 PMCID: PMC5490686 DOI: 10.1117/1.jbo.22.6.060504] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 06/13/2017] [Indexed: 05/03/2023]
Abstract
Visualization and assessment of the cellular structure and function require localized delivery of the molecules into specific cells in restricted spatial regions of the tissue and may necessitate subcellular delivery and localization. Earlier, we have shown ultrafast near-infrared laser beam-assisted optoporation of actin-staining molecules into cortical neurons with single-cell resolution and high efficiency. However, diffusion of optoporated molecules in soma degrades toward the growth cone, leading to difficulties in visualization of the actin network in the growth cone in cases of long axons. Here, we demonstrate optoporation of impermeable molecules to functional cortical neurons by precise laser subaxotomy near the growth cone, leading to visualization of the actin network in the growth cone. Further, we demonstrate patterned delivery of impermeable molecules into targeted retinal cells in the rat eye. The development of optoporation as a minimally invasive approach to reliably deliver exogenous molecules into targeted axons and soma of retinal neurons in vivo will enable enhanced visualization of the structure and function of the retina.
Collapse
Affiliation(s)
| | - Young-Tae Kim
- University of Texas at Arlington, Department of Bioengineering, Texas, United States
| | - Samarendra Mohanty
- NanoScope Technologies LLC, Bedford, Texas, United States
- Address all correspondence to: Samarendra Mohanty, E-mail:
| |
Collapse
|
110
|
Gonzalez-Fernandez T, Sathy B, Hobbs C, Cunniffe G, McCarthy H, Dunne N, Nicolosi V, O'Brien F, Kelly D. Mesenchymal stem cell fate following non-viral gene transfection strongly depends on the choice of delivery vector. Acta Biomater 2017; 55:226-238. [PMID: 28363788 DOI: 10.1016/j.actbio.2017.03.044] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/06/2017] [Accepted: 03/27/2017] [Indexed: 12/22/2022]
Abstract
Controlling the phenotype of mesenchymal stem cells (MSCs) through the delivery of regulatory genes is a promising strategy in tissue engineering (TE). Essential to effective gene delivery is the choice of gene carrier. Non-viral delivery vectors have been extensively used in TE, however their intrinsic effects on MSC differentiation remain poorly understood. The objective of this study was to investigate the influence of three different classes of non-viral gene delivery vectors: (1) cationic polymers (polyethylenimine, PEI), (2) inorganic nanoparticles (nanohydroxyapatite, nHA) and (3) amphipathic peptides (RALA peptide) on modulating stem cell fate after reporter and therapeutic gene delivery. Despite facilitating similar reporter gene transfection efficiencies, these nanoparticle-based vectors had dramatically different effects on MSC viability, cytoskeletal morphology and differentiation. After reporter gene delivery (pGFP or pLUC), the nHA and RALA vectors supported an elongated MSC morphology, actin stress fibre formation and the development of mature focal adhesions, while cells appeared rounded and less tense following PEI transfection. These changes in MSC morphology correlated with enhanced osteogenesis following nHA and RALA transfection and adipogenesis following PEI transfection. When therapeutic genes encoding for transforming growth factor beta 3 (TGF-β3) and/or bone morphogenic protein 2 (BMP2) were delivered to MSCs, nHA promoted osteogenesis in 2D culture and the development of an endochondral phenotype in 3D culture, while RALA was less osteogenic and appeared to promote a more stable hyaline cartilage-like phenotype. In contrast, PEI failed to induce robust osteogenesis or chondrogenesis of MSCs, despite effective therapeutic protein production. Taken together, these results demonstrate that the differentiation of MSCs through the application of non-viral gene delivery strategies depends not only on the gene delivered, but also on the gene carrier itself. STATEMENT OF SIGNIFICANCE Nanoparticle-based non-viral gene delivery vectors have been extensively used in regenerative medicine, however their intrinsic effects on mesenchymal stem cell (MSC) differentiation remain poorly understood. This paper demonstrates that different classes of commonly used non-viral vectors are not inert and they have a strong effect on cell morphology, stress fiber formation and gene transcription in MSCs, which in turn modulates their capacity to differentiate towards osteogenic, adipogenic and chondrogenic lineages. These results also point to the need for careful and tissue-specific selection of nanoparticle-based delivery vectors to prevent undesired phenotypic changes and off-target effects when delivering therapeutic genes to damaged or diseased tissues.
Collapse
|
111
|
Abstract
Molecular genetic details of the human coagulation system were among the first successes of the genetic revolution in the 1980s. This information led to new molecular diagnostic strategies for inherited disorders of hemostasis and the development of recombinant clotting factors for the treatment of the common inherited bleeding disorders. A longer term goal of this knowledge has been the establishment of gene transfer to provide continuing access to missing or defective hemostatic proteins. Because of the relative infrequency of inherited coagulation factor disorders and the availability of safe and effective alternative means of management, the application of gene therapy for these conditions has been slow to realize clinical application. Nevertheless, the tools for effective and safe gene transfer are now much improved, and we have started to see examples of clinical gene therapy successes. Leading the way has been the use of adeno-associated virus-based strategies for factor IX gene transfer in hemophilia B. Several small phase 1/2 clinical studies using this approach have shown prolonged expression of therapeutically beneficial levels of factor IX. Nevertheless, before the application of gene therapy for coagulation disorders becomes widespread, several obstacles need to be overcome. Immunologic responses to the vector and transgenic protein need to be mitigated, and production strategies for clinical grade vectors require enhancements. There is little doubt that with the development of more efficient and facile strategies for genome editing and the application of other nucleic acid-based approaches to influence the coagulation system, the future of genetic therapies for hemostasis is bright.
Collapse
Affiliation(s)
- Laura L Swystun
- From the Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada
| | - David Lillicrap
- From the Department of Pathology and Molecular Medicine, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
112
|
Ding AX, Tan ZL, Shi YD, Song L, Gong B, Lu ZL. Gemini-Type Tetraphenylethylene Amphiphiles Containing [12]aneN 3 and Long Hydrocarbon Chains as Nonviral Gene Vectors and Gene Delivery Monitors. ACS APPLIED MATERIALS & INTERFACES 2017; 9:11546-11556. [PMID: 28294601 DOI: 10.1021/acsami.7b01850] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Four gemini amphiphiles decorated with triazole-[12]aneN3 as the hydrophilic moiety and various long hydrocarbons as hydrophobic moieties, 1-4, were designed to form micelles possessing the aggregation-induced emission (AIE) property for gene delivery and tracing. All four amphiphiles give ultralow critical micelle concentrations, are pH-/photostable and biocompatible, and completely retard the migration of plasmid DNAs at low concentrations. The DNA-binding abilities of the micelles were fully assessed. The coaggregated nanoparticles of 1-4 with DNAs could convert back into AIE micelles. In vitro transfections indicated that lipids 1 and 2 and their originated liposomes bearing decent delivering abilities have great potentials as nonviral vectors. Finally, on the basis of the transfection and the transitions between condensates and micelles, lipid 2 was singled out as the first example for real-time tracing of the intracellular deliveries of nonlabeled DNA, which provides spatiotemporal messages about the processes of condensate uptake and DNA release.
Collapse
Affiliation(s)
- Ai-Xiang Ding
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University , Beijing 100875, China
- College of Chemistry and Chemical Engineering, Xinyang Normal University , Xinyang 464000, China
| | - Zheng-Li Tan
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University , Beijing 100875, China
| | - You-Di Shi
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University , Beijing 100875, China
| | - Lin Song
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University , Beijing 100875, China
| | - Bing Gong
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University , Beijing 100875, China
- Department of Chemistry, State University of New York , Buffalo, New York 14260, United States
| | - Zhong-Lin Lu
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University , Beijing 100875, China
| |
Collapse
|
113
|
Modifying plasmid-loaded HSA-nanoparticles with cell penetrating peptides - Cellular uptake and enhanced gene delivery. Int J Pharm 2017; 522:198-209. [PMID: 28279738 DOI: 10.1016/j.ijpharm.2017.03.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 03/02/2017] [Accepted: 03/05/2017] [Indexed: 01/07/2023]
Abstract
Gene therapy bears great potential for the cure of a multitude of human diseases. Research efforts focussed on the use of viral delivery vectors in the past decades, neglecting non-viral gene therapies of physical or chemical origin due to low transfection efficiency. However, side effects such as activation of oncogenes and inflammatory reactions upon immune cell activation are major obstacles impeding the clinical applicability of viral gene therapy vectors. The aim of this study was the development of a non-viral gene delivery system based on plasmid-loaded human serum albumin nanoparticles, which are biocompatible, biodegradable, and non-toxic in relevant concentrations. The surface of said nanoparticles was modified with different cell penetrating peptides, namely Tat, nona-arginine R9, and the penetratin analogue EB1. We hypothesise that the surface modified nanoparticles can effectively enter HEK 293T cells based on the cell penetrating properties of the different peptides attached. A variety of inhibitors were used targeting distinct uptake pathways in an effort to understand the mechanisms utilized by the various cell penetrating peptides on the surface of the nanoparticles. A significant increase in transfection efficiency compared to free DNA or polyplexes was seen for these novel delivery vectors.
Collapse
|
114
|
Pocock GM, Zimdars LL, Yuan M, Eliceiri KW, Ahlquist P, Sherer NM. Diverse activities of viral cis-acting RNA regulatory elements revealed using multicolor, long-term, single-cell imaging. Mol Biol Cell 2017; 28:476-487. [PMID: 27903772 PMCID: PMC5341730 DOI: 10.1091/mbc.e16-08-0612] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 11/22/2016] [Accepted: 11/23/2016] [Indexed: 02/06/2023] Open
Abstract
Cis-acting RNA structural elements govern crucial aspects of viral gene expression. How these structures and other posttranscriptional signals affect RNA trafficking and translation in the context of single cells is poorly understood. Herein we describe a multicolor, long-term (>24 h) imaging strategy for measuring integrated aspects of viral RNA regulatory control in individual cells. We apply this strategy to demonstrate differential mRNA trafficking behaviors governed by RNA elements derived from three retroviruses (HIV-1, murine leukemia virus, and Mason-Pfizer monkey virus), two hepadnaviruses (hepatitis B virus and woodchuck hepatitis virus), and an intron-retaining transcript encoded by the cellular NXF1 gene. Striking behaviors include "burst" RNA nuclear export dynamics regulated by HIV-1's Rev response element and the viral Rev protein; transient aggregations of RNAs into discrete foci at or near the nuclear membrane triggered by multiple elements; and a novel, pulsiform RNA export activity regulated by the hepadnaviral posttranscriptional regulatory element. We incorporate single-cell tracking and a data-mining algorithm into our approach to obtain RNA element-specific, high-resolution gene expression signatures. Together these imaging assays constitute a tractable, systems-based platform for studying otherwise difficult to access spatiotemporal features of viral and cellular gene regulation.
Collapse
MESH Headings
- Active Transport, Cell Nucleus/physiology
- Cell Nucleus/metabolism
- Gene Expression Regulation, Viral
- Gene Products, rev/metabolism
- Genes, env/physiology
- HIV-1
- Mason-Pfizer monkey virus
- Molecular Imaging/methods
- RNA Processing, Post-Transcriptional/physiology
- RNA, Messenger/metabolism
- RNA, Viral
- Regulatory Sequences, Nucleic Acid/genetics
- Regulatory Sequences, Nucleic Acid/physiology
- Regulatory Sequences, Ribonucleic Acid/genetics
- Regulatory Sequences, Ribonucleic Acid/physiology
- Single-Cell Analysis/methods
Collapse
Affiliation(s)
- Ginger M Pocock
- McArdle Laboratory for Cancer Research and Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI 53706
- Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI 53706
| | - Laraine L Zimdars
- McArdle Laboratory for Cancer Research and Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI 53706
| | - Ming Yuan
- Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI 53706
- Department of Statistics, University of Wisconsin-Madison, Madison, WI 53706
| | - Kevin W Eliceiri
- Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI 53706
- Laboratory for Optical and Computational Instrumentation and Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706
| | - Paul Ahlquist
- McArdle Laboratory for Cancer Research and Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI 53706
- Morgridge Institute for Research, University of Wisconsin-Madison, Madison, WI 53706
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, WI 53706
| | - Nathan M Sherer
- McArdle Laboratory for Cancer Research and Institute for Molecular Virology, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
115
|
DiCarlo JE, Deeconda A, Tsang SH. Viral Vectors, Engineered Cells and the CRISPR Revolution. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1016:3-27. [PMID: 29130151 DOI: 10.1007/978-3-319-63904-8_1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Over the past few decades the ability to edit human cells has revolutionized modern biology and medicine. With advances in genome editing methodologies, gene delivery and cell-based therapeutics targeted at treatment of genetic disease have become a reality that will become more and more essential in clinical practice. Modifying specific mutations in eukaryotic cells using CRISPR-Cas systems derived from prokaryotic immune systems has allowed for precision in correcting various disease mutations. Furthermore, delivery of genetic payloads by employing viral tropism has become a crucial and effective mechanism for delivering genes and gene editing systems into cells. Lastly, cells modified ex vivo have tremendous potential and have shown effective in studying and treating a myriad of diseases. This chapter seeks to highlight and review important progress in the realm of the editing of human cells using CRISPR-Cas systems, the use of viruses as vectors for gene therapy, and the application of engineered cells to study and treat disease.
Collapse
Affiliation(s)
- James E DiCarlo
- Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY, USA. .,Department of Pathology and Cell Biology, Institute of Human Nutrition, College of Physicians, Columbia University, New York, NY, USA. .,Jonas Children's Vision Care, and Bernard & Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University Medical Center, New York, NY, USA.
| | - Anurag Deeconda
- Edward S. Harkness Eye Institute, New York-Presbyterian Hospital, New York, NY, USA.,Department of Pathology and Cell Biology, Institute of Human Nutrition, College of Physicians, Columbia University, New York, NY, USA.,Jonas Children's Vision Care, and Bernard & Shirlee Brown Glaucoma Laboratory, Department of Ophthalmology, Columbia University Medical Center, New York, NY, USA
| | - Stephen H Tsang
- Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, NY, USA.,Department of Ophthalmology, Columbia University, New York, NY, USA.,Jonas Children's Vision Care, and Bernard & Shirlee Brown Glaucoma Laboratory, Columbia University, New York, NY, USA.,Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| |
Collapse
|
116
|
Abstract
The primary goal of the thousands of registered trials in cancer research is to extend survival. With evaluation of efficacy, safety, and tolerability, healthcare providers must ensure that the principles described in the Belmont Report are upheld and that patients are truly informed when signing a consent form. In this article, two cases are highlighted, and reasons for participating in clinical trials are discussed. Challenges, such as healthcare literacy, patients' dedication to their healthcare providers, and choosing between multiple trials, are also explored.
Collapse
|
117
|
Seemork J, Sansureerungsikul T, Sathornsantikun K, Sinthusake T, Shigyou K, Tree-Udom T, Jiangchareon B, Chiablaem K, Lirdprapamongkol K, Svasti J, Hamada T, Palaga T, Wanichwecharungruang S. Penetration of Oxidized Carbon Nanospheres through Lipid Bilayer Membrane: Comparison to Graphene Oxide and Oxidized Carbon Nanotubes, and Effects of pH and Membrane Composition. ACS APPLIED MATERIALS & INTERFACES 2016; 8:23549-57. [PMID: 27404585 DOI: 10.1021/acsami.6b07908] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Here we show that the ability of oxidized carbon particles to penetrate phospholipid bilayer membrane varies with the particle shapes, chemical functionalities on the particle surface, lipid compositions of the membrane and pH conditions. Among the similar surface charged oxidized carbon particles of spherical (oxidized carbon nanosphere, OCS), tubular (oxidized carbon nanotube, OCT), and sheet (oxidized graphene sheet, OGSh) morphologies, OCS possesses the highest levels of adhesion to lipid bilayer membrane and penetration into the cell-sized liposome. OCS preferably binds better to the disordered lipid bilayer membrane (consisting of 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine) as compared to the ordered membrane (consisting of 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine and cholesterol). The process of OCS-induced leak on the membrane is pH responsive and most pronounced under an acidic condition. Covalently decorating the OCS's surface with poly(ethylene oxide) or (2-aminoethyl)trimethylammonium moieties decreases its ability to interact with the membrane. When used as carriers, OCSs can deliver curcumin into nucleus of A549 human lung cancer and human embryonic kidney cells, in contrast, curcumin molecules delivered by OCTs remain in the cytoplasm. OGShs cannot significantly enter cells and cannot induce noticeable cellular uptake of curcumin.
Collapse
Affiliation(s)
| | | | | | | | - Kazuki Shigyou
- School of Materials Science, Japan Advanced Institute of Science and Technology , Ishikawa 923-1292, Japan
| | | | | | - Khajeelak Chiablaem
- Laboratory of Biochemistry, Chulabhorn Research Institute , Bangkok 10210, Thailand
| | | | - Jisnuson Svasti
- Laboratory of Biochemistry, Chulabhorn Research Institute , Bangkok 10210, Thailand
| | - Tsutomu Hamada
- School of Materials Science, Japan Advanced Institute of Science and Technology , Ishikawa 923-1292, Japan
| | | | | |
Collapse
|
118
|
Häfner SJ, Lund AH. Great expectations - Epigenetics and the meandering path from bench to bedside. Biomed J 2016; 39:166-76. [PMID: 27621117 PMCID: PMC6159761 DOI: 10.1016/j.bj.2016.01.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 01/21/2016] [Indexed: 01/12/2023] Open
Abstract
Making quick promises of major biomedical breakthroughs based on exciting discoveries at the bench is tempting. But the meandering path from fundamental science to life-saving clinical applications can be fraught with many hurdles. Epigenetics, the study of potentially heritable changes of gene function without modification of the underlying DNA sequence, has dominated the biological research field during the last decade and encountered a large public success. Driven by the unfolding of molecular biology and recent technological progress, the term has evolved significantly and shifted from a conceptual framework to a mechanistic understanding. This shift was accompanied by much hype and raised high hopes that epigenetics might hold both the key to deciphering the molecular underpinning of complex, non-Mendelian diseases and offer novel therapeutic approaches for a large panel of pathologies. However, while exciting reports of biological phenomena involving DNA methylation and histone modifications fill up the scientific literature, the realistic clinical applications of epigenetic medicines remain somewhat blurry. Here, we discuss the state of the art and speculate how epigenetics might contribute to prognostic and therapy approaches in the future.
Collapse
Affiliation(s)
- Sophia J Häfner
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark.
| | - Anders H Lund
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
119
|
Xin Y, Huang Q, Tang JQ, Hou XY, Zhang P, Zhang LZ, Jiang G. Nanoscale drug delivery for targeted chemotherapy. Cancer Lett 2016; 379:24-31. [DOI: 10.1016/j.canlet.2016.05.023] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 05/19/2016] [Accepted: 05/20/2016] [Indexed: 12/16/2022]
|
120
|
Zhou H, He Z, Wang C, Xie T, Liu L, Liu C, Song F, Ma Y. Intravenous Administration Is an Effective and Safe Route for Cancer Gene Therapy Using the Bifidobacterium-Mediated Recombinant HSV-1 Thymidine Kinase and Ganciclovir. Int J Mol Sci 2016; 17:ijms17060891. [PMID: 27275821 PMCID: PMC4926425 DOI: 10.3390/ijms17060891] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 05/25/2016] [Accepted: 05/26/2016] [Indexed: 12/13/2022] Open
Abstract
The herpes simplex virus thymidine kinase/ganciclovir (HSV TK/GCV) system is one of the best studied cancer suicide gene therapy systems. Our previous study showed that caspase 3 expression was upregulated and bladder tumor growth was significantly reduced in rats treated with a combination of Bifidobacterium (BF) and HSV TK/GCV (BF-rTK/GCV). However, it was raised whether the BF-mediated recombinant thymidine kinase combined with ganciclovir (BF-rTK/GCV) was safe to administer via venous for cancer gene therapy. To answer this question, the antitumor effects of BF-rTK/GCV were mainly evaluated in a xenograft nude mouse model bearing MKN-45 gastric tumor cells. The immune response, including analysis of cytokine profiles, was analyzed to evaluate the safety of intramuscular and intravenous injection of BF-rTK in BALB/c mice. The results suggested that gastric tumor growth was significantly inhibited in vivo by BF-rTK/GCV. However, the BF-rTK/GCV had no effect on mouse body weight, indicating that the treatment was safe for the host. The results of cytokine profile analysis indicated that intravenous injection of a low dose of BF-rTK resulted in a weaker cytokine response than that obtained with intramuscular injection. Furthermore, immunohistochemical analysis showed that intravenous administration did not affect the expression of immune-associated TLR2 and TLR4. Finally, the BF-rTK/GCV inhibited vascular endothelial growth factor (VEGF) expression in mouse model, which is helpful for inhibiting of tumor angiogenesis. That meant intravenous administration of BF-rTK/GCV was an effective and safe way for cancer gene therapy.
Collapse
Affiliation(s)
- Huicong Zhou
- Molecular Medicine & Cancer Research Center, Department of Biochemistry & Molecular Biology, Chongqing Medical University, Yuzhong District, Yi XueYuan Road, Number 1, Chongqing 400016, China.
| | - Zhiliang He
- Molecular Medicine & Cancer Research Center, Department of Biochemistry & Molecular Biology, Chongqing Medical University, Yuzhong District, Yi XueYuan Road, Number 1, Chongqing 400016, China.
| | - Changdong Wang
- Molecular Medicine & Cancer Research Center, Department of Biochemistry & Molecular Biology, Chongqing Medical University, Yuzhong District, Yi XueYuan Road, Number 1, Chongqing 400016, China.
| | - Tingting Xie
- Molecular Medicine & Cancer Research Center, Department of Biochemistry & Molecular Biology, Chongqing Medical University, Yuzhong District, Yi XueYuan Road, Number 1, Chongqing 400016, China.
| | - Lin Liu
- Molecular Medicine & Cancer Research Center, Department of Biochemistry & Molecular Biology, Chongqing Medical University, Yuzhong District, Yi XueYuan Road, Number 1, Chongqing 400016, China.
| | - Chuanyang Liu
- Molecular Medicine & Cancer Research Center, Department of Biochemistry & Molecular Biology, Chongqing Medical University, Yuzhong District, Yi XueYuan Road, Number 1, Chongqing 400016, China.
| | - Fangzhou Song
- Molecular Medicine & Cancer Research Center, Department of Biochemistry & Molecular Biology, Chongqing Medical University, Yuzhong District, Yi XueYuan Road, Number 1, Chongqing 400016, China.
| | - Yongping Ma
- Molecular Medicine & Cancer Research Center, Department of Biochemistry & Molecular Biology, Chongqing Medical University, Yuzhong District, Yi XueYuan Road, Number 1, Chongqing 400016, China.
| |
Collapse
|
121
|
Marx U, Andersson TB, Bahinski A, Beilmann M, Beken S, Cassee FR, Cirit M, Daneshian M, Fitzpatrick S, Frey O, Gaertner C, Giese C, Griffith L, Hartung T, Heringa MB, Hoeng J, de Jong WH, Kojima H, Kuehnl J, Luch A, Maschmeyer I, Sakharov D, Sips AJAM, Steger-Hartmann T, Tagle DA, Tonevitsky A, Tralau T, Tsyb S, van de Stolpe A, Vandebriel R, Vulto P, Wang J, Wiest J, Rodenburg M, Roth A. Biology-inspired microphysiological system approaches to solve the prediction dilemma of substance testing. ALTEX 2016; 33:272-321. [PMID: 27180100 PMCID: PMC5396467 DOI: 10.14573/altex.1603161] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/11/2016] [Indexed: 01/09/2023]
Abstract
The recent advent of microphysiological systems - microfluidic biomimetic devices that aspire to emulate the biology of human tissues, organs and circulation in vitro - is envisaged to enable a global paradigm shift in drug development. An extraordinary US governmental initiative and various dedicated research programs in Europe and Asia have led recently to the first cutting-edge achievements of human single-organ and multi-organ engineering based on microphysiological systems. The expectation is that test systems established on this basis would model various disease stages, and predict toxicity, immunogenicity, ADME profiles and treatment efficacy prior to clinical testing. Consequently, this technology could significantly affect the way drug substances are developed in the future. Furthermore, microphysiological system-based assays may revolutionize our current global programs of prioritization of hazard characterization for any new substances to be used, for example, in agriculture, food, ecosystems or cosmetics, thus, replacing laboratory animal models used currently. Thirty-six experts from academia, industry and regulatory bodies present here the results of an intensive workshop (held in June 2015, Berlin, Germany). They review the status quo of microphysiological systems available today against industry needs, and assess the broad variety of approaches with fit-for-purpose potential in the drug development cycle. Feasible technical solutions to reach the next levels of human biology in vitro are proposed. Furthermore, key organ-on-a-chip case studies, as well as various national and international programs are highlighted. Finally, a roadmap into the future is outlined, to allow for more predictive and regulatory-accepted substance testing on a global scale.
Collapse
|
122
|
Chen W, Li H, Liu Z, Yuan W. Lipopolyplex for Therapeutic Gene Delivery and Its Application for the Treatment of Parkinson's Disease. Front Aging Neurosci 2016; 8:68. [PMID: 27092073 PMCID: PMC4820442 DOI: 10.3389/fnagi.2016.00068] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Accepted: 03/21/2016] [Indexed: 01/10/2023] Open
Abstract
Lipopolyplex is a core-shell structure composed of nucleic acid, polycation and lipid. As a non-viral gene delivery vector, lipopolyplex combining the advantages of polyplex and lipoplex has shown superior colloidal stability, reduced cytotoxicity, extremely high gene transfection efficiency. Following intravenous administration, there are many strategies based on lipopolyplex to overcome the complex biological barriers in systemic gene delivery including condensation of nucleic acids into nanoparticles, long circulation, cell targeting, endosomal escape, release to cytoplasm and entry into cell nucleus. Parkinson's disease (PD) is the second most common neurodegenerative disorder and severely influences the patients' life quality. Current gene therapy clinical trials for PD employing viral vectors didn't achieve satisfactory efficacy. However, lipopolyplex may become a promising alternative approach owing to its stability in blood, ability to cross the blood-brain barrier (BBB) and specific targeting to diseased brain cells.
Collapse
Affiliation(s)
- Wei Chen
- Department of Neurology, Xinhua Hospital, Shanghai JiaoTong University School of Medicine Shanghai, China
| | - Hui Li
- School of Pharmacy, Shanghai JiaoTong University Shanghai, China
| | - Zhenguo Liu
- Department of Neurology, Xinhua Hospital, Shanghai JiaoTong University School of Medicine Shanghai, China
| | - Weien Yuan
- School of Pharmacy, Shanghai JiaoTong University Shanghai, China
| |
Collapse
|
123
|
Kim J, Kim J, Jeong C, Kim WJ. Synergistic nanomedicine by combined gene and photothermal therapy. Adv Drug Deliv Rev 2016; 98:99-112. [PMID: 26748259 DOI: 10.1016/j.addr.2015.12.018] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 12/20/2015] [Accepted: 12/22/2015] [Indexed: 12/19/2022]
Abstract
To date, various nanomaterials with the ability for gene delivery or photothermal effect have been developed in the field of biomedicine. The therapeutic potential of these nanomaterials has raised considerable interests in their use in potential next-generation strategies for effective anticancer therapy. In particular, the advancement of novel nanomedicines utilizing both therapeutic strategies of gene delivery and photothermal effect has generated much optimism regarding the imminent development of effective and successful cancer treatments. In this review, we discuss current research progress with regard to combined gene and photothermal therapy. This review focuses on synergistic therapeutic systems combining gene regulation and photothermal ablation as well as logically designed nano-carriers aimed at enhancing the delivery efficiency of therapeutic genes using the photothermal effect. The examples detailed in this review provide insight to further our understanding of combinatorial gene and photothermal therapy, thus paving the way for the design of promising nanomedicines.
Collapse
|
124
|
Zhu Y, Liang G, Sun B, Tian T, Hu F, Xiao Z. A novel type of self-assembled nanoparticles as targeted gene carriers: an application for plasmid DNA and antimicroRNA oligonucleotide delivery. Int J Nanomedicine 2016; 11:399-410. [PMID: 26869785 PMCID: PMC4734819 DOI: 10.2147/ijn.s84927] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
In this study, a new type of amphiphilic cetylated polyethyleneimine (PEI) was synthesized, and then polylactic-co-glycolic acid (PLGA)/cetylated PEI/hyaluronic acid nanoparticles (PCPH NPs) were developed by self-assembly as a novel type of gene-delivering vehicle. The PCPH NPs showed good DNA-condensation ability by forming polyplexes with small particle size and positive zeta potential. The transfection efficiency and cytotoxicity of PCPH NPs were evaluated as plasmid DNA vectors to transfect HepG2 in vitro. PCPH NPs exhibited much lower cytotoxicity and higher gene-transfection efficiency than PEI (25,000) and commercial transfection reagents. Furthermore, PCPH NPs were used as an anti-miR-221 vector for transfecting HepG2 cells, and anti-miR-221 was effectively transfected into cells and produced a greater inhibitory effect on cancer-cell growth by PCPH NPs. These results demonstrate that PCPH NPs can be a promising nonviral vector for gene-delivery systems.
Collapse
Affiliation(s)
- Yanliang Zhu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, People's Republic of China
| | - Gaofeng Liang
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, People's Republic of China
| | - Bo Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, People's Republic of China
| | - Tian Tian
- Department of Neurobiology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Feihu Hu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, People's Republic of China
| | - Zhongdang Xiao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, People's Republic of China
| |
Collapse
|
125
|
Ping H, Liu X, Zhu D, Li T, Zhang C. Construction and gene expression analysis of a single-stranded DNA minivector based on an inverted terminal repeat of adeno-associated virus. Mol Biotechnol 2015; 57:382-90. [PMID: 25555376 DOI: 10.1007/s12033-014-9832-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The plasmid vectors currently used for nonviral gene transfer have the disadvantage of carrying a bacterial backbone and an antibiotic resistance gene, which may cause side effects. The adeno-associated virus (AAV) genome is a linear single-stranded DNA (ssDNA) molecule with palindromic inverted terminal repeat (ITR) sequences forming double-stranded DNA (dsDNA) hairpin (HP) structures at each end. Based on the AAV genome, we constructed an AAV-ITR ssDNA minivector that consists of a GFP expression cassette flanked by both ITR sequences of 125 nucleotides. The minivectors were produced by digestion of the parental plasmids followed by denaturation. The self-complementary inverted T-shaped HP structure of the minivector was automatically formed. The HEK 293T cells were transfected with the AAV-ITR ssDNA minivector, plasmid, and dsDNA expression cassette. The results showed that AAV-ITR ssDNA minivector had relatively low gene expression efficiency in vitro. However, we found that the GFP expression efficiency of the D sequence-deleted AAV-ITR ssDNA minivector was significantly increased and was similar to those obtained with the plasmid and dsDNA expression cassette. Our data suggest that the AAV-ITR ssDNA minivector may be a new type of gene expression vector for gene therapy besides the virus and plasmid.
Collapse
Affiliation(s)
- Han Ping
- Key Lab of Bio-Medical Diagnostics, CAS, Institute of Biomedical Engineering and Technology, CAS, No. 88 Keling Road, Suzhou New District, Suzhou, 215163, People's Republic of China
| | | | | | | | | |
Collapse
|
126
|
Luo H, Wang X, Zhang R, Chen Y, Shu Y, Li H, Chen H. Patient-Specific Therapy via Cell-Reprogramming Technology: a Curative Potential for Patients with Diabetes. NANOSCALE RESEARCH LETTERS 2015; 10:496. [PMID: 26714858 PMCID: PMC4695475 DOI: 10.1186/s11671-015-1193-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 12/12/2015] [Indexed: 06/05/2023]
Abstract
Gene therapeutics provides great opportunities for curing diabetes. Numerous attempts have been made to establish a safe and high-efficiency gene delivery strategy, but all of them are unsuccessful. To achieve an ideal transfection, a novel gene delivery strategy was presented in this research. The novel system proposed was transfection mediated by the combination of ultrasound with microbubbles and cross-linked polyethylenimines (PEIs). Ultrasound with microbubbles enhances the permeability of target cells; moreover, cross-linked PEIs enabled DNA to escape from endosomes into the cytoplasm. If the proposed method is feasible and effective, the endogenous secretion system of insulin would be re-established in patients with diabetes.
Collapse
Affiliation(s)
- Haizhao Luo
- Department of Endocrinology, Nanhai Hospital, Southern Medical University, No. 40, Fo Ping Road, Foshan, 528200, China.
| | - Xianbao Wang
- Department of Cardiology, Zhujiang Hospital, Southern Medical University, No. 253, Gong Ye Road, Guangzhou, 510282, China.
| | - Ruyi Zhang
- Department of Endocrinology, Guangzhou Red Cross Hospital, No. 396, Tongfu Zhong Road, Guangzhou, 510220, China.
| | - Youping Chen
- Department of Endocrinology, Nanhai Hospital, Southern Medical University, No. 40, Fo Ping Road, Foshan, 528200, China.
| | - Yi Shu
- Department of Endocrinology, Nanhai Hospital, Southern Medical University, No. 40, Fo Ping Road, Foshan, 528200, China.
| | - Huixian Li
- Department of Endocrinology, Nanhai Hospital, Southern Medical University, No. 40, Fo Ping Road, Foshan, 528200, China.
| | - Hong Chen
- Department of Endocrinology, Zhujiang Hospital, Southern Medical University, No. 253, Gong Ye Road, Guangzhou, 510282, China.
| |
Collapse
|
127
|
Sum CH, Nafissi N, Slavcev RA, Wettig S. Physical Characterization of Gemini Surfactant-Based Synthetic Vectors for the Delivery of Linear Covalently Closed (LCC) DNA Ministrings. PLoS One 2015; 10:e0142875. [PMID: 26561857 PMCID: PMC4642985 DOI: 10.1371/journal.pone.0142875] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 10/27/2015] [Indexed: 12/11/2022] Open
Abstract
In combination with novel linear covalently closed (LCC) DNA minivectors, referred to as DNA ministrings, a gemini surfactant-based synthetic vector for gene delivery has been shown to exhibit enhanced delivery and bioavailability while offering a heightened safety profile. Due to topological differences from conventional circular covalently closed (CCC) plasmid DNA vectors, the linear topology of LCC DNA ministrings may present differences with regards to DNA interaction and the physicochemical properties influencing DNA-surfactant interactions in the formulation of lipoplexed particles. In this study, N,N-bis(dimethylhexadecyl)-α,ω-propanediammonium(16-3-16)gemini-based synthetic vectors, incorporating either CCC plasmid or LCC DNA ministrings, were characterized and compared with respect to particle size, zeta potential, DNA encapsulation, DNase sensitivity, and in vitro transgene delivery efficacy. Through comparative analysis, differences between CCC plasmid DNA and LCC DNA ministrings led to variations in the physical properties of the resulting lipoplexes after complexation with 16-3-16 gemini surfactants. Despite the size disparities between the plasmid DNA vectors (CCC) and DNA ministrings (LCC), differences in DNA topology resulted in the generation of lipoplexes of comparable particle sizes. The capacity for ministring (LCC) derived lipoplexes to undergo complete counterion release during lipoplex formation contributed to improved DNA encapsulation, protection from DNase degradation, and in vitro transgene delivery.
Collapse
Affiliation(s)
- Chi Hong Sum
- School of Pharmacy, University of Waterloo, 10 Victoria Street S., Kitchener, Ontario, Canada
| | - Nafiseh Nafissi
- School of Pharmacy, University of Waterloo, 10 Victoria Street S., Kitchener, Ontario, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Ave W., Waterloo, Ontario, Canada
| | - Roderick A. Slavcev
- School of Pharmacy, University of Waterloo, 10 Victoria Street S., Kitchener, Ontario, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Ave W., Waterloo, Ontario, Canada
- * E-mail: (RS); (SW)
| | - Shawn Wettig
- School of Pharmacy, University of Waterloo, 10 Victoria Street S., Kitchener, Ontario, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Ave W., Waterloo, Ontario, Canada
- * E-mail: (RS); (SW)
| |
Collapse
|
128
|
Biophysical properties of cationic lipophosphoramidates: Vesicle morphology, bilayer hydration and dynamics. Colloids Surf B Biointerfaces 2015; 136:192-200. [PMID: 26398144 DOI: 10.1016/j.colsurfb.2015.09.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 08/10/2015] [Accepted: 09/06/2015] [Indexed: 02/04/2023]
Abstract
Cationic lipids are used to deliver genetic material to living cells. Their proper biophysical characterization is needed in order to design and control this process. In the present work we characterize some properties of recently synthetized cationic lipophosphoramidates. The studied compounds share the same structure of their hydrophobic backbone, but differ in their hydrophilic cationic headgroup, which is formed by a trimethylammonium, a trimethylarsonium or a dicationic moiety. Dynamic light scattering and cryo-transmission electron microscopy proves that the studied lipophosphoramidates create stable unilamellar vesicles. Fluorescence of polarity probe, Laurdan, analyzed using time-dependent fluorescence shift method (TDFS) and generalized polarization (GP) gives important information about the phase, hydration and dynamics of the lipophosphoramidate bilayers. While all of the compounds produced lipid bilayers that were sufficiently fluid for their potential application in gene therapy, their polarity/hydration and mobility was lower than for the standard cationic lipid - DOTAP. Mixing cationic lipophosphoramidates with DOPC helps to reduce this difference. The structure of the cationic headgroup has an important and complex influence on bilayer hydration and mobility. Both TDFS and GP methods are suitable for the characterization of cationic amphiphiles and can be used for screening of the newly synthesized compounds.
Collapse
|
129
|
Lactate and glucose concomitant consumption as a self-regulated pH detoxification mechanism in HEK293 cell cultures. Appl Microbiol Biotechnol 2015; 99:9951-60. [DOI: 10.1007/s00253-015-6855-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 07/12/2015] [Accepted: 07/15/2015] [Indexed: 11/30/2022]
|
130
|
Barrán-Berdón AL, Yélamos B, García-Río L, Domènech Ò, Aicart E, Junquera E. Polycationic Macrocyclic Scaffolds as Potential Non-Viral Vectors of DNA: A Multidisciplinary Study. ACS APPLIED MATERIALS & INTERFACES 2015; 7:14404-14414. [PMID: 26067709 DOI: 10.1021/acsami.5b03231] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The potential of lipoplexes constituted by the DNA pEGFP-C3 (encoding green fluorescent protein), polycationic calixarene-based macrocyclic vector (CxCL) with a lipidic matrix (herein named TMAC4), and zwitterionic lipid 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine (DOPE) as nontoxic DNA vectors has been analyzed from both biophysical and biochemical perspectives. For that purpose, several experimental methods, such as zeta potential (PALS methodology), agarose gel electrophoresis, small-angle X-ray scattering (SAXS), transmission electronic cryo-microscopy (cryo-TEM), atomic force microscopy (AFM), fluorescence microscopy, and cytotoxicity assays have been used. The electrochemical study shows that TMAC4 has 100% of its nominal charge available, whereas pDNA presents an effective negative charge that is only 10% that of its nominal one. PALS studies indicate the presence of three populations of nanoaggregates in TMAC4/DOPE lipid mixtures, with sizes of approximately 100, 17, and 6 nm, compatible with liposomes, oblate micelles, and spherical micelles, respectively, the first two also being detected by cryo-TEM. However, in the presence of pDNA, this mixture is organized in Lα multilamellar structures at all compositions. In fact, cryo-TEM micrographs show two types of multilamellar aggregation patterns: cluster-type at low and moderate CxCL molar fractions in the TMAC4/DOPE lipid mixture (α = 0.2 and 0.5), and fingerprint-type (FP), which are only present at low CxCL molar fraction (α = 0.2). This structural scenario has also been observed in SAXS diffractograms, including the coexistence of two different phases when DOPE dominates in the mixture. AFM experiments at α = 0.2 provide evidence that pDNA makes the lipid bilayer more deformable, thus promoting a potential enhancement in the capability of penetrating the cells. In fact, the best transfection perfomances of these TMAC4/DOPE-pDNA lipoplexes have been obtained at low CxCL molar fractions (α = 0.2) and a moderate-to-high effective charge ratio (ρeff = 20). Presumably, the coexistence of two lamellar phases is responsible for the better TE performance at low α.
Collapse
Affiliation(s)
| | | | - Luis García-Río
- ⊥Departamento de Química Física, Centro de Investigación en Química Biológica y Materiales Moleculares, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Òscar Domènech
- §Departamento de Fisicoquímica, Facultat de Farmàcia, Universitat de Barcelona, 08028 Barcelona, Spain
| | | | | |
Collapse
|
131
|
Lo CW, Liao WH, Wu CH, Lee JL, Sun MK, Yang HS, Tsai WB, Chang Y, Chen WS. Synergistic Effect of PEI and PDMAEMA on Transgene Expression in Vitro. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:6130-6136. [PMID: 25985827 DOI: 10.1021/acs.langmuir.5b00520] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Polyethylenimine (PEI) and poly(2-(dimethylamino) ethyl methacrylate) (PDMAEMA) have both been used for DNA delivery. PDMAEMA has been shown to exhibit better gene transfection efficiency but lower expression ability than PEI. We mixed the two polymers at different ratios to investigate whether the resulting "dual" polyplex (PEI/PDMAEMA/DNA) could enhance both gene transfection efficiency and DNA expression ability. Experimental results showed a significant increase in DNA internalization and DNA expression for the PDMAEMA/PEI/DNA polyplexes at a ratio of 1:3 or 1:9 (PDMAEMA: PEI), depending on cell type, in comparison with PEI/DNA, PDMAEMA/DNA, and PDMAEMA/PEI/DNA at other ratios. PDMAEMA/PEI/DNA polyplexes did not reduce cell viability. In contrast to with the conventional approach using covalently modified PEI, the proposed "combination" approach provided a more convenient and effective way to improve transgene expression efficiency.
Collapse
Affiliation(s)
- Chia-Wen Lo
- †Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan ROC
| | - Wei-Hao Liao
- †Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan ROC
| | - Chueh-Hung Wu
- †Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan ROC
- ‡Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan ROC
| | - Jyun-Lin Lee
- †Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan ROC
| | - Ming-Kuan Sun
- ⊥Division of Medical Engineering Research, National Health Research Institutes, Miaoli, Taiwan
| | | | - Wei-Bor Tsai
- §Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan ROC
| | | | - Wen-Shiang Chen
- †Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan ROC
- ⊥Division of Medical Engineering Research, National Health Research Institutes, Miaoli, Taiwan
| |
Collapse
|
132
|
Abstract
INTRODUCTION An estimated 25 million Americans are living with rare diseases. Adeno-associated virus (AAV)-mediated gene therapy is an emerging therapeutic option for the more than 7,000 identified rare diseases. This paper highlights the benefits of AAV therapy compared to conventional small molecules, discusses current pre-clinical and clinical applications of AAV-mediated gene therapy, and offers insights into cutting edge research that will shape the future of AAV for broad therapeutic use. AREAS COVERED In this review the biology of AAV and our ability to generate disease-specific variants is summarized. Limitations of current therapy are reviewed, with an emphasis on immune detection of virus, viral tropism and tissue targeting, and limitations of gene expression. Information for this review was found using PubMed and clinicaltrials.gov. EXPERT OPINION Currently the scope of clinical trials of AAV gene therapy is concentrated in an array of phase I/II safety trials with less than two dozen rare diseases featured. Pre-clinical, translational studies are expanding in number as developments within the last decade have made generation of improved AAV vectors available to more researchers. Further, one bottleneck that is being overcome is the availability of disease models, which will allow for improved preclinical testing and advancement of AAV to more clinical applications.
Collapse
Affiliation(s)
- Eric Hastie
- Gene Therapy Center, University of North Carolina, Chapel Hill, North Carolina, USA, The University of North Carolina at Chapel Hill, 7119 Thurston Bowles Building (104 Manning Drive), Campus Box 7352, Chapel Hill, NC, 27599-7352, United States
| | - R Jude Samulski
- Gene Therapy Center, University of North Carolina, Chapel Hill, North Carolina, USA, The University of North Carolina at Chapel Hill, 7119 Thurston Bowles Building (104 Manning Drive), Campus Box 7352, Chapel Hill, NC, 27599-7352, United States; Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina, USA, The University of North Carolina at Chapel Hill, 7119 Thurston Bowles Building (104 Manning Drive), Campus Box 7352, Chapel Hill, NC, 27599-7352, United States
| |
Collapse
|
133
|
Arayachukiat S, Seemork J, Pan-In P, Amornwachirabodee K, Sangphech N, Sansureerungsikul T, Sathornsantikun K, Vilaivan C, Shigyou K, Pienpinijtham P, Vilaivan T, Palaga T, Banlunara W, Hamada T, Wanichwecharungruang S. Bringing macromolecules into cells and evading endosomes by oxidized carbon nanoparticles. NANO LETTERS 2015; 15:3370-6. [PMID: 25849219 DOI: 10.1021/acs.nanolett.5b00696] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
A great challenge exists in finding safe, simple, and effective delivery strategies to bring matters across cell membrane. Popular methods such as viral vectors, positively charged particles and cell penetrating peptides possess some of the following drawbacks: safety issues, lysosome trapping, limited loading capacity, and toxicity, whereas electroporation produces severe damages on both cargoes and cells. Here, we show that a serendipitously discovered, relatively nontoxic, water dispersible, stable, negatively charged, oxidized carbon nanoparticle, prepared from graphite, could deliver macromolecules into cells, without getting trapped in a lysosome. The ability of the particles to induce transient pores on lipid bilayer membranes of cell-sized liposomes was demonstrated. Delivering 12-base-long pyrrolidinyl peptide nucleic acids with d-prolyl-(1S,2S)-2-aminocyclopentanecarboxylic acid backbone (acpcPNA) complementary to the antisense strand of the NF-κB binding site in the promoter region of the Il6 gene into the macrophage cell line, RAW 264.7, by our particles resulted in an obvious accumulation of the acpcPNAs in the nucleus and decreased Il6 mRNA and IL-6 protein levels upon stimulation. We anticipate this work to be a starting point in a new drug delivery strategy, which involves the nanoparticle that can induce a transient pore on the lipid bilayer membrane.
Collapse
Affiliation(s)
- Sunatda Arayachukiat
- †Macromolecular Science Program, Faculty of Science, Chulalongkorn University (CU), ‡Program in Petrochemistry, Faculty of Science, CU, §Department of Chemistry, Faculty of Science, CU, ∥Department of Microbiology, Faculty of Science, and Interdisciplinary Program in Medical Microbiology, CU, ⊥School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), ¶Department of Pathology, Faculty of Veterinary Science, CU, ∇Nanotec-CU Center of Excellence on Food and Agriculture, Chulalongkorn University, Bangkok 10330, Thailand
| | - Jiraporn Seemork
- †Macromolecular Science Program, Faculty of Science, Chulalongkorn University (CU), ‡Program in Petrochemistry, Faculty of Science, CU, §Department of Chemistry, Faculty of Science, CU, ∥Department of Microbiology, Faculty of Science, and Interdisciplinary Program in Medical Microbiology, CU, ⊥School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), ¶Department of Pathology, Faculty of Veterinary Science, CU, ∇Nanotec-CU Center of Excellence on Food and Agriculture, Chulalongkorn University, Bangkok 10330, Thailand
| | - Porntip Pan-In
- †Macromolecular Science Program, Faculty of Science, Chulalongkorn University (CU), ‡Program in Petrochemistry, Faculty of Science, CU, §Department of Chemistry, Faculty of Science, CU, ∥Department of Microbiology, Faculty of Science, and Interdisciplinary Program in Medical Microbiology, CU, ⊥School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), ¶Department of Pathology, Faculty of Veterinary Science, CU, ∇Nanotec-CU Center of Excellence on Food and Agriculture, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kittima Amornwachirabodee
- †Macromolecular Science Program, Faculty of Science, Chulalongkorn University (CU), ‡Program in Petrochemistry, Faculty of Science, CU, §Department of Chemistry, Faculty of Science, CU, ∥Department of Microbiology, Faculty of Science, and Interdisciplinary Program in Medical Microbiology, CU, ⊥School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), ¶Department of Pathology, Faculty of Veterinary Science, CU, ∇Nanotec-CU Center of Excellence on Food and Agriculture, Chulalongkorn University, Bangkok 10330, Thailand
| | - Naunpun Sangphech
- †Macromolecular Science Program, Faculty of Science, Chulalongkorn University (CU), ‡Program in Petrochemistry, Faculty of Science, CU, §Department of Chemistry, Faculty of Science, CU, ∥Department of Microbiology, Faculty of Science, and Interdisciplinary Program in Medical Microbiology, CU, ⊥School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), ¶Department of Pathology, Faculty of Veterinary Science, CU, ∇Nanotec-CU Center of Excellence on Food and Agriculture, Chulalongkorn University, Bangkok 10330, Thailand
| | - Titiporn Sansureerungsikul
- †Macromolecular Science Program, Faculty of Science, Chulalongkorn University (CU), ‡Program in Petrochemistry, Faculty of Science, CU, §Department of Chemistry, Faculty of Science, CU, ∥Department of Microbiology, Faculty of Science, and Interdisciplinary Program in Medical Microbiology, CU, ⊥School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), ¶Department of Pathology, Faculty of Veterinary Science, CU, ∇Nanotec-CU Center of Excellence on Food and Agriculture, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kamonluck Sathornsantikun
- †Macromolecular Science Program, Faculty of Science, Chulalongkorn University (CU), ‡Program in Petrochemistry, Faculty of Science, CU, §Department of Chemistry, Faculty of Science, CU, ∥Department of Microbiology, Faculty of Science, and Interdisciplinary Program in Medical Microbiology, CU, ⊥School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), ¶Department of Pathology, Faculty of Veterinary Science, CU, ∇Nanotec-CU Center of Excellence on Food and Agriculture, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chotima Vilaivan
- †Macromolecular Science Program, Faculty of Science, Chulalongkorn University (CU), ‡Program in Petrochemistry, Faculty of Science, CU, §Department of Chemistry, Faculty of Science, CU, ∥Department of Microbiology, Faculty of Science, and Interdisciplinary Program in Medical Microbiology, CU, ⊥School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), ¶Department of Pathology, Faculty of Veterinary Science, CU, ∇Nanotec-CU Center of Excellence on Food and Agriculture, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kazuki Shigyou
- †Macromolecular Science Program, Faculty of Science, Chulalongkorn University (CU), ‡Program in Petrochemistry, Faculty of Science, CU, §Department of Chemistry, Faculty of Science, CU, ∥Department of Microbiology, Faculty of Science, and Interdisciplinary Program in Medical Microbiology, CU, ⊥School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), ¶Department of Pathology, Faculty of Veterinary Science, CU, ∇Nanotec-CU Center of Excellence on Food and Agriculture, Chulalongkorn University, Bangkok 10330, Thailand
| | - Prompong Pienpinijtham
- †Macromolecular Science Program, Faculty of Science, Chulalongkorn University (CU), ‡Program in Petrochemistry, Faculty of Science, CU, §Department of Chemistry, Faculty of Science, CU, ∥Department of Microbiology, Faculty of Science, and Interdisciplinary Program in Medical Microbiology, CU, ⊥School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), ¶Department of Pathology, Faculty of Veterinary Science, CU, ∇Nanotec-CU Center of Excellence on Food and Agriculture, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tirayut Vilaivan
- †Macromolecular Science Program, Faculty of Science, Chulalongkorn University (CU), ‡Program in Petrochemistry, Faculty of Science, CU, §Department of Chemistry, Faculty of Science, CU, ∥Department of Microbiology, Faculty of Science, and Interdisciplinary Program in Medical Microbiology, CU, ⊥School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), ¶Department of Pathology, Faculty of Veterinary Science, CU, ∇Nanotec-CU Center of Excellence on Food and Agriculture, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tanapat Palaga
- †Macromolecular Science Program, Faculty of Science, Chulalongkorn University (CU), ‡Program in Petrochemistry, Faculty of Science, CU, §Department of Chemistry, Faculty of Science, CU, ∥Department of Microbiology, Faculty of Science, and Interdisciplinary Program in Medical Microbiology, CU, ⊥School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), ¶Department of Pathology, Faculty of Veterinary Science, CU, ∇Nanotec-CU Center of Excellence on Food and Agriculture, Chulalongkorn University, Bangkok 10330, Thailand
| | - Wijit Banlunara
- †Macromolecular Science Program, Faculty of Science, Chulalongkorn University (CU), ‡Program in Petrochemistry, Faculty of Science, CU, §Department of Chemistry, Faculty of Science, CU, ∥Department of Microbiology, Faculty of Science, and Interdisciplinary Program in Medical Microbiology, CU, ⊥School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), ¶Department of Pathology, Faculty of Veterinary Science, CU, ∇Nanotec-CU Center of Excellence on Food and Agriculture, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tsutomu Hamada
- †Macromolecular Science Program, Faculty of Science, Chulalongkorn University (CU), ‡Program in Petrochemistry, Faculty of Science, CU, §Department of Chemistry, Faculty of Science, CU, ∥Department of Microbiology, Faculty of Science, and Interdisciplinary Program in Medical Microbiology, CU, ⊥School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), ¶Department of Pathology, Faculty of Veterinary Science, CU, ∇Nanotec-CU Center of Excellence on Food and Agriculture, Chulalongkorn University, Bangkok 10330, Thailand
| | - Supason Wanichwecharungruang
- †Macromolecular Science Program, Faculty of Science, Chulalongkorn University (CU), ‡Program in Petrochemistry, Faculty of Science, CU, §Department of Chemistry, Faculty of Science, CU, ∥Department of Microbiology, Faculty of Science, and Interdisciplinary Program in Medical Microbiology, CU, ⊥School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), ¶Department of Pathology, Faculty of Veterinary Science, CU, ∇Nanotec-CU Center of Excellence on Food and Agriculture, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
134
|
Walthers CM, Seidlits SK. Gene delivery strategies to promote spinal cord repair. Biomark Insights 2015; 10:11-29. [PMID: 25922572 PMCID: PMC4395076 DOI: 10.4137/bmi.s20063] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 03/02/2015] [Accepted: 03/04/2015] [Indexed: 12/21/2022] Open
Abstract
Gene therapies hold great promise for the treatment of many neurodegenerative disorders and traumatic injuries in the central nervous system. However, development of effective methods to deliver such therapies in a controlled manner to the spinal cord is a necessity for their translation to the clinic. Although essential progress has been made to improve efficiency of transgene delivery and reduce the immunogenicity of genetic vectors, there is still much work to be done to achieve clinical strategies capable of reversing neurodegeneration and mediating tissue regeneration. In particular, strategies to achieve localized, robust expression of therapeutic transgenes by target cell types, at controlled levels over defined time periods, will be necessary to fully regenerate functional spinal cord tissues. This review summarizes the progress over the last decade toward the development of effective gene therapies in the spinal cord, including identification of appropriate target genes, improvements to design of genetic vectors, advances in delivery methods, and strategies for delivery of multiple transgenes with synergistic actions. The potential of biomaterials to mediate gene delivery while simultaneously providing inductive scaffolding to facilitate tissue regeneration is also discussed.
Collapse
|
135
|
Hortensius RA, Becraft JR, Pack DW, Harley BAC. The effect of glycosaminoglycan content on polyethylenimine-based gene delivery within three-dimensional collagen-GAG scaffolds. Biomater Sci 2015; 3:645-54. [PMID: 26097698 PMCID: PMC4469389 DOI: 10.1039/c5bm00033e] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The design of biomaterials for increasingly complex tissue engineering applications often requires exogenous presentation of biomolecular signals. Integration of gene delivery vectors with a biomaterial scaffold offers the potential to bypass the use of expensive and relatively inefficient growth factor supplementation strategies to augment cell behavior. However, integration of cationic polymer based gene delivery vectors within three-dimensional biomaterials, particularly matrices which can carry significant surface charge, remains poorly explored. We examined the potential of polyethylenimine (PEI) as a gene delivery vector for three-dimensional collagen-glycosaminoglycan (CG) scaffolds under development for tendon repair. While acetylated versions of PEI have demonstrated improved transfection efficiency in 2D culture assays, we investigated translation of this effect to a 3D biomaterial that contains significant electrostatic charge. A reporter gene was used to examine the impact of polymer modification, polymer:DNA ratio, and the degree of sulfation of the biomaterial microenvironment on gene delivery in vitro. We observed highest transgene expression in acetylated and unmodified PEI at distinct polymer:DNA ratios; notably, the enhancement often seen in two-dimensional culture for acetylated PEI did not fully translate to three-dimensional scaffolds. We also found highly sulfated heparin-based CG scaffolds showed enhanced initial luciferase expression but not prolonged activity. While PEI constructs significantly reduced tenocyte metabolic health during the period of transfection, heparin-based CG scaffolds showed the greatest recovery in tenocyte metabolic health over the full 2 week culture. These results suggest that the electrostatic environment of three-dimensional biomaterials may be an important design criterion for cationic polymer-based gene delivery.
Collapse
Affiliation(s)
- Rebecca A Hortensius
- Dept. of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jacob R Becraft
- Dept. of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Daniel W Pack
- Dept. of Chemical and Materials Engineering and Dept. of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, USA
| | - Brendan A C Harley
- Dept. of Chemical and Biological Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA ; Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
136
|
Schmidt F, Grimm D. CRISPR genome engineering and viral gene delivery: A case of mutual attraction. Biotechnol J 2015; 10:258-72. [DOI: 10.1002/biot.201400529] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 01/06/2015] [Accepted: 01/15/2015] [Indexed: 01/05/2023]
|
137
|
Feng Y, Sassi S, Shen JK, Yang X, Gao Y, Osaka E, Zhang J, Yang S, Yang C, Mankin HJ, Hornicek FJ, Duan Z. Targeting CDK11 in osteosarcoma cells using the CRISPR-Cas9 system. J Orthop Res 2015; 33:199-207. [PMID: 25348612 PMCID: PMC4304907 DOI: 10.1002/jor.22745] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 09/02/2014] [Indexed: 02/04/2023]
Abstract
Osteosarcoma is the most common type primary malignant tumor of bone. Patients with regional osteosarcoma are routinely treated with surgery and chemotherapy. In addition, many patients with metastatic or recurrent osteosarcoma show poor prognosis with current chemotherapy agents. Therefore, it is important to improve the general condition and the overall survival rate of patients with osteosarcoma by identifying novel therapeutic strategies. Recent studies have revealed that CDK11 is essential in osteosarcoma cell growth and survival by inhibiting CDK11 mRNA expression with RNAi. Here, we apply the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas9 system, a robust and highly efficient novel genome editing tool, to determine the effect of targeting endogenous CDK11 gene at the DNA level in osteosarcoma cell lines. We show that CDK11 can be efficiently silenced by CRISPR-Cas9. Inhibition of CDK11 is associated with decreased cell proliferation and viability, and induces cell death in osteosarcoma cell lines KHOS and U-2OS. Furthermore, the migration and invasion activities are also markedly reduced by CDK11 knockout. These results demonstrate that CRISPR-Cas9 system is a useful tool for the modification of endogenous CDK11 gene expression, and CRISPR-Cas9 targeted CDK11 knockout may be a promising therapeutic regimen for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Yong Feng
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Jackson 1115, Boston, Massachusetts 02114,Department of Orthopaedic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jie Fang Avenue, Wuhan, China, 430022
| | - Slim Sassi
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Jacson K Shen
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Jackson 1115, Boston, Massachusetts 02114
| | - Xiaoqian Yang
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Jackson 1115, Boston, Massachusetts 02114
| | - Yan Gao
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Jackson 1115, Boston, Massachusetts 02114
| | - Eiji Osaka
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Jackson 1115, Boston, Massachusetts 02114
| | - Jianming Zhang
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School Boston, MA, 02114
| | - Shuhua Yang
- Department of Orthopaedic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jie Fang Avenue, Wuhan, China, 430022
| | - Cao Yang
- Department of Orthopaedic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jie Fang Avenue, Wuhan, China, 430022
| | - Henry J. Mankin
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Jackson 1115, Boston, Massachusetts 02114
| | - Francis J Hornicek
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Jackson 1115, Boston, Massachusetts 02114
| | - Zhenfeng Duan
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Jackson 1115, Boston, Massachusetts 02114
| |
Collapse
|
138
|
Ramamoorth M, Narvekar A. Non viral vectors in gene therapy- an overview. J Clin Diagn Res 2015; 9:GE01-6. [PMID: 25738007 DOI: 10.7860/jcdr/2015/10443.5394] [Citation(s) in RCA: 304] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 09/08/2014] [Indexed: 01/23/2023]
Abstract
Non-viral vectors are simple in theory but complex in practice. Apart from intra cellular and extracellular barriers, number of other challenges also needs to be overcome in order to increase the effectiveness of non-viral gene transfer. These barriers are categorized as production, formulation and storage. No one-size-fits-all solution to gene delivery, which is why in spite of various developments in liposome, polymer formulation and optimization, new compounds are constantly being proposed and investigated. In this review, we will see in detail about various types of non-viral vectors highlighting promising development and recent advances that had improved the non-viral gene transfer efficiency of translating from "Bench to bedside".
Collapse
Affiliation(s)
- Murali Ramamoorth
- Former Reader, Department of Prosthodontics, Sinhgad Dental College & Hospital , Pune, India
| | - Aparna Narvekar
- Former Lecturer, Department of Prosthodontics, Sinhgad Dental College & Hospital , Pune, India
| |
Collapse
|
139
|
Islam MA, Park T, Singh B, Maharjan S, Firdous J, Cho MH, Kang SK, Yun CH, Choi Y, Cho CS. Major degradable polycations as carriers for DNA and siRNA. J Control Release 2014; 193:74-89. [DOI: 10.1016/j.jconrel.2014.05.055] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 05/24/2014] [Accepted: 05/27/2014] [Indexed: 12/17/2022]
|
140
|
Kaur G, Long CR, Dufour JM. Genetically engineered immune privileged Sertoli cells: A new road to cell based gene therapy. SPERMATOGENESIS 2014; 2:23-31. [PMID: 22553487 PMCID: PMC3341243 DOI: 10.4161/spmg.19119] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Sertoli cells are immune privileged cells, important for controlling the immune response to male germ cells as well as maintaining the tolerogenic environment in the testis. Additionally, ectopic Sertoli cells have been shown to survive and protect co-grafted cells when transplanted across immunological barriers. The survival of ectopic Sertoli cells has led to the idea that they could be used in cell based gene therapy. In this review, we provide a brief overview of testis immune privilege and Sertoli cell transplantation, factors contributing to Sertoli cell immune privilege, the challenges faced by viral vector gene therapy, the use of immune privileged cells in cell based gene therapy and describe several recent studies on the use of genetically engineered Sertoli cells to provide continuous delivery of therapeutic proteins.
Collapse
|
141
|
Langiu M, Dadparvar M, Kreuter J, Ruonala MO. Human serum albumin-based nanoparticle-mediated in vitro gene delivery. PLoS One 2014; 9:e107603. [PMID: 25229502 PMCID: PMC4168126 DOI: 10.1371/journal.pone.0107603] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Accepted: 08/21/2014] [Indexed: 11/19/2022] Open
Abstract
The genetic treatment of neurodegenerative diseases still remains a challenging task since many approaches fail to deliver the therapeutic material in relevant concentrations into the brain. As viral vectors comprise the risk of immune and inflammatory responses, human serum albumin (HSA) nanoparticles were found to represent a safer and more convenient alternative. Their ability to cross the blood-brain barrier (BBB) and deliver drugs into the brain in order to enhance gene-based therapy has been previously demonstrated. The present study deals with the development of pGL3-PEI-coated HSA nanoparticles and subsequent in vitro testing in cerebellar granular and HeLa cells. The luciferase control vector pGL3 was chosen as reporter plasmid encoding for the firefly luciferase protein, linear polyethylenimine (22 kDa) as endosomolytic agent for enhancing the cells’ transfection. Studies on particle characteristics, their cellular uptake into aforementioned cell lines and on subcellular localisation, and transfection efficiency in the cerebellar cells proved the feasibility of nanoparticle-based gene delivery.
Collapse
Affiliation(s)
- Monica Langiu
- Center for Membrane Proteomics, Goethe University, Frankfurt am Main, Germany
| | - Miriam Dadparvar
- Center for Membrane Proteomics, Goethe University, Frankfurt am Main, Germany
- Institute of Pharmaceutical Technology, Goethe University, Frankfurt am Main, Germany
| | - Jörg Kreuter
- Institute of Pharmaceutical Technology, Goethe University, Frankfurt am Main, Germany
| | - Mika O. Ruonala
- Center for Membrane Proteomics, Goethe University, Frankfurt am Main, Germany
- * E-mail:
| |
Collapse
|
142
|
Guarino V, Cirillo V, Altobelli R, Ambrosio L. Polymer-based platforms by electric field-assisted techniques for tissue engineering and cancer therapy. Expert Rev Med Devices 2014; 12:113-29. [DOI: 10.1586/17434440.2014.953058] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
143
|
Yoo C, Vines JB, Alexander G, Murdock K, Hwang P, Jun HW. Adult stem cells and tissue engineering strategies for salivary gland regeneration: a review. Biomater Res 2014; 18:9. [PMID: 26331060 PMCID: PMC4549133 DOI: 10.1186/2055-7124-18-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 07/09/2014] [Indexed: 02/07/2023] Open
Abstract
Saliva is an important compound produced by the salivary glands and performs numerous functions. Hyposalivation (dry mouth syndrome) is a deleterious condition often resulting from radiotherapy for patients with head and neck cancer, Sjogren's Syndrome, or as a side effect of certain medications. Hyposalivation negatively affects speaking, mastication, and swallowing in afflicted patients, greatly reducing their quality of life. Current treatments for this pathology include modifying lifestyle, synthetic saliva supplementation, and the utilization of salivary gland stimulants and sialagogues. However, many of these treatments do not address the underlying issues and others are pervaded by numerous side effects. In order to address the shortcomings related to current treatment modalities, many groups have diverted their attention to utilizing tissue engineering and regenerative medicine approaches. Tissue engineering is defined as the application of life sciences and materials engineering toward the development of tissue substitutes that are capable of mimicking the structure and function of their natural analogues within the body. The general underlying strategy behind the development of tissue engineered organ substitutes is the utilization of a combination of cells, biomaterials, and biochemical cues intended to recreate the natural organ environment. The purpose of this review is to highlight current bioengineering approaches for salivary gland tissue engineering and the adult stem cell sources used for this purpose. Additionally, future considerations in regard to salivary gland tissue engineering strategies are discussed.
Collapse
Affiliation(s)
- Chankee Yoo
- />Department of Biomedical Engineering, University of Alabama at Birmingham, Shelby Building 806, 1825 University Boulevard, Birmingham, AL 35294 USA
- />Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, 59 Yatap-ro, Gyeonggi-do, Bundang-gu, Seongnam-si, 463-712 South Korea
| | - Jeremy B Vines
- />Department of Biomedical Engineering, University of Alabama at Birmingham, Shelby Building 806, 1825 University Boulevard, Birmingham, AL 35294 USA
| | - Grant Alexander
- />Department of Biomedical Engineering, University of Alabama at Birmingham, Shelby Building 806, 1825 University Boulevard, Birmingham, AL 35294 USA
| | - Kyle Murdock
- />Department of Biomedical Engineering, University of Alabama at Birmingham, Shelby Building 806, 1825 University Boulevard, Birmingham, AL 35294 USA
| | - Patrick Hwang
- />Department of Biomedical Engineering, University of Alabama at Birmingham, Shelby Building 806, 1825 University Boulevard, Birmingham, AL 35294 USA
| | - Ho-Wook Jun
- />Department of Biomedical Engineering, University of Alabama at Birmingham, Shelby Building 806, 1825 University Boulevard, Birmingham, AL 35294 USA
| |
Collapse
|
144
|
Gujrati M, Malamas A, Shin T, Jin E, Sun Y, Lu ZR. Multifunctional cationic lipid-based nanoparticles facilitate endosomal escape and reduction-triggered cytosolic siRNA release. Mol Pharm 2014; 11:2734-44. [PMID: 25020033 DOI: 10.1021/mp400787s] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Small interfering RNA (siRNA) has garnered much attention in recent years as a promising avenue for cancer gene therapy due to its ability to silence disease-related genes. Effective gene silencing is contingent upon the delivery of siRNA into the cytosol of target cells and requires the implementation of delivery systems possessing multiple functionalities to overcome delivery barriers. The present work explores the multifunctional properties and biological activity of a recently developed cationic lipid carrier, (1-aminoethyl)iminobis[N-(oleicylcysteinyl-1-amino-ethyl)propionamide]) (ECO). The physicochemical properties and biological activity of ECO/siRNA nanoparticles were assessed over a range of N/P ratios to optimize the formulation. Potent and sustained luciferase silencing in a U87 glioblastoma cell line was observed, even in the presence of serum proteins. ECO/siRNA nanoparticles exhibited pH-dependent membrane disruption at pH levels corresponding to various stages of the intracellular trafficking pathway. It was found that disulfide linkages created during nanoparticle formation enhanced the protection of siRNA from degradation and facilitated site-specific siRNA release in the cytosol by glutathione-mediated reduction. Confocal microscopy confirmed that ECO/siRNA nanoparticles readily escaped from late endosomes prior to cytosolic release of the siRNA cargo. These results demonstrate that the rationally designed multifunctionality of ECO/siRNA nanoparticles is critical for intracellular siRNA delivery and the continuing development of safe and effective delivery systems.
Collapse
Affiliation(s)
- Maneesh Gujrati
- Department of Biomedical Engineering, Case Western Reserve University , Cleveland, Ohio 44106, United States
| | | | | | | | | | | |
Collapse
|
145
|
Crystalline magnetic carbon nanoparticle assisted photothermal delivery into cells using CW near-infrared laser beam. Sci Rep 2014; 4:5106. [PMID: 24870227 PMCID: PMC4037705 DOI: 10.1038/srep05106] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 04/30/2014] [Indexed: 12/31/2022] Open
Abstract
Efficient and targeted delivery of impermeable exogenous material such as small molecules, proteins, and plasmids into cells in culture as well as in vivo is of great importance for drug, vaccine and gene delivery for different therapeutic strategies. Though advent of optoporation by ultrafast laser microbeam has allowed spatial targeting in cells, the requirement of high peak power to create holes on the cell membrane is not practical and also challenging in vivo. Here, we report development and use of uniquely non-reactive crystalline magnetic carbon nanoparticles (CMCNPs) for photothermal delivery (PTD) of impermeable dyes and plasmids encoding light-sensitive proteins into cells using low power continuous wave near-infrared (NIR) laser beam. Further, we utilized the magnetic nature of these CMCNPs to localize them in desired region by external magnetic field, thus minimizing the required number of nanoparticles. We discovered that irradiation of the CMCNPs near the desired cell(s) with NIR laser beam leads to temperature rise that not only stretch the cell-membrane to ease delivery, it also creates fluid flow to allow mobilization of exogenous substances to the delivery. Due to significant absorption properties of the CMCNPs in the NIR therapeutic window, PTD under in vivo condition is highly possible.
Collapse
|
146
|
Lo CW, Chang Y, Lee JL, Tsai WB, Chen WS. Tertiary-amine functionalized polyplexes enhanced cellular uptake and prolonged gene expression. PLoS One 2014; 9:e97627. [PMID: 24827929 PMCID: PMC4020921 DOI: 10.1371/journal.pone.0097627] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 04/20/2014] [Indexed: 12/31/2022] Open
Abstract
Ultrasound (US) has been found to facilitate the transport of DNA across cell membranes. However, the transfection efficiency is generally low, and the expression duration of the transfected gene is brief. In this study, a tertiary polycation, Poly(2-(dimethylamino) ethyl methacrylate) (PDMAEMA), was used as a carrier for US-mediated gene transfection. Its in-vitro and in-vivo effects on the transfection efficiency and the expression duration were evaluated. A mixture of pCI-neo-luc and PDMAEMA was transfected to cultured cells or mouse muscle by exposure to 1-MHz pulse US. A strong expression of luciferase was found 10 days after the transfection in vitro regardless of US exposure. However, effective transfection only occurred in the US groups in vivo. The transfection ability depended on the weight ratio of PDMAEMA to DNA, and was different for the in-vitro and in-vivo conditions. Lower weight ratios, e.g., 0.25, exhibited better in-vivo expression for at least 45 days.
Collapse
Affiliation(s)
- Chia-Wen Lo
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan, ROC
| | - Yung Chang
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Jhong-Li, Taoyuan, Taiwan, ROC
| | - Jyun-Lin Lee
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan, ROC
| | - Wei-Bor Tsai
- Department of Chemical Engineering, National Taiwan University College of Medicine, Taipei, Taiwan, ROC
| | - Wen-Shiang Chen
- Department of Physical Medicine and Rehabilitation, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan, ROC
- * E-mail:
| |
Collapse
|
147
|
Saeedi A, Ghaemi A, Tabarraei A, Moradi A, Gorji A, Semnani S, Soleimanjahi H, Adli AH, Hosseini SY, Vakili MA. Enhanced cell immune responses to hepatitis c virus core by novel heterologous DNA prime/lambda nanoparticles boost in mice. Virus Genes 2014; 49:11-21. [DOI: 10.1007/s11262-014-1070-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 04/04/2014] [Indexed: 02/15/2023]
|
148
|
Tahamtan A, Tabarraei A, Moradi A, Dinarvand M, Kelishadi M, Ghaemi A, Atyabi F. Chitosan nanoparticles as a potential nonviral gene delivery for HPV-16 E7 into mammalian cells. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2014; 43:366-72. [PMID: 24641772 DOI: 10.3109/21691401.2014.893522] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Chitosan nanoparticles (CS NPs) were prepared as a carrier for Human papillomavirus type 16 HPV-16) E7 gene and their gene transfection ability were evaluated in vitro. The plasmid expressing green fluorescent protein (pEGFP) was used as a reporter gene. Gel electrophoresis demonstrated full binding of CS NPs with the pDNA. The transfection of CS-pEGFP NPs was efficient in CHO cells and the expression of green fluorescent proteins was well observed. The expression of E7 proteins was confirmed under SDS-PAGE and western blot analysis. As a conclusion CS NPs may serve as an effective nonviral carrier for delivery of nucleotides into eukaryotic cells.
Collapse
Affiliation(s)
- Alireza Tahamtan
- a Department of Microbiology , Infectious Diseases Research Center, Golestan University of Medical Sciences , Gorgan , Iran.,b Department of Virology , School of Public Health, Tehran University of Medical Sciences , Tehran , Iran
| | - Alijan Tabarraei
- a Department of Microbiology , Infectious Diseases Research Center, Golestan University of Medical Sciences , Gorgan , Iran
| | - Abdolvahab Moradi
- a Department of Microbiology , Infectious Diseases Research Center, Golestan University of Medical Sciences , Gorgan , Iran
| | - Meshkat Dinarvand
- c Department of Pharmaceutical Nanotechnology , Faculty of Pharmacy, Tehran University of Medical Sciences , Tehran , Iran
| | - Mishar Kelishadi
- a Department of Microbiology , Infectious Diseases Research Center, Golestan University of Medical Sciences , Gorgan , Iran
| | - Amir Ghaemi
- a Department of Microbiology , Infectious Diseases Research Center, Golestan University of Medical Sciences , Gorgan , Iran
| | - Fatemeh Atyabi
- d Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences , Tehran , Iran
| |
Collapse
|
149
|
The road ahead: working towards effective clinical translation of myocardial gene therapies. Ther Deliv 2014; 5:39-51. [PMID: 24341816 DOI: 10.4155/tde.13.134] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
During the last two decades the fields of molecular and cellular cardiology, and more recently molecular cardiac surgery, have developed rapidly. The concept of delivering cDNA encoding a therapeutic gene to cardiomyocytes using a vector system with substantial cardiac tropism, allowing for long-term expression of a therapeutic protein, has moved from hypothesis to bench to clinical application. However, the clinical results to date are still disappointing. The ideal gene transfer method should be explored in clinically relevant animal models of heart disease to evaluate the relative roles of specific molecular pathways in disease pathogenesis, helping to validate the potential targets for therapeutic intervention. Successful clinical cardiovascular gene therapy also requires the use of nonimmunogenic cardiotropic vectors capable of expressing the requisite amount of therapeutic protein in vivo and in situ. Depending on the desired application either regional or global myocardial gene delivery is required. Cardiac-specific delivery techniques incorporating mapping technologies for regional delivery and highly efficient methodologies for global delivery should improve the precision and specificity of gene transfer to the areas of interest and minimize collateral organ gene expression.
Collapse
|
150
|
Fat grafting as a vehicle for the delivery of recombinant adenoassociated viral vectors to achieve gene modification of muscle flaps. Ann Plast Surg 2014; 70:726-31. [PMID: 23403543 DOI: 10.1097/sap.0b013e3182414add] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND The combination of gene therapy and plastic surgery may have the potential to improve the specificity that is needed to achieve clinically applicable treatment regimens. Our goal was to develop a method for gene modification that would yield sustainable production of gene products but would be less time consuming than existing protocols. METHODS An adenoassociated virus was used to deliver gene products to pectoralis muscle flaps. Gene modification was accomplished via either direct injection or novel fat grafting techniques. RESULTS The production of gene product was observable by both in vivo imaging and immunohistochemical staining. Gene products were not detected in tissues that were not in contact with the fat grafts that were incubated with the viral vector, indicating that the transduction stayed local to the flap. CONCLUSIONS Using novel recombinant adenoassociated virus vectors, we have developed a method for gene delivery that is highly efficient and applicable to muscle flaps.
Collapse
|