101
|
Hight SK, Mootz A, Kollipara RK, McMillan E, Yenerall P, Otaki Y, Li LS, Avila K, Peyton M, Rodriguez-Canales J, Mino B, Villalobos P, Girard L, Dospoy P, Larsen J, White MA, Heymach JV, Wistuba II, Kittler R, Minna JD. An in vivo functional genomics screen of nuclear receptors and their co-regulators identifies FOXA1 as an essential gene in lung tumorigenesis. Neoplasia 2020; 22:294-310. [PMID: 32512502 PMCID: PMC7281309 DOI: 10.1016/j.neo.2020.04.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 01/04/2023]
Abstract
Using a mini-library of 1062 lentiviral shRNAs targeting 40 nuclear hormone receptors and 70 of their co-regulators, we searched for potential therapeutic targets that would be important during in vivo tumor growth using a parallel in vitro and in vivo shRNA screening strategy in the non-small cell lung cancer (NSCLC) line NCI-H1819. We identified 21 genes essential for in vitro growth, and nine genes specifically required for tumor survival in vivo, but not in vitro: NCOR2, FOXA1, HDAC1, RXRA, RORB, RARB, MTA2, ETV4, and NR1H2. We focused on FOXA1, since it lies within the most frequently amplified genomic region in lung adenocarcinomas. We found that 14q-amplification in NSCLC cell lines was a biomarker for FOXA1 dependency for both in vivo xenograft growth and colony formation, but not mass culture growth in vitro. FOXA1 knockdown identified genes involved in electron transport among the most differentially regulated, indicating FOXA1 loss may lead to a decrease in cellular respiration. In support of this, FOXA1 amplification was correlated with increased sensitivity to the complex I inhibitor phenformin. Integrative ChipSeq analyses reveal that FOXA1 functions in this genetic context may be at least partially independent of NKX2-1. Our findings are consistent with a neomorphic function for amplified FOXA1, driving an oncogenic transcriptional program. These data provide new insight into the functional consequences of FOXA1 amplification in lung adenocarcinomas, and identify new transcriptional networks for exploration of therapeutic vulnerabilities in this patient population.
Collapse
MESH Headings
- Adenocarcinoma of Lung/genetics
- Adenocarcinoma of Lung/metabolism
- Adenocarcinoma of Lung/pathology
- Animals
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Cell Proliferation
- Female
- Gene Expression Regulation, Neoplastic
- Genome-Wide Association Study
- Genomics/methods
- Hepatocyte Nuclear Factor 3-alpha/genetics
- Hepatocyte Nuclear Factor 3-alpha/metabolism
- Humans
- Insulin-Like Growth Factor Binding Protein 3/genetics
- Insulin-Like Growth Factor Binding Protein 3/metabolism
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Receptors, Cytoplasmic and Nuclear
- Thrombospondin 1/genetics
- Thrombospondin 1/metabolism
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Suzie K Hight
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA; Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Allison Mootz
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA; Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Rahul K Kollipara
- Eugene McDermott Center for Human Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Elizabeth McMillan
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Paul Yenerall
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA; Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA; Eugene McDermott Center for Human Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yoichi Otaki
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA; Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Long-Shan Li
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA; Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kimberley Avila
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA; Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Michael Peyton
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA; Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jaime Rodriguez-Canales
- Department of Translational and Molecular Pathology, MD Anderson Cancer Center, Houston, TX, USA
| | - Barbara Mino
- Department of Translational and Molecular Pathology, MD Anderson Cancer Center, Houston, TX, USA
| | - Pamela Villalobos
- Department of Translational and Molecular Pathology, MD Anderson Cancer Center, Houston, TX, USA
| | - Luc Girard
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA; Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Patrick Dospoy
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA; Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA; Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jill Larsen
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA; Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA; QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Michael A White
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - John V Heymach
- Department Thoracic and Head and Neck Medical Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Ignacio I Wistuba
- Department of Translational and Molecular Pathology, MD Anderson Cancer Center, Houston, TX, USA
| | - Ralf Kittler
- Eugene McDermott Center for Human Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - John D Minna
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA; Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
102
|
Nucleosome binding by the pioneer transcription factor OCT4. Sci Rep 2020; 10:11832. [PMID: 32678275 PMCID: PMC7367260 DOI: 10.1038/s41598-020-68850-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/24/2020] [Indexed: 11/22/2022] Open
Abstract
Transcription factor binding to genomic DNA is generally prevented by nucleosome formation, in which the DNA is tightly wrapped around the histone octamer. In contrast, pioneer transcription factors efficiently bind their target DNA sequences within the nucleosome. OCT4 has been identified as a pioneer transcription factor required for stem cell pluripotency. To study the nucleosome binding by OCT4, we prepared human OCT4 as a recombinant protein, and biochemically analyzed its interactions with the nucleosome containing a natural OCT4 target, the LIN28B distal enhancer DNA sequence, which contains three potential OCT4 target sequences. By a combination of chemical mapping and cryo-electron microscopy single-particle analysis, we mapped the positions of the three target sequences within the nucleosome. A mutational analysis revealed that OCT4 preferentially binds its target DNA sequence located near the entry/exit site of the nucleosome. Crosslinking mass spectrometry consistently showed that OCT4 binds the nucleosome in the proximity of the histone H3 N-terminal region, which is close to the entry/exit site of the nucleosome. We also found that the linker histone H1 competes with OCT4 for the nucleosome binding. These findings provide important information for understanding the molecular mechanism by which OCT4 binds its target DNA in chromatin.
Collapse
|
103
|
Bylino OV, Ibragimov AN, Shidlovskii YV. Evolution of Regulated Transcription. Cells 2020; 9:E1675. [PMID: 32664620 PMCID: PMC7408454 DOI: 10.3390/cells9071675] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/07/2020] [Accepted: 07/10/2020] [Indexed: 12/12/2022] Open
Abstract
The genomes of all organisms abound with various cis-regulatory elements, which control gene activity. Transcriptional enhancers are a key group of such elements in eukaryotes and are DNA regions that form physical contacts with gene promoters and precisely orchestrate gene expression programs. Here, we follow gradual evolution of this regulatory system and discuss its features in different organisms. In eubacteria, an enhancer-like element is often a single regulatory element, is usually proximal to the core promoter, and is occupied by one or a few activators. Activation of gene expression in archaea is accompanied by the recruitment of an activator to several enhancer-like sites in the upstream promoter region. In eukaryotes, activation of expression is accompanied by the recruitment of activators to multiple enhancers, which may be distant from the core promoter, and the activators act through coactivators. The role of the general DNA architecture in transcription control increases in evolution. As a whole, it can be seen that enhancers of multicellular eukaryotes evolved from the corresponding prototypic enhancer-like regulatory elements with the gradually increasing genome size of organisms.
Collapse
Affiliation(s)
- Oleg V. Bylino
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; (O.V.B.); (A.N.I.)
| | - Airat N. Ibragimov
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; (O.V.B.); (A.N.I.)
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
| | - Yulii V. Shidlovskii
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; (O.V.B.); (A.N.I.)
- I.M. Sechenov First Moscow State Medical University, 8, bldg. 2 Trubetskaya St., 119048 Moscow, Russia
| |
Collapse
|
104
|
Carles A, Trigo-Gonzalez G, Cao Q, Cheng SWG, Moksa M, Bilenky M, Huntsman DG, Morin GB, Hirst M. The Pathognomonic FOXL2 C134W Mutation Alters DNA-Binding Specificity. Cancer Res 2020; 80:3480-3491. [PMID: 32641414 DOI: 10.1158/0008-5472.can-20-0104] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/04/2020] [Accepted: 06/30/2020] [Indexed: 11/16/2022]
Abstract
The somatic missense point mutation c.402C>G (p.C134W) in the FOXL2 transcription factor is pathognomonic for adult-type granulosa cell tumors (AGCT) and a diagnostic marker for this tumor type. However, the molecular consequences of this mutation and its contribution to the mechanisms of AGCT pathogenesis remain unclear. To explore these mechanisms, we engineered V5-FOXL2WT- and V5-FOXL2C134W-inducible isogenic cell lines and performed chromatin immunoprecipitation sequencing and transcriptome profiling. FOXL2C134W associated with the majority of the FOXL2 wild-type DNA elements as well as a large collection of unique elements genome wide. This model enabled confirmation of altered DNA-binding specificity for FOXL2C134W and identification of unique targets of FOXL2C134W including SLC35F2, whose expression increased sensitivity to YM155. Our results suggest FOXL2C134W drives AGCT by altering the binding affinity of FOXL2-containing complexes to engage an oncogenic transcriptional program. SIGNIFICANCE: A mechanistic understanding of FOXL2C134W-induced regulatory state alterations drives discovery of a rationally designed therapeutic strategy.
Collapse
Affiliation(s)
- Annaïck Carles
- Department of Microbiology and Immunology, Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Genny Trigo-Gonzalez
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada.,Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Qi Cao
- Department of Microbiology and Immunology, Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - S-W Grace Cheng
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
| | - Michelle Moksa
- Department of Microbiology and Immunology, Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Misha Bilenky
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
| | - David G Huntsman
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Molecular Oncology, BC Cancer, Vancouver, British Columbia, Canada.,Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Gregg B Morin
- Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada. .,Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Martin Hirst
- Department of Microbiology and Immunology, Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada. .,Canada's Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada
| |
Collapse
|
105
|
Lerner J, Gomez-Garcia PA, McCarthy RL, Liu Z, Lakadamyali M, Zaret KS. Two-Parameter Mobility Assessments Discriminate Diverse Regulatory Factor Behaviors in Chromatin. Mol Cell 2020; 79:677-688.e6. [PMID: 32574554 DOI: 10.1016/j.molcel.2020.05.036] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 04/06/2020] [Accepted: 05/27/2020] [Indexed: 12/20/2022]
Abstract
Enzymatic probes of chromatin structure reveal accessible versus inaccessible chromatin states, while super-resolution microscopy reveals a continuum of chromatin compaction states. Characterizing histone H2B movements by single-molecule tracking (SMT), we resolved chromatin domains ranging from low to high mobility and displaying different subnuclear localizations patterns. Heterochromatin constituents correlated with the lowest mobility chromatin, whereas transcription factors varied widely with regard to their respective mobility with low- or high-mobility chromatin. Pioneer transcription factors, which bind nucleosomes, can access the low-mobility chromatin domains, whereas weak or non-nucleosome binding factors are excluded from the domains and enriched in higher mobility domains. Nonspecific DNA and nucleosome binding accounted for most of the low mobility of strong nucleosome interactor FOXA1. Our analysis shows how the parameters of the mobility of chromatin-bound factors, but not their diffusion behaviors or SMT-residence times within chromatin, distinguish functional characteristics of different chromatin-interacting proteins.
Collapse
Affiliation(s)
- Jonathan Lerner
- Institute for Regenerative Medicine and Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA
| | - Pablo Aurelio Gomez-Garcia
- Center for Genomic Regulation, Barcelona Biomedical Research Park, 08003 Barcelona, Spain; ICFO-Institute of Photonics Sciences, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Ryan L McCarthy
- Institute for Regenerative Medicine and Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA
| | - Zhe Liu
- HHMI Janelia Research Campus, Ashburn, VA 20147, USA
| | - Melike Lakadamyali
- Institute for Regenerative Medicine and Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA; University of Pennsylvania, Department of Physiology, Philadelphia, PA 19104-6058, USA
| | - Kenneth S Zaret
- Institute for Regenerative Medicine and Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, USA.
| |
Collapse
|
106
|
Hankey W, Chen Z, Wang Q. Shaping Chromatin States in Prostate Cancer by Pioneer Transcription Factors. Cancer Res 2020; 80:2427-2436. [PMID: 32094298 PMCID: PMC7299826 DOI: 10.1158/0008-5472.can-19-3447] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/14/2020] [Accepted: 02/19/2020] [Indexed: 01/28/2023]
Abstract
The androgen receptor (AR) is a critical therapeutic target in prostate cancer that responds to antagonists in primary disease, but inevitably becomes reactivated, signaling onset of the lethal castration-resistant prostate cancer (CRPC) stage. Epigenomic investigation of the chromatin environment and interacting partners required for AR transcriptional activity has uncovered three pioneer factors that open up chromatin and facilitate AR-driven transcriptional programs. FOXA1, HOXB13, and GATA2 are required for normal AR transcription in prostate epithelial development and for oncogenic AR transcription during prostate carcinogenesis. AR signaling is dependent upon these three pioneer factors both before and after the clinical transition from treatable androgen-dependent disease to untreatable CRPC. Agents targeting their respective DNA binding or downstream chromatin-remodeling events have shown promise in preclinical studies of CRPC. AR-independent functions of FOXA1, HOXB13, and GATA2 are emerging as well. While all three pioneer factors exert effects that promote carcinogenesis, some of their functions may inhibit certain stages of prostate cancer progression. In all, these pioneer factors represent some of the most promising potential therapeutic targets to emerge thus far from the study of the prostate cancer epigenome.
Collapse
Affiliation(s)
- William Hankey
- Department of Pathology and Duke Cancer Institute, Duke University School of Medicine, Durham, North Carolina
| | - Zhong Chen
- Department of Pathology and Duke Cancer Institute, Duke University School of Medicine, Durham, North Carolina.
| | - Qianben Wang
- Department of Pathology and Duke Cancer Institute, Duke University School of Medicine, Durham, North Carolina.
| |
Collapse
|
107
|
He W, Kang Y, Zhu W, Zhou B, Jiang X, Ren C, Guo W. FOXF2 acts as a crucial molecule in tumours and embryonic development. Cell Death Dis 2020; 11:424. [PMID: 32503970 PMCID: PMC7275069 DOI: 10.1038/s41419-020-2604-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 02/14/2020] [Accepted: 02/14/2020] [Indexed: 12/24/2022]
Abstract
As a key member of the forkhead box transcription factors, forkhead box F2 (FOXF2) serves as a transcriptional regulator and regulates downstream gene expression in embryonic development, metabolism and in some common diseases, such as stroke and gastroparesis. Recent studies have shown that aberrant expression of FOXF2 is associated with a variety of tumorigenic processes, such as proliferation, invasion and metastasis. The role of FOXF2 in the development of many different organs has been confirmed by studies and has been speculated about in case reports. We focus on the mechanisms and signal pathways of tumour development initiated by aberrant expression of FOXF2, and we summarize the diseases and signal pathways caused by aberrant expression of FOXF2 in embryogenesis. This article highlights the differences in the role of FOXF2 in different tumours and demonstrates that multiple factors can regulate FOXF2 levels. In addition, FOXF2 is considered a biomarker for the diagnosis or prognosis of various tumours. Therefore, regulating the level of FOXF2 is an ideal treatment for tumours. FOXF2 could also affect the expression of some organ-specific genes to modulate organogenesis and could serve as a biomarker for specific differentiated cells. Finally, we present prospects for the continued research focus of FOXF2.
Collapse
Affiliation(s)
- Weihan He
- Cancer Research Institute, Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Kaifu District, Changsha, 410008, China.,Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yuanbo Kang
- Cancer Research Institute, Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Kaifu District, Changsha, 410008, China.,Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, Changsha, Hunan, China.,The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Wei Zhu
- Cancer Research Institute, Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Kaifu District, Changsha, 410008, China.,Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Bolun Zhou
- Cancer Research Institute, Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Kaifu District, Changsha, 410008, China.,Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Xingjun Jiang
- Cancer Research Institute, Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Kaifu District, Changsha, 410008, China.,Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Caiping Ren
- Cancer Research Institute, Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Kaifu District, Changsha, 410008, China. .,Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, Changsha, Hunan, China. .,The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Weihua Guo
- Cancer Research Institute, Department of Neurosurgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Kaifu District, Changsha, 410008, China. .,Cancer Research Institute, Collaborative Innovation Center for Cancer Medicine, School of Basic Medical Science, Central South University, Changsha, Hunan, China. .,The NHC Key Laboratory of Carcinogenesis and The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
108
|
Revealing hidden genetic diagnoses in the ocular anterior segment disorders. Genet Med 2020; 22:1623-1632. [PMID: 32499604 PMCID: PMC7521990 DOI: 10.1038/s41436-020-0854-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 12/27/2022] Open
Abstract
Purpose Ocular anterior segment disorders (ASDs) are clinically and genetically heterogeneous, and genetic diagnosis often remains elusive. In this study, we demonstrate the value of a combined analysis protocol using phenotypic, genomic, and pedigree structure data to achieve a genetic conclusion. Methods We utilized a combination of chromosome microarray, exome sequencing, and genome sequencing with structural variant and trio analysis to investigate a cohort of 41 predominantly sporadic cases. Results We identified likely causative variants in 54% (22/41) of cases, including 51% (19/37) of sporadic cases and 75% (3/4) of cases initially referred as familial ASD. Two-thirds of sporadic cases were found to have heterozygous variants, which in most cases were de novo. Approximately one-third (7/22) of genetic diagnoses were found in rarely reported or recently identified ASD genes including PXDN, GJA8, COL4A1, ITPR1, CPAMD8, as well as the new phenotypic association of Axenfeld–Rieger anomaly with a homozygous ADAMTS17 variant. The remainder of the variants were in key ASD genes including FOXC1, PITX2, CYP1B1, FOXE3, and PAX6. Conclusions We demonstrate the benefit of detailed phenotypic, genomic, variant, and segregation analysis to uncover some of the previously “hidden” heritable answers in several rarely reported and newly identified ocular ASD-related disease genes.
Collapse
|
109
|
Crystal structure of the winged-helix domain of MCM8. Biochem Biophys Res Commun 2020; 526:993-998. [DOI: 10.1016/j.bbrc.2020.03.150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 03/25/2020] [Indexed: 12/18/2022]
|
110
|
Wu K, Yu Z, Tang Z, Wei W, Xie D, Xie Y, Xiao Q. miR-877-5p Suppresses Gastric Cancer Cell Proliferation Through Targeting FOXM1. Onco Targets Ther 2020; 13:4731-4742. [PMID: 32547102 PMCID: PMC7263828 DOI: 10.2147/ott.s251916] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 05/01/2020] [Indexed: 12/17/2022] Open
Abstract
Purpose miR-877-5p has been reported as a tumor suppressor in multiple cancers. Its role in gastric cancer, however, remains unclear. Hence, the purpose of this study was to elucidate the function, and underlying molecular mechanism, of miR-877-5p in the development of gastric cancer. Materials and Methods We first analyzed miR-877-5p expression using the Gene Expression Omnibus (GEO) database and detected its expression in gastric cancer and gastric epithelial cells via real-time quantitative PCR (qRT-PCR). We then assessed the role of miR-877-5p in gastric cancer proliferation, apoptosis, and cell cycling. The gene targeted by miR-877-5p was predicted by bioinformatic analysis and confirmed by dual luciferase assay. Subsequently, rescue assays were carried out to validate whether the miR-877-5p effects on gastric cancer growth are dependent on the proposed target gene. Results miR-877-5p levels were lower in gastric cancer than in controls, based on the GEO and qRT-PCR analyses. Overexpression of miR-877-5p significantly inhibited cell growth and cell cycle progression, whereas it promoted apoptosis. Furthermore, forkhead box M1 (FOXM1) was predicted as a target of miR-877-5p, the overexpression of which diminished the suppressive effect that upregulation of miR-877-5p had on gastric cancer cells. Conclusion Our study results indicate that the miR-877-5p/FOXM1 axis plays an important role in gastric cancer progression, while suggesting miR-877-5p as a novel potential therapeutic target for gastric cancer.
Collapse
Affiliation(s)
- Kun Wu
- Department of Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Zhu Yu
- Department of Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Zhenyong Tang
- Department of Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Weiyuan Wei
- Department of Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Dongyi Xie
- Department of Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Yubo Xie
- Department of Anesthesiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| | - Qiang Xiao
- Department of Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, People's Republic of China
| |
Collapse
|
111
|
Paranjapye A, Mutolo MJ, Ebron JS, Leir SH, Harris A. The FOXA1 transcriptional network coordinates key functions of primary human airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 2020; 319:L126-L136. [PMID: 32432922 DOI: 10.1152/ajplung.00023.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The differentiated functions of the human airway epithelium are coordinated by a complex network of transcription factors. These include the pioneer factors Forkhead box A1 and A2 (FOXA1 and FOXA2), which are well studied in several tissues, but their role in airway epithelial cells is poorly characterized. Here, we define the cistrome of FOXA1 and FOXA2 in primary human bronchial epithelial (HBE) cells by chromatin immunoprecipitation with deep-sequencing (ChIP-seq). Next, siRNA-mediated depletion of each factor is used to investigate their transcriptome by RNA-seq. We found that, as predicted from their DNA-binding motifs, genome-wide occupancy of the two factors showed substantial overlap; however, their global impact on gene expression differed. FOXA1 is an abundant transcript in HBE cells, while FOXA2 is expressed at low levels, and both these factors likely exhibit autoregulation and cross-regulation. FOXA1 regulated loci are involved in cell adhesion and the maintenance of epithelial cell identity, particularly through repression of genes associated with epithelial to mesenchymal transition (EMT). FOXA1 also directly targets other transcription factors with a known role in the airway epithelium such as SAM-pointed domain-containing Ets-like factor (SPDEF). The intersection of the cistrome and transcriptome for FOXA1 revealed enrichment of genes involved in epithelial development and tissue morphogenesis. Moreover, depletion of FOXA1 was shown to reduce the transepithelial resistance of HBE cells, confirming the role of this factor in maintaining epithelial barrier integrity.
Collapse
Affiliation(s)
- Alekh Paranjapye
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio
| | - Michael J Mutolo
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio
| | - Jey Sabith Ebron
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio
| | - Shih-Hsing Leir
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio
| | - Ann Harris
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
112
|
Choi W, Choe S, Lau GW. Inactivation of FOXA2 by Respiratory Bacterial Pathogens and Dysregulation of Pulmonary Mucus Homeostasis. Front Immunol 2020; 11:515. [PMID: 32269574 PMCID: PMC7109298 DOI: 10.3389/fimmu.2020.00515] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/06/2020] [Indexed: 01/21/2023] Open
Abstract
Forkhead box (FOX) proteins are transcriptional factors that regulate various cellular processes. This minireview provides an overview of FOXA2 functions, with a special emphasis on the regulation airway mucus homeostasis in both healthy and diseased lungs. FOXA2 plays crucial roles during lung morphogenesis, surfactant protein production, goblet cell differentiation and mucin expression. In healthy airways, FOXA2 exerts a tight control over goblet cell development and mucin biosynthesis. However, in diseased airways, microbial infections and proinflammatory responses deplete FOXA2 expression, resulting in uncontrolled goblet cell hyperplasia and metaplasia, mucus hypersecretion, and impaired mucociliary clearance of pathogens. Furthermore, accumulated mucus clogs the airways and creates a niche environment for persistent microbial colonization and infection, leading to acute exacerbation and deterioration of pulmonary function in patients with chronic lung diseases. Various studies have shown that FOXA2 inhibition is mediated through induction of antagonistic EGFR and IL-13R-STAT6 signaling pathways as well as through posttranslational modifications induced by microbial infections. An improved understanding of how bacterial pathogens inactivate FOXA2 may pave the way for developing therapeutics that preserve the protein's function, which in turn, will improve the mucus status and mucociliary clearance of pathogens, reduce microbial-mediated acute exacerbation and restore lung function in patients with chronic lung diseases.
Collapse
Affiliation(s)
- Woosuk Choi
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Shawn Choe
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Gee W Lau
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
113
|
Li J, Xu C, Lee HJ, Ren S, Zi X, Zhang Z, Wang H, Yu Y, Yang C, Gao X, Hou J, Wang L, Yang B, Yang Q, Ye H, Zhou T, Lu X, Wang Y, Qu M, Yang Q, Zhang W, Shah NM, Pehrsson EC, Wang S, Wang Z, Jiang J, Zhu Y, Chen R, Chen H, Zhu F, Lian B, Li X, Zhang Y, Wang C, Wang Y, Xiao G, Jiang J, Yang Y, Liang C, Hou J, Han C, Chen M, Jiang N, Zhang D, Wu S, Yang J, Wang T, Chen Y, Cai J, Yang W, Xu J, Wang S, Gao X, Wang T, Sun Y. A genomic and epigenomic atlas of prostate cancer in Asian populations. Nature 2020; 580:93-99. [PMID: 32238934 DOI: 10.1038/s41586-020-2135-x] [Citation(s) in RCA: 189] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 01/17/2020] [Indexed: 12/24/2022]
Abstract
Prostate cancer is the second most common cancer in men worldwide1. Over the past decade, large-scale integrative genomics efforts have enhanced our understanding of this disease by characterizing its genetic and epigenetic landscape in thousands of patients2,3. However, most tumours profiled in these studies were obtained from patients from Western populations. Here we produced and analysed whole-genome, whole-transcriptome and DNA methylation data for 208 pairs of tumour tissue samples and matched healthy control tissue from Chinese patients with primary prostate cancer. Systematic comparison with published data from 2,554 prostate tumours revealed that the genomic alteration signatures in Chinese patients were markedly distinct from those of Western cohorts: specifically, 41% of tumours contained mutations in FOXA1 and 18% each had deletions in ZNF292 and CHD1. Alterations of the genome and epigenome were correlated and were predictive of disease phenotype and progression. Coding and noncoding mutations, as well as epimutations, converged on pathways that are important for prostate cancer, providing insights into this devastating disease. These discoveries underscore the importance of including population context in constructing comprehensive genomic maps for disease.
Collapse
Affiliation(s)
- Jing Li
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China.,Center for Translational Medicine, Second Military Medical University, Shanghai, China.,Shanghai Key Laboratory of Cell Engineering, Shanghai, China
| | - Chuanliang Xu
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China.,Shanghai Key Laboratory of Cell Engineering, Shanghai, China
| | - Hyung Joo Lee
- Department of Genetics, Washington University School of Medicine, St Louis, MO, USA.,The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
| | - Shancheng Ren
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China.,Shanghai Key Laboratory of Cell Engineering, Shanghai, China
| | - Xiaoyuan Zi
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | | | - Haifeng Wang
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yongwei Yu
- Department of Pathology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Chenghua Yang
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China.,CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiaofeng Gao
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Jianguo Hou
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Linhui Wang
- Department of Urology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Bo Yang
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Qing Yang
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Huamao Ye
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Tie Zhou
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Xin Lu
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yan Wang
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Min Qu
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Qingsong Yang
- Department of Radiology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Wenhui Zhang
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Nakul M Shah
- Department of Genetics, Washington University School of Medicine, St Louis, MO, USA.,The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
| | - Erica C Pehrsson
- Department of Genetics, Washington University School of Medicine, St Louis, MO, USA.,The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA
| | - Shuo Wang
- Department of Urology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zengjun Wang
- State Key Laboratory of Reproductive Medicine and Department of Urology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jun Jiang
- Department of Urology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yan Zhu
- Department of Pathology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Rui Chen
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Huan Chen
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Feng Zhu
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Bijun Lian
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | | | - Yun Zhang
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Chao Wang
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yue Wang
- Shanghai Key Laboratory of Cell Engineering, Shanghai, China.,Department of Histology and Embryology, Second Military Medical University, Shanghai, China
| | - Guangan Xiao
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Junfeng Jiang
- Shanghai Key Laboratory of Cell Engineering, Shanghai, China.,Department of Histology and Embryology, Second Military Medical University, Shanghai, China
| | - Yue Yang
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Chaozhao Liang
- Department of Urology, First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jianquan Hou
- Department of Urology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Conghui Han
- Department of Urology, Xuzhou Central Hospital, The Affiliated Xuzhou Hospital of Medical College of Southeast University, Xuzhou, China
| | - Ming Chen
- Department of Urology, Zhongda Hospital, Southeast University, Nanjing, China
| | - Ning Jiang
- Department of Urology, Gongli Hospital, Second Military Medical University, Shanghai, China
| | - Dahong Zhang
- Department of Urology, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Song Wu
- Department of Urology Institute of Shenzhen University, Shenzhen Luohu People's Hospital, Shenzhen, China
| | - Jinjian Yang
- Department of Urology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tao Wang
- Department of Urology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yongliang Chen
- Department of Urology, Shaoxing Central Hospital, Shaoxing, China
| | - Jiantong Cai
- Department of Urology, Shishi Hospital, Shishi, China
| | - Wenzeng Yang
- Department of Urology, The Affiliated Hospital of Hebei University, Baoding, China
| | - Jun Xu
- Department of Urology, Huadong Hospital, Fudan University, Shanghai, China
| | - Shaogang Wang
- Department of Urology, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology, Wuhan, China
| | - Xu Gao
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China. .,Shanghai Key Laboratory of Cell Engineering, Shanghai, China.
| | - Ting Wang
- Department of Genetics, Washington University School of Medicine, St Louis, MO, USA. .,The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, USA.
| | - Yinghao Sun
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China. .,Shanghai Key Laboratory of Cell Engineering, Shanghai, China.
| |
Collapse
|
114
|
Schmitt-Ney M. The FOXO's Advantages of Being a Family: Considerations on Function and Evolution. Cells 2020; 9:E787. [PMID: 32214027 PMCID: PMC7140813 DOI: 10.3390/cells9030787] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/16/2020] [Accepted: 03/23/2020] [Indexed: 12/12/2022] Open
Abstract
The nematode Caenorhabditis elegans possesses a unique (with various isoforms) FOXO transcription factor DAF-16, which is notorious for its role in aging and its regulation by the insulin-PI3K-AKT pathway. In humans, five genes (including a protein-coding pseudogene) encode for FOXO transcription factors that are targeted by the PI3K-AKT axis, such as in C. elegans. This common regulation and highly conserved DNA-binding domain are the pillars of this family. In this review, I will discuss the possible meaning of possessing a group of very similar proteins and how it can generate additional functionality to more complex organisms. I frame this discussion in relation to the much larger super family of Forkhead proteins to which they belong. FOXO members are very often co-expressed in the same cell type. The overlap of function and expression creates a certain redundancy that might be a safeguard against the accidental loss of FOXO function, which could otherwise lead to disease, particularly, cancer. This is one of the points that will be examined in this "family affair" report.
Collapse
Affiliation(s)
- Michel Schmitt-Ney
- Molecular Biotechnology Center, University of Torino, Via Nizza 52, 10126 Torino, Italy
| |
Collapse
|
115
|
Gene network transitions in embryos depend upon interactions between a pioneer transcription factor and core histones. Nat Genet 2020; 52:418-427. [PMID: 32203463 PMCID: PMC7901023 DOI: 10.1038/s41588-020-0591-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 02/14/2020] [Indexed: 12/17/2022]
Abstract
Gene network transitions in embryos and other fate-changing contexts involve combinations of transcription factors. A subset of fate-changing transcription factors act as pioneers; they scan and target nucleosomal DNA and initiate cooperative events that can open the local chromatin. But a gap has remained in understanding how molecular interactions with the nucleosome contribute to the chromatin-opening phenomenon. Here we identified a short alpha-helical region, conserved among FOXA pioneer factors, that interacts with core histones and contributes to chromatin opening in vitro. The same domain is involved in chromatin opening in early mouse embryos for normal development. Thus, local opening of chromatin by interactions between pioneer factors and core histones promotes genetic programming.
Collapse
|
116
|
Newman JA, Aitkenhead H, Gavard AE, Rota IA, Handel AE, Hollander GA, Gileadi O. The crystal structure of human forkhead box N1 in complex with DNA reveals the structural basis for forkhead box family specificity. J Biol Chem 2020; 295:2948-2958. [PMID: 31914405 PMCID: PMC7062188 DOI: 10.1074/jbc.ra119.010365] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/23/2019] [Indexed: 12/12/2022] Open
Abstract
Forkhead box N1 (FOXN1) is a member of the forkhead box family of transcription factors and plays an important role in thymic epithelial cell differentiation and development. FOXN1 mutations in humans and mice give rise to the "nude" phenotype, which is marked by athymia. FOXN1 belongs to a subset of the FOX family that recognizes an alternative forkhead-like (FHL) consensus sequence (GACGC) that is different from the more widely recognized forkhead (FKH) sequence RYAAAYA (where R is purine, and Y is pyrimidine). Here, we present the FOXN1 structure in complex with DNA containing an FHL motif at 1.6 Å resolution, in which the DNA sequence is recognized by a mixture of direct and water-mediated contacts provided by residues in an α-helix inserted in the DNA major groove (the recognition helix). Comparisons with the structure of other FOX family members revealed that the FKH and FHL DNA sequences are bound in two distinct modes, with partially different registers for the protein DNA contacts. We identified a single alternative rotamer within the recognition helix itself as an important determinant of DNA specificity and found protein sequence features in the recognition helix that could be used to predict the specificity of other FOX family members. Finally, we demonstrate that the C-terminal region of FOXN1 is required for high-affinity DNA binding and that FOXN1 has a significantly reduced affinity for DNA that contains 5'-methylcytosine, which may have implications for the role of FOXN1 in thymic involution.
Collapse
Affiliation(s)
- Joseph A Newman
- Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Hazel Aitkenhead
- Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Angeline E Gavard
- Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, United Kingdom
| | - Ioanna A Rota
- Department of Paediatrics and the Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom
| | - Adam E Handel
- Department of Paediatrics and the Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom; Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, United Kingdom
| | - Georg A Hollander
- Department of Paediatrics and the Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, United Kingdom; Paediatric Immunology, Department of Biomedicine, University of Basel and University Children's Hospital Basel, 4056 Basel, Switzerland
| | - Opher Gileadi
- Structural Genomics Consortium, University of Oxford, Oxford OX3 7DQ, United Kingdom.
| |
Collapse
|
117
|
Sheng Y, Yu C, Liu Y, Hu C, Ma R, Lu X, Ji P, Chen J, Mizukawa B, Huang Y, Licht JD, Qian Z. FOXM1 regulates leukemia stem cell quiescence and survival in MLL-rearranged AML. Nat Commun 2020; 11:928. [PMID: 32066721 PMCID: PMC7026046 DOI: 10.1038/s41467-020-14590-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 12/16/2019] [Indexed: 12/16/2022] Open
Abstract
FOXM1, a known transcription factor, promotes cell proliferation in a variety of cancer cells. Here we show that Foxm1 is required for survival, quiescence and self-renewal of MLL-AF9 (MA9)-transformed leukemia stem cells (LSCs) in vivo. Mechanistically, Foxm1 upregulation activates the Wnt/β-catenin signaling pathways by directly binding to β-catenin and stabilizing β-catenin protein through inhibiting its degradation, thereby preserving LSC quiescence, and promoting LSC self-renewal in MLL-rearranged AML. More importantly, inhibition of FOXM1 markedly suppresses leukemogenic potential and induces apoptosis of primary LSCs from MLL-rearranged AML patients in vitro and in vivo in xenograft mice. Thus, our study shows a critical role and mechanisms of Foxm1 in MA9-LSCs, and indicates that FOXM1 is a potential therapeutic target for selectively eliminating LSCs in MLL-rearranged AML.
Collapse
Affiliation(s)
- Yue Sheng
- Division of Hematology/Oncology, UF Health Cancer Center, University of Florida, Gainesville, FL, USA
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Chunjie Yu
- Division of Hematology/Oncology, UF Health Cancer Center, University of Florida, Gainesville, FL, USA
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Yin Liu
- Division of Hematology/Oncology, UF Health Cancer Center, University of Florida, Gainesville, FL, USA
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Chao Hu
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Rui Ma
- Institute for Tuberculosis Research, University of Illinois at Chicago, Chicago, IL, USA
| | - Xinyan Lu
- Department of Pathology, Feinberg School of Medicine, Northwestern University, IL, USA
| | - Peng Ji
- Department of Pathology, Feinberg School of Medicine, Northwestern University, IL, USA
| | - Jianjun Chen
- Department of System Biology, City of Hope, CA, USA
| | - Benjamin Mizukawa
- Cancer & Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Yong Huang
- Department of Medicine, University of Virginia, Charlottestville, VA, USA
| | - Jonathan D Licht
- Division of Hematology/Oncology, UF Health Cancer Center, University of Florida, Gainesville, FL, USA
| | - Zhijian Qian
- Division of Hematology/Oncology, UF Health Cancer Center, University of Florida, Gainesville, FL, USA.
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
118
|
Barrett CM, McCracken R, Elmer J, Haynes KA. Components from the Human c-myb Transcriptional Regulation System Reactivate Epigenetically Repressed Transgenes. Int J Mol Sci 2020; 21:E530. [PMID: 31947658 PMCID: PMC7014047 DOI: 10.3390/ijms21020530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/07/2020] [Accepted: 01/07/2020] [Indexed: 11/16/2022] Open
Abstract
A persistent challenge for mammalian cell engineering is the undesirable epigenetic silencing of transgenes. Foreign DNA can be incorporated into closed chromatin before and after it has been integrated into a host cell's genome. To identify elements that mitigate epigenetic silencing, we tested components from the c-myb and NF-kB transcriptional regulation systems in transiently transfected DNA and at chromosomally integrated transgenes in PC-3 and HEK 293 cells. DNA binding sites for MYB (c-myb) placed upstream of a minimal promoter enhanced expression from transiently transfected plasmid DNA. We targeted p65 and MYB fusion proteins to a chromosomal transgene, UAS-Tk-luciferase, that was silenced by ectopic Polycomb chromatin complexes. Transient expression of Gal4-MYB induced an activated state that resisted complete re-silencing. We used custom guide RNAs and dCas9-MYB to target MYB to different positions relative to the promoter and observed that transgene activation within ectopic Polycomb chromatin required proximity of dCas9-MYB to the transcriptional start site. Our report demonstrates the use of MYB in the context of the CRISPR-activation system, showing that DNA elements and fusion proteins derived from c-myb can mitigate epigenetic silencing to improve transgene expression in engineered cell lines.
Collapse
Affiliation(s)
- Cassandra M. Barrett
- School of Biological and Health Systems Engineering, Arizona State University, 501 East Tyler Mall, Tempe, AZ 85287, USA;
| | - Reilly McCracken
- Department of Chemical Engineering, Villanova University, 217 White Hall, 800 East Lancaster Avenue, Villanova, PA 19085, USA; (R.M.); (J.E.)
| | - Jacob Elmer
- Department of Chemical Engineering, Villanova University, 217 White Hall, 800 East Lancaster Avenue, Villanova, PA 19085, USA; (R.M.); (J.E.)
| | - Karmella A. Haynes
- School of Biological and Health Systems Engineering, Arizona State University, 501 East Tyler Mall, Tempe, AZ 85287, USA;
- Wallace H. Coulter Department of Biomedical Engineering, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
119
|
Kim JH, Hwang J, Jung JH, Lee HJ, Lee DY, Kim SH. Molecular networks of FOXP family: dual biologic functions, interplay with other molecules and clinical implications in cancer progression. Mol Cancer 2019; 18:180. [PMID: 31815635 PMCID: PMC6900861 DOI: 10.1186/s12943-019-1110-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 11/25/2019] [Indexed: 02/06/2023] Open
Abstract
Though Forkhead box P (FOXP) transcription factors comprising of FOXP1, FOXP2, FOXP3 and FOXP4 are involved in the embryonic development, immune disorders and cancer progression, the underlying function of FOXP3 targeting CD4 + CD25+ regulatory T (Treg) cells and the dual roles of FOXP proteins as an oncogene or a tumor suppressor are unclear and controversial in cancers to date. Thus, the present review highlighted research history, dual roles of FOXP proteins as a tumor suppressor or an oncogene, their molecular networks with other proteins and noncoding RNAs, cellular immunotherapy targeting FOXP3, and clinical implications in cancer progression.
Collapse
Affiliation(s)
- Ju-Ha Kim
- Cancer Molecular Target Herbal Research Lab, College of Korean Medicine, Kyung Hee university, 1 Hoegi-dong, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Jisung Hwang
- Cancer Molecular Target Herbal Research Lab, College of Korean Medicine, Kyung Hee university, 1 Hoegi-dong, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Ji Hoon Jung
- Cancer Molecular Target Herbal Research Lab, College of Korean Medicine, Kyung Hee university, 1 Hoegi-dong, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Hyo-Jung Lee
- Cancer Molecular Target Herbal Research Lab, College of Korean Medicine, Kyung Hee university, 1 Hoegi-dong, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Dae Young Lee
- Department of Herbal Crop Research, Rural Development Administration, National Institute of Horticultural and Herbal Science, Eumseong, 27709, Republic of Korea
| | - Sung-Hoon Kim
- Cancer Molecular Target Herbal Research Lab, College of Korean Medicine, Kyung Hee university, 1 Hoegi-dong, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| |
Collapse
|
120
|
Dock-Bregeon AC, Lewis KA, Conte MR. The La-related proteins: structures and interactions of a versatile superfamily of RNA-binding proteins. RNA Biol 2019; 18:178-193. [PMID: 31752575 DOI: 10.1080/15476286.2019.1695712] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The La-related proteins (LaRPs) are an ancient superfamily of RNA-binding proteins orchestrating the major fates of RNA, from processing and maturation to regulation of mRNA translation. LaRPs are instrumental in modulating complex assemblies where the RNA is bound, folded, processed, escorted and presented to the functional effectors often through recruitment of protein partners. This intricate web of protein-RNA and protein-protein interactions is enabled by the modular nature of the LaRPs, comprising several structured domains connected by flexible linkers, and other sequences lacking recognizable folded motifs. Recent structures, together with biochemical and biophysical studies, have provided insights into how each LaRP family has evolved unique mechanisms of RNA recognition, not only through the conserved RNA-binding unit, the La-module, but also mediated by other family-specific motifs. Furthermore, in a series of unexpected twists and turns, they have revealed that the dynamic and conformational interplay of multi-structured domains and disordered regions operate in unison to achieve RNA substrate discrimination. This review proposes a perspective of our current knowledge of the structure-function relationship of the LaRP superfamily.
Collapse
Affiliation(s)
| | - Karen A Lewis
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX, USA
| | - Maria R Conte
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
| |
Collapse
|
121
|
Sika deer antler protein against acetaminophen-induced nephrotoxicity by activating Nrf2 and inhibition FoxO1 via PI3K/Akt signaling. Int J Biol Macromol 2019; 141:961-987. [DOI: 10.1016/j.ijbiomac.2019.08.164] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/15/2019] [Accepted: 08/19/2019] [Indexed: 12/20/2022]
|
122
|
Zheng L, Mao CZ, Bi YQ, Zhou YM, Zhang Z, Zhao H, Park KS, Huang R, Cai DQ, Qi XF. Differential expression of foxo genes during embryonic development and in adult tissues of Xenopus tropicalis. Gene Expr Patterns 2019; 35:119091. [PMID: 31770608 DOI: 10.1016/j.gep.2019.119091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 10/06/2019] [Accepted: 11/22/2019] [Indexed: 01/17/2023]
Abstract
The forkhead-box transcription factors of O subfamily (FOXO) play important roles in regulation of various biological functions. We cloned foxo1, foxo3, foxo4, and foxo6 from Xenopus tropicalis (hereafter X. tropicalis), and examined their expression in embryos and adult tissues. Maternal transcripts of foxo1 and foxo3 genes are detected within the animal half of the early embryo, their zygotic transcripts show distinct patterns. At late tailbud stages, foxo1 expression is observed mainly in eye, brain, branchial arches, and pronephros. In addition to eye, brain, branchial arches and pronephros, foxo3 expression is also evident in heart and somites. Foxo4 expression was not detected in oocytes. At late tailbud stages, foxo4 is mainly expressed in eye, brain, branchial arches and otic vesicle. Foxo6 expression was not detectable until stage 36, with a specific expression in nasal pits. Obvious expression of foxo1, foxo3 and foxo4, but not foxo6, is detected by RT-PCR both in oocytes and in embryos at examined stages. The expression of foxo1, foxo3 and foxo4 is observed in all tested adult tissues including heart, muscle, liver, lung, stomach and small intestine, while foxo6 is only detectable in stomach and small intestine. The differential expression pattern of foxo genes suggests that they exert distinct functions during embryonic development and in various organs of X. tropicalis.
Collapse
Affiliation(s)
- Li Zheng
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Cheng-Zhou Mao
- Key Laboratory of Regenerative Medicine, Ministry of Education, Department of Developmental & Regenerative Biology, Jinan University, Guangzhou 510632, China
| | - Yun-Qian Bi
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yi-Min Zhou
- Key Laboratory of Regenerative Medicine, Ministry of Education, Department of Developmental & Regenerative Biology, Jinan University, Guangzhou 510632, China
| | - Zhou Zhang
- Key Laboratory of Regenerative Medicine, Ministry of Education, Department of Developmental & Regenerative Biology, Jinan University, Guangzhou 510632, China
| | - Hui Zhao
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Kyu-Sang Park
- Department of Physiology, Wonju College of Medicine, Yonsei University, Wonju, Gangwon 220-701, South Korea
| | - Ruijin Huang
- Institute of Anatomy, Department of Neuroanatomy, Medical Faculty Bonn, Rheinische Friedrich-Wilhelms-University of Bonn, Germany
| | - Dong-Qing Cai
- Key Laboratory of Regenerative Medicine, Ministry of Education, Department of Developmental & Regenerative Biology, Jinan University, Guangzhou 510632, China
| | - Xu-Feng Qi
- Key Laboratory of Regenerative Medicine, Ministry of Education, Department of Developmental & Regenerative Biology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
123
|
Mivelaz M, Cao AM, Kubik S, Zencir S, Hovius R, Boichenko I, Stachowicz AM, Kurat CF, Shore D, Fierz B. Chromatin Fiber Invasion and Nucleosome Displacement by the Rap1 Transcription Factor. Mol Cell 2019; 77:488-500.e9. [PMID: 31761495 PMCID: PMC7005674 DOI: 10.1016/j.molcel.2019.10.025] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 07/09/2019] [Accepted: 10/16/2019] [Indexed: 02/03/2023]
Abstract
Pioneer transcription factors (pTFs) bind to target sites within compact chromatin, initiating chromatin remodeling and controlling the recruitment of downstream factors. The mechanisms by which pTFs overcome the chromatin barrier are not well understood. Here, we reveal, using single-molecule fluorescence, how the yeast transcription factor Rap1 invades and remodels chromatin. Using a reconstituted chromatin system replicating yeast promoter architecture, we demonstrate that Rap1 can bind nucleosomal DNA within a chromatin fiber but with shortened dwell times compared to naked DNA. Moreover, we show that Rap1 binding opens chromatin fiber structure by inhibiting inter-nucleosome contacts. Finally, we reveal that Rap1 collaborates with the chromatin remodeler RSC to displace promoter nucleosomes, paving the way for long-lived bound states on newly exposed DNA. Together, our results provide a mechanistic view of how Rap1 gains access and opens chromatin, thereby establishing an active promoter architecture and controlling gene expression. The yeast transcription factor Rap1 can invade compact chromatin Rap1 directly opens chromatin structure by preventing nucleosome stacking Stable Rap1 binding requires collaboration with RSC to shift promoter nucleosomes
Collapse
Affiliation(s)
- Maxime Mivelaz
- École Polytechnique Fédérale de Lausanne (EPFL), SB ISIC LCBM, Station 6, 1015 Lausanne, Switzerland
| | - Anne-Marinette Cao
- École Polytechnique Fédérale de Lausanne (EPFL), SB ISIC LCBM, Station 6, 1015 Lausanne, Switzerland
| | - Slawomir Kubik
- Department of Molecular Biology and Institute of Genetics and Genomics of Geneva (iGE3), 1211 Geneva 4, Switzerland
| | - Sevil Zencir
- Department of Molecular Biology and Institute of Genetics and Genomics of Geneva (iGE3), 1211 Geneva 4, Switzerland
| | - Ruud Hovius
- École Polytechnique Fédérale de Lausanne (EPFL), SB ISIC LCBM, Station 6, 1015 Lausanne, Switzerland
| | - Iuliia Boichenko
- École Polytechnique Fédérale de Lausanne (EPFL), SB ISIC LCBM, Station 6, 1015 Lausanne, Switzerland
| | - Anna Maria Stachowicz
- Department of Molecular Biology and Institute of Genetics and Genomics of Geneva (iGE3), 1211 Geneva 4, Switzerland
| | - Christoph F Kurat
- Molecular Biology Division, Biomedical Center, Faculty of Medicine, LMU Munich, 82152 Planegg-Martinsried, Germany
| | - David Shore
- Department of Molecular Biology and Institute of Genetics and Genomics of Geneva (iGE3), 1211 Geneva 4, Switzerland
| | - Beat Fierz
- École Polytechnique Fédérale de Lausanne (EPFL), SB ISIC LCBM, Station 6, 1015 Lausanne, Switzerland.
| |
Collapse
|
124
|
Racioppi C, Wiechecki KA, Christiaen L. Combinatorial chromatin dynamics foster accurate cardiopharyngeal fate choices. eLife 2019; 8:49921. [PMID: 31746740 PMCID: PMC6952182 DOI: 10.7554/elife.49921] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/18/2019] [Indexed: 12/22/2022] Open
Abstract
During embryogenesis, chromatin accessibility profiles control lineage-specific gene expression by modulating transcription, thus impacting multipotent progenitor states and subsequent fate choices. Subsets of cardiac and pharyngeal/head muscles share a common origin in the cardiopharyngeal mesoderm, but the chromatin landscapes that govern multipotent progenitors competence and early fate choices remain largely elusive. Here, we leveraged the simplicity of the chordate model Ciona to profile chromatin accessibility through stereotyped transitions from naive Mesp+ mesoderm to distinct fate-restricted heart and pharyngeal muscle precursors. An FGF-Foxf pathway acts in multipotent progenitors to establish cardiopharyngeal-specific patterns of accessibility, which govern later heart vs. pharyngeal muscle-specific expression profiles, demonstrating extensive spatiotemporal decoupling between early cardiopharyngeal enhancer accessibility and late cell-type-specific activity. We found that multiple cis-regulatory elements, with distinct chromatin accessibility profiles and motif compositions, are required to activate Ebf and Tbx1/10, two key determinants of cardiopharyngeal fate choices. We propose that these 'combined enhancers' foster spatially and temporally accurate fate choices, by increasing the repertoire of regulatory inputs that control gene expression, through either accessibility and/or activity.
Collapse
Affiliation(s)
- Claudia Racioppi
- Center for Developmental Genetics, Department of Biology, New York University, New York, United States
| | - Keira A Wiechecki
- Center for Developmental Genetics, Department of Biology, New York University, New York, United States
| | - Lionel Christiaen
- Center for Developmental Genetics, Department of Biology, New York University, New York, United States
| |
Collapse
|
125
|
Milan M, Balestrieri C, Alfarano G, Polletti S, Prosperini E, Spaggiari P, Zerbi A, Diaferia GR, Natoli G. FOXA2 controls the cis-regulatory networks of pancreatic cancer cells in a differentiation grade-specific manner. EMBO J 2019; 38:e102161. [PMID: 31531882 PMCID: PMC6792020 DOI: 10.15252/embj.2019102161] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 08/09/2019] [Accepted: 08/12/2019] [Indexed: 01/04/2023] Open
Abstract
Differentiation of normal and tumor cells is controlled by regulatory networks enforced by lineage-determining transcription factors (TFs). Among them, TFs such as FOXA1/2 bind naïve chromatin and induce its accessibility, thus establishing new gene regulatory networks. Pancreatic ductal adenocarcinoma (PDAC) is characterized by the coexistence of well- and poorly differentiated cells at all stages of disease. How the transcriptional networks determining such massive cellular heterogeneity are established remains to be determined. We found that FOXA2, a TF controlling pancreas specification, broadly contributed to the cis-regulatory networks of PDACs. Despite being expressed in both well- and poorly differentiated PDAC cells, FOXA2 displayed extensively different genomic distributions and controlled distinct gene expression programs. Grade-specific functions of FOXA2 depended on its partnership with TFs whose expression varied depending on the differentiation grade. These data suggest that FOXA2 contributes to the regulatory networks of heterogeneous PDAC cells via interactions with alternative partner TFs.
Collapse
Affiliation(s)
- Marta Milan
- Humanitas UniversityMilanoItaly
- Humanitas Clinical Research Center IRCCSMilanoItaly
- Department of Experimental OncologyIEO, European Institute of Oncology IRCCSMilanoItaly
| | - Chiara Balestrieri
- Humanitas UniversityMilanoItaly
- Humanitas Clinical Research Center IRCCSMilanoItaly
| | - Gabriele Alfarano
- Humanitas UniversityMilanoItaly
- Humanitas Clinical Research Center IRCCSMilanoItaly
| | - Sara Polletti
- Humanitas UniversityMilanoItaly
- Humanitas Clinical Research Center IRCCSMilanoItaly
| | - Elena Prosperini
- Humanitas UniversityMilanoItaly
- Humanitas Clinical Research Center IRCCSMilanoItaly
| | | | - Alessandro Zerbi
- Humanitas UniversityMilanoItaly
- Humanitas Clinical Research Center IRCCSMilanoItaly
| | - Giuseppe R Diaferia
- Department of Experimental OncologyIEO, European Institute of Oncology IRCCSMilanoItaly
| | - Gioacchino Natoli
- Humanitas UniversityMilanoItaly
- Humanitas Clinical Research Center IRCCSMilanoItaly
| |
Collapse
|
126
|
Müller AU, Leibundgut M, Ban N, Weber-Ban E. Structure and functional implications of WYL domain-containing bacterial DNA damage response regulator PafBC. Nat Commun 2019; 10:4653. [PMID: 31604936 PMCID: PMC6789036 DOI: 10.1038/s41467-019-12567-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 09/16/2019] [Indexed: 01/15/2023] Open
Abstract
In mycobacteria, transcriptional activator PafBC is responsible for upregulating the majority of genes induced by DNA damage. Understanding the mechanism of PafBC activation is impeded by a lack of structural information on this transcription factor that contains a widespread, but poorly understood WYL domain frequently encountered in bacterial transcription factors. Here, we determine the crystal structure of Arthrobacter aurescens PafBC. The protein consists of two modules, each harboring an N-terminal helix-turn-helix DNA-binding domain followed by a central WYL and a C-terminal extension (WCX) domain. The WYL domains exhibit Sm-folds, while the WCX domains adopt ferredoxin-like folds, both characteristic for RNA-binding proteins. Our results suggest a mechanism of regulation in which WYL domain-containing transcription factors may be activated by binding RNA or other nucleic acid molecules. Using an in vivo mutational screen in Mycobacterium smegmatis, we identify potential co-activator binding sites on PafBC.
Collapse
Affiliation(s)
- Andreas U Müller
- ETH Zurich, Institute of Molecular Biology and Biophysics, CH-8093, Zurich, Switzerland
| | - Marc Leibundgut
- ETH Zurich, Institute of Molecular Biology and Biophysics, CH-8093, Zurich, Switzerland
| | - Nenad Ban
- ETH Zurich, Institute of Molecular Biology and Biophysics, CH-8093, Zurich, Switzerland
| | - Eilika Weber-Ban
- ETH Zurich, Institute of Molecular Biology and Biophysics, CH-8093, Zurich, Switzerland.
| |
Collapse
|
127
|
Takahashi TS, Sato Y, Yamagata A, Goto-Ito S, Saijo M, Fukai S. Structural basis of ubiquitin recognition by the winged-helix domain of Cockayne syndrome group B protein. Nucleic Acids Res 2019; 47:3784-3794. [PMID: 30753618 PMCID: PMC6468306 DOI: 10.1093/nar/gkz081] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 01/25/2019] [Accepted: 02/01/2019] [Indexed: 12/18/2022] Open
Abstract
Cockayne syndrome group B (CSB, also known as ERCC6) protein is involved in many DNA repair processes and essential for transcription-coupled repair (TCR). The central region of CSB has the helicase motif, whereas the C-terminal region contains important regulatory elements for repair of UV- and oxidative stress-induced damages and double-strand breaks (DSBs). A previous study suggested that a small part (∼30 residues) within this region was responsible for binding to ubiquitin (Ub). Here, we show that the Ub-binding of CSB requires a larger part of CSB, which was previously identified as a winged-helix domain (WHD) and is involved in the recruitment of CSB to DSBs. We also present the crystal structure of CSB WHD in complex with Ub. CSB WHD folds as a single globular domain, defining a class of Ub-binding domains (UBDs) different from 23 UBD classes identified so far. The second α-helix and C-terminal extremity of CSB WHD interact with Ub. Together with structure-guided mutational analysis, we identified the residues critical for the binding to Ub. CSB mutants defective in the Ub binding reduced repair of UV-induced damage. This study supports the notion that DSB repair and TCR may be associated with the Ub-binding of CSB.
Collapse
Affiliation(s)
- Tomio S Takahashi
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo 113-0032, Japan.,Synchrotron Radiation Research Organization, The University of Tokyo, Tokyo 113-0032, Japan
| | - Yusuke Sato
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo 113-0032, Japan.,Synchrotron Radiation Research Organization, The University of Tokyo, Tokyo 113-0032, Japan.,Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan
| | - Atsushi Yamagata
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo 113-0032, Japan.,Synchrotron Radiation Research Organization, The University of Tokyo, Tokyo 113-0032, Japan.,Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan
| | - Sakurako Goto-Ito
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo 113-0032, Japan.,Synchrotron Radiation Research Organization, The University of Tokyo, Tokyo 113-0032, Japan
| | - Masafumi Saijo
- Graduate School of Frontier Biosciences, Osaka University, Yamadaoka 1-3, Suita, Osaka 565-0871, Japan
| | - Shuya Fukai
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo 113-0032, Japan.,Synchrotron Radiation Research Organization, The University of Tokyo, Tokyo 113-0032, Japan.,Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8562, Japan
| |
Collapse
|
128
|
Fasano C, Disciglio V, Bertora S, Lepore Signorile M, Simone C. FOXO3a from the Nucleus to the Mitochondria: A Round Trip in Cellular Stress Response. Cells 2019; 8:cells8091110. [PMID: 31546924 PMCID: PMC6769815 DOI: 10.3390/cells8091110] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 09/16/2019] [Accepted: 09/18/2019] [Indexed: 12/25/2022] Open
Abstract
Cellular stress response is a universal mechanism that ensures the survival or negative selection of cells in challenging conditions. The transcription factor Forkhead box protein O3 (FOXO3a) is a core regulator of cellular homeostasis, stress response, and longevity since it can modulate a variety of stress responses upon nutrient shortage, oxidative stress, hypoxia, heat shock, and DNA damage. FOXO3a activity is regulated by post-translational modifications that drive its shuttling between different cellular compartments, thereby determining its inactivation (cytoplasm) or activation (nucleus and mitochondria). Depending on the stress stimulus and subcellular context, activated FOXO3a can induce specific sets of nuclear genes, including cell cycle inhibitors, pro-apoptotic genes, reactive oxygen species (ROS) scavengers, autophagy effectors, gluconeogenic enzymes, and others. On the other hand, upon glucose restriction, 5′-AMP-activated protein kinase (AMPK) and mitogen activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) -dependent FOXO3a mitochondrial translocation allows the transcription of oxidative phosphorylation (OXPHOS) genes, restoring cellular ATP levels, while in cancer cells, mitochondrial FOXO3a mediates survival upon genotoxic stress induced by chemotherapy. Interestingly, these target genes and their related pathways are diverse and sometimes antagonistic, suggesting that FOXO3a is an adaptable player in the dynamic homeostasis of normal and stressed cells. In this review, we describe the multiple roles of FOXO3a in cellular stress response, with a focus on both its nuclear and mitochondrial functions.
Collapse
Affiliation(s)
- Candida Fasano
- National Institute of Gastroenterology, "S. de Bellis" Research Hospital, 70013 Castellana Grotte (Bari), Italy.
| | - Vittoria Disciglio
- National Institute of Gastroenterology, "S. de Bellis" Research Hospital, 70013 Castellana Grotte (Bari), Italy.
| | - Stefania Bertora
- National Institute of Gastroenterology, "S. de Bellis" Research Hospital, 70013 Castellana Grotte (Bari), Italy.
| | - Martina Lepore Signorile
- National Institute of Gastroenterology, "S. de Bellis" Research Hospital, 70013 Castellana Grotte (Bari), Italy.
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Roma, Italy.
| | - Cristiano Simone
- National Institute of Gastroenterology, "S. de Bellis" Research Hospital, 70013 Castellana Grotte (Bari), Italy.
- Division of Medical Genetics, Department of Biomedical Sciences and Human Oncology (DIMO), University of Bari Aldo Moro, 70124 Bari, Italy.
| |
Collapse
|
129
|
Forkhead Domains of FOXO Transcription Factors Differ in both Overall Conformation and Dynamics. Cells 2019; 8:cells8090966. [PMID: 31450545 PMCID: PMC6770010 DOI: 10.3390/cells8090966] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/21/2019] [Accepted: 08/23/2019] [Indexed: 12/15/2022] Open
Abstract
FOXO transcription factors regulate cellular homeostasis, longevity and response to stress. FOXO1 (also known as FKHR) is a key regulator of hepatic glucose production and lipid metabolism, and its specific inhibition may have beneficial effects on diabetic hyperglycemia by reducing hepatic glucose production. Moreover, all FOXO proteins are considered potential drug targets for drug resistance prevention in cancer therapy. However, the development of specific FOXO inhibitors requires a detailed understanding of structural differences between individual FOXO DNA-binding domains. The high-resolution structure of the DNA-binding domain of FOXO1 reported in this study and its comparison with structures of other FOXO proteins revealed differences in both their conformation and flexibility. These differences are encoded by variations in protein sequences and account for the distinct functions of FOXO proteins. In particular, the positions of the helices H1, H2 and H3, whose interface form the hydrophobic core of the Forkhead domain, and the interactions between hydrophobic residues located on the interface between the N-terminal segment, the H2-H3 loop, and the recognition helix H3 differ among apo FOXO1, FOXO3 and FOXO4 proteins. Therefore, the availability of apo structures of DNA-binding domains of all three major FOXO proteins will support the development of FOXO-type-specific inhibitors.
Collapse
|
130
|
Abstract
FOXA1 mutations occur frequently in prostate cancer and are associated with a worse clinical outcome. However, the mechanism by which these mutations act was until now largely unknown. Two recent publications clearly demonstrate that FOXA1 acts as an oncogene in prostate cancer and delineate the phenotypic effects of distinct classes of FOXA1 alterations.
Collapse
Affiliation(s)
- Neel Shah
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Myles Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA 02215, USA; Center for Functional Cancer Epigenetics, Dana-Farber Cancer Institute, Boston, MA 02215, USA.
| |
Collapse
|
131
|
Wang X, Srivastava Y, Jankowski A, Malik V, Wei Y, Del Rosario RC, Cojocaru V, Prabhakar S, Jauch R. DNA-mediated dimerization on a compact sequence signature controls enhancer engagement and regulation by FOXA1. Nucleic Acids Res 2019; 46:5470-5486. [PMID: 29669022 PMCID: PMC6009666 DOI: 10.1093/nar/gky259] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 04/12/2018] [Indexed: 12/16/2022] Open
Abstract
FOXA1 is a transcription factor capable to bind silenced chromatin to direct context-dependent cell fate conversion. Here, we demonstrate that a compact palindromic DNA element (termed 'DIV' for its diverging half-sites) induces the homodimerization of FOXA1 with strongly positive cooperativity. Alternative structural models are consistent with either an indirect DNA-mediated cooperativity or a direct protein-protein interaction. The cooperative homodimer formation is strictly constrained by precise half-site spacing. Re-analysis of chromatin immunoprecipitation sequencing data indicates that the DIV is effectively targeted by FOXA1 in the context of chromatin. Reporter assays show that FOXA1-dependent transcriptional activity declines when homodimeric binding is disrupted. In response to phosphatidylinositol-3 kinase inhibition DIV sites pre-bound by FOXA1 such as at the PVT1/MYC locus exhibit a strong increase in accessibility suggesting a role of the DIV configuration in the chromatin closed-open dynamics. Moreover, several disease-associated single nucleotide polymorphisms map to DIV elements and show allelic differences in FOXA1 homodimerization, reporter gene expression and are annotated as quantitative trait loci. This includes the rs541455835 variant at the MAPT locus encoding the Tau protein associated with Parkinson's disease. Collectively, the DIV guides chromatin engagement and regulation by FOXA1 and its perturbation could be linked to disease etiologies.
Collapse
Affiliation(s)
- Xuecong Wang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences and Guangzhou Medical University, Guangzhou 511436, China.,Genome Regulation Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yogesh Srivastava
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences and Guangzhou Medical University, Guangzhou 511436, China.,Genome Regulation Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Aleksander Jankowski
- Computational and Systems Biology, Genome Institute of Singapore, Singapore 138672, Singapore.,Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, 02-097 Warszawa, Poland.,Genome Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Vikas Malik
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences and Guangzhou Medical University, Guangzhou 511436, China.,Genome Regulation Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanjie Wei
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences and Guangzhou Medical University, Guangzhou 511436, China.,Genome Regulation Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ricardo Ch Del Rosario
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, 75 Ames St., Cambridge MA 02142, USA
| | - Vlad Cojocaru
- Computational Structural Biology Laboratory, Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, Röntgenstrasse 20, Münster 48149, Germany.,Center for Multiscale Theory and Computation, Westfälische Wilhelms University, 48149 Münster, Germany
| | - Shyam Prabhakar
- Computational and Systems Biology, Genome Institute of Singapore, Singapore 138672, Singapore
| | - Ralf Jauch
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences and Guangzhou Medical University, Guangzhou 511436, China.,Genome Regulation Laboratory, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
132
|
Abstract
Following fertilization, the two specified gametes must unite to create an entirely new organism. The genome is initially transcriptionally quiescent, allowing the zygote to be reprogrammed into a totipotent state. Gradually, the genome is activated through a process known as the maternal-to-zygotic transition, which enables zygotic gene products to replace the maternal supply that initiated development. This essential transition has been broadly characterized through decades of research in several model organisms. However, we still lack a full mechanistic understanding of how genome activation is executed and how this activation relates to the reprogramming of the zygotic chromatin architecture. Recent work highlights the central role of transcriptional activators and suggests that these factors may coordinate transcriptional activation with other developmental changes.
Collapse
|
133
|
Fernandez Garcia M, Moore CD, Schulz KN, Alberto O, Donague G, Harrison MM, Zhu H, Zaret KS. Structural Features of Transcription Factors Associating with Nucleosome Binding. Mol Cell 2019; 75:921-932.e6. [PMID: 31303471 DOI: 10.1016/j.molcel.2019.06.009] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 05/01/2019] [Accepted: 06/07/2019] [Indexed: 10/26/2022]
Abstract
Fate-changing transcription factors (TFs) scan chromatin to initiate new genetic programs during cell differentiation and reprogramming. Yet the protein structure domains that allow TFs to target nucleosomal DNA remain unexplored. We screened diverse TFs for binding to nucleosomes containing motif-enriched sequences targeted by pioneer factors in vivo. FOXA1, OCT4, ASCL1/E12α, PU1, CEBPα, and ZELDA display a range of nucleosome binding affinities that correlate with their cell reprogramming potential. We further screened 593 full-length human TFs on protein microarrays against different nucleosome sequences, followed by confirmation in solution, to distinguish among factors that bound nucleosomes, such as the neuronal AP-2α/β/γ, versus factors that only bound free DNA. Structural comparisons of DNA binding domains revealed that efficient nucleosome binders use short anchoring α helices to bind DNA, whereas weak nucleosome binders use unstructured regions and/or β sheets. Thus, specific modes of DNA interaction allow nucleosome scanning that confers pioneer activity to transcription factors.
Collapse
Affiliation(s)
- Meilin Fernandez Garcia
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-5157, USA
| | - Cedric D Moore
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Katharine N Schulz
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin Madison, Madison, WI 53706, USA
| | - Oscar Alberto
- Institute for Regenerative Medicine, Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-5157, USA
| | - Greg Donague
- Institute for Regenerative Medicine, Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-5157, USA
| | - Melissa M Harrison
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin Madison, Madison, WI 53706, USA
| | - Heng Zhu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Kenneth S Zaret
- Institute for Regenerative Medicine, Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104-5157, USA.
| |
Collapse
|
134
|
Parolia A, Cieslik M, Chu SC, Xiao L, Ouchi T, Zhang Y, Wang X, Vats P, Cao X, Pitchiaya S, Su F, Wang R, Feng FY, Wu YM, Lonigro RJ, Robinson DR, Chinnaiyan AM. Distinct structural classes of activating FOXA1 alterations in advanced prostate cancer. Nature 2019; 571:413-418. [PMID: 31243372 PMCID: PMC6661908 DOI: 10.1038/s41586-019-1347-4] [Citation(s) in RCA: 173] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 06/03/2019] [Indexed: 12/12/2022]
Abstract
Forkhead box A1 (FOXA1) is a pioneer transcription factor that is essential for the normal development of several endoderm-derived organs, including the prostate gland1,2. FOXA1 is frequently mutated in the hormone-receptor driven prostate, breast, bladder, and salivary gland tumors3–8. However, how FOXA1 alterations affect cancer development is unclear, with FOXA1 previously ascribed both tumor suppressive9–11 and oncogenic12–14 roles. Here we assemble an aggregate cohort of 1546 prostate cancers (PCa) and show that FOXA1 alterations fall into three distinct structural classes that diverge in clinical incidence and genetic co-alteration profiles, with a collective prevalence of 35%. Class1 activating mutations originate in early PCa without ETS/SPOP alterations, selectively recur within the Wing2-region of the DNA-binding Forkhead domain (FKHD), enable enhanced chromatin mobility and binding frequency, and strongly transactivate a luminal androgen receptor (AR) program of prostate oncogenesis. By contrast, class2 activating mutations are acquired in metastatic PCa, truncate the C-terminal domain of FOXA1, enable dominant chromatin binding by increasing DNA affinity, and through TLE3 inactivation promote WNT-pathway driven metastasis. Finally, class3 genomic rearrangements are enriched in metastatic PCa, comprise of duplications and translocations within the FOXA1 locus, and structurally reposition a conserved regulatory element, herein denoted FOXA1 Mastermind (FOXMIND), to drive overexpression of FOXA1 or other oncogenes. Our study reaffirms the central role of FOXA1 in mediating AR-driven oncogenesis, and provides mechanistic insights into how different classes of FOXA1 alterations uniquely promote PCa initiation and/or metastatic progression. Furthermore, these results have direct implications in understanding the pathobiology of other hormone-receptor driven cancers and rationalize therapeutic co-targeting of FOXA1 activity.
Collapse
Affiliation(s)
- Abhijit Parolia
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI, USA.,Molecular and Cellular Pathology Program, University of Michigan, Ann Arbor, MI, USA
| | - Marcin Cieslik
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI, USA.,Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Shih-Chun Chu
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Lanbo Xiao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Takahiro Ouchi
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Yuping Zhang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Xiaoju Wang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Pankaj Vats
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Xuhong Cao
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI, USA.,Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA
| | - Sethuramasundaram Pitchiaya
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Fengyun Su
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Rui Wang
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Felix Y Feng
- Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA, USA.,Department of Radiation Oncology, University of California at San Francisco, San Francisco, CA, USA.,Department of Urology, University of California at San Francisco, San Francisco, CA, USA.,Department of Medicine, University of California at San Francisco, San Francisco, CA, USA
| | - Yi-Mi Wu
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Robert J Lonigro
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Dan R Robinson
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA.,Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Arul M Chinnaiyan
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA. .,Department of Pathology, University of Michigan, Ann Arbor, MI, USA. .,Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI, USA. .,Department of Urology, University of Michigan, Ann Arbor, MI, USA. .,Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
135
|
Kohler V, Goessweiner-Mohr N, Aufschnaiter A, Fercher C, Probst I, Pavkov-Keller T, Hunger K, Wolinski H, Büttner S, Grohmann E, Keller W. TraN: A novel repressor of an Enterococcus conjugative type IV secretion system. Nucleic Acids Res 2019; 46:9201-9219. [PMID: 30060171 PMCID: PMC6158623 DOI: 10.1093/nar/gky671] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 07/18/2018] [Indexed: 11/19/2022] Open
Abstract
The dissemination of multi-resistant bacteria represents an enormous burden on modern healthcare. Plasmid-borne conjugative transfer is the most prevalent mechanism, requiring a type IV secretion system that enables bacteria to spread beneficial traits, such as resistance to last-line antibiotics, among different genera. Inc18 plasmids, like the Gram-positive broad host-range plasmid pIP501, are substantially involved in propagation of vancomycin resistance from Enterococci to methicillin-resistant strains of Staphylococcus aureus. Here, we identified the small cytosolic protein TraN as a repressor of the pIP501-encoded conjugative transfer system, since deletion of traN resulted in upregulation of transfer factors, leading to highly enhanced conjugative transfer. Furthermore, we report the complex structure of TraN with DNA and define the exact sequence of its binding motif. Targeting this protein–DNA interaction might represent a novel therapeutic approach against the spreading of antibiotic resistances.
Collapse
Affiliation(s)
- Verena Kohler
- Institute of Molecular Biosciences, University of Graz, Graz 8010, Austria
| | - Nikolaus Goessweiner-Mohr
- Institute of Molecular Biosciences, University of Graz, Graz 8010, Austria.,Institute of Biophysics, Johannes Kepler University, Linz 4020, Austria
| | | | - Christian Fercher
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Ines Probst
- Division of Infectious Diseases, University Medical Center Freiburg, Freiburg 79106, Germany
| | - Tea Pavkov-Keller
- Institute of Molecular Biosciences, University of Graz, Graz 8010, Austria
| | - Kristin Hunger
- Institute of Molecular Biosciences, University of Graz, Graz 8010, Austria
| | - Heimo Wolinski
- Institute of Molecular Biosciences, University of Graz, Graz 8010, Austria
| | - Sabrina Büttner
- Institute of Molecular Biosciences, University of Graz, Graz 8010, Austria.,Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm 10691, Sweden
| | - Elisabeth Grohmann
- Division of Infectious Diseases, University Medical Center Freiburg, Freiburg 79106, Germany.,Life Sciences and Technology, Beuth University of Applied Sciences, Berlin 13353, Germany
| | - Walter Keller
- Institute of Molecular Biosciences, University of Graz, Graz 8010, Austria.,BioTechMed-Graz, Austria
| |
Collapse
|
136
|
Chen X, Wei H, Li J, Liang X, Dai S, Jiang L, Guo M, Qu L, Chen Z, Chen L, Chen Y. Structural basis for DNA recognition by FOXC2. Nucleic Acids Res 2019; 47:3752-3764. [PMID: 30722065 PMCID: PMC6468292 DOI: 10.1093/nar/gkz077] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 01/26/2019] [Accepted: 01/30/2019] [Indexed: 12/15/2022] Open
Abstract
The FOXC family of transcription factors (FOXC1 and FOXC2) plays essential roles in the regulation of embryonic, ocular, and cardiac development. Mutations and abnormal expression of FOXC proteins are implicated in genetic diseases as well as cancer. In this study, we determined two crystal structures of the DNA-binding domain (DBD) of human FOXC2 protein, in complex with different DNA sites. The FOXC2-DBD adopts the winged-helix fold with helix H3 contributing to all the base specific contacts, while the N-terminus, wing 1, and the C-terminus of FOXC2-DBD all make additional contacts with the phosphate groups of DNA. Our structural, biochemical, and bioinformatics analyses allow us to revise the previously proposed DNA recognition mechanism and provide a model of DNA binding for the FOXC proteins. In addition, our structural analysis and accompanying biochemical assays provide a molecular basis for understanding disease-causing mutations in FOXC1 and FOXC2.
Collapse
Affiliation(s)
- Xiaojuan Chen
- NHC Key Laboratory of Cancer Proteomics and Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Key Laboratory of Medical Genetics and College of Life Science, Central South University, Changsha, Hunan 410008, China
| | - Hudie Wei
- NHC Key Laboratory of Cancer Proteomics and Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jun Li
- NHC Key Laboratory of Cancer Proteomics and Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xujun Liang
- NHC Key Laboratory of Cancer Proteomics and Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Shuyan Dai
- NHC Key Laboratory of Cancer Proteomics and Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Longying Jiang
- NHC Key Laboratory of Cancer Proteomics and Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Ming Guo
- NHC Key Laboratory of Cancer Proteomics and Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Lingzhi Qu
- NHC Key Laboratory of Cancer Proteomics and Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhuchu Chen
- NHC Key Laboratory of Cancer Proteomics and Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Lin Chen
- Molecular and Computational Biology Program, Department of Biological Sciences and Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Yongheng Chen
- NHC Key Laboratory of Cancer Proteomics and Laboratory of Structural Biology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Key Laboratory of Medical Genetics and College of Life Science, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
137
|
Rogers JM, Waters CT, Seegar TCM, Jarrett SM, Hallworth AN, Blacklow SC, Bulyk ML. Bispecific Forkhead Transcription Factor FoxN3 Recognizes Two Distinct Motifs with Different DNA Shapes. Mol Cell 2019; 74:245-253.e6. [PMID: 30826165 PMCID: PMC6474805 DOI: 10.1016/j.molcel.2019.01.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 12/17/2018] [Accepted: 01/11/2019] [Indexed: 12/13/2022]
Abstract
Transcription factors (TFs) control gene expression by binding DNA recognition sites in genomic regulatory regions. Although most forkhead TFs recognize a canonical forkhead (FKH) motif, RYAAAYA, some forkheads recognize a completely different (FHL) motif, GACGC. Bispecific forkhead proteins recognize both motifs, but the molecular basis for bispecific DNA recognition is not understood. We present co-crystal structures of the FoxN3 DNA binding domain bound to the FKH and FHL sites, respectively. FoxN3 adopts a similar conformation to recognize both motifs, making contacts with different DNA bases using the same amino acids. However, the DNA structure is different in the two complexes. These structures reveal how a single TF binds two unrelated DNA sequences and the importance of DNA shape in the mechanism of bispecific recognition.
Collapse
Affiliation(s)
- Julia M Rogers
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Committee on Higher Degrees in Biophysics, Harvard University, Cambridge, MA 02138, USA
| | - Colin T Waters
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Program in Biological and Biomedical Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Tom C M Seegar
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Sanchez M Jarrett
- Program in Biological and Biomedical Sciences, Harvard University, Cambridge, MA 02138, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Amelia N Hallworth
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Stephen C Blacklow
- Committee on Higher Degrees in Biophysics, Harvard University, Cambridge, MA 02138, USA; Program in Biological and Biomedical Sciences, Harvard University, Cambridge, MA 02138, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA 02215, USA.
| | - Martha L Bulyk
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Committee on Higher Degrees in Biophysics, Harvard University, Cambridge, MA 02138, USA; Program in Biological and Biomedical Sciences, Harvard University, Cambridge, MA 02138, USA; Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
138
|
Gilbert N. Biophysical regulation of local chromatin structure. Curr Opin Genet Dev 2019; 55:66-75. [DOI: 10.1016/j.gde.2019.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/31/2019] [Accepted: 06/02/2019] [Indexed: 10/26/2022]
|
139
|
Chen J, Lu Y, Tian M, Huang Q. Molecular mechanisms of FOXO1 in adipocyte differentiation. J Mol Endocrinol 2019; 62:R239-R253. [PMID: 30780132 DOI: 10.1530/jme-18-0178] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 02/05/2019] [Indexed: 12/14/2022]
Abstract
Forkhead box-O1 (FOXO1) is a downstream target of AKT and plays crucial roles in cell cycle control, apoptosis, metabolism and adipocyte differentiation. It is thought that FOXO1 affects adipocyte differentiation by regulating lipogenesis and cell cycle. With the deepening in the understanding of this field, it is currently believed that FOXO1 translocation between nuclei and cytoplasm is involved in the regulation of FOXO1 activity, thus affecting adipocyte differentiation. Translocation of FOXO1 depends on its post-translational modifications and interactions with 14-3-3. Based on these modifications and interactions, FOXO1 could regulate lipogenesis through PPARγ and the adipocyte cell cycle through p21 and p27. In this review, we aim to provide a comprehensive FOXO1 regulation network in adipocyte differentiation by linking together distinct functions mentioned above to explain their effects on adipocyte differentiation and to emphasize the regulatory role of FOXO1. In addition, we also focus on the novel findings such as the use of miRNAs in FOXO1 regulation and highlight the improvable issues, such as RNA modifications, for future research in the field.
Collapse
Affiliation(s)
- Junye Chen
- Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, People's Republic of China
- Nanchang Joint Programme, Queen Mary, University of London, London, UK
| | - Yi Lu
- Key Provincial Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi Province, People's Republic of China
- Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi Province, People's Republic of China
| | - Mengyuan Tian
- Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, People's Republic of China
- Nanchang Joint Programme, Queen Mary, University of London, London, UK
| | - Qiren Huang
- Key Provincial Laboratory of Basic Pharmacology, Nanchang University, Nanchang, Jiangxi Province, People's Republic of China
- Department of Pharmacology, School of Pharmacy, Nanchang University, Nanchang, Jiangxi Province, People's Republic of China
| |
Collapse
|
140
|
Lukoseviciute M, Gavriouchkina D, Williams RM, Hochgreb-Hagele T, Senanayake U, Chong-Morrison V, Thongjuea S, Repapi E, Mead A, Sauka-Spengler T. From Pioneer to Repressor: Bimodal foxd3 Activity Dynamically Remodels Neural Crest Regulatory Landscape In Vivo. Dev Cell 2019; 47:608-628.e6. [PMID: 30513303 PMCID: PMC6286384 DOI: 10.1016/j.devcel.2018.11.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 08/15/2018] [Accepted: 10/31/2018] [Indexed: 02/06/2023]
Abstract
The neural crest (NC) is a transient embryonic stem cell-like population characterized by its multipotency and broad developmental potential. Here, we perform NC-specific transcriptional and epigenomic profiling of foxd3-mutant cells in vivo to define the gene regulatory circuits controlling NC specification. Together with global binding analysis obtained by foxd3 biotin-ChIP and single cell profiles of foxd3-expressing premigratory NC, our analysis shows that, during early steps of NC formation, foxd3 acts globally as a pioneer factor to prime the onset of genes regulating NC specification and migration by re-arranging the chromatin landscape, opening cis-regulatory elements and reshuffling nucleosomes. Strikingly, foxd3 then gradually switches from an activator to its well-described role as a transcriptional repressor and potentially uses differential partners for each role. Taken together, these results demonstrate that foxd3 acts bimodally in the neural crest as a switch from “permissive” to “repressive” nucleosome and chromatin organization to maintain multipotency and define cell fates. FoxD3 primes neural crest specification by modulating distal enhancers FoxD3 represses a number of neural crest migration and differentiation genes In neural crest, FoxD3 acts to switch chromatin from “permissive” to “repressive” Distinctive gene regulatory mechanisms underlie the bimodal action of FoxD3
Collapse
Affiliation(s)
- Martyna Lukoseviciute
- Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Daria Gavriouchkina
- Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Ruth M Williams
- Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Tatiana Hochgreb-Hagele
- Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Upeka Senanayake
- Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Vanessa Chong-Morrison
- Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Supat Thongjuea
- Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Emmanouela Repapi
- MRC WIMM Centre for Computational Biology Research Group, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Adam Mead
- Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Tatjana Sauka-Spengler
- Radcliffe Department of Medicine, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK.
| |
Collapse
|
141
|
Lisboa J, Celma L, Sanchez D, Marquis M, Andreani J, Guérois R, Ochsenbein F, Durand D, Marsin S, Cuniasse P, Radicella JP, Quevillon-Cheruel S. The C-terminal domain of HpDprA is a DNA-binding winged helix domain that does not bind double-stranded DNA. FEBS J 2019; 286:1941-1958. [PMID: 30771270 DOI: 10.1111/febs.14788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 11/21/2018] [Accepted: 02/14/2019] [Indexed: 12/15/2022]
Abstract
DNA-processing protein A, a ubiquitous multidomain DNA-binding protein, plays a crucial role during natural transformation in bacteria. Here, we carried out the structural analysis of DprA from the human pathogen Helicobacter pylori by combining data issued from the 1.8-Å resolution X-ray structure of the Pfam02481 domain dimer (RF), the NMR structure of the carboxy terminal domain (CTD), and the low-resolution structure of the full-length DprA dimer obtained in solution by SAXS. In particular, we sought a molecular function for the CTD, a domain that we show here is essential for transformation in H. pylori. Albeit its structural homology to winged helix DNA-binding motifs, we confirmed that the isolated CTD does not interact with ssDNA nor with dsDNA. The key R52 and K137 residues of RF are crucial for these two interactions. Search for sequences harboring homology to either HpDprA or Rhodopseudomonas palustris DprA CTDs led to the identification of conserved patches in the two CTD. Our structural study revealed the similarity of the structures adopted by these residues in RpDprA CTD and HpDprA CTD. This argues for a conserved, but yet to be defined, CTD function, distinct from DNA binding.
Collapse
Affiliation(s)
- Johnny Lisboa
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Gif-sur-Yvette, France
| | - Louisa Celma
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Gif-sur-Yvette, France
| | - Dyana Sanchez
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Gif-sur-Yvette, France
| | - Mathilde Marquis
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Gif-sur-Yvette, France
| | - Jessica Andreani
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Gif-sur-Yvette, France
| | - Raphael Guérois
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Gif-sur-Yvette, France
| | - Françoise Ochsenbein
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Gif-sur-Yvette, France
| | - Dominique Durand
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Gif-sur-Yvette, France
| | - Stéphanie Marsin
- Institute of Cellular and Molecular Radiobiology, Institut François Jacob, CEA, Universités Paris Diderot and Paris-Sud, Fontenay aux Roses, France
| | - Philippe Cuniasse
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Gif-sur-Yvette, France
| | - J Pablo Radicella
- Institute of Cellular and Molecular Radiobiology, Institut François Jacob, CEA, Universités Paris Diderot and Paris-Sud, Fontenay aux Roses, France
| | - Sophie Quevillon-Cheruel
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Gif-sur-Yvette, France
| |
Collapse
|
142
|
Gilding LN, Somervaille TCP. The Diverse Consequences of FOXC1 Deregulation in Cancer. Cancers (Basel) 2019; 11:E184. [PMID: 30764547 PMCID: PMC6406774 DOI: 10.3390/cancers11020184] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 01/29/2019] [Accepted: 01/30/2019] [Indexed: 02/06/2023] Open
Abstract
Forkhead box C1 (FOXC1) is a transcription factor with essential roles in mesenchymal lineage specification and organ development during normal embryogenesis. In keeping with these developmental properties, mutations that impair the activity of FOXC1 result in the heritable Axenfeld-Rieger Syndrome and other congenital disorders. Crucially, gain of FOXC1 function is emerging as a recurrent feature of malignancy; FOXC1 overexpression is now documented in more than 16 cancer types, often in association with an unfavorable prognosis. This review explores current evidence for FOXC1 deregulation in cancer and the putative mechanisms by which FOXC1 confers its oncogenic effects.
Collapse
Affiliation(s)
- L Niall Gilding
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M20 4JG, UK.
| | - Tim C P Somervaille
- Leukaemia Biology Laboratory, Cancer Research UK Manchester Institute, The University of Manchester, Manchester M20 4JG, UK.
| |
Collapse
|
143
|
Festuccia N, Owens N, Papadopoulou T, Gonzalez I, Tachtsidi A, Vandoermel-Pournin S, Gallego E, Gutierrez N, Dubois A, Cohen-Tannoudji M, Navarro P. Transcription factor activity and nucleosome organization in mitosis. Genome Res 2019; 29:250-260. [PMID: 30655337 PMCID: PMC6360816 DOI: 10.1101/gr.243048.118] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 12/05/2018] [Indexed: 12/23/2022]
Abstract
Mitotic bookmarking transcription factors (BFs) maintain the capacity to bind to their targets during mitosis, despite major rearrangements of the chromatin. While they were thought to propagate gene regulatory information through mitosis by statically occupying their DNA targets, it has recently become clear that BFs are highly dynamic in mitotic cells. This represents both a technical and a conceptual challenge to study and understand the function of BFs: First, formaldehyde has been suggested to be unable to efficiently capture these transient interactions, leading to profound contradictions in the literature; and second, if BFs are not permanently bound to their targets during mitosis, it becomes unclear how they convey regulatory information to daughter cells. Here, comparing formaldehyde to alternative fixatives we clarify the nature of the chromosomal association of previously proposed BFs in embryonic stem cells: While ESRRB can be considered as a canonical BF that binds at selected regulatory regions in mitosis, SOX2 and POU5F1 (also known as OCT4) establish DNA sequence-independent interactions with the mitotic chromosomes, either throughout the chromosomal arms (SOX2) or at pericentromeric regions (POU5F1). Moreover, we show that ordered nucleosomal arrays are retained during mitosis at ESRRB bookmarked sites, whereas regions losing transcription factor binding display a profound loss of order. By maintaining nucleosome positioning during mitosis, ESRRB might ensure the rapid post-mitotic re-establishment of functional regulatory complexes at selected enhancers and promoters. Our results provide a mechanistic framework that reconciles dynamic mitotic binding with the transmission of gene regulatory information across cell division.
Collapse
Affiliation(s)
- Nicola Festuccia
- Epigenetics of Stem Cells, Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR3738, 75015 Paris, France.,Equipe Labellisée LIGUE Contre le Cancer
| | - Nick Owens
- Epigenetics of Stem Cells, Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR3738, 75015 Paris, France.,Equipe Labellisée LIGUE Contre le Cancer
| | - Thaleia Papadopoulou
- Epigenetics of Stem Cells, Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR3738, 75015 Paris, France.,Equipe Labellisée LIGUE Contre le Cancer
| | - Inma Gonzalez
- Epigenetics of Stem Cells, Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR3738, 75015 Paris, France.,Equipe Labellisée LIGUE Contre le Cancer
| | - Alexandra Tachtsidi
- Epigenetics of Stem Cells, Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR3738, 75015 Paris, France.,Equipe Labellisée LIGUE Contre le Cancer.,Sorbonne Université, Collège Doctoral, F-75005 Paris, France
| | - Sandrine Vandoermel-Pournin
- Mouse Functional Genetics, Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR 3738, 75015 Paris, France
| | - Elena Gallego
- Epigenetics of Stem Cells, Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR3738, 75015 Paris, France.,Equipe Labellisée LIGUE Contre le Cancer
| | - Nancy Gutierrez
- Epigenetics of Stem Cells, Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR3738, 75015 Paris, France.,Equipe Labellisée LIGUE Contre le Cancer
| | - Agnès Dubois
- Epigenetics of Stem Cells, Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR3738, 75015 Paris, France.,Equipe Labellisée LIGUE Contre le Cancer
| | - Michel Cohen-Tannoudji
- Mouse Functional Genetics, Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR 3738, 75015 Paris, France
| | - Pablo Navarro
- Epigenetics of Stem Cells, Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR3738, 75015 Paris, France.,Equipe Labellisée LIGUE Contre le Cancer
| |
Collapse
|
144
|
Laissue P. The forkhead-box family of transcription factors: key molecular players in colorectal cancer pathogenesis. Mol Cancer 2019; 18:5. [PMID: 30621735 PMCID: PMC6325735 DOI: 10.1186/s12943-019-0938-x] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 01/01/2019] [Indexed: 12/18/2022] Open
Abstract
Colorectal cancer (CRC) is the third most commonly occurring cancer worldwide and the fourth most frequent cause of death having an oncological origin. It has been found that transcription factors (TF) dysregulation, leading to the significant expression modifications of genes, is a widely distributed phenomenon regarding human malignant neoplasias. These changes are key determinants regarding tumour’s behaviour as they contribute to cell differentiation/proliferation, migration and metastasis, as well as resistance to chemotherapeutic agents. The forkhead box (FOX) transcription factor family consists of an evolutionarily conserved group of transcriptional regulators engaged in numerous functions during development and adult life. Their dysfunction has been associated with human diseases. Several FOX gene subgroup transcriptional disturbances, affecting numerous complex molecular cascades, have been linked to a wide range of cancer types highlighting their potential usefulness as molecular biomarkers. At least 14 FOX subgroups have been related to CRC pathogenesis, thereby underlining their role for diagnosis, prognosis and treatment purposes. This manuscript aims to provide, for the first time, a comprehensive review of FOX genes’ roles during CRC pathogenesis. The molecular and functional characteristics of most relevant FOX molecules (FOXO, FOXM1, FOXP3) have been described within the context of CRC biology, including their usefulness regarding diagnosis and prognosis. Potential CRC therapeutics (including genome-editing approaches) involving FOX regulation have also been included. Taken together, the information provided here should enable a better understanding of FOX genes’ function in CRC pathogenesis for basic science researchers and clinicians.
Collapse
Affiliation(s)
- Paul Laissue
- Center For Research in Genetics and Genomics-CIGGUR, GENIUROS Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 N° 63C-69, Bogotá, Colombia.
| |
Collapse
|
145
|
Abstract
Brain development is a highly regulated process that involves the precise spatio-temporal activation of cell signaling cues. Transcription factors play an integral role in this process by relaying information from external signaling cues to the genome. The transcription factor Forkhead box G1 (FOXG1) is expressed in the developing nervous system with a critical role in forebrain development. Altered dosage of FOXG1 due to deletions, duplications, or functional gain- or loss-of-function mutations, leads to a complex array of cellular effects with important consequences for human disease including neurodevelopmental disorders. Here, we review studies in multiple species and cell models where FOXG1 dose is altered. We argue against a linear, symmetrical relationship between FOXG1 dosage states, although FOXG1 levels at the right time and place need to be carefully regulated. Neurodevelopmental disease states caused by mutations in FOXG1 may therefore be regulated through different mechanisms.
Collapse
Affiliation(s)
- Nuwan C Hettige
- Department of Human Genetics, McGill University, Montreal, QC, Canada.,Psychiatric Genetics Group, Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Carl Ernst
- Department of Human Genetics, McGill University, Montreal, QC, Canada.,Psychiatric Genetics Group, Douglas Mental Health University Institute, Montreal, QC, Canada.,Department of Psychiatry, McGill University, Montreal, QC, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| |
Collapse
|
146
|
Ishii K, Hatori K, Takeichi O, Makino K, Himi K, Komiya H, Ogiso B. Expression of the Forkhead box transcription factor Foxo3a in human periapical granulomas. J Oral Sci 2018; 60:479-483. [PMID: 30429437 DOI: 10.2334/josnusd.17-0439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
It has been reported that Forkhead box transcription factor class O3a (Foxo3a) is expressed in rheumatoid arthritis, a chronic inflammatory condition accompanied by bone resorption, and plays a role in its pathology. However, it has remained unclear whether Foxo3a is involved in the pathogenesis of periapical granulomas. The present study was performed to compare the expression of Foxo3a in periapical granulomas and healthy gingival tissues. Samples were obtained surgically from patients, and subjected to hematoxylin-eosin staining for histopathologic diagnosis. Two-color immunofluorescence staining was also performed using antibodies against Foxo3a and markers for three types of inflammatory cells: neutrophils, T lymphocytes, and B lymphocytes. This revealed that Foxo3a was expressed in all three cell types in periapical granulomas but not in healthy gingival tissues. Foxo3a was expressed in 82.1%, 78.3%, and 77.5% of neutrophils, T lymphocytes, and B lymphocytes, respectively, and statistical analysis using the Kruskal-Wallis test followed by the Steel-Dwass test showed no significant difference of Foxo3a expression among the three cell types. Our results suggest that Foxo3a transcription factors may be involved in the pathogenesis of periapical granulomas.
Collapse
Affiliation(s)
- Kae Ishii
- Division of Applied Oral Sciences, Nihon University Graduate School of Dentistry.,Department of Endodontics, Nihon University School of Dentistry
| | - Keisuke Hatori
- Department of Endodontics, Nihon University School of Dentistry.,Division of Advanced Dental Treatment, Dental Research Center, Nihon University School Dentistry
| | - Osamu Takeichi
- Department of Endodontics, Nihon University School of Dentistry.,Division of Advanced Dental Treatment, Dental Research Center, Nihon University School Dentistry
| | - Kosuke Makino
- Department of Endodontics, Nihon University School of Dentistry
| | - Kazuma Himi
- Division of Applied Oral Sciences, Nihon University Graduate School of Dentistry.,Department of Endodontics, Nihon University School of Dentistry
| | - Hiroki Komiya
- Division of Applied Oral Sciences, Nihon University Graduate School of Dentistry.,Department of Endodontics, Nihon University School of Dentistry
| | - Bunnai Ogiso
- Department of Endodontics, Nihon University School of Dentistry.,Division of Advanced Dental Treatment, Dental Research Center, Nihon University School Dentistry
| |
Collapse
|
147
|
Wang S, Singh SK, Katika MR, Lopez-Aviles S, Hurtado A. High Throughput Chemical Screening Reveals Multiple Regulatory Proteins on FOXA1 in Breast Cancer Cell Lines. Int J Mol Sci 2018; 19:ijms19124123. [PMID: 30572598 PMCID: PMC6321185 DOI: 10.3390/ijms19124123] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 12/17/2022] Open
Abstract
Forkhead box A1 (FOXA1) belongs to the forkhead class transcription factor family, playing pioneering function for hormone receptors in breast and prostate cancers, and mediating activation of linage specific enhancers. Interplay between FOXA1 and breast cancer specific signaling pathways has been reported previously, indicating a regulation network on FOXA1 in breast cancer cells. Here in this study, we aimed to identify which are the proteins that could potentially control FOXA1 function in breast cancer cell lines expressing different molecular markers. We first established a luciferase reporter system reflecting FOXA1 binding to DNA. Then, we applied high throughput chemical screening of multiple protein targets and mass spectrometry in breast cancer cell lines expressing different molecular markers: ER positive/HER2 negative (MCF-7), ER positive/HER2 positive (BT474), and ER negative/HER2 positive (MDA-MB-453). Regardless of estrogen receptor status, HER2 (human epidermal growth factor receptor 2) enriched cell lines showed similar response to kinase inhibitors, indicating the control of FOXA1 by cell signaling kinases. Among these kinases, we identified additional receptor tyrosine kinases and cyclin-dependent kinases as regulators of FOXA1. Furthermore, we performed proteomics experiments from FOXA1 inmunoprecipitated protein complex to identify that FOXA1 interacts with several proteins. Among all the targets, we identified cyclin-dependent kinase 1 (CDK1) as a positive factor to interact with FOXA1 in BT474 cell line. In silico analyses confirmed that cyclin-dependent kinases might be the kinases responsible for FOXA1 phosphorylation at the Forkhead domain and the transactivation domain. These results reveal that FOXA1 is potentially regulated by multiple kinases. The cell cycle control kinase CDK1 might control directly FOXA1 by phosphorylation and other kinases indirectly by means of regulating other proteins.
Collapse
Affiliation(s)
- Shixiong Wang
- Breast Cancer Research group, Nordic EMBL Partnership, Centre for Molecular Medicine Norway (NCMM), University of Oslo, P.O. 1137 Blindern, 0318 Oslo, Norway.
| | - Sachin Kumar Singh
- Breast Cancer Research group, Nordic EMBL Partnership, Centre for Molecular Medicine Norway (NCMM), University of Oslo, P.O. 1137 Blindern, 0318 Oslo, Norway.
| | - Madhumohan R Katika
- Breast Cancer Research group, Nordic EMBL Partnership, Centre for Molecular Medicine Norway (NCMM), University of Oslo, P.O. 1137 Blindern, 0318 Oslo, Norway.
| | - Sandra Lopez-Aviles
- Cell Cycle Research group, Nordic EMBL Partnership, Centre for Molecular Medicine Norway (NCMM), University of Oslo, P.O. 1137 Blindern, 0318 Oslo, Norway.
| | - Antoni Hurtado
- Breast Cancer Research group, Nordic EMBL Partnership, Centre for Molecular Medicine Norway (NCMM), University of Oslo, P.O. 1137 Blindern, 0318 Oslo, Norway.
| |
Collapse
|
148
|
Lu C, Yang Z, Jiang S, Yang Y, Han Y, Lv J, Li T, Chen F, Yu Y. Forkhead box O4 transcription factor in human neoplasms: Cannot afford to lose the novel suppressor. J Cell Physiol 2018; 234:8647-8658. [PMID: 30515801 DOI: 10.1002/jcp.27853] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 11/12/2018] [Indexed: 12/13/2022]
Abstract
Forkhead box O4 (FOXO4), a member of FOXO family, has been highlighted as an essential transcriptional regulator in many diverse carcinomas. Accumulated studies have demonstrated that FOXO4 is downregulated and associated with tumorigenesis, invasiveness, and metastasis of most human cancer. FOXO4 alteration is also closely linked to the prognosis of various types of cancer. The aim of this review is to comprehensively present the clinical and pathological significance of FOXO4 in human cancer. Additionally, the potential clinical applications of future FOXO4 research are discussed. Collectively, the information reviewed here should increase the potential of FOXO4 as a therapeutic target for cancer.
Collapse
Affiliation(s)
- Chenxi Lu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Zhi Yang
- School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Shuai Jiang
- Department of Aerospace Medicine, The Fourth Military Medical University, Xi'an, China
| | - Yang Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Yuehu Han
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Jianjun Lv
- School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Tian Li
- School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Fulin Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| | - Yuan Yu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences, Northwest University, Xi'an, China
| |
Collapse
|
149
|
Blane A, Dirr HW, Fanucchi S. A Phosphomimetic Study Implicates Ser557 in Regulation of FOXP2 DNA Binding. Protein J 2018; 37:311-323. [PMID: 29845391 DOI: 10.1007/s10930-018-9777-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
FOXP2 is a transcription factor expressed in multiple tissues during embryonic development. FOXP2 regulates transcription by binding to DNA at its DNA binding domain, the forkhead domain (FHD) through the recognition helix. Ser557 is a residue located within the recognition helix that has the potential to become phosphorylated posttranslationally. In this study we investigated whether phosphorylation of Ser557 can influence the structure and DNA binding of the FOXP2 FHD. We did this by constructing S557E, a phosphomimetic mutant, and comparing its behaviour to the wild type. The mutation did not affect the secondary or tertiary structure of the protein although it did decrease the propensity of the FOXP2 FHD to form dimers. Most notably, the mutation showed significantly reduced DNA binding compared to the wild type as detected using electrophoretic mobility shift assays. Molecular docking was also performed in which the wild type, phosphomimetic mutant and phosphorylated wild-type were docked to DNA and their interactions with DNA were compared. These results indicated that the wild type forms more interactions with the DNA and that the phosphomimetic mutant as well as the phosphorylated wild type did not associate as favourably with the DNA. This indicates that phosphorylation of Ser557 could disrupt DNA binding likely due to electrostatic and steric hindrance. This suggests that phosphorylation of Ser557 in the FOXP2 FHD could act as a control mechanism for FOXP2 and ultimately could be involved in regulation of transcription.
Collapse
Affiliation(s)
- Ashleigh Blane
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, 2050, South Africa
| | - Heini W Dirr
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, 2050, South Africa
| | - Sylvia Fanucchi
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, 2050, South Africa.
| |
Collapse
|
150
|
The unusual rainbow trout sex determination gene hijacked the canonical vertebrate gonadal differentiation pathway. Proc Natl Acad Sci U S A 2018; 115:12781-12786. [PMID: 30463951 DOI: 10.1073/pnas.1803826115] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Evolutionary novelties require rewiring of transcriptional networks and/or the evolution of new gene functions. Sex determination (SD), one of the most plastic evolutionary processes, requires such novelties. Studies on the evolution of vertebrate SD revealed that new master SD genes are generally recruited from genes involved in the downstream SD regulatory genetic network. Only a single exception to this rule is currently known in vertebrates: the intriguing case of the salmonid master SD gene (sdY), which arose from duplication of an immune-related gene. This exception immediately posed the question of how a gene outside from the classical sex differentiation cascade could acquire its function as a male SD gene. Here we show that SdY became integrated in the classical vertebrate sex differentiation cascade by interacting with the Forkhead box domain of the female-determining transcription factor, Foxl2. In the presence of Foxl2, SdY is translocated to the nucleus where the SdY:Foxl2 complex prevents activation of the aromatase (cyp19a1a) promoter in cooperation with Nr5a1 (Sf1). Hence, by blocking a positive loop of regulation needed for the synthesis of estrogens in the early differentiating gonad, SdY disrupts a preset female differentiation pathway, consequently allowing testicular differentiation to proceed. These results also suggest that the evolution of unusual vertebrate master sex determination genes recruited from outside the classical pathway like sdY is strongly constrained by their ability to interact with the canonical gonadal differentiation pathway.
Collapse
|