101
|
Gatanaga H, Murakoshi H, Hachiya A, Hayashida T, Chikata T, Ode H, Tsuchiya K, Sugiura W, Takiguchi M, Oka S. Naturally Selected Rilpivirine-Resistant HIV-1 Variants by Host Cellular Immunity. Clin Infect Dis 2013; 57:1051-5. [DOI: 10.1093/cid/cit430] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
102
|
Eyzaguirre LM, Charurat M, Redfield RR, Blattner WA, Carr JK, Sajadi MM. Elevated hypermutation levels in HIV-1 natural viral suppressors. Virology 2013; 443:306-12. [PMID: 23791226 DOI: 10.1016/j.virol.2013.05.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 04/05/2013] [Accepted: 05/10/2013] [Indexed: 12/28/2022]
Abstract
Mutations in the HIV-1 proviral genomes delay the progression of the disease. We compared the mutation status in full-length proviral genomes of 23 HIV-infected patients with undetectable viral loads in the absence of therapy named natural viral suppressors (NVS) or Elite Controllers with 23 HIV-infected controls (10 patients on HAART treatment and 13 untreated patients). Provirus DNA was extracted from PBMC for amplification and sequencing to determine the mutation status. Nine (39 %) of the 23 NVS patients had defective proviral genomes, compared to 4 of the treated controls (40%, p = 0.96) and only one of the untreated controls (8%, p = 0.059). Most of the defective genomes resulted from Gto-A hypermutation. Among patients with hypermutation, the rate ratio for mutation was significantly higher for the NVS compared to treated controls (p = 0.043). Our data suggests that inactivation of the virus through the APOBEC3G system may contribute to the NVS phenotype.
Collapse
Affiliation(s)
- Lindsay M Eyzaguirre
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, United States 725 West Lombard Street Baltimore, MD 21201, USA.
| | | | | | | | | | | |
Collapse
|
103
|
Kubinak JL, Ruff JS, Cornwall DH, Middlebrook EA, Hasenkrug KJ, Potts WK. Experimental viral evolution reveals major histocompatibility complex polymorphisms as the primary host factors controlling pathogen adaptation and virulence. Genes Immun 2013; 14:365-72. [PMID: 23698707 DOI: 10.1038/gene.2013.27] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 04/03/2013] [Accepted: 04/05/2013] [Indexed: 02/05/2023]
Abstract
Using an experimental evolution approach, we recently demonstrated that the mouse-specific pathogen Friend virus (FV) complex adapted to specific major histocompatibility complex (MHC) genotypes, which resulted in fitness tradeoffs when viruses were exposed to hosts possessing novel MHC polymorphisms. Here we report the analysis of patterns of pathogen adaptation and virulence evolution from viruses adapting to one of three hosts that differ across the entire genome (A/WySn, DBA/2J and BALB/c). We found that serial passage of FV complex through these mouse genotypes resulted in significant increases in pathogen fitness (156-fold) and virulence (11-fold). Adaptive responses by post-passage viruses also resulted in host-genotype-specific patterns of adaptation. To evaluate the relative importance of MHC versus non-MHC polymorphisms as factors influencing pathogen adaptation and virulence, we compared the magnitude of fitness tradeoffs incurred by post-passage viruses when infecting hosts possessing either novel MHC polymorphisms alone or hosts possessing novel MHC and non-MHC polymorphisms. MHC polymorphisms alone accounted for 71% and 83% of the total observed reductions in viral fitness and virulence in unfamiliar host genotypes, respectively. Strikingly, these data suggest that genetic polymorphisms within the MHC, a gene region representing only -0.1% of the genome, are major host factors influencing pathogen adaptation and virulence evolution.
Collapse
Affiliation(s)
- J L Kubinak
- Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112, USA.
| | | | | | | | | | | |
Collapse
|
104
|
Zaunders J, van Bockel D. Innate and Adaptive Immunity in Long-Term Non-Progression in HIV Disease. Front Immunol 2013; 4:95. [PMID: 23630526 PMCID: PMC3633949 DOI: 10.3389/fimmu.2013.00095] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 04/09/2013] [Indexed: 12/20/2022] Open
Abstract
Long-term non-progressors (LTNP) were identified after 10-15 years of the epidemic, and have been the subject of intense investigation ever since. In a small minority of cases, infection with nef/3'LTR deleted attenuated viral strains allowed control over viral replication. A common feature of LTNP is the readily detected proliferation of CD4 T-cells in vitro, in response to p24. In some cases, the responding CD4 T-cells have cytotoxic effector function and may target conserved p24 epitopes, similar to the CD8 T-cells described below. LTNP may also carry much lower HIV DNA burden in key CD4 subsets, presumably resulting from lower viral replication during primary infection. Some studies, but not others, suggest that LTNP have CD4 T-cells that are relatively resistant to HIV infection in vitro. One possible mechanism may involve up-regulation of the cell cycle regulator p21/waf in CD4 T-cells from LTNP. Delayed progression in Caucasian LTNP is also partly associated with heterozygosity of the Δ32 CCR5 allele, probably through decreased expression of CCR5 co-receptor on CD4 T-cells. However, in approximately half of Caucasian LTNP, two host genotypes, namely HLA-B57 and HLA-B27, are associated with viral control. Immunodominant CD8 T-cells from these individuals target epitopes in p24 that are highly conserved, and escape mutations have significant fitness costs to the virus. Furthermore, recent studies have suggested that these CD8 T-cells from LTNP, but not from HLA-B27 or HLA-B57 progressors, can cross-react with intermediate escape mutations, preventing full escape via compensatory mutations. Humoral immunity appears to play little part in LTNP subjects, since broadly neutralizing antibodies are rare, even amongst slow progressors. Recent genome-wide comparisons between LTNP and progressors have confirmed the HLA-B57, HLA-B27, and delta32 CCR5 allelic associations, plus indicated a role for HLA-C/KIR interactions, but have not revealed any new genotypes so far. Nevertheless, it is hoped that studying the mechanisms of intracellular restriction factors, such as the recently identified SAMHD1, will lead to a better understanding of non-progression.
Collapse
Affiliation(s)
- John Zaunders
- Centre for Applied Medical Research, St Vincent's Hospital Darlinghurst, NSW, Australia
| | | |
Collapse
|
105
|
Kløverpris HN, Payne RP, Sacha JB, Rasaiyaah JT, Chen F, Takiguchi M, Yang OO, Towers GJ, Goulder P, Prado JG. Early antigen presentation of protective HIV-1 KF11Gag and KK10Gag epitopes from incoming viral particles facilitates rapid recognition of infected cells by specific CD8+ T cells. J Virol 2013; 87:2628-38. [PMID: 23255798 PMCID: PMC3571362 DOI: 10.1128/jvi.02131-12] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2012] [Accepted: 12/11/2012] [Indexed: 02/07/2023] Open
Abstract
CD8(+) T cells are major players in antiviral immunity against human immunodeficiency virus type 1 (HIV-1) through recognition of viral epitopes presented on the surface of infected cells. However, the early events involving HIV-1 epitope presentation to CD8(+) T cells remain poorly understood but are nonetheless crucial for the rapid clearance of virus-infected cells. Here, we comprehensively studied the kinetics of antigen presentation of two protective epitopes, KF11Gag and KK10Gag, restricted by HLA alleles B*57:01 and B*27:05, respectively, and compared these to KY9Pol and VL9Vpr epitopes in a single cycle of HIV-1 replication. We consistently demonstrate differences in epitope presentation kinetics, with very early presentation, within 3 h postinfection, for the protective KF11Gag, KK10Gag epitopes, and KY9Pol but only late presentation for VL9Vpr. We show that this early presentation relies on the antigen being presented from incoming viral particles and is correlated with rapid CD8(+) T cell activation and clearance of virus-infected cells. Additionally, our data indicate a dose-response dependency between the levels of CD8(+) T cell activation and the amount of virus inoculum. These data reflect a proof of principle emphasizing the importance of identifying early-presented viral epitopes for rapid elimination of HIV-1-infected cells.
Collapse
Affiliation(s)
| | | | - Jonah B. Sacha
- Vaccine & Gene Therapy Institute, Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, USA
| | - Jane T. Rasaiyaah
- Medical Research Council Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London, London, United Kingdom
| | - Fabian Chen
- Department of Sexual Health, Royal Berkshire Hospital, Reading, United Kingdom
| | | | - Otto O. Yang
- Departments of Medicine and Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Greg J. Towers
- Medical Research Council Centre for Medical Molecular Virology, Division of Infection and Immunity, University College London, London, United Kingdom
| | - Philip Goulder
- Department of Paediatrics, University of Oxford, United Kingdom
| | - Julia G. Prado
- AIDS Research Institute IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Badalona, Barcelona, Spain
| |
Collapse
|
106
|
A Molecular Basis for the Control of Preimmune Escape Variants by HIV-Specific CD8+ T Cells. Immunity 2013; 38:425-36. [DOI: 10.1016/j.immuni.2012.11.021] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Accepted: 11/05/2012] [Indexed: 12/11/2022]
|
107
|
Poor HIV control in HLA-B*27 and B*57/58 noncontrollers is associated with limited number of polyfunctional Gag p24-specific CD8+ T cells. AIDS 2013; 27:17-27. [PMID: 23079801 DOI: 10.1097/qad.0b013e32835ac0e1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Analysis of immune response in HIV controllers, a unique group of infected individuals who are able to control HIV naturally, has provided us a chance to investigate the roles of host immune responses in HIV control. DESIGN In this study, the functional quality of HIV Gag p24-specific CD8 T-cell responses was assessed in two groups of clinically distinct, HLA-B*27, HLA-B*57/58-matched individuals, viremic controllers [plasma HIV load (pVL) ≤ 2000 copies/ml) and noncontrollers (pVL >2000 copies/ml) to determine its impacts on natural HIV clinical outcome. METHODS An ex-vivo interferon (IFN)-γ ELISpot assay was used to screen for each individual's HIV Gag p24-specific T-cell responses. Intracellular cytokine staining assay was used to determine their functional quality (as number of cytokine being produced). RESULTS We found that, in contrast to previous studies, all Thai volunteers with HLA-B*5801 were uniformly noncontrollers. Viremic controllers were observed with a significantly larger number of high functional quality p24-specific CD8 T cells than noncontrollers (P < 0.05). This superior quality of responses was observed at both total p24 and epitope-specific level. Moreover, the absolute number of high functional quality Gag p24-specific CD8 T cells was significantly in a negative correlation with pVL (r = -0.6984, P = 0.0006) and also in a positive correlation with CD4 T-cell count (r = 0.5648, P = 0.0095). CONCLUSION We concluded that an adequate number of high functional quality Gag p24-specific CD8 T cells is strongly associated with a natural HIV controller status.
Collapse
|
108
|
Yue L, Prentice HA, Farmer P, Song W, He D, Lakhi S, Goepfert P, Gilmour J, Allen S, Tang J, Kaslow RA, Hunter E. Cumulative impact of host and viral factors on HIV-1 viral-load control during early infection. J Virol 2013; 87:708-15. [PMID: 23115285 PMCID: PMC3554094 DOI: 10.1128/jvi.02118-12] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 10/24/2012] [Indexed: 12/22/2022] Open
Abstract
In HIV-1 infection, the early set-point viral load strongly predicts both viral transmission and disease progression. The factors responsible for the wide spectrum of set-point viral loads are complex and likely reflect an interplay between the transmitted virus and genetically defined factors in both the transmitting source partner and the seroconverter. Indeed, analysis of 195 transmission pairs from Lusaka, Zambia, revealed that the viral loads in transmitting source partners contributed only ∼2% of the variance in early set-point viral loads of seroconverters (P = 0.046 by univariable analysis). In multivariable models, early set-point viral loads in seroconverting partners were a complex function of (i) the viral load in the source partner, (ii) the gender of the seroconverter, (iii) specific HLA class I alleles in the newly infected partner, and (iv) sharing of HLA-I alleles between partners in a transmission pair. Each of these factors significantly and independently contributed to the set-point viral load in the newly infected partner, accounting for up to 37% of the variance observed and suggesting that many factors operate in concert to define the early virological phenotype in HIV-1 infection.
Collapse
Affiliation(s)
- Ling Yue
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Heather A. Prentice
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Paul Farmer
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Wei Song
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Dongning He
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Shabir Lakhi
- Zambia-Emory HIV Research Project, Lusaka, Zambia
| | - Paul Goepfert
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jill Gilmour
- International AIDS Vaccine Initiative, London, England
| | - Susan Allen
- Department of Pathology, Emory University, Atlanta, Georgia, USA
| | - Jianming Tang
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Richard A. Kaslow
- Department of Epidemiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Eric Hunter
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
- Department of Pathology, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
109
|
Infectious Disease Modeling. Infect Dis (Lond) 2013. [PMCID: PMC7121366 DOI: 10.1007/978-1-4614-5719-0_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Infectious disease models are mathematical descriptions of the spread of infection. The majority of infectious disease models consider the spread of infection from one host to another and are sometimes grouped together as “mathematical epidemiology.” A growing body of work considers the spread of infection within an individual, often with a particular focus on interactions between the infectious agent and the host’s immune responses. Such models are sometimes grouped together as “within-host models.” Most recently, new models have been developed that consider host–pathogen interactions at two levels simultaneously: both within-host dynamics and between-host transmissions. Infectious disease models vary widely in their complexity, in their attempts to refer to data from real-life infections and in their focus on problems of an applied or more fundamental nature. This entry will focus on simpler models tightly tied to data and aimed at addressing well-defined practical problems.
Collapse
|
110
|
Prendergast AJ, Klenerman P, Goulder PJR. The impact of differential antiviral immunity in children and adults. Nat Rev Immunol 2012; 12:636-48. [PMID: 22918466 DOI: 10.1038/nri3277] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The course of immune maturation has evolved to favour survival at each stage of development in early life. Fetal and neonatal immune adaptations facilitate intrauterine survival and provide early postnatal protection against extracellular pathogens, but they leave infants susceptible to intracellular pathogens such as viruses that are acquired perinatally. This Review focuses on three such pathogens--HIV, hepatitis B virus and cytomegalovirus--and relates the differential impact of these infections in infants and adults to the antiviral immunity that is generated at different ages. A better understanding of age-specific antiviral immunity may inform the development of integrated prevention, treatment and vaccine strategies to minimize the global disease burden resulting from these infections.
Collapse
Affiliation(s)
- Andrew J Prendergast
- Centre for Paediatrics, Blizard Institute, Queen Mary University of London, Newark Street, London E1 2AT, UK
| | | | | |
Collapse
|
111
|
Distinct HIV-1 escape patterns selected by cytotoxic T cells with identical epitope specificity. J Virol 2012; 87:2253-63. [PMID: 23236061 DOI: 10.1128/jvi.02572-12] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pol283-8-specific, HLA-B*51:01-restricted, cytotoxic T cells (CTLs) play a critical role in the long-term control of HIV-1 infection. However, these CTLs select for the reverse transcriptase (RT) I135X escape mutation, which may be accumulating in circulating HIV-1 sequences. We investigated the selection of the I135X mutation by CTLs specific for the same epitope but restricted by HLA-B*52:01. We found that Pol283-8-specific, HLA-B*52:01-restricted CTLs were elicited predominantly in chronically HIV-1-infected individuals. These CTLs had a strong ability to suppress the replication of wild-type HIV-1, though this ability was weaker than that of HLA-B*51:01-restricted CTLs. The crystal structure of the HLA-B*52:01-Pol283-8 peptide complex provided clear evidence that HLA-B*52:01 presents the peptide similarly to HLA-B*51:01, ensuring the cross-presentation of this epitope by both alleles. Population level analyses revealed a strong association of HLA-B*51:01 with the I135T mutant and a relatively weaker association of HLA-B*52:01 with several I135X mutants in both Japanese and predominantly Caucasian cohorts. An in vitro viral suppression assay revealed that the HLA-B*52:01-restricted CTLs failed to suppress the replication of the I135X mutant viruses, indicating the selection of these mutants by the CTLs. These results suggest that the different pattern of I135X mutant selection may have resulted from the difference between these two CTLs in the ability to suppress HIV-1 replication.
Collapse
|
112
|
O'Connell RJ, Kim JH, Corey L, Michael NL. Human immunodeficiency virus vaccine trials. Cold Spring Harb Perspect Med 2012; 2:a007351. [PMID: 23209178 PMCID: PMC3543076 DOI: 10.1101/cshperspect.a007351] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
More than 2 million AIDS-related deaths occurred globally in 2008, and more than 33 million people are living with HIV/AIDS. Despite promising advances in prevention, an estimated 2.7 million new HIV infections occurred in that year, so that for every two patients placed on combination antiretroviral treatment, five people became infected. The pandemic poses a formidable challenge to the development, progress, and stability of global society 30 years after it was recognized. Experimental preventive HIV-1 vaccines have been administered to more than 44,000 human volunteers in more than 187 separate trials since 1987. Only five candidate vaccine strategies have been advanced to efficacy testing. The recombinant glycoprotein (rgp)120 subunit vaccines, AIDSVAX B/B and AIDSVAX B/E, and the Merck Adenovirus serotype (Ad)5 viral-vector expressing HIV-1 Gag, Pol, and Nef failed to show a reduction in infection rate or lowering of postinfection viral set point. Most recently, a phase III trial that tested a heterologous prime-boost vaccine combination of ALVAC-HIV vCP1521 and bivalent rgp120 (AIDSVAX B/E) showed 31% efficacy in protection from infection among community-risk Thai participants. A fifth efficacy trial testing a DNA/recombinant(r) Ad5 prime-boost combination is currently under way. We review the clinical trials of HIV vaccines that have provided insight into human immunogenicity or efficacy in preventing HIV-1 infection.
Collapse
Affiliation(s)
- Robert J O'Connell
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | | | | | | |
Collapse
|
113
|
Rapid antigen processing and presentation of a protective and immunodominant HLA-B*27-restricted hepatitis C virus-specific CD8+ T-cell epitope. PLoS Pathog 2012; 8:e1003042. [PMID: 23209413 PMCID: PMC3510254 DOI: 10.1371/journal.ppat.1003042] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 10/03/2012] [Indexed: 12/20/2022] Open
Abstract
HLA-B*27 exerts protective effects in hepatitis C virus (HCV) and human immunodeficiency virus (HIV) infections. While the immunological and virological features of HLA-B*27-mediated protection are not fully understood, there is growing evidence that the presentation of specific immunodominant HLA-B*27-restricted CD8+ T-cell epitopes contributes to this phenomenon in both infections. Indeed, protection can be linked to single immunodominant CD8+ T-cell epitopes and functional constraints on escape mutations within these epitopes. To better define the immunological mechanisms underlying HLA-B*27-mediated protection in HCV infection, we analyzed the functional avidity, functional profile, antiviral efficacy and naïve precursor frequency of CD8+ T cells targeting the immunodominant HLA-B*27-restricted HCV-specific epitope as well as its antigen processing and presentation. For comparison, HLA-A*02-restricted HCV-specific epitopes were analyzed. The HLA-B*27-restricted CD8+ T-cell epitope was not superior to epitopes restricted by HLA-A*02 when considering the functional avidity, functional profile, antiviral efficacy or naïve precursor frequency. However, the peptide region containing the HLA-B*27-restricted epitope was degraded extremely fast by both the constitutive proteasome and the immunoproteasome. This efficient proteasomal processing that could be blocked by proteasome inhibitors was highly dependent on the hydrophobic regions flanking the epitope and led to rapid and abundant presentation of the epitope on the cell surface of antigen presenting cells. Our data suggest that rapid antigen processing may be a key immunological feature of this protective and immunodominant HLA-B*27-restricted HCV-specific epitope.
Collapse
|
114
|
Li Y, Gierahn T, Thompson CM, Trzciński K, Ford CB, Croucher N, Gouveia P, Flechtner JB, Malley R, Lipsitch M. Distinct effects on diversifying selection by two mechanisms of immunity against Streptococcus pneumoniae. PLoS Pathog 2012; 8:e1002989. [PMID: 23144610 PMCID: PMC3493470 DOI: 10.1371/journal.ppat.1002989] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 08/29/2012] [Indexed: 12/23/2022] Open
Abstract
Antigenic variation to evade host immunity has long been assumed to be a driving force of diversifying selection in pathogens. Colonization by Streptococcus pneumoniae, which is central to the organism's transmission and therefore evolution, is limited by two arms of the immune system: antibody- and T cell- mediated immunity. In particular, the effector activity of CD4+ TH17 cell mediated immunity has been shown to act in trans, clearing co-colonizing pneumococci that do not bear the relevant antigen. It is thus unclear whether TH17 cell immunity allows benefit of antigenic variation and contributes to diversifying selection. Here we show that antigen-specific CD4+ TH17 cell immunity almost equally reduces colonization by both an antigen-positive strain and a co-colonized, antigen-negative strain in a mouse model of pneumococcal carriage, thus potentially minimizing the advantage of escape from this type of immunity. Using a proteomic screening approach, we identified a list of candidate human CD4+ TH17 cell antigens. Using this list and a previously published list of pneumococcal Antibody antigens, we bioinformatically assessed the signals of diversifying selection among the identified antigens compared to non-antigens. We found that Antibody antigen genes were significantly more likely to be under diversifying selection than the TH17 cell antigen genes, which were indistinguishable from non-antigens. Within the Antibody antigens, epitopes recognized by human antibodies showed stronger evidence of diversifying selection. Taken together, the data suggest that TH17 cell-mediated immunity, one form of T cell immunity that is important to limit carriage of antigen-positive pneumococcus, favors little diversifying selection in the targeted antigen. The results could provide new insight into pneumococcal vaccine design. Streptococcus pneumoniae, or pneumococcus, is a leading cause of morbidity and mortality in young children and elderly persons worldwide. Current pneumococcus vaccines target a limited number of clinically important serotypes, while strains with serotypes not targeted by current vaccines are increasing in importance in both carriage and invasive disease. As a result, there has been a substantial interest to develop novel, cost-effective vaccines based on protein antigens from pneumococcus. To this end, it is critical to understand how the human immune system exerts selection pressures on the targeted antigens. Two immune mechanisms targeting pneumococcal protein antigens have been documented, mediated by antibody and T cells, respectively. In this study, we screened for pneumococcal antigens that are commonly recognized by human CD4+ TH17 cells. Using a mouse model of pneumococcal colonization, we demonstrate that TH17 cell-based immunity almost equally reduces colonization by both an antigen-positive strain and a co-colonizing, antigen-negative strain. Furthermore, we demonstrate that the DNA sequences of TH17 cell antigens demonstrate no detectable signs of being under selective pressure, unlike pneumococcal antigens known to be strong antibody targets. Thus, one form of the T cell-mediated immunity that is important to limit carriage of antigen-positive pneumococcus favors little diversifying selection in the targeted antigen. These results suggest evolution of escape from TH17 -based vaccines may be slower than from antibody-based vaccines.
Collapse
Affiliation(s)
- Yuan Li
- Department of Epidemiology and Department of Immunology & Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
115
|
Abstract
HIV is a disease in which the original clinical observations of severe opportunistic infections gave the first clues regarding the underlying pathology, namely that HIV is essentially an infection of the immune system. HIV infects and deletes CD4(+) T cells that normally coordinate the adaptive T- and B-cell response to defend against intracellular pathogens. The immune defect is immediate and profound: At the time of acute infection with an AIDS virus, typically more than half of the gut-associated CD4(+) T cells are depleted, leaving a damaged immune system to contend with a life-long infection.
Collapse
Affiliation(s)
- Bruce Walker
- Ragon Institute of MGH, MIT, and Harvard Mass General Hospital-East, Charlestown, Massachusetts 02129, USA.
| | | |
Collapse
|
116
|
Smith LM, McWhorter AR, Shellam GR, Redwood AJ. The genome of murine cytomegalovirus is shaped by purifying selection and extensive recombination. Virology 2012; 435:258-68. [PMID: 23107009 DOI: 10.1016/j.virol.2012.08.041] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 08/02/2012] [Accepted: 08/24/2012] [Indexed: 11/19/2022]
Abstract
The herpesvirus lifestyle results in a long-term interaction between host and invading pathogen, resulting in exquisite adaptation of virus to host. We have sequenced the genomes of nine strains of murine cytomegalovirus (a betaherpesvirus), isolated from free-living mice trapped at locations separated geographically and temporally. Despite this separation these genomes were found to have low levels of nucleotide variation. Of the more than 160 open reading frames, almost 90% had a dN/dS ratio of amino acid substitutions of less than 0.6, indicating the level of purifying selection on the coding potential of MCMV. Examination of selection acting on individual genes at the codon level however indicates some level of positive selection, with 0.03% of codons showing strong evidence for positive selection. Conversely, 1.3% of codons show strong evidence of purifying selection. Alignments of both genome sequences and coding regions suggested that high levels of recombination have shaped the MCMV genome.
Collapse
Affiliation(s)
- L M Smith
- School of Pathology and Laboratory Medicine, University of Western Australia, Australia
| | | | | | | |
Collapse
|
117
|
Hemelaar J. Implications of HIV diversity for the HIV-1 pandemic. J Infect 2012; 66:391-400. [PMID: 23103289 DOI: 10.1016/j.jinf.2012.10.026] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 10/21/2012] [Indexed: 11/17/2022]
Abstract
HIV-1 genetic variability within individuals and populations plays a central role in the HIV pandemic. Multiple zoonotic transmissions of SIV to humans have resulted in distinct HIV lineages in humans which have further diversified within the population over time. High rates of mutation and recombination during HIV reverse transcription create a genetic diversity in the host which is subject to selection pressures by the immune response and antiretroviral treatment. The global distribution of HIV genetic variants and the impact of HIV diversity on pathogenesis, transmission and clinical management are reviewed. Finally, the key role of escape mutations in the immune response to HIV is discussed as well as the major challenge which HIV-1 diversity poses to HIV vaccine development.
Collapse
Affiliation(s)
- Joris Hemelaar
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Women's Centre, Level 3, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom.
| |
Collapse
|
118
|
Levitz L, Koita OA, Sangare K, Ardito MT, Boyle CM, Rozehnal J, Tounkara K, Dao SM, Koné Y, Koty Z, Buus S, Moise L, Martin WD, De Groot AS. Conservation of HIV-1 T cell epitopes across time and clades: validation of immunogenic HLA-A2 epitopes selected for the GAIA HIV vaccine. Vaccine 2012; 30:7547-60. [PMID: 23102976 DOI: 10.1016/j.vaccine.2012.10.042] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 09/10/2012] [Accepted: 10/11/2012] [Indexed: 11/17/2022]
Abstract
HIV genomic sequence variability has complicated efforts to generate an effective globally relevant vaccine. Regions of the viral genome conserved in sequence and across time may represent the "Achilles' heel" of HIV. In this study, highly conserved T-cell epitopes were selected using immunoinformatics tools combining HLA-A2 supertype binding predictions with relative global conservation. Analysis performed in 2002 on 10,803 HIV-1 sequences, and again in 2009, on 43,822 sequences, yielded 38 HLA-A2 epitopes. These epitopes were experimentally validated for HLA binding and immunogenicity with PBMCs from HIV-infected patients in Providence, Rhode Island, and/or Bamako, Mali. Thirty-five (92%) stimulated an IFNγ response in PBMCs from at least one subject. Eleven of fourteen peptides (79%) were confirmed as HLA-A2 epitopes in both locations. Validation of these HLA-A2 epitopes conserved across time, clades, and geography supports the hypothesis that such epitopes could provide effective coverage of virus diversity and would be appropriate for inclusion in a globally relevant HIV vaccine.
Collapse
Affiliation(s)
- Lauren Levitz
- EpiVax, Inc., Providence, Rhode Island, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
119
|
The potential role of epitope-specific T-cell receptor diversity in the control of HIV replication. Curr Opin HIV AIDS 2012; 2:177-82. [PMID: 19372884 DOI: 10.1097/coh.0b013e3280ef692f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE OF REVIEW The purpose of this review is to assess the influence of T-cell receptor clonotype diversity on the recognition and control of chronic viral infections, and specifically in the case of HIV infection. RECENT FINDINGS The latest publications have examined the role of T-cell receptor repertoires specific for dominant epitopes in the ability to recognize variants and control viremia in chronic viral infections. In the hepatitis C virus and SIV models, diverse T-cell receptor repertoires appear to limit immune escape. In HIV infection, circulating clonotypes may have different functional abilities, showing another potential advantage of diverse clonotypic repertoires. A recent study suggests that at times narrow repertoires against a conserved epitope may be effective, perhaps through the ability to cross-recognize potential epitope variants. SUMMARY The studies discussed in this review have identified T-cell receptor diversity as an important factor for understanding the immune recognition of highly variable viruses. Further studies are needed to determine whether T-cell receptor repertoire analysis of HIV epitope-specific immune responses will provide a more accurate correlate for the control of viremia than conventional immune function assays.
Collapse
|
120
|
Abstract
Successful vaccine development for infectious diseases has largely been achieved in settings where natural immunity to the pathogen results in clearance in at least some individuals. HIV presents an additional challenge in that natural clearance of infection does not occur, and the correlates of immune protection are still uncertain. However, partial control of viremia and markedly different outcomes of disease are observed in HIV-infected persons. Here, we examine the antiviral mechanisms implicated by one variable that has been consistently associated with extremes of outcome, namely HLA class I alleles, and in particular HLA-B, and examine the mechanisms by which this modulation is likely to occur and the impact of these interactions on evolution of the virus and the host. Studies to date provide evidence for both HLA-dependent and epitope-dependent influences on viral control and viral evolution and have important implications for the continued quest for an effective HIV vaccine.
Collapse
|
121
|
Temporal association of HLA-B*81:01- and HLA-B*39:10-mediated HIV-1 p24 sequence evolution with disease progression. J Virol 2012; 86:12013-24. [PMID: 22933291 DOI: 10.1128/jvi.00539-12] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
HLA-B*81:01 and HLA-B*39:10 alleles have been associated with viremic control in HIV-1 subtype C infection. Both alleles restrict the TL9 epitope in p24 Gag, and cytotoxic-T-lymphocyte (CTL)-mediated escape mutations in this epitope have been associated with an in vitro fitness cost to the virus. We investigated the timing and impact of mutations in the TL9 epitope on disease progression in five B*81:01- and two B*39:10-positive subtype C-infected individuals. Whereas both B*39:10 participants sampled at 2 months postinfection had viruses with mutations in the TL9 epitope, in three of the five (3/5) B*81:01 participants, TL9 escape mutations were only detected 10 months after infection, taking an additional 10 to 15 months to reach fixation. In the two remaining B*81:01 individuals, one carried a TL9 escape variant at 2 weeks postinfection, whereas no escape mutations were detected in the virus from the other participant for up to 33 months postinfection, despite CTL targeting of the epitope. In all participants, escape mutations in TL9 were linked to coevolving residues in the region of Gag known to be associated with host tropism. Late escape in TL9, together with coevolution of putative compensatory mutations, coincided with a spontaneous increase in viral loads in two individuals who were otherwise controlling the infection. These results provide in vivo evidence of the detrimental impact of B*81:01-mediated viral evolution, in a single Gag p24 epitope, on the control of viremia.
Collapse
|
122
|
Chen H, Ndhlovu ZM, Liu D, Porter LC, Fang JW, Darko S, Brockman MA, Miura T, Brumme ZL, Schneidewind A, Piechocka-Trocha A, Cesa KT, Sela J, Cung TD, Toth I, Pereyra F, Yu XG, Douek DC, Kaufmann DE, Allen TM, Walker BD. TCR clonotypes modulate the protective effect of HLA class I molecules in HIV-1 infection. Nat Immunol 2012; 13:691-700. [PMID: 22683743 DOI: 10.1038/ni.2342] [Citation(s) in RCA: 188] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 05/11/2012] [Indexed: 12/17/2022]
Abstract
The human leukocyte antigens HLA-B27 and HLA-B57 are associated with protection against progression of disease that results from infection with human immunodeficiency virus type 1 (HIV-1), yet most people with alleles encoding HLA-B27 and HLA-B57 are unable to control HIV-1. Here we found that HLA-B27-restricted CD8(+) T cells in people able to control infection with HIV-1 (controllers) and those who progress to disease after infection with HIV-1 (progressors) differed in their ability to inhibit viral replication through targeting of the immunodominant epitope of group-associated antigen (Gag) of HIV-1. This was associated with distinct T cell antigen receptor (TCR) clonotypes, characterized by superior control of HIV-1 replication in vitro, greater cross-reactivity to epitope variants and enhanced loading and delivery of perforin. We also observed clonotype-specific differences in antiviral efficacy for an immunodominant HLA-B57-restricted response in controllers and progressors. Thus, the efficacy of such so-called 'protective alleles' is modulated by specific TCR clonotypes selected during natural infection, which provides a functional explanation for divergent HIV-1 outcomes.
Collapse
Affiliation(s)
- Huabiao Chen
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
123
|
Glances in Immunology of HIV and HCV Infection. Adv Virol 2012; 2012:434036. [PMID: 22754568 PMCID: PMC3375159 DOI: 10.1155/2012/434036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 03/12/2012] [Indexed: 12/16/2022] Open
Abstract
Since the identification of HIV and HCV much progress has been made in the understanding of their life cycle and interaction with the host immune system. Despite these viruses markedly differ in their virological properties and in their pathogenesis, they share many common features in their immune escape and survival strategy. Both viruses have developed sophisticated ways to subvert and antagonize host innate and adaptive immune responses. In the last years, much effort has been done in the study of the AIDS pathogenesis and in the development of efficient treatment strategies, and a fatal infection has been transformed in a potentially chronic pathology. Much of this knowledge is now being transferred in the HCV research field, especially in the development of new drugs, although a big difference still remains between the outcome of the two infections, being HCV eradicable after treatment, whereas HIV eradication remains at present unachievable due to the establishment of reservoirs. In this review, we present current knowledge on innate and adaptive immune recognition and activation during HIV and HCV mono-infections and evasion strategies. We also discuss the genetic associations between components of the immune system, the course of infection, and the outcome of the therapies.
Collapse
|
124
|
Choi RY, Fowke KR, Juno J, Lohman-Payne B, Oyugi JO, Brown ER, Bosire R, John-Stewart G, Farquhar C. C868T single nucleotide polymorphism and HIV type 1 disease progression among postpartum women in Kenya. AIDS Res Hum Retroviruses 2012; 28:566-70. [PMID: 21902583 DOI: 10.1089/aid.2011.0095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The C868T single nucleotide polymorphism in the CD4 receptor encodes an amino acid substitution of tryptophan for arginine in the third domain. Previous studies suggest that C868T increases the risk of HIV-1 acquisition; however, the influence of this single nucleotide polymorphism (SNP) on disease progression has not been established. The presence of the C868T polymorphism was not statistically significantly associated with HIV-1 disease progression outcomes in a cohort of postpartum Kenyan women.
Collapse
Affiliation(s)
- Robert Y. Choi
- Department of Medicine, University of Washington, Seattle, Washington
| | - Keith R. Fowke
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Community Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
| | - Jennifer Juno
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | - Julius O. Oyugi
- Department of Medical Microbiology, University of Nairobi, Nairobi, Kenya
| | - Elizabeth R. Brown
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Diseases Division and Public Health Science Division, Seattle, Washington
| | - Rose Bosire
- Kenya Medical Research Institute, Nairobi, Kenya
| | - Grace John-Stewart
- Department of Medicine, University of Washington, Seattle, Washington
- Department of Epidemiology, University of Washington, Seattle, Washington
- Department of Global Health, University of Washington, Seattle, Washington
| | - Carey Farquhar
- Department of Medicine, University of Washington, Seattle, Washington
- Department of Epidemiology, University of Washington, Seattle, Washington
- Department of Global Health, University of Washington, Seattle, Washington
| |
Collapse
|
125
|
García F, León A, Gatell JM, Plana M, Gallart T. Therapeutic vaccines against HIV infection. Hum Vaccin Immunother 2012; 8:569-81. [PMID: 22634436 DOI: 10.4161/hv.19555] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Resistance to medication, adverse effects in the medium-to-long-term and cost all place important limitations on lifelong adherence to combined antiretroviral therapy (cART). In this context, new therapeutic alternatives to 'cART for life' in HIV-infected patients merit investigation. Some data suggest that strong T cell-mediated immunity to HIV can indeed limit virus replication and protect against CD4 depletion and disease progression. The combination of cART with immune therapy to restore and/or boost immune-specific responses to HIV has been proposed, the ultimate aim being to achieve a 'functional cure'. In this scenario, new, induced, HIV-specific immune responses would be able to control viral replication to undetectable levels, mimicking the situation of the minority of patients who control viral replication without treatment and do not progress to AIDS. Classical approaches such as whole inactivated virus or recombinant protein initially proved useful as therapeutic vaccines. Overall, however, the ability of these early vaccines to increase HIV-specific responses was very limited and study results were discouraging, as no consistent immunogenicity was demonstrated and there was no clear impact on viral load. Recent years have seen the development of new approaches based on more innovative vectors such as DNA, recombinant virus or dendritic cells. Most clinical trials of these new vectors have demonstrated their ability to induce HIV-specific immune responses, although they show very limited efficacy in terms of controlling viral replication. However, some preliminary results suggest that dendritic cell-based vaccines are the most promising candidates. To improve the effectiveness of these vaccines, a better understanding of the mechanisms of protection, virological control and immune deterioration is required; without this knowledge, an efficacious therapeutic vaccine will remain elusive.
Collapse
Affiliation(s)
- Felipe García
- Hospital Clinic-HIVACAT, IDIBAPS, University of Barcelona, Barcelona, Spain.
| | | | | | | | | |
Collapse
|
126
|
Roy SM, Wodarz D. Infection of HIV-specific CD4 T helper cells and the clonal composition of the response. J Theor Biol 2012; 304:143-51. [PMID: 22480435 DOI: 10.1016/j.jtbi.2012.03.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 03/13/2012] [Accepted: 03/14/2012] [Indexed: 11/24/2022]
Abstract
A hallmark of human immunodeficiency virus is its ability to infect CD4+ T helper cells, thus impairing helper cell responses and consequently effector responses whose maintenance depends on help (such as killer T cells and B cells). In particular, the virus has been shown to infect HIV-specific helper cells preferentially. Using mathematical models, we investigate the consequence of this assumption for the basic dynamics between HIV and its target cells, assuming the existence of two independently regulated helper cell clones, directed against different epitopes of the virus. In contrast to previous studies, we examine a relatively simple scenario, only concentrating on the interactions between the virus and its target cells, not taking into account any helper-dependent effector responses. Further, there is no direct competition for space or antigenic stimulation in the model. Yet, a set of interesting outcomes is observed that provide further insights into factors that shape helper cell responses. Despite the absence of competition, a stronger helper cell clone can still exclude a weaker one because the two clones are infected by the same pathogen, an ecological concept called "apparent competition". Moreover, we also observe "facilitation": if one of the helper cell clones is too weak to become established in isolation, the presence of a stronger clone can provide enhanced antigenic stimulation, thus allowing the weaker clone to persist. The dependencies of these outcomes on parameters is explored. Factors that reduce viral infectivity and increase the death rate of infected cells promote coexistence, which is in agreement with the observation that stronger immunity correlates with broader helper cell responses. The basic model is extended to explicitly take into account helper-dependent CTL responses and direct competition. This study sheds further light onto the factors that can influence the clonal composition of HIV-specific helper cell responses, which has implications for the overall pattern of disease progression.
Collapse
Affiliation(s)
- Sarah M Roy
- Department of Ecology and Evolutionary Biology, 321 Steinhaus Hall, University of California, Irvine, CA 92697, USA
| | | |
Collapse
|
127
|
Janbazian L, Price DA, Canderan G, Filali-Mouhim A, Asher TE, Ambrozak DR, Scheinberg P, Boulassel MR, Routy JP, Koup RA, Douek DC, Sekaly RP, Trautmann L. Clonotype and repertoire changes drive the functional improvement of HIV-specific CD8 T cell populations under conditions of limited antigenic stimulation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 188:1156-67. [PMID: 22210916 PMCID: PMC3262882 DOI: 10.4049/jimmunol.1102610] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Persistent exposure to cognate Ag leads to the functional impairment and exhaustion of HIV-specific CD8 T cells. Ag withdrawal, attributable either to antiretroviral treatment or the emergence of epitope escape mutations, causes HIV-specific CD8 T cell responses to wane over time. However, this process does not continue to extinction, and residual CD8 T cells likely play an important role in the control of HIV replication. In this study, we conducted a longitudinal analysis of clonality, phenotype, and function to define the characteristics of HIV-specific CD8 T cell populations that persist under conditions of limited antigenic stimulation. Ag decay was associated with dynamic changes in the TCR repertoire, increased expression of CD45RA and CD127, decreased expression of programmed death-1, and the emergence of polyfunctional HIV-specific CD8 T cells. High-definition analysis of individual clonotypes revealed that the Ag loss-induced gain of function within HIV-specific CD8 T cell populations could be attributed to two nonexclusive mechanisms: 1) functional improvement of persisting clonotypes; and 2) recruitment of particular clonotypes endowed with superior functional capabilities.
Collapse
Affiliation(s)
- Loury Janbazian
- Laboratory of Immunology, Department of Microbiology and Immunology, Université de Montréal, Montreal, H2X 1P1, Canada
| | - David A. Price
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
- Institute of InfectionandImmunity, Cardiff University School of Medicine, Cardiff, CF14 4XN, Wales, UK
| | - Glenda Canderan
- Vaccine and Gene Therapy Institute - Florida (VGTI-FL), Port Saint Lucie, FL 34987, USA
| | - Abdelali Filali-Mouhim
- Laboratory of Immunology, Department of Microbiology and Immunology, Université de Montréal, Montreal, H2X 1P1, Canada
| | - Tedi E. Asher
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - David R. Ambrozak
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Phillip Scheinberg
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mohamad Rachid Boulassel
- Division of Hematology, Royal Victoria Hospital, McGill University Health Centre, Montreal, H3A 1A1, Canada
| | - Jean-Pierre Routy
- Division of Hematology, Royal Victoria Hospital, McGill University Health Centre, Montreal, H3A 1A1, Canada
| | - Richard A. Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel C. Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rafick-Pierre Sekaly
- Laboratory of Immunology, Department of Microbiology and Immunology, Université de Montréal, Montreal, H2X 1P1, Canada
- Vaccine and Gene Therapy Institute - Florida (VGTI-FL), Port Saint Lucie, FL 34987, USA
- Faculty of Medicine, Department of Microbiology and Immunology, McGill University, Montreal, H3A 2B4, Canada
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33101, USA
| | - Lydie Trautmann
- Vaccine and Gene Therapy Institute - Florida (VGTI-FL), Port Saint Lucie, FL 34987, USA
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33101, USA
| |
Collapse
|
128
|
Liao Q, Strong AJ, Liu Y, Liu Y, Meng P, Fu Y, Touzjian N, Shao Y, Zhao Z, Lu Y. HIV vaccine candidates generate in vitro T cell response to putative epitopes in Chinese-origin rhesus macaques. Vaccine 2012; 30:1601-8. [PMID: 22261410 DOI: 10.1016/j.vaccine.2011.12.117] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 12/16/2011] [Accepted: 12/23/2011] [Indexed: 11/30/2022]
Abstract
The Indian rhesus macaque is the established animal model for HIV infection and vaccine research. Growing evidence suggests that the more readily available Chinese rhesus macaque may be a more relevant option. As increasing numbers of novel Chinese rhesus MHC alleles are reported, we decided to explore potential HIV vaccine epitopes in this model. We immunized forty Chinese rhesus macaques with three different HIV vaccine candidates either individually or following a prime/boost strategy. We used ELISPOT to measure immune response in vitro to HIV-1 p24C and HIV-1 gp160 peptide libraries. We identified five putative epitopes with associations to HLA-I alleles including HLA*B-2705 and HLA-B*5101 (associated with slow disease progression and low viral set point) and HLA-B*18 (associated with rapid disease progression and high viral set point). This suggests the possible use of Chinese rhesus macaques to model different disease progressions. We also explored the use of fusion proteins as stimulators in ELISPOT assays. While PBMCs from 6 monkeys responded to peptide stimulation, PBMCs from 28 monkeys responded to the anthrax lethal factor fusion proteins LFn p24C and/or LFn gp140C. Our results support the use of Chinese rhesus macaques in HIV vaccine studies.
Collapse
Affiliation(s)
- Qi Liao
- Vaccine Laboratory, NanKai University, Tianjin, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Mothe B, Llano A, Ibarrondo J, Zamarreño J, Schiaulini M, Miranda C, Ruiz-Riol M, Berger CT, Herrero MJ, Palou E, Plana M, Rolland M, Khatri A, Heckerman D, Pereyra F, Walker BD, Weiner D, Paredes R, Clotet B, Felber BK, Pavlakis GN, Mullins JI, Brander C. CTL responses of high functional avidity and broad variant cross-reactivity are associated with HIV control. PLoS One 2012; 7:e29717. [PMID: 22238642 PMCID: PMC3251596 DOI: 10.1371/journal.pone.0029717] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 12/02/2011] [Indexed: 12/19/2022] Open
Abstract
Cytotoxic T lymphocyte (CTL) responses targeting specific HIV proteins, in particular Gag, have been associated with relative control of viral replication in vivo. However, Gag-specific CTL can also be detected in individuals who do not control the virus and it remains thus unclear how Gag-specific CTL may mediate the beneficial effects in some individuals but not in others. Here, we used a 10mer peptide set spanning HIV Gag-p24 to determine immunogen-specific T-cell responses and to assess functional properties including functional avidity and cross-reactivity in 25 HIV-1 controllers and 25 non-controllers without protective HLA class I alleles. Our data challenge the common belief that Gag-specific T cell responses dominate the virus-specific immunity exclusively in HIV-1 controllers as both groups mounted responses of comparable breadths and magnitudes against the p24 sequence. However, responses in controllers reacted to lower antigen concentrations and recognized more epitope variants than responses in non-controllers. These cross-sectional data, largely independent of particular HLA genetics and generated using direct ex-vivo samples thus identify T cell responses of high functional avidity and with broad variant reactivity as potential functional immune correlates of relative HIV control.
Collapse
Affiliation(s)
- Beatriz Mothe
- IrsiCaixa AIDS Research Institute - HIVACAT, Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain
- Lluita contra la Sida' Foundation, Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain
- Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Anuska Llano
- IrsiCaixa AIDS Research Institute - HIVACAT, Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Javier Ibarrondo
- IrsiCaixa AIDS Research Institute - HIVACAT, Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Jennifer Zamarreño
- IrsiCaixa AIDS Research Institute - HIVACAT, Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Mattia Schiaulini
- IrsiCaixa AIDS Research Institute - HIVACAT, Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain
- Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Cristina Miranda
- Lluita contra la Sida' Foundation, Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Marta Ruiz-Riol
- IrsiCaixa AIDS Research Institute - HIVACAT, Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Christoph T. Berger
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, United States of America
| | - M. José Herrero
- Department of Immunology, LIRAD-Banc de Sang i Teixits, Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Eduard Palou
- Department of Immunology, LIRAD-Banc de Sang i Teixits, Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Montse Plana
- AIDS Research Group-IDIBAPS, Hospital Clinic, HIVACAT, University of Barcelona, Barcelona, Spain
| | - Morgane Rolland
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Ashok Khatri
- Massachusetts General Hospital, Peptide/Protein Core Facility, Boston, Massachusetts, United States of America
| | - David Heckerman
- Microsoft Research, Redmond, Washington, United States of America
| | - Florencia Pereyra
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, United States of America
| | - Bruce D. Walker
- Ragon Institute of MGH, MIT and Harvard, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - David Weiner
- University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Roger Paredes
- IrsiCaixa AIDS Research Institute - HIVACAT, Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain
- Lluita contra la Sida' Foundation, Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Bonaventura Clotet
- IrsiCaixa AIDS Research Institute - HIVACAT, Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain
- Lluita contra la Sida' Foundation, Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain
| | | | | | - James I. Mullins
- Department of Microbiology, University of Washington, Seattle, Washington, United States of America
| | - Christian Brander
- IrsiCaixa AIDS Research Institute - HIVACAT, Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
130
|
McLean AR. Infectious Disease Modeling. Infect Dis (Lond) 2012. [DOI: 10.1007/978-1-0716-2463-0_539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
|
131
|
Goulder PJR, Prendergast AJ. Approaches towards avoiding lifelong antiretroviral therapy in paediatric HIV infection. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 719:25-37. [PMID: 22125032 DOI: 10.1007/978-1-4614-0204-6_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
132
|
Rajalingam R. Human diversity of killer cell immunoglobulin-like receptors and disease. THE KOREAN JOURNAL OF HEMATOLOGY 2011; 46:216-28. [PMID: 22259627 PMCID: PMC3259513 DOI: 10.5045/kjh.2011.46.4.216] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 12/05/2011] [Indexed: 01/19/2023]
Abstract
Natural Killer (NK) cells are the third population of lymphocyte in the mononuclear cell compartment that triggers first-line of defense against viral infection and tumor transformation. Historically, NK cells were thought of as components of innate immunity based on their intrinsic ability to spontaneously kill target cells independent of HLA antigen restriction. However, it is now clear that NK cells are quite sophisticated and use a highly specific and complex target cell recognition receptor system arbitrated via a multitude of inhibitory and activating receptors. Killer cell immunoglobulin-like receptors (KIR) are the key receptors of human NK cells development and function. To date, fourteen distinct KIRs have been identified: eight are inhibitory types, and six are activating types. The number and type of KIR genes present varies substantially between individuals. Inhibitory KIRs recognize distinct motifs of polymorphic HLA class I molecules. Upon engagement of their specific HLA class I ligands, inhibitory KIR dampen NK cell reactivity. In contrast, activating KIRs are believed to stimulate NK cell reactivity when they sense their ligands (unknown). KIR and HLA gene families map to different human chromosomes (19 and 6, respectively), and their independent segregation produces a wide diversity in the number and type of inherited KIR-HLA combinations, likely contributing to overall immune competency. Consistent with this hypothesis, certain combinations of KIR-HLA variants have been correlated with susceptibility to diseases as diverse as autoimmunity, viral infections, and cancer. This review summarizes our emerging understanding of KIR-HLA diversity in human health and disease.
Collapse
Affiliation(s)
- Raja Rajalingam
- Department of Pathology and Laboratory Medicine, UCLA Immunogenetics Center, David Geffen School of Medicine at UCLA, University of California, Los Angeles, CA, USA
| |
Collapse
|
133
|
Currier JR, Robb ML, Michael NL, Marovich MA. Defining epitope coverage requirements for T cell-based HIV vaccines: theoretical considerations and practical applications. J Transl Med 2011; 9:212. [PMID: 22152192 PMCID: PMC3284408 DOI: 10.1186/1479-5876-9-212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 12/08/2011] [Indexed: 11/16/2022] Open
Abstract
Background HIV vaccine development must address the genetic diversity and plasticity of the virus that permits the presentation of diverse genetic forms to the immune system and subsequent escape from immune pressure. Assessment of potential HIV strain coverage by candidate T cell-based vaccines (whether natural sequence or computationally optimized products) is now a critical component in interpreting candidate vaccine suitability. Methods We have utilized an N-mer identity algorithm to represent T cell epitopes and explore potential coverage of the global HIV pandemic using natural sequences derived from candidate HIV vaccines. Breadth (the number of T cell epitopes generated) and depth (the variant coverage within a T cell epitope) analyses have been incorporated into the model to explore vaccine coverage requirements in terms of the number of discrete T cell epitopes generated. Results We show that when multiple epitope generation by a vaccine product is considered a far more nuanced appraisal of the potential HIV strain coverage of the vaccine product emerges. By considering epitope breadth and depth several important observations were made: (1) epitope breadth requirements to reach particular levels of vaccine coverage, even for natural sequence-based vaccine products is not necessarily an intractable problem for the immune system; (2) increasing the valency (number of T cell epitope variants present) of vaccine products dramatically decreases the epitope requirements to reach particular coverage levels for any epidemic; (3) considering multiple-hit models (more than one exact epitope match with an incoming HIV strain) places a significantly higher requirement upon epitope breadth in order to reach a given level of coverage, to the point where low valency natural sequence based products would not practically be able to generate sufficient epitopes. Conclusions When HIV vaccine sequences are compared against datasets of potential incoming viruses important metrics such as the minimum epitope count required to reach a desired level of coverage can be easily calculated. We propose that such analyses can be applied early in the planning stages and during the execution phase of a vaccine trial to explore theoretical and empirical suitability of a vaccine product to a particular epidemic setting.
Collapse
|
134
|
Fryer HR, McLean AR. Modelling the spread of HIV immune escape mutants in a vaccinated population. PLoS Comput Biol 2011; 7:e1002289. [PMID: 22144883 PMCID: PMC3228780 DOI: 10.1371/journal.pcbi.1002289] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 10/13/2011] [Indexed: 12/02/2022] Open
Abstract
Because cytotoxic T-lymphocytes (CTLs) have been shown to play a role in controlling human immunodeficiency virus (HIV) infection and because CTL-based simian immunodeficiency virus (SIV) vaccines have proved effective in non-human primates, one goal of HIV vaccine design is to elicit effective CTL responses in humans. Such a vaccine could improve viral control in patients who later become infected, thereby reducing onwards transmission and enhancing life expectancy in the absence of treatment. The ability of HIV to evolve mutations that evade CTLs and the ability of these ‘escape mutants’ to spread amongst the population poses a challenge to the development of an effective and robust vaccine. We present a mathematical model of within-host evolution and between-host transmission of CTL escape mutants amongst a population receiving a vaccine that elicits CTL responses to multiple epitopes. Within-host evolution at each epitope is represented by the outgrowth of escape mutants in hosts who restrict the epitope and their reversion in hosts who do not restrict the epitope. We use this model to investigate how the evolution and spread of escape mutants could affect the impact of a vaccine. We show that in the absence of escape, such a vaccine could markedly reduce the prevalence of both infection and disease in the population. However the impact of such a vaccine could be significantly abated by CTL escape mutants, especially if their selection in hosts who restrict the epitope is rapid and their reversion in hosts who do not restrict the epitope is slow. We also use the model to address whether a vaccine should span a broad or narrow range of CTL epitopes and target epitopes restricted by rare or common HLA types. We discuss the implications and limitations of our findings. The evolution and spread of HIV strains that evade the immune response poses a major challenge to the development of an effective and robust HIV vaccine. We present a new mathematical tool that we use to dissect the drivers of the spread of these ‘immune escape mutants’ in a vaccinated population. Our study focuses on a vaccine that can reduce infectiousness and enhance longevity but does not provide sterilizing immunity. We show that in the absence of escape such a vaccine could reduce the prevalence of both infection and disease in the population. However, vaccine impact could be significantly abated by immune escape mutants, especially if they emerge rapidly and revert very slowly after transmission to hosts in whom the original selection pressure is absent. We also discuss the effect that vaccine breadth and the frequency with which different epitopes are targeted have upon vaccine impact.
Collapse
Affiliation(s)
- Helen R Fryer
- The Institute for Emerging Infections, The Oxford Martin School, Department of Zoology, Oxford University, Oxford, United Kingdom.
| | | |
Collapse
|
135
|
Cavarelli M, Scarlatti G. Human immunodeficiency virus type 1 mother-to-child transmission and prevention: successes and controversies. J Intern Med 2011; 270:561-79. [PMID: 21929711 DOI: 10.1111/j.1365-2796.2011.02458.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The World Health Organization (WHO) and United Nations Programme on HIV/AIDS (UNAIDS) estimated that an additional 370 000 new human immunodeficiency virus type 1 (HIV-1) infections occurred in children in 2009, mainly through mother-to-child transmission (MTCT). Intrapartum transmission contributes to approximately 20-25% of infections, in utero transmission to 5-10% and postnatal transmission to an additional 10-15% of cases. MTCT accounts for only a few hundred infected newborns in those countries in which services are established for voluntary counselling and testing of pregnant women, and a supply of antiretroviral drugs is available throughout pregnancy with recommendations for elective Caesarean section and avoidance of breastfeeding. The single-dose nevirapine regimen has provided the momentum to initiate MTCT programmes in many resource-limited countries; however, regimens using a combination of antiretroviral drugs are needed also to effectively reduce transmission via breastfeeding.
Collapse
Affiliation(s)
- M Cavarelli
- Unit of Viral Evolution and Transmission, DITID, San Raffaele Scientific Institute, Milan, Italy
| | | |
Collapse
|
136
|
Characterization of an effective CTL response against HIV and SIV infections. J Biomed Biotechnol 2011; 2011:103924. [PMID: 21976964 PMCID: PMC3184421 DOI: 10.1155/2011/103924] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 08/01/2011] [Indexed: 11/17/2022] Open
Abstract
A vaccine inducing protective immunity in mucosal tissues and secretions may stop or limit HIV infection. Although cytotoxic T lymphocytes (CTLs) are clearly associated with control of viral replication in HIV and simian immunodeficiency virus (SIV) infections, there are examples of uncontrolled viral replication in the face of strong CD8+ T-cell responses. The number of functions, breadth, avidity, and magnitude of CTL response are likely to be important factors in the effectiveness of anti-HIV T-cell response, but the location and persistence of effector CD8+ T cells are also critical factors. Although the only HIV vaccine clinical trial targeting cellular immunity to prevent HIV infection failed, vaccine strategies using persistent agents against pathogenic mucosal challenge in macaque models are showing unique success. Thus, the key to control the initial focus of viral replication at the portal of entry may rely on the continuous generation of effector CTL responses at mucosal level.
Collapse
|
137
|
Loss of HIV-1-derived cytotoxic T lymphocyte epitopes restricted by protective HLA-B alleles during the HIV-1 epidemic. AIDS 2011; 25:1691-700. [PMID: 21681058 DOI: 10.1097/qad.0b013e32834981b3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE AND DESIGN HIV-1 is known to adapt to the human immune system, leading to accumulation of escape mutations during the course of infection within an individual. Cross-sectional studies have shown an inverse correlation between the prevalence of human leukocyte antigen (HLA) alleles in a population and the number of cytotoxic T lymphocyte (CTL) escape mutations in epitopes restricted by those HLA alleles. Recently, it was demonstrated that at a population level HIV-1 is adapting to the humoral immune response, which is reflected in an increase in resistance to neutralizing antibodies over time. Here we investigated whether adaptations to cellular immunity have also accumulated during the epidemic. METHODS We compared the number of CTL epitopes in HIV-1 strains isolated from individuals who seroconverted at the beginning of the HIV-1 epidemic and from individuals who seroconverted in recent calendar time. RESULTS The number of CTL epitopes in HIV-1 variants restricted by the most common HLA alleles in the population did not change significantly during the epidemic. In contrast, we found a significant loss of CTL epitopes restricted by HLA-B alleles associated with a low relative hazard of HIV-1 disease progression during the epidemic. Such a loss was not observed for CTL epitopes restricted by HLA-A alleles. CONCLUSION Despite the large degree of HLA polymorphism, HIV-1 has accumulated adaptations to CTL responses within 20 years of the epidemic. The fact that such adaptations are driven by the HLA-B molecules that provide best protection against HIV-1 disease progression has important implications for our understanding of HIV evolution.
Collapse
|
138
|
Thobakgale CF, Streeck H, Mkhwanazi N, Mncube Z, Maphumulo L, Chonco F, Prendergast A, Tudor-Williams G, Walker BD, Goulder PJ, Altfeld M, Ndung'u T. Short communication: CD8(+) T cell polyfunctionality profiles in progressive and nonprogressive pediatric HIV type 1 infection. AIDS Res Hum Retroviruses 2011; 27:1005-12. [PMID: 21288139 DOI: 10.1089/aid.2010.0227] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Pediatric HIV-1 infection is characterized by rapid disease progression and without antiretroviral therapy (ART), more than 50% of infected children die by the age of 2 years. However, a small subset of infected children progresses slowly to disease in the absence of ART. This study aimed to identify functional characteristics of HIV-1-specific T cell responses that distinguish children with rapid and slow disease progression. Fifteen perinatally HIV-infected children (eight rapid and seven slow progressors) were longitudinally studied to monitor T cell polyfunctionality. HIV-1-specific interferon (IFN)-γ(+) CD8(+) T cell responses gradually increased over time but did not differ between slow and rapid progressors. However, polyfunctional HIV-1-specific CD8(+) T cell responses, as assessed by the expression of four functions (IFN-γ, CD107a, TNF-α, MIP-1β), were higher in slow compared to rapid progressors (p=0.05) early in infection, and was associated with slower subsequent disease progression. These data suggest that the quality of the HIV-specific CD8(+) T cell response is associated with the control of disease in children as has been shown in adult infection.
Collapse
Affiliation(s)
- Christina F. Thobakgale
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Hendrik Streeck
- Ragon Institute of MGH, MIT and Harvard University, Charlestown, Massachusetts
| | - Nompumelelo Mkhwanazi
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Zenele Mncube
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Lungile Maphumulo
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Fundisiwe Chonco
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Andrew Prendergast
- Department of Paediatrics, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Gareth Tudor-Williams
- Department of Paediatrics, Division of Medicine, Imperial College, London, United Kingdom
| | - Bruce D. Walker
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Ragon Institute of MGH, MIT and Harvard University, Charlestown, Massachusetts
- Howard Hughes Medical Institute, Chevy Chase, Maryland
| | - Philip J.R. Goulder
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Department of Paediatrics, Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom
| | - Marcus Altfeld
- Ragon Institute of MGH, MIT and Harvard University, Charlestown, Massachusetts
| | - Thumbi Ndung'u
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
139
|
Berger CT, Frahm N, Price DA, Mothe B, Ghebremichael M, Hartman KL, Henry LM, Brenchley JM, Ruff LE, Venturi V, Pereyra F, Sidney J, Sette A, Douek DC, Walker BD, Kaufmann DE, Brander C. High-functional-avidity cytotoxic T lymphocyte responses to HLA-B-restricted Gag-derived epitopes associated with relative HIV control. J Virol 2011; 85:9334-45. [PMID: 21752903 PMCID: PMC3165743 DOI: 10.1128/jvi.00460-11] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 06/30/2011] [Indexed: 12/20/2022] Open
Abstract
Virus-specific cytotoxic T lymphocytes (CTL) with high levels of functional avidity have been associated with viral clearance in hepatitis C virus infection and with enhanced antiviral protective immunity in animal models. However, the role of functional avidity as a determinant of HIV-specific CTL efficacy remains to be assessed. Here we measured the functional avidities of HIV-specific CTL responses targeting 20 different, optimally defined CTL epitopes restricted by 13 different HLA class I alleles in a cohort comprising 44 HIV controllers and 68 HIV noncontrollers. Responses restricted by HLA-B alleles and responses targeting epitopes located in HIV Gag exhibited significantly higher functional avidities than responses restricted by HLA-A or HLA-C molecules (P = 0.0003) or responses targeting epitopes outside Gag (P < 0.0001). The functional avidities of Gag-specific and HLA-B-restricted responses were higher in HIV controllers than in noncontrollers (P = 0.014 and P = 0.018) and were not restored in HIV noncontrollers initiating antiretroviral therapy. T-cell receptor (TCR) analyses revealed narrower TCR repertoires in higher-avidity CTL populations, which were dominated by public TCR sequences in HIV controllers. Together, these data link the presence of high-avidity Gag-specific and HLA-B-restricted CTL responses with viral suppression in vivo and provide new insights into the immune parameters that mediate spontaneous control of HIV infection.
Collapse
Affiliation(s)
- Christoph T. Berger
- Ragon Institute of Massachusetts General Hospital, MIT and Harvard, Boston, Massachusetts
| | - Nicole Frahm
- Fred Hutchinson Cancer Research Center/NIAID HIV Vaccine Trials Network (HVTN), Seattle, Washington
| | - David A. Price
- Human Immunology Section, Vaccine Research Center, NIAID, NIH, Bethesda, Maryland
- Department of Infection, Immunity and Biochemistry, Cardiff University School of Medicine, Cardiff, Wales, United Kingdom
| | - Beatriz Mothe
- Lluita contra la Sida Foundation, Hospital Germans Trias i Pujol, Universitat Autònoma de Badalona, Barcelona, Spain
- IrsiCaixa AIDS Research Institute-HIVACAT, Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain
| | - Musie Ghebremichael
- Ragon Institute of Massachusetts General Hospital, MIT and Harvard, Boston, Massachusetts
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Kari L. Hartman
- Ragon Institute of Massachusetts General Hospital, MIT and Harvard, Boston, Massachusetts
| | - Leah M. Henry
- Ragon Institute of Massachusetts General Hospital, MIT and Harvard, Boston, Massachusetts
| | - Jason M. Brenchley
- Human Immunology Section, Vaccine Research Center, NIAID, NIH, Bethesda, Maryland
| | - Laura E. Ruff
- Human Immunology Section, Vaccine Research Center, NIAID, NIH, Bethesda, Maryland
| | - Vanessa Venturi
- Computational Biology Group, Centre for Vascular Research, University of New South Wales, Kensington, New South Wales, Australia
| | - Florencia Pereyra
- Ragon Institute of Massachusetts General Hospital, MIT and Harvard, Boston, Massachusetts
| | - John Sidney
- La Jolla Institute for Allergy and Immunology, La Jolla, California
| | - Alessandro Sette
- La Jolla Institute for Allergy and Immunology, La Jolla, California
| | - Daniel C. Douek
- Human Immunology Section, Vaccine Research Center, NIAID, NIH, Bethesda, Maryland
| | - Bruce D. Walker
- Ragon Institute of Massachusetts General Hospital, MIT and Harvard, Boston, Massachusetts
- Howard Hughes Medical Institute, Chevy Chase, Maryland
| | - Daniel E. Kaufmann
- Ragon Institute of Massachusetts General Hospital, MIT and Harvard, Boston, Massachusetts
| | - Christian Brander
- Ragon Institute of Massachusetts General Hospital, MIT and Harvard, Boston, Massachusetts
- IrsiCaixa AIDS Research Institute-HIVACAT, Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avancats (ICREA), Barcelona, Spain
| |
Collapse
|
140
|
Vojnov L, Martins MA, Almeida JR, Ende Z, Rakasz EG, Reynolds MR, Leon EJ, Weisgrau KL, Burwitz BJ, Folkvord JM, Veloso de Santana MG, Costa Neves PC, Connick E, Skinner PJ, Gostick E, O'Connor DH, Wilson NA, Bonaldo MC, Galler R, Price DA, Douek DC, Watkins DI. GagCM9-specific CD8+ T cells expressing limited public TCR clonotypes do not suppress SIV replication in vivo. PLoS One 2011; 6:e23515. [PMID: 21887264 PMCID: PMC3162554 DOI: 10.1371/journal.pone.0023515] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2011] [Accepted: 07/19/2011] [Indexed: 11/19/2022] Open
Abstract
Several lines of evidence suggest that HIV/SIV-specific CD8(+) T cells play a critical role in the control of viral replication. Recently we observed high levels of viremia in Indian rhesus macaques vaccinated with a segment of SIVmac239 Gag (Gag(45-269)) that were subsequently infected with SIVsmE660. These seven Mamu-A*01(+) animals developed CD8(+) T cell responses against an immunodominant epitope in Gag, GagCM9, yet failed to control virus replication. We carried out a series of immunological and virological assays to understand why these Gag-specific CD8(+) T cells could not control virus replication in vivo. GagCM9-specific CD8(+) T cells from all of the animals were multifunctional and were found in the colonic mucosa. Additionally, GagCM9-specific CD8(+) T cells accessed B cell follicles, the primary residence of SIV-infected cells in lymph nodes, with effector to target ratios between 20-250 GagCM9-specific CD8(+) T cells per SIV-producing cell. Interestingly, vaccinated animals had few public TCR clonotypes within the GagCM9-specific CD8(+) T cell population pre- and post-infection. The number of public TCR clonotypes expressed by GagCM9-specific CD8(+) T cells post-infection significantly inversely correlated with chronic phase viral load. It is possible that these seven animals failed to control viral replication because of the narrow TCR repertoire expressed by the GagCM9-specific CD8(+) T cell population elicited by vaccination and infection.
Collapse
Affiliation(s)
- Lara Vojnov
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Mauricio A. Martins
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jorge R. Almeida
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Zachary Ende
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Eva G. Rakasz
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, Madison, Wisconsin, United States of America
| | - Matthew R. Reynolds
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Enrique J. Leon
- Wisconsin National Primate Research Center, Madison, Wisconsin, United States of America
| | - Kim L. Weisgrau
- Wisconsin National Primate Research Center, Madison, Wisconsin, United States of America
| | - Benjamin J. Burwitz
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Joy M. Folkvord
- University of Colorado Denver School of Medicine, Denver, Colorado, United States of America
| | | | - Patrícia C. Costa Neves
- Laboratorio de Biologia Molecular de Flavivírus, Instituto Oswaldo Cruz-FIOCRUZ, Rio de Janeiro, Brazil
| | - Elizabeth Connick
- University of Colorado Denver School of Medicine, Denver, Colorado, United States of America
| | - Pamela J. Skinner
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Emma Gostick
- Department of Infection, Immunity and Biochemistry, Cardiff University, Wales, United Kingdom
| | - David H. O'Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Nancy A. Wilson
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Myrna C. Bonaldo
- Laboratorio de Biologia Molecular de Flavivírus, Instituto Oswaldo Cruz-FIOCRUZ, Rio de Janeiro, Brazil
| | - Ricardo Galler
- Instituto de Tecnologia em Imunobiologicos, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - David A. Price
- Department of Infection, Immunity and Biochemistry, Cardiff University, Wales, United Kingdom
| | - Danny C. Douek
- Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - David I. Watkins
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, Madison, Wisconsin, United States of America
| |
Collapse
|
141
|
Iglesias MC, Almeida JR, Fastenackels S, van Bockel DJ, Hashimoto M, Venturi V, Gostick E, Urrutia A, Wooldridge L, Clement M, Gras S, Wilmann PG, Autran B, Moris A, Rossjohn J, Davenport MP, Takiguchi M, Brander C, Douek DC, Kelleher AD, Price DA, Appay V. Escape from highly effective public CD8+ T-cell clonotypes by HIV. Blood 2011; 118:2138-49. [PMID: 21734237 PMCID: PMC3162351 DOI: 10.1182/blood-2011-01-328781] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Accepted: 06/20/2011] [Indexed: 11/20/2022] Open
Abstract
Mapping the precise determinants of T-cell efficacy against viruses in humans is a public health priority with crucial implications for vaccine design. To inform this effort, we performed a comprehensive analysis of the effective CD8(+) T-cell clonotypes that constitute responses specific for the HIV p24 Gag-derived KK10 epitope (KRWIILGLNK; residues 263-272) restricted by HLA-B*2705, which are known to confer superior control of viral replication in HIV-infected individuals. Particular KK10-specific CD8(+) T-cell clonotypes, characterized by TRBV4-3/TRBJ1-3 gene rearrangements, were found to be preferentially selected in vivo and shared between individuals. These "public" clonotypes exhibit high levels of TCR avidity and Ag sensitivity, which impart functional advantages and enable effective suppression of HIV replication. The early L(268)M mutation at position 6 of the KK10 epitope enables the virus to avoid recognition by these highly effective CD8(+) T-cell clonotypes. However, alternative clonotypes with variant reactivity provide flexibility within the overall KK10-specific response. These findings provide refined mechanistic insights into the workings of an effective CD8(+) T-cell response against HIV.
Collapse
Affiliation(s)
- Maria Candela Iglesias
- Inserm UMR S 945, Infections and Immunity, Université Pierre et Marie Curie-Paris 6, Hôpital Pitié-Salpêtrière, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Cale EM, Bazick HS, Rianprakaisang TA, Alam SM, Letvin NL. Mutations in a dominant Nef epitope of simian immunodeficiency virus diminish TCR:epitope peptide affinity but not epitope peptide:MHC class I binding. THE JOURNAL OF IMMUNOLOGY 2011; 187:3300-13. [PMID: 21841125 DOI: 10.4049/jimmunol.1101080] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Viruses like HIV and SIV escape from containment by CD8(+) T lymphocytes through generating mutations that interfere with epitope peptide:MHC class I binding. However, mutations in some viral epitopes are selected for that have no impact on this binding. We explored the mechanism underlying the evolution of such epitopes by studying CD8(+) T lymphocyte recognition of a dominant Nef epitope of SIVmac251 in infected Mamu-A*02(+) rhesus monkeys. Clonal analysis of the p199RY-specific CD8(+) T lymphocyte repertoire in these monkeys indicated that identical T cell clones were capable of recognizing wild-type (WT) and mutant epitope sequences. However, we found that the functional avidity of these CD8(+) T lymphocytes for the mutant peptide:Mamu-A*02 complex was diminished. Using surface plasmon resonance to measure the binding affinity of the p199RY-specific TCR repertoire for WT and mutant p199RY peptide:Mamu-A*02 monomeric complexes, we found that the mutant p199RY peptide:Mamu-A*02 complexes had a lower affinity for TCRs purified from CD8(+) T lymphocytes than did the WT p199RY peptide:Mamu-A*02 complexes. These studies demonstrated that differences in TCR affinity for peptide:MHC class I ligands can alter functional p199RY-specific CD8(+) T lymphocyte responses to mutated epitopes, decreasing the capacity of these cells to contain SIVmac251 replication.
Collapse
Affiliation(s)
- Evan M Cale
- Division of Viral Pathogenesis, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | |
Collapse
|
143
|
Chopera DR, Wright JK, Brockman MA, Brumme ZL. Immune-mediated attenuation of HIV-1. Future Virol 2011; 6:917-928. [PMID: 22393332 DOI: 10.2217/fvl.11.68] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Immune escape mutations selected by human leukocyte antigen class I-restricted CD8(+) cytotoxic T lymphocytes (CTLs) can result in biologically and clinically relevant costs to HIV-1 replicative fitness. This phenomenon may be exploited to design an HIV-1 vaccine capable of stimulating effective CTL responses against highly conserved, mutationally constrained viral regions, where immune escape could occur only at substantial functional costs. Such a vaccine might 'channel' HIV-1 evolution towards a less-fit state, thus lowering viral load set points, attenuating the infection course and potentially reducing the risk of transmission. A major barrier to this approach, however, is the accumulation of immune escape variants at the population level, possibly leading to the loss of immunogenic CTL epitopes and diminished vaccine-induced cellular immune responses as the epidemic progresses. Here, we review the evidence supporting CTL-driven replicative defects in HIV-1 and consider the implications of this work for CTL-based vaccines designed to attenuate the infection course.
Collapse
|
144
|
Wodarz D, Levy DN. Effect of multiple infection of cells on the evolutionary dynamics of HIV in vivo: implications for host adaptation mechanisms. Exp Biol Med (Maywood) 2011; 236:926-37. [DOI: 10.1258/ebm.2011.011062] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The dynamics between human immunodeficiency virus type 1 and the immune system have been studied both experimentally and mathematically, exploring aspects of host adaptation and viral mechanisms to escape host control. The majority of this work, however, has been performed assuming that any cell can only be infected by one copy of the virus. In recent years, it has become clear that multiple copies of the virus can infect the same cell, a process we refer to as co-infection. Here, we review this topic and discuss how immune control of the infection and the ability of the virus to escape immune control is affected by co-infection.
Collapse
Affiliation(s)
- Dominik Wodarz
- Department of Ecology and Evolutionary Biology, 321 Steinhaus Hall
- Department of Mathematics, University of California, Irvine, CA 92697
| | - David N Levy
- Department of Basic Science, New York University College of Dentistry, 921 Schwartz Building, 345 East 24th Street, New York, NY 10010-9403, USA
| |
Collapse
|
145
|
Ndhlovu ZM, Piechocka-Trocha A, Vine S, McMullen A, Koofhethile KC, Goulder PJR, Ndung'u T, Barouch DH, Walker BD. Mosaic HIV-1 Gag antigens can be processed and presented to human HIV-specific CD8+ T cells. THE JOURNAL OF IMMUNOLOGY 2011; 186:6914-24. [PMID: 21576505 DOI: 10.4049/jimmunol.1004231] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Polyvalent mosaic HIV immunogens offer a potential solution for generating vaccines that can elicit immune responses against genetically diverse viruses. However, it is unclear whether key T cell epitopes can be processed and presented from these synthetic Ags and recognized by epitope-specific human T cells. In this study, we tested the ability of mosaic HIV immunogens expressed by recombinant, replication-incompetent adenovirus serotype 26 vectors to process and present major HIV clade B and clade C CD8 T cell epitopes in human cells. A bivalent mosaic vaccine expressing HIV Gag sequences was used to transduce PBMCs from 12 HIV-1-infected individuals from the United States and 10 HIV-1-infected individuals from South Africa; intracellular cytokine staining, together with tetramer staining, was used to assess the ability of mosaic Gag Ags to stimulate pre-existing memory responses compared with natural clade B and C vectors. Mosaic Gag Ags expressed all eight clade B epitopes tested in 12 United States subjects and all 5 clade C epitopes tested in 10 South African subjects. Overall, the magnitude of cytokine production induced by stimulation with mosaic Ags was comparable to clade B and clade C Ags tested, but the mosaic Ags elicited greater cross-clade recognition. Additionally, mosaic Ags induced HIV-specific CD4 T cell responses. Our studies demonstrate that mosaic Ags express major clade B and clade C viral T cell epitopes in human cells, as well as support the evaluation of mosaic HIV-1 vaccines in humans.
Collapse
Affiliation(s)
- Zaza M Ndhlovu
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard, Charlestown, MA 02129, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Cardinaud S, Consiglieri G, Bouziat R, Urrutia A, Graff-Dubois S, Fourati S, Malet I, Guergnon J, Guihot A, Katlama C, Autran B, van Endert P, Lemonnier FA, Appay V, Schwartz O, Kloetzel PM, Moris A. CTL escape mediated by proteasomal destruction of an HIV-1 cryptic epitope. PLoS Pathog 2011; 7:e1002049. [PMID: 21589903 PMCID: PMC3093368 DOI: 10.1371/journal.ppat.1002049] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Accepted: 03/11/2011] [Indexed: 11/18/2022] Open
Abstract
Cytotoxic CD8+ T cells (CTLs) play a critical role in controlling viral infections. HIV-infected individuals develop CTL responses against epitopes derived from viral proteins, but also against cryptic epitopes encoded by viral alternative reading frames (ARF). We studied here the mechanisms of HIV-1 escape from CTLs targeting one such cryptic epitope, Q9VF, encoded by an HIVgag ARF and presented by HLA-B*07. Using PBMCs of HIV-infected patients, we first cloned and sequenced proviral DNA encoding for Q9VF. We identified several polymorphisms with a minority of proviruses encoding at position 5 an aspartic acid (Q9VF/5D) and a majority encoding an asparagine (Q9VF/5N). We compared the prevalence of each variant in PBMCs of HLA-B*07+ and HLA-B*07- patients. Proviruses encoding Q9VF/5D were significantly less represented in HLA-B*07+ than in HLA-B*07- patients, suggesting that Q9FV/5D encoding viruses might be under selective pressure in HLA-B*07+ individuals. We thus analyzed ex vivo CTL responses directed against Q9VF/5D and Q9VF/5N. Around 16% of HLA-B*07+ patients exhibited CTL responses targeting Q9VF epitopes. The frequency and the magnitude of CTL responses induced with Q9VF/5D or Q9VF/5N peptides were almost equal indicating a possible cross-reactivity of the same CTLs on the two peptides. We then dissected the cellular mechanisms involved in the presentation of Q9VF variants. As expected, cells infected with HIV strains encoding for Q9VF/5D were recognized by Q9VF/5D-specific CTLs. In contrast, Q9VF/5N-encoding strains were neither recognized by Q9VF/5N- nor by Q9VF/5D-specific CTLs. Using in vitro proteasomal digestions and MS/MS analysis, we demonstrate that the 5N variation introduces a strong proteasomal cleavage site within the epitope, leading to a dramatic reduction of Q9VF epitope production. Our results strongly suggest that HIV-1 escapes CTL surveillance by introducing mutations leading to HIV ARF-epitope destruction by proteasomes.
Collapse
MESH Headings
- Adult
- Amino Acid Sequence
- Animals
- Antigen Presentation/genetics
- Antigen Presentation/immunology
- Epitopes, T-Lymphocyte/genetics
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/physiology
- Female
- HIV Antigens/metabolism
- HIV Infections/immunology
- HIV Infections/virology
- HIV-1/genetics
- HIV-1/immunology
- HIV-1/metabolism
- HLA-B7 Antigen/metabolism
- Humans
- Male
- Mice
- Mice, Inbred BALB C
- Middle Aged
- Molecular Sequence Data
- Mutation
- Polymorphism, Genetic
- Proteasome Endopeptidase Complex/immunology
- Proteasome Endopeptidase Complex/physiology
- RNA, Viral/chemistry
- RNA, Viral/genetics
- Sequence Analysis, DNA
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/virology
- Viral Load
- Young Adult
- gag Gene Products, Human Immunodeficiency Virus/genetics
- gag Gene Products, Human Immunodeficiency Virus/immunology
- gag Gene Products, Human Immunodeficiency Virus/metabolism
Collapse
Affiliation(s)
- Sylvain Cardinaud
- INSERM, UMR-S945, Université Pierre et Marie Curie (UPMC), Paris,
France
- * E-mail: (SC); (AM)
| | - Gesa Consiglieri
- Institut für Biochemie, Charité-Universitätsmedizin,
Berlin, Germany
| | - Romain Bouziat
- Institut Pasteur, Unité Cellulaire Antivirale, Paris,
France
| | - Alejandra Urrutia
- INSERM, UMR-S945, Université Pierre et Marie Curie (UPMC), Paris,
France
| | | | - Slim Fourati
- INSERM, UMR-S943, UPMC, Hôpital
Pitié-Salpêtrière, Paris, France
| | - Isabelle Malet
- INSERM, UMR-S943, UPMC, Hôpital
Pitié-Salpêtrière, Paris, France
| | - Julien Guergnon
- INSERM, UMR-S945, Université Pierre et Marie Curie (UPMC), Paris,
France
| | - Amélie Guihot
- INSERM, UMR-S945, Université Pierre et Marie Curie (UPMC), Paris,
France
| | | | - Brigitte Autran
- INSERM, UMR-S945, Université Pierre et Marie Curie (UPMC), Paris,
France
| | - Peter van Endert
- INSERM, U1013, Université Paris Descartes, Faculté de
médecine René Descartes, Paris, France
| | | | - Victor Appay
- INSERM, UMR-S945, Université Pierre et Marie Curie (UPMC), Paris,
France
| | | | - Peter M. Kloetzel
- Institut für Biochemie, Charité-Universitätsmedizin,
Berlin, Germany
| | - Arnaud Moris
- INSERM, UMR-S945, Université Pierre et Marie Curie (UPMC), Paris,
France
- Institut Pasteur, Unité Virus et Immunité, Paris,
France
- * E-mail: (SC); (AM)
| |
Collapse
|
147
|
Epitope-specific CD8+ T lymphocytes cross-recognize mutant simian immunodeficiency virus (SIV) sequences but fail to contain very early evolution and eventual fixation of epitope escape mutations during SIV infection. J Virol 2011; 85:3746-57. [PMID: 21307185 DOI: 10.1128/jvi.02420-10] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) evade containment by CD8(+) T lymphocytes through focused epitope mutations. However, because of limitations in the numbers of viral sequences that can be sampled, traditional sequencing technologies have not provided a true representation of the plasticity of these viruses or the intensity of CD8(+) T lymphocyte-mediated selection pressure. Moreover, the strategy by which CD8(+) T lymphocytes contain evolving viral quasispecies has not been characterized fully. In the present study we have employed ultradeep 454 pyrosequencing of virus and simultaneous staining of CD8(+) T lymphocytes with multiple tetramers in the SIV/rhesus monkey model to explore the coevolution of virus and the cellular immune response during primary infection. We demonstrated that cytotoxic T lymphocyte (CTL)-mediated selection pressure on the infecting virus was manifested by epitope mutations as early as 21 days following infection. We also showed that CD8(+) T lymphocytes cross-recognized wild-type and mutant epitopes and that these cross-reactive cell populations were present at a time when mutant forms of virus were present at frequencies of as low as 1 in 22,000 sequenced clones. Surprisingly, these cross-reactive cells became enriched in the epitope-specific CD8(+) T lymphocyte population as viruses with mutant epitope sequences largely replaced those with epitope sequences of the transmitted virus. These studies demonstrate that mutant epitope-specific CD8(+) T lymphocytes that are present at a time when viral mutant epitope sequences are detected at extremely low frequencies fail to contain the later accumulation and fixation of the mutant epitope sequences in the viral quasispecies.
Collapse
|
148
|
Rutkowski MR, Stevens CA, Green WR. Impaired memory CD8 T cell responses against an immunodominant retroviral cryptic epitope. Virology 2011; 412:256-68. [PMID: 21295815 DOI: 10.1016/j.virol.2010.11.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 08/04/2010] [Accepted: 11/15/2010] [Indexed: 11/16/2022]
Abstract
The immunodominant cryptic epitope SYNTGRFPPL, encoded within open reading frame 2 of the LP-BM5 retroviral gag gene, is critical for protection against retroviral-induced pathogenesis. The goal of this study was to dissect the memory response against this unique immunodominant cryptic epitope. Unlike the protective acute effector population of SYNTGRFPPL-specific CD8 T cells, long-lived SYNTGRFPPL-specific CD8 T cells lacked the ability to protect susceptible mice infected with LP-BM5 retrovirus. Compared to memory CD8 T cells against a conventional epitope with similar MHC-I specificity, primed and restimulated using similar conditions, long-lived SYNTGRFPPL-specific CD8 T cells were impaired in their ability to recall against antigen, with reduced cytolytic capabilities and cytokine production. Since similar priming and restimulation regimes were utilized to generate each effector CD8 T cell population, this study has potentially broad implications with regard to the selection criteria of potent, highly conserved cryptic epitopes for use in epitope-based vaccines.
Collapse
Affiliation(s)
- Melanie R Rutkowski
- Department of Microbiology and Immunology and Norris Cotton Cancer Center, Dartmouth Medical School, One Medical Center Drive, Borwell Bldg, Lebanon, NH 03756, USA
| | | | | |
Collapse
|
149
|
van Bockel DJ, Price DA, Munier ML, Venturi V, Asher TE, Ladell K, Greenaway HY, Zaunders J, Douek DC, Cooper DA, Davenport MP, Kelleher AD. Persistent survival of prevalent clonotypes within an immunodominant HIV gag-specific CD8+ T cell response. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 186:359-71. [PMID: 21135165 DOI: 10.4049/jimmunol.1001807] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
CD8(+) T cells play a significant role in the control of HIV replication, yet the associated qualitative and quantitative factors that determine the outcome of infection remain obscure. In this study, we examined Ag-specific CD8(+) TCR repertoires longitudinally in a cohort of HLA-B*2705(+) long-term nonprogressors with chronic HIV-1 infection using a combination of molecular clonotype analysis and polychromatic flow cytometry. In each case, CD8(+) T cell populations specific for the immunodominant p24 Gag epitope KRWIILGLNK (KK10; residues 263-272) and naturally occurring variants thereof, restricted by HLA-B*2705, were studied at multiple time points; in addition, comparative data were collected for CD8(+) T cell populations specific for the CMV pp65 epitope NLVPMVATV (NV9; residues 495-503), restricted by HLA-A*0201. Dominant KK10-specific clonotypes persisted for several years and exhibited greater stability than their contemporaneous NV9-specific counterparts. Furthermore, these dominant KK10-specific clonotypes exhibited cross-reactivity with antigenic variants and expressed significantly higher levels of CD127 (IL-7Rα) and Bcl-2. Of note, we also found evidence that promiscuous TCR α-chain pairing associated with alterations in fine specificity for KK10 variants could contribute to TCR β-chain prevalence. Taken together, these data suggest that an antiapoptotic phenotype and the ability to cross-recognize variant epitopes contribute to clonotype longevity and selection within the peripheral memory T cell pool in the presence of persistent infection with a genetically unstable virus.
Collapse
Affiliation(s)
- David J van Bockel
- St. Vincent's Centre for Applied Medical Research, University of New South Wales, Sydney, New South Wales, Australia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Koup RA, Graham BS, Douek DC. The quest for a T cell-based immune correlate of protection against HIV: a story of trials and errors. Nat Rev Immunol 2010; 11:65-70. [PMID: 21164527 DOI: 10.1038/nri2890] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Even before the partial success of a preventive HIV vaccine in a recent Phase III clinical trial, there had been an active research effort to determine one or more immune correlates of protection for HIV infection. This effort has been hampered by the lack of natural protective immunity against HIV. As a result, most of the studies have focused on long-term non-progressive infection or other clinical situations, none of which fully recapitulates protective immunity against HIV. Although this effort has been successful in defining characteristics of T cells in acute and non-progressive HIV infection, and has therefore greatly expanded our knowledge of the immunopathogenesis of AIDS, its success in defining immune correlates of protection is less clear. In this Opinion article we offer a perspective on how successful this effort has been in defining immune correlates of protection that have been, or will be, of use in the development of an HIV vaccine. Our view is that investing in an iterative approach to human vaccine efficacy trials of sufficient size and sampling frequency will improve the likelihood that an immune correlate of vaccine protection will be defined.
Collapse
Affiliation(s)
- Richard A Koup
- Richard A. Koup, Barney S. Graham and Daniel C. Douek are at the Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-3017, USA
| | | | | |
Collapse
|