101
|
GDNF-Transduced Schwann Cell Grafts Enhance Regeneration of Erectile Nerves. Eur Urol 2008; 54:1179-87. [DOI: 10.1016/j.eururo.2008.02.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Accepted: 02/06/2008] [Indexed: 01/21/2023]
|
102
|
Androgen receptor function in motor neuron survival and degeneration. Phys Med Rehabil Clin N Am 2008; 19:479-94, viii. [PMID: 18625411 DOI: 10.1016/j.pmr.2008.03.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Polyglutamine repeat expansion in the androgen receptor is responsible for the motor neuron degeneration in X-linked spinal and bulbar muscular atrophy (SBMA; Kennedy's disease). This mutation, like the other polyglutamine repeat expansions, has proven to be toxic itself by a gain-of-function effect; however, a growing body of evidence indicates that loss of androgen receptor normal function simultaneously contributes to SBMA disease pathology, and, conversely, that normal androgen receptor signaling mediates important trophic effects upon motor neurons. This review considers the trophic requirements of motor neurons, focusing upon the role of known neurotrophic factors in motor neuron disease natural history, and the interactions of androgen receptor signaling pathways with motor neuron disease pathogenesis and progression. A thorough understanding of androgen receptor signaling in motor neurons should provide important inroads toward the development of effective treatments for a variety of devastating motor neuron diseases.
Collapse
|
103
|
Johnson EO, Charchanti A, Soucacos PN. Nerve repair: experimental and clinical evaluation of neurotrophic factors in peripheral nerve regeneration. Injury 2008; 39 Suppl 3:S37-42. [PMID: 18723170 DOI: 10.1016/j.injury.2008.06.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Neurotrophic factors are a family of polypeptides required for survival of discrete neuronal populations. In the normal state such factors are mostly synthesised by target tissues and are used for the viability of the nerve-cell bodies. After nerve injury, neurotrophic factors (NFs) are synthesised by non-neuronal (Schwann cells and fibroblasts) in the nerve trunk, and act to support the outgrowth of axons. NFs can be classified into three major groups: (1) neurotrophins; (2) neurokines; and (3) the transforming growth factor beta (TGF)-beta superfamily.
Collapse
Affiliation(s)
- Elizabeth O Johnson
- Department of Anatomy, Histology & Embryology, University of Ioannina, School of Medicine, 45110 Ioannina, Greece.
| | | | | |
Collapse
|
104
|
Pertusa M, García-Matas S, Mammeri H, Adell A, Rodrigo T, Mallet J, Cristòfol R, Sarkis C, Sanfeliu C. Expression of GDNF transgene in astrocytes improves cognitive deficits in aged rats. Neurobiol Aging 2008; 29:1366-79. [PMID: 17399854 DOI: 10.1016/j.neurobiolaging.2007.02.026] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Revised: 02/14/2007] [Accepted: 02/20/2007] [Indexed: 01/25/2023]
Abstract
Glial cell line-derived neurotrophic factor (GDNF) was assayed for its neurotrophic effects against the neuronal atrophy that causes cognitive deficits in old age. Aged Fisher 344 rats with impairment in the Morris water maze received intrahippocampal injections at the dorsal CA1 area of either a lentiviral vector encoding human GDNF or the same vector encoding human green fluorescent protein as a control. Recombinant lentiviral vectors constructed with human cytomegalovirus promotor and pseudotyped with lyssavirus Mokola glycoprotein specifically transduced the astrocytes in vivo. Astrocyte-secreted GDNF enhanced neuron function as shown by local increases in synthesis of the neurotransmitters acetylcholine, dopamine and serotonin. This neurotrophic effect led to cognitive improvement of the rats as early as 2 weeks after gene transduction. Spatial learning and memory testing showed a significant gain in cognitive abilities due to GDNF exposure, whereas control-transduced rats kept their performance at the chance level. These results confirm the broad spectrum of the neurotrophic action of GDNF and open new gene therapy possibilities for reducing age-related neurodegeneration.
Collapse
Affiliation(s)
- M Pertusa
- Departament de Farmacologia i Toxicologia, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), CSIC-IDIBAPS, Rosselló 161, 08036 Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Matsushita Y, Nakajima K, Tohyama Y, Kurihara T, Kohsaka S. Activation of microglia by endotoxin suppresses the secretion of glial cell line-derived neurotrophic factor (GDNF) through the action of protein kinase C alpha (PKCalpha) and mitogen-activated protein kinases (MAPKS). J Neurosci Res 2008; 86:1959-71. [PMID: 18438912 DOI: 10.1002/jnr.21657] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The ability of microglia to produce/secrete glial cell line-derived neurotrophic factor (GDNF) in vitro was examined. Immunoblotting analysis revealed that nonstimulated microglia release limited amounts of GDNF with molecular sizes of 14 and 17 kDa. However, the secreted amounts significantly decreased when the microglia were activated with the endotoxin lipopolysaccharide (LPS). Comparison of the amounts of GDNF in the cells and the conditioned medium between the nonstimulated microglia and LPS-stimulated microglia clarified that the secretion of GDNF, but not its production, is strongly suppressed when the microglia are activated with LPS. The inhibitor experiments suggested that the GDNF secretion is depressed by a signaling cascade associated with protein kinase C alpha (PKCalpha) and/or mitogen-activated protein kinases (MAPKs). As expected from the above results, a PKC activator suppressed the secretion of GDNF in nonstimulated microglia. Taken together, these results demonstrated that microglia have the ability to produce and secrete GDNF in vitro, and that the secretion is suppressed by stimulation with endotoxin, probably due to a signaling mechanism involving PKCalpha and/or MAPKs.
Collapse
Affiliation(s)
- Yuichi Matsushita
- Department of Bioinformatics, Faculty of Engineering, Soka University, Hachioji, Tokyo, Japan
| | | | | | | | | |
Collapse
|
106
|
Exogenous administration of glial cell line-derived neurotrophic factor improves recovery after spinal cord injury. Resuscitation 2008; 77:395-400. [DOI: 10.1016/j.resuscitation.2008.01.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Revised: 11/27/2007] [Accepted: 01/27/2008] [Indexed: 11/22/2022]
|
107
|
Zhou HL, Yang HJ, Li YM, Wang Y, Yan L, Guo XL, Ba YC, Liu S, Wang TH. Changes in Glial cell line-derived neurotrophic factor expression in the rostral and caudal stumps of the transected adult rat spinal cord. Neurochem Res 2008; 33:927-37. [PMID: 18095158 PMCID: PMC2270371 DOI: 10.1007/s11064-007-9536-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Accepted: 10/23/2007] [Indexed: 02/05/2023]
Abstract
Limited information is available regarding the role of endogenous Glial cell line-derived neurotrophic factor (GDNF) in the spinal cord following transection injury. The present study investigated the possible role of GDNF in injured spinal cords following transection injury (T(9)-T(10)) in adult rats. The locomotor function recovery of animals by the BBB (Basso, Beattie, Bresnahan) scale score showed that hindlimb support and stepping function increased gradually from 7 days post operation (dpo) to 21 dpo. However, the locomotion function in the hindlimbs decreased effectively in GDNF-antibody treated rats. GDNF immunoreactivty in neurons in the ventral horn of the rostral stump was stained strongly at 3 and 7 dpo, and in the caudal stump at 14 dpo, while immunostaining in astrocytes was also seen at all time-points after transection injury. Western blot showed that the level of GDNF protein underwent a rapid decrease at 7 dpo in both stumps, and was followed by a partial recovery at a later time-point, when compared with the sham-operated group. GDNF mRNA-positive signals were detected in neurons of the ventral horn, especially in lamina IX. No regenerative fibers from corticospinal tract can be seen in the caudal segment near the injury site using BDA tracing technique. No somatosensory evoked potentials (SEP) could be recorded throughout the experimental period as well. These findings suggested that intrinsic GDNF in the spinal cord could play an essential role in neuroplasticity. The mechanism may be that GDNF is involved in the regulation of local circuitry in transected spinal cords of adult rats.
Collapse
Affiliation(s)
- Hao-Li Zhou
- Institute of Neurological Disease, West China Hospital, Sichuan University, Chengdu, 610041 China
- Institute of Neuroscience, Kunming Medical College, Kunming, 650031 China
| | - Hui-Juan Yang
- Institute of Neuroscience, Kunming Medical College, Kunming, 650031 China
| | - Yong-Mei Li
- Institute of Neuroscience, Kunming Medical College, Kunming, 650031 China
| | - Ying Wang
- Nursing Department, Weifang Medical College, Weifang, 261042 China
| | - Ling Yan
- Institute of Neuroscience, Kunming Medical College, Kunming, 650031 China
| | - Xi-Liang Guo
- Institute of Neuroscience, Kunming Medical College, Kunming, 650031 China
| | - Ying-Chun Ba
- Institute of Neuroscience, Kunming Medical College, Kunming, 650031 China
| | - Su Liu
- Institute of Neuroscience, Kunming Medical College, Kunming, 650031 China
| | - Ting-Hua Wang
- Institute of Neurological Disease, West China Hospital, Sichuan University, Chengdu, 610041 China
- Institute of Neuroscience, Kunming Medical College, Kunming, 650031 China
- Department of Histology, Embryology and Neurobiology, College of Preclinical and Forensic Medicine, Sichuan University, Chengdu, 610041 China
| |
Collapse
|
108
|
Wang YQ, Bian GL, Wei LC, Cao R, Peng YF, Chen LW. Nigrostriatal neurons in rat express the glial cell line-derived neurotrophic factor receptor subunit c-RET. Anat Rec (Hoboken) 2008; 291:49-54. [PMID: 18085609 DOI: 10.1002/ar.20618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The substantia nigra neurons expressing c-RET, a glial cell line-derived neurotrophic factor (GDNF) receptor intracellular tyrosine kinase subunit, were investigated in rats by using a double labeling method which combined retrograde horseradish peroxidase (HRP) labeling after injection into the striatum with immunohistochemistry to c-RET. It was revealed that the distribution of c-RET-immunoreactive neurons and HRP-labeled nigrostriatal neurons overlapped. Numerous double-labeled HRP/c-RET neurons were found in the substantia nigra pars compacta with predominate distribution ipsilateral to the injected striatum. Semiquantitative cell count indicated that a large percentage (97%) of HRP-labeled neurons showed c-RET immunoreactivity. Furthermore, double-labeled HRP/c-RET ones constituted only 61% of total c-RET-immunoreactive neurons in the substantia nigra ipsolateral to the injected striatum. Taken together with previous observations on glial cell line-derived neurotrophic factor in the basal ganglia, this study provides evidence that the c-RET protein may mediate biological activity of GDNF family ligands in most of projecting neurons in the substantia nigra pars compacta where the dopaminergic neurons are numerously distributed. Specially, it suggests that c-RET-mediating signaling cascades may play important roles in neuron-glial interaction that support and sustain nigrostriatal neuronal circuits in the basal ganglia.
Collapse
Affiliation(s)
- Yan-Qin Wang
- Institute of Neurosciences, The Fourth Military Medical University, Xi'an, People's Republic of China
| | | | | | | | | | | |
Collapse
|
109
|
Abstract
Establishment of the neuromuscular synapse requires bidirectional signaling between the nerve and muscle. Although much is known on nerve-released signals onto the muscle, less is known of signals important for presynaptic maturation of the nerve terminal. Our results suggest that the Ret tyrosine kinase receptor transmits a signal in motor neuron synapses that contribute to motor neuron survival and synapse maturation at postnatal stages. Ret is localized specifically to the presynaptic membrane with its ligands, GDNF (glial cell line-derived neurotrophic factor)/NTN (neurturin), expressed in skeletal muscle tissue. Lack of Ret conditionally in cranial motor neurons results in a developmental deficit of maturation and specialization of presynaptic neuromuscular terminals. Regeneration of Ret-deficient adult hypoglossal motor neurons is unperturbed, but despite contact with the unaffected postsynaptic specializations, presynaptic axon terminal maturation is severely compromised in the absence of Ret signaling. Thus, Ret transmits a signal in motor nerve terminals that participate in the organization and maturation of presynaptic specializations during development and during regeneration in the adult.
Collapse
|
110
|
Adly MA, Assaf HA, Pertile P, Hussein MR, Paus R. Expression patterns of the glial cell line–derived neurotrophic factor, neurturin, their cognate receptors GFRα-1, GFRα-2, and a common signal transduction element c-Ret in the human skin hair follicles. J Am Acad Dermatol 2008; 58:238-50. [DOI: 10.1016/j.jaad.2007.10.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Revised: 09/11/2007] [Accepted: 10/09/2007] [Indexed: 01/03/2023]
|
111
|
Abstract
The mainstays of Parkinson's disease (PD) treatment remain symptomatic, including initial dopamine replacement and subsequent deep brain stimulation, however, neither of these approaches is neuroprotective. Neurotrophic factors - proteins that activate cell signalling pathways regulating neuronal survival, differentiation, growth and regeneration - represent an alternative for treating dopaminergic neurons in PD but are difficult to administer clinically because they do not pass through the blood-brain barrier. Glial cell line-derived neurotrophic factor (GDNF) has potent neurotrophic effects particularly but not exclusively on dopaminergic neurons; in animal models of PD, it has consistently demonstrated both neuroprotective and neuroregenerative effects when provided continuously, either by means of a viral vector or through continuous infusion either into the cerebral ventricles (ICV) or directly into the denervated putamen. This led to a human PD study in which GDNF was administered by monthly bolus intracerebroventricular injections, however, no clinical benefit resulted, probably because of the limited penetration to the target brain areas, and instead significant side effects occurred. In an open-label study of continuous intraputamenal GDNF infusion in five patients (one unilaterally and four bilaterally), we reported excellent tolerance, few side effects and clinical benefit evident within three months of the commencement of treatment. The clinical improvement was sustained and progressive, and by 24-months patients demonstrated a 57 and 63% improvement in their off-medication motor and activities of daily living UPDRS subscores, respectively, with clear benefit in dyskinesias. The benefit was associated with a significant increase in putamenal 18F-dopa uptake on positron emission tomography (PET), and in one patient coming to autopsy after 43 months of unilateral infusion there was evident increased tyrosine hydroxylase immunopositive nerve fibres in the infused putamen. A second open trial in 10 patients using unilateral intraputamenal GDNF infusions has also demonstrated a greater than 30% bilateral benefit in both on- and off-medication scores at 24 weeks. Based on our 6-month results, a randomized controlled clinical trial was conducted to confirm the open-label results, however, GDNF infusion over 6-months did not confer the predetermined level of clinical benefit to patients with PD despite increased 18F-dopa uptake surrounding the catheter tip. It is possible that technical differences between this trial and the positive open label studies contributed to this negative outcome.
Collapse
Affiliation(s)
- N K Patel
- Institute of Neurosciences, Frenchay Hospital, Bristol, UK
| | | |
Collapse
|
112
|
Piquilloud G, Christen T, Pfister LA, Gander B, Papaloïzos MY. Variations in glial cell line-derived neurotrophic factor release from biodegradable nerve conduits modify the rate of functional motor recovery after rat primary nerve repairs. Eur J Neurosci 2007; 26:1109-17. [PMID: 17767490 DOI: 10.1111/j.1460-9568.2007.05748.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Accelerating axonal regeneration to shorten the delay of reinnervation and improve functional recovery after a peripheral nerve lesion is a clinical demand and an experimental challenge. We developed a resorbable nerve conduit (NC) for controlled release of glial cell line-derived neurotrophic factor (GDNF) with the aim of assessing motor functional recovery according to the release kinetics of this factor in a short gap model. Different types of resorbable NCs were manufactured from a collagen tube and multiple coating layers of poly(lactide-coglycolide), varying in poly(lactide-coglycolide) type and coating thickness to afford three distinct release kinetics of the neurotrophic factor. GDNF release was quantified in vitro. End-to-end suture and GDNF-free NC served as controls. Thirty-five Wistar rats underwent surgery. Motor recovery was followed from 1 to 12 weeks after surgery by video gait analysis. Morphometrical data were obtained at mid-tube level and distal to the NC. NCs were completely resorbed within 3 months with minimal inflammation. GDNF induced a threefold overgrowth of fibers at mid-tube level. However, the number of fibers was similar in the distal segment of all groups. The speed of recovery was inversely proportional to the number of fibers at the NC level but the level of recovery was similar for all groups at 3 months. The resorbable conduits proved their ability to modulate axonal regrowth through controlled release of GDNF. In relation to the dose delivered, GDNF strikingly multiplied the number of myelinated fibers within the NC but this increase was not positively correlated with the return of motor function in this model.
Collapse
Affiliation(s)
- Gaël Piquilloud
- Experimental Plastic and Reconstructive Surgery, CHUV, Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
113
|
|
114
|
Wiese S, Jablonka S, Holtmann B, Orel N, Rajagopal R, Chao MV, Sendtner M. Adenosine receptor A2A-R contributes to motoneuron survival by transactivating the tyrosine kinase receptor TrkB. Proc Natl Acad Sci U S A 2007; 104:17210-5. [PMID: 17940030 PMCID: PMC2040418 DOI: 10.1073/pnas.0705267104] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Indexed: 01/19/2023] Open
Abstract
Neurotrophins are potent survival factors for developing and injured neurons. However, they are not being used to treat neurodegenerative diseases because of difficulties in administration and numerous side effects that have been encountered in previous clinical trials. Their biological activities use Trk (tropomyosin-related kinase) transmembrane tyrosine kinases. Therefore, one alternative approach is to use transactivation pathways such as adenosine 2A receptor agonists, which can activate Trk receptor signaling independent of neurotrophin binding. However, the relevance in vivo and applicability of these transactivation events during neurodegenerative and injury conditions have never been extensively studied. Here we demonstrate that motoneuron survival after facial nerve lesioning is significantly enhanced by transactivation of Trk receptor tyrosine kinases by adenosine agonists. Moreover, survival of motoneurons directly required the activation of the BDNF receptor TrkB and an increase in Akt (AKT8 virus oncogene cellular homolog) activity. The ability of small molecules to activate a trophic response by using Trk signaling provides a unique mechanism to promote survival signals in motoneurons and suggests new strategies for using transactivation in neurodegenerative diseases.
Collapse
Affiliation(s)
- Stefan Wiese
- *Institute for Clinical Neurobiology, University of Würzburg, Josef Schneider Strasse 11, D-97080 Würzburg, Germany; and
| | - Sibylle Jablonka
- *Institute for Clinical Neurobiology, University of Würzburg, Josef Schneider Strasse 11, D-97080 Würzburg, Germany; and
| | - Bettina Holtmann
- *Institute for Clinical Neurobiology, University of Würzburg, Josef Schneider Strasse 11, D-97080 Würzburg, Germany; and
| | - Nadiya Orel
- *Institute for Clinical Neurobiology, University of Würzburg, Josef Schneider Strasse 11, D-97080 Würzburg, Germany; and
| | - Rithwick Rajagopal
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology and Physiology, New York University School of Medicine, 540 First Avenue, New York, NY 10016
| | - Moses V. Chao
- Skirball Institute of Biomolecular Medicine, Department of Cell Biology and Physiology, New York University School of Medicine, 540 First Avenue, New York, NY 10016
| | - Michael Sendtner
- *Institute for Clinical Neurobiology, University of Würzburg, Josef Schneider Strasse 11, D-97080 Würzburg, Germany; and
| |
Collapse
|
115
|
Price DL, Koliatsos VE, Wong PC, Pardo CA, Borchelt DR, Lee MK, Cleveland DW, Griffin JW, Hoffman PN, Cork LC, Sisodia SS. Motor neuron disease and model systems: aetiologies, mechanisms and therapies. CIBA FOUNDATION SYMPOSIUM 2007; 196:3-13; discussion 13-7. [PMID: 8866125 DOI: 10.1002/9780470514863.ch2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The phenotypes of many neurological diseases, including motor neuron disease (amyotrophic lateral sclerosis; ALS) and Alzheimer's disease (AD), are determined by the vulnerabilities of populations of nerve cells and the character/ evolution of cellular abnormalities. Because different cell types respond selectively to individual trophic factors, these factors may be useful in ameliorating pathology in cells that express their cognate receptors. To test therapies for ALS and AD, investigators require model systems. Although there are a variety of models of ALS, two models are particularly attractive: transgenic mice that express human superoxide dismutase 1 (SOD-1) mutations linked to familial ALS develop paralysis associated with a gain of adverse property of the mutant SOD; and axotomy of facial axons in neonatal rats, a manipulation that causes retrograde cell degeneration, which can be ameliorated by several trophic factors.
Collapse
Affiliation(s)
- D L Price
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205-2196, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Tan SA, Aebischer P. The problems of delivering neuroactive molecules to the CNS. CIBA FOUNDATION SYMPOSIUM 2007; 196:211-36; discussion 236-9. [PMID: 8866136 DOI: 10.1002/9780470514863.ch14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
At present, the aetiologies of many neurological and neurodegenerative diseases are unknown. However, emergence of a better understanding of these diseases, at both cellular and molecular levels, opens up the possibility of replacement therapies. The presence of the blood-brain barrier complicates the delivery of molecules to the central nervous system. Numerous attempts have been made to bypass this barrier either by delivering the drugs directly into the brain or by transplanting cells to produce the missing molecules in situ. This review explores several methods for delivering bioactive molecules into the CNS, including the use of permeabilizers, osmotic pumps, slow polymer release systems and transplantation of cells with or without the use of the encapsulation technology.
Collapse
Affiliation(s)
- S A Tan
- Gene Therapy Center, Lausanne University Medical School, CHU Vaudois, Switzerland
| | | |
Collapse
|
117
|
Lindsay RM. Therapeutic Potential of the Neurotrophins and Neurotrophin-CNTF Combinations in Peripheral Neuropathies and Motor Neuron Diseases. CIBA FOUNDATION SYMPOSIUM 196 - GROWTH FACTORS AS DRUGS FOR NEUROLOGICAL AND SENSORY DISORDERS 2007. [DOI: 10.1002/9780470514863.ch4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
118
|
Yamagata K, Hakata K, Maeda A, Mochizuki C, Matsufuji H, Chino M, Yamori Y. Adenosine induces expression of glial cell line-derived neurotrophic factor (GDNF) in primary rat astrocytes. Neurosci Res 2007; 59:467-74. [PMID: 17920149 DOI: 10.1016/j.neures.2007.08.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Revised: 08/13/2007] [Accepted: 08/24/2007] [Indexed: 02/06/2023]
Abstract
Adenosine, which accumulates rapidly during ischemia due to the breakdown of ATP, has beneficial effects in many tissues. We examined whether adenosine induces the production of glial cell line-derived neurotrophic factor (GDNF) in cultured astrocytes. We evaluated GDNF mRNA expression and GDNF production in astrocytes cultured with adenosine and the adenosine selective receptor agonists 5-(N-ethylcarboxamido) adenosine (NECA), N(6)-cyclopentyladenosine (CPA) and 2-p-(2-carboxyethyl) phenethylamino-5'-N-ethylcarboxamindo-adenosine hydrochloride (CGS 21680). Moreover, we examined the possibility that the expression of GDNF is regulated differently in cultured astrocytes from the stroke-prone spontaneously hypertensive rat (SHRSP) than in those from Wistar Kyoto rats (WKY). In this study, we confirmed that adenosine and the selective A(2B) adenosine receptor agonist NECA induced the expression of GDNF in cultured astrocytes. The A(2B) receptor antagonist alloxazine was able to inhibit the increase in extracellular GDNF produced by adenosine. Furthermore, the amounts of GDNF produced were significantly reduced in astrocytes of the adenosine-treated SHRSP compared with those of WKY. These results indicate that adenosine induces the expression of GDNF, and adenosine A(2B) receptors participate in the regulation of GDNF levels in astrocytes. This expression was attenuated in astrocytes of SHRSP compared with those of WKY.
Collapse
Affiliation(s)
- Kazuo Yamagata
- Department of Food Science and Technology, College of Bioresource Sciences, Nihon University (NUBS), Kameino, Fujisawa, Kanagawa, Japan.
| | | | | | | | | | | | | |
Collapse
|
119
|
Quartu M, Serra MP, Boi M, Ferretti MT, Lai ML, Del Fiacco M. Tissue distribution of Ret, GFRalpha-1, GFRalpha-2 and GFRalpha-3 receptors in the human brainstem at fetal, neonatal and adult age. Brain Res 2007; 1173:36-52. [PMID: 17825269 DOI: 10.1016/j.brainres.2007.07.064] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Revised: 07/28/2007] [Accepted: 07/30/2007] [Indexed: 11/30/2022]
Abstract
Occurrence and localization of receptor components of the glial cell line-derived neurotrophic factor (GDNF) family ligands, the Ret receptor tyrosine kinase and the GDNF family receptor (GFR) alpha-1 to -3, were examined by immunohistochemistry in the normal human brainstem at fetal, neonatal, and adult age. Immunoreactive elements were detectable at all examined ages with uneven distribution and consistent pattern for each receptor. As a rule, the GFRalpha-1 and GFRalpha-2 antisera produced the most abundant and diffuse tissue labelling. Immunoreactive perikarya were observed within sensory and motor nuclei of cranial nerves, dorsal column nuclei, olivary nuclear complex, reticular formation, pontine nuclei, locus caeruleus, raphe nuclei, substantia nigra, and quadrigeminal plate. Nerve fibers occurred within gracile and cuneate fasciculi, trigeminal spinal tract and nucleus, facial, trigeminal, vestibular and oculomotor nerves, solitary tract, medial longitudinal fasciculus, medial lemniscus, and inferior and superior cerebellar peduncles. Occasionally, glial cells were stained. Age changes were appreciable in the distribution pattern of each receptor. On the whole, in the grey matter, labelled perikarya were more frequently observed in pre- and perinatal than in adult specimens; on the other hand, in discrete regions, nerve fibers and terminals were abundant and showed a plexiform arrangement only in adult tissue; finally, distinct fiber systems in the white matter were immunolabelled only at pre- and perinatal ages. The results obtained suggest the involvement of Ret and GFRalpha receptors signalling in processes subserving both the organization of discrete brainstem neuronal systems during development and their functional activity and maintenance in adult life.
Collapse
Affiliation(s)
- Marina Quartu
- Department of Cytomorphology, University of Cagliari, Cittadella Universitaria di Monserrato, 09042 Monserrato, Italy
| | | | | | | | | | | |
Collapse
|
120
|
Huleihel M, Abuelhija M, Lunenfeld E. In vitro culture of testicular germ cells: regulatory factors and limitations. Growth Factors 2007; 25:236-52. [PMID: 18092232 DOI: 10.1080/08977190701783400] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Spermatogenesis is regulated mainly by endocrine factors and also by testicular paracrine/autocrine growth factors. These factors are produced by Sertoli cells, germ cells, peritubular cells and interstitial cells, mainly Leydig cells and macrophages. The interactions and the ratio between Sertoli and germ cells in the seminiferous tubules ensure successful spermatogenesis. In order to culture spermatogonial stem cells (SSCs) in vitro, researchers tried to overcome some of the obstacles -- such as the low number of stem cells in the testis, absence of specific markers to identify SSCs -- in addition to difficulties in keeping the SSCs alive in culture. Recently, some growth factors important for the proliferation and differentiation of SSCs were identified, such as glial cell line derived neurotrophic factor (GDNF), stem cell factor (SCF) and leukemia inhibitory factor (LIF); also, markers for SSCs at different stages were reported. Therefore, some groups succeeded in culturing SSCs (under limitations), or more differentiated cells and even were able to produce in vitro germ cells from embryonic stem cells. Thus, success in culturing SSCs is dependent on understanding the molecular mechanisms behind self-renewal and differentiation. Culture of SSCs should be a good tool for discovering new therapeutic avenue for some infertile men or for patients undergoing chemotherapy/radiotherapy (pre-puberty or post-puberty).
Collapse
Affiliation(s)
- Mahmoud Huleihel
- The Shraga Segal Department of Microbiology and Immunology, Soroka University Medical Center, Beer-Sheva, Israel.
| | | | | |
Collapse
|
121
|
Mori Y, Shiotani A, Saito K, Araki K, Ikeda K, Nakagawa M, Watabe K, Ogawa K. A Novel Drug Therapy for Recurrent Laryngeal Nerve Injury Using T-588. Laryngoscope 2007; 117:1313-8. [PMID: 17507828 DOI: 10.1097/mlg.0b013e31805f681f] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES/HYPOTHESIS We have previously shown that gene therapy using Insulin-like growth factor (IGF)-I, glial cell line-derived neurotrophic factor (GDNF), and brain-derived neurotrophic factor (BDNF), or a combination of these trophic factors, is a treatment option for recurrent laryngeal nerve (RLN) palsy. However, there remain some difficulties preventing this option from becoming a common clinical therapy for RLN injury. Thus, we need to develop novel treatment option that overcomes the problems of gene therapy.R(-)-1-(benzothiophen-5-yl)-2-[2-N,N-diethylamino]ethoxy]ethanol hydrochloride (T-588), a synthetic compound, is known to have neuroprotective effects on neural cells. In the present study, the possibility of new drug treatments using T-588 for RLN injury was assessed using rat models. STUDY DESIGN Animal study. METHODS Animals were administered T-588 for 4 weeks. The neuroprotective effects of T-588 administration after vagal nerve avulsion and neurofunctional recovery after recurrent laryngeal nerve crush were studied using motoneuron cell counting, evaluation of choline acetyltransferase immunoreactivity, the electrophysiologic examination, and the re-mobilization of the vocal fold. RESULTS T-588 administration successfully prevented motoneuron loss and ameliorated the choline acetyltransferase immunoreactivity in the ipsilateral nucleus ambiguus after vagal nerve avulsion. Significant improvements of motor nerve conduction velocity of the RLN and vocal fold movement were observed in the treatment group when compared to controls. CONCLUSION These results indicate that oral administration of T-588 might be a promising therapeutic option in treating peripheral nerve injury.
Collapse
Affiliation(s)
- Yuko Mori
- Department of Otolaryngology-Head and Neck Surgery, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
122
|
Friedman WJ. Interactions of interleukin-1 with neurotrophic factors in the central nervous system: beneficial or detrimental? Mol Neurobiol 2007; 32:133-44. [PMID: 16215278 DOI: 10.1385/mn:32:2:133] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Interleukin (IL)-1 is a multifunctional cytokine that plays a key role in mediating inflammation in the brain. Many different cell types in the brain express the IL-1 receptor and respond to this cytokine by activating cell-type-specific signaling pathways leading to distinct functional responses, which collectively comprise the inflammatory response in the brain. One key effect of IL-1 in the brain is the induction of trophic factor production by glial cells, which has traditionally been considered a neuroprotective response to injury or disease. However, recent studies have shown that nerve growth factor, which is regulated by IL-1, can induce neuronal survival or apoptosis via different receptors. This article examines the interaction of IL-1 with different trophic factors in the brain.
Collapse
Affiliation(s)
- Wilma J Friedman
- Department of Biological Sciences, Rutgers University, Newark, NJ, USA.
| |
Collapse
|
123
|
Koibuchi H, Hayashi S. Development of neurons expressing estrogen receptor α transiently in facial nucleus of prenatal and postnatal rat brains. Neurosci Res 2007; 58:190-8. [PMID: 17395327 DOI: 10.1016/j.neures.2007.02.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Revised: 02/20/2007] [Accepted: 02/21/2007] [Indexed: 11/28/2022]
Abstract
The transient expression of estrogen receptor alpha (ERalpha) in the facial nucleus of rats during development was already reported. However, how and whether the receptor functions physiologically in the nucleus of developing rats are as yet unclear. In this study, we applied a retrograde tracer into one of the possible target muscles of the motoneurons in the nucleus, that is, the transverse auricular muscle (Mta), and examined whether ERalpha-immunopositive neurons take up the tracer. Because it is probable that neurogenesis, apoptosis, and maturation may be associated with the transient expression of ERalpha, we attempted to analyze the neurons expressing the receptor in the nucleus. We found that ERalpha-immunopositive neurons in the medial facial subnucleus innervate mostly the Mta. Quantitative analyses showed that the number of motoneurons projecting to the Mta remained the same throughout the ages examined, whereas that of ERalpha-immunopositive neurons decreased between postnatal days 6 and 11. Apoptosis and neurogenesis in the nucleus were not affected by the expression of ERalpha during development. ERalpha expression coincided with the maturation of neurons in the nucleus. Thus, it is possible that ERalpha expression in the facial nucleus during development plays important roles in the development of motoneurons and/or external pinna muscles.
Collapse
Affiliation(s)
- Hiroshi Koibuchi
- International Graduate School of Arts and Sciences, Yokohama City University, Yokohama, Kanagawa 236-0027, Japan
| | | |
Collapse
|
124
|
Brunet N, Tarabal O, Portero-Otín M, Oppenheim RW, Esquerda JE, Calderó J. Survival and death of mature avian motoneurons in organotypic slice culture: trophic requirements for survival and different types of degeneration. J Comp Neurol 2007; 501:669-90. [PMID: 17299760 DOI: 10.1002/cne.21157] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We have developed an organotypic culture technique that uses slices of chick embryo spinal cord, in which trophic requirements for long-term survival of mature motoneurons (MNs) were studied. Slices were obtained from E16 chick embryos and maintained for up to 28 days in vitro (DIV) in a basal medium. Under these conditions, most MNs died. To promote MN survival, 14 different trophic factors were assayed. Among these 14, glial cell line-derived neurotrophic factor (GDNF) and vascular endothelial growth factor were the most effective. GDNF was able to promote MN survival for at least 28 DIV. K(+) depolarization or caspase inhibition prevented MN death but also induced degenerative-like changes in rescued MNs. Agents that elevate cAMP levels promoted the survival of a proportion of MNs for at least 7 DIV. Examination of dying MNs revealed that, in addition to cells exhibiting a caspase-3-dependent apoptotic pattern, some MNs died by a caspase-3-independent mechanism and displayed autophagic vacuoles, an extremely convoluted nucleus, and a close association with microglia. This organotypic spinal cord slice culture may provide a convenient model for testing conditions that promote survival of mature-like MNs that are affected in late-onset MN disease such as amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Núria Brunet
- Unitat de Neurobiologia Cel.lular, Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina, Universitat de Lleida and IRB Lleida, 25008 Lleida, Catalonia, Spain
| | | | | | | | | | | |
Collapse
|
125
|
Abstract
OBJECTIVES The surgical options for laryngeal paralysis only achieve static changes of vocal fold position. Laryngeal reinnervation procedures have had little impact on the return of dynamic laryngeal function. The development of a new treatment for laryngeal paralysis, aimed at the return of dynamic function and neurologic restoration and regeneration, is necessary. METHODS To assess the possibility of gene therapy for laryngeal paralysis aiming for the return of dynamic laryngeal function, we investigated the therapeutic effects of gene therapy using rat laryngeal paralysis models. RESULTS In a rat vagal nerve avulsion model, we transferred glial cell line-derived neurotrophic factor (GDNF) gene into the nucleus ambiguus using an adenovirus vector. Two and 4 weeks after the GDNF gene transfer, a significantly larger number of surviving motoneurons was observed. These neuroprotective effects of GDNF gene transfer were enhanced by simultaneous brain-derived neurotrophic factor gene transfer. In a rat recurrent laryngeal nerve crush model, we transferred GDNF gene into recurrent laryngeal nerve fibers after crush injury. Two and 4 weeks after GDNF gene transfer, we observed significantly faster nerve conduction velocity and better vocal fold motion recovery. CONCLUSIONS These results indicate that gene therapy could be a future treatment strategy for laryngeal paralysis. Further studies will be necessary to demonstrate the safety of the vector before clinical application.
Collapse
Affiliation(s)
- Akihiro Shiotani
- Department of Otolaryngology-Head and Neck Surgery, National Defense Medical College, Saitama, Japan
| | | | | | | | | |
Collapse
|
126
|
Mi R, Chen W, Höke A. Pleiotrophin is a neurotrophic factor for spinal motor neurons. Proc Natl Acad Sci U S A 2007; 104:4664-9. [PMID: 17360581 PMCID: PMC1838658 DOI: 10.1073/pnas.0603243104] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Regeneration in the peripheral nervous system is poor after chronic denervation. Denervated Schwann cells act as a "transient target" by secreting growth factors to promote regeneration of axons but lose this ability with chronic denervation. We discovered that the mRNA for pleiotrophin (PTN) was highly up-regulated in acutely denervated distal sciatic nerves, but high levels of PTN mRNA were not maintained in chronically denervated nerves. PTN protected spinal motor neurons against chronic excitotoxic injury and caused increased outgrowth of motor axons out of the spinal cord explants and formation of "miniventral rootlets." In neonatal mice, PTN protected the facial motor neurons against cell death induced by deprivation from target-derived growth factors. Similarly, PTN significantly enhanced regeneration of myelinated axons across a graft in the transected sciatic nerve of adult rats. Our findings suggest a neurotrophic role for PTN that may lead to previously unrecognized treatment options for motor neuron disease and motor axonal regeneration.
Collapse
Affiliation(s)
- Ruifa Mi
- Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Weiran Chen
- Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287
| | - Ahmet Höke
- Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- *To whom correspondence should be addressed at:
Department of Neurology, Johns Hopkins University, 600 North Wolfe Street, Path 509, Baltimore, MD 21287. E-mail:
| |
Collapse
|
127
|
Jongen JLM, Jaarsma D, Hossaini M, Natarajan D, Haasdijk ED, Holstege JC. Distribution of RET immunoreactivity in the rodent spinal cord and changes after nerve injury. J Comp Neurol 2007; 500:1136-53. [PMID: 17183535 DOI: 10.1002/cne.21234] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
RET (for "rearranged during transfection") is a transmembrane tyrosine kinase signaling receptor for members of the glial cell line-derived neurotrophic factor (GDNF) family of ligands. We used RET immunohistochemistry (IHC), double-labeling immunofluorescence (IF), and in situ hybridization (ISH) in adult naïve and nerve-injured rats to study the distribution of RET in the spinal cord. In the dorsal horn, strong RET-immunoreactive (-ir) fibers were abundant in lamina II-inner (II(i)), although this labeling was preferentially observed after an antigen-unmasking procedure. After dorsal rhizotomy, RET-ir fibers in lamina II(i) completely disappeared from the dorsal horn, indicating that they were all primary afferents. After peripheral axotomy, RET-ir in primary afferents decreased in lamina II(i) and appeared to increase slightly in laminae III and IV. RET-ir was also observed in neurons and dendrites throughout the dorsal horn. Some RET-ir neurons in lamina I had the morphological appearance of nociceptive projection neurons, which was confirmed by the finding that 53% of RET-ir neurons in lamina I colocalized with neurokinin-1. GDNF-ir terminals were in close proximity to RET-ir neurons in the superficial dorsal horn. In the ventral horn, RET-ir was strongly expressed by motoneurons, with the strongest staining in small, presumably gamma-motoneurons. Increased RET expression following peripheral axotomy was most pronounced in alpha-motoneurons. The expression and regulation pattern of RET in the spinal cord are in line with its involvement in regenerative processes following nerve injury. The presence of RET in dorsal horn neurons, including nociceptive projection neurons, suggests that RET also has a role in signal transduction at the spinal level. This role may include mediating the effects of GDNF released from nociceptive afferent fibers.
Collapse
Affiliation(s)
- Joost L M Jongen
- Department of Neuroscience, Erasmus MC-University Medical Center Rotterdam, 3015 GE Rotterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
128
|
Shibata SB, Osumi Y, Yagi M, Kanda S, Kawamoto K, Kuriyama H, Nishiyama T, Yamashita T. Administration of amitriptyline attenuates noise-induced hearing loss via glial cell line-derived neurotrophic factor (GDNF) induction. Brain Res 2007; 1144:74-81. [PMID: 17331482 DOI: 10.1016/j.brainres.2007.01.090] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2006] [Revised: 01/19/2007] [Accepted: 01/22/2007] [Indexed: 12/20/2022]
Abstract
Antidepressant treatments have been described to induce neurotrophic factors (NTFs) and reverse the cell loss observed in rodent stress models. Amitriptyline (AT), a tricyclic antidepressant agent, has been reported in recent studies to induce glial cell line-derived neurotrophic factor (GDNF) synthesis and release in rat C6 glioblastoma cells. GDNF has shown protection against acoustic trauma in previous studies. Therefore, we investigated whether AT could induce GDNF synthesis in the cochlea and attenuate cochlea damage against acoustic trauma. We used Hartley guinea pigs and injected AT (30 mg/kg) or saline into the peritoneum. Subjects were exposed to 117 dB SPL octave band noise centered at 4 kHz for 24 h. Noise-induced hearing loss (NIHL) was assessed with auditory brain stem response (ABR) at 4, 8 and 16 kHz measured prior to the injection, 3 days and 7 days after noise exposure. For histological assessment, we observed the sensory epithelium using a surface preparation technique and assessed the quantitative hair cell (HC) damage. We evaluated GDNF synthesis with or without intense noise exposure at 3, 12 and 24 h after the administration of AT in the cochlea using Western blot analysis. GDNF expression was shown 3 h and 12 h after the injection without noise, whereas with noise the GDNF expression lasted for 24 h. The AT-administrated group showed significantly reduced ABR threshold shift and less HC damage than the saline-administrated group. These findings suggest that the administration of AT-induced GDNF levels in the cochlea and attenuated cochlea damage from NIHL.
Collapse
MESH Headings
- Amitriptyline/administration & dosage
- Analgesics, Non-Narcotic/administration & dosage
- Animals
- Auditory Threshold/drug effects
- Disease Models, Animal
- Evoked Potentials, Auditory, Brain Stem/drug effects
- Evoked Potentials, Auditory, Brain Stem/physiology
- Female
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/physiology
- Gene Expression Regulation/radiation effects
- Glial Cell Line-Derived Neurotrophic Factor/metabolism
- Guinea Pigs
- Hair Cells, Auditory/drug effects
- Hair Cells, Auditory/physiology
- Hearing Loss, Noise-Induced/drug therapy
- Hearing Loss, Noise-Induced/pathology
- Hearing Loss, Noise-Induced/physiopathology
Collapse
Affiliation(s)
- Seiji Bruce Shibata
- Department of Otolaryngology, Kansai Medical University Takii Hospital, 10-15 Fumizonocho Moriguchi-shi, Osaka 570-8507, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
129
|
Abstract
Neurotrophic factors (NTFs) have the unique potential to support neuronal survival and to augment neuronal function in the injured and diseased nervous system. Numerous studies conducted over the last 20 years have provided evidence for the potent therapeutic potential of NTFs in animal models of neurodegenerative diseases. However, major obstacles for the therapeutic use of NTFs are the inability to deliver proteins across the blood-brain-barrier, and dose-limiting adverse effects resulting from the broad exposure of nontargeted structures to NTFs. Two recent developments have allowed NTFs' promise to be truly tested for the first time: first, recent improvements in viral vectors that allow the targeted delivery of NTFs while providing a long-lasting supply and sufficient therapeutic doses of NTFs; and second, improved animal models developed in recent years. In this review, we will discuss some of the potential therapeutic applications of NTFs in neurodegenerative diseases and the potential contribution of disturbed neurotrophic factor signaling to neurodegenerative diseases.
Collapse
Affiliation(s)
- Armin Blesch
- Department of Neurosciences-0626, Center for Neural Repair, University of California, San Diego, La Jolla, California 92093-0626, USA.
| |
Collapse
|
130
|
Horita Y, Honmou O, Harada K, Houkin K, Hamada H, Kocsis JD. Intravenous administration of glial cell line-derived neurotrophic factor gene-modified human mesenchymal stem cells protects against injury in a cerebral ischemia model in the adult rat. J Neurosci Res 2007; 84:1495-504. [PMID: 16998918 PMCID: PMC2605367 DOI: 10.1002/jnr.21056] [Citation(s) in RCA: 166] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Intravenous administration of human mesenchymal stem cells (hMSCs) prepared from adult bone marrow has been reported to ameliorate functional deficits after cerebral artery occlusion in rats. Several hypotheses to account for these therapeutic effects have been suggested, and current thinking is that neuroprotection rather than neurogenesis is responsible. To enhance the therapeutic benefits of hMSCs potentially, we transfected hMSCs with the glial cell line-derived neurotrophic factor (GDNF) gene using a fiber-mutant F/RGD adenovirus vector and investigated whether GDNF gene-modified hMSCs (GDNF-hMSCs) could contribute to functional recovery in a rat permanent middle cerebral artery occlusion (MCAO) model. We induced MCAO by using intraluminal vascular occlusion, and GDNF-hMSCs were intravenously infused into the rats 3 hr later. MRI and behavioral analyses revealed that rats receiving GDNF-hMSCs or hMSCs exhibited increased recovery from ischemia compared with the control group, but the effect was greater in the GDNF-hMSC group. Thus, these results suggest that intravenous administration of hMSCs transfected with the GDNF gene using a fiber-mutant adenovirus vector may be useful in the cerebral ischemia and may represent a new strategy for the treatment of stroke.
Collapse
Affiliation(s)
- Yoshifumi Horita
- Department of Neurosurgery, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| | | | | | | | | | | |
Collapse
|
131
|
Patel M, Mao L, Wu B, VandeVord PJ. GDNF–chitosan blended nerve guides: a functional study. J Tissue Eng Regen Med 2007; 1:360-7. [DOI: 10.1002/term.44] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
132
|
Xu L, Yan J, Chen D, Welsh AM, Hazel T, Johe K, Hatfield G, Koliatsos VE. Human neural stem cell grafts ameliorate motor neuron disease in SOD-1 transgenic rats. Transplantation 2006; 82:865-75. [PMID: 17038899 DOI: 10.1097/01.tp.0000235532.00920.7a] [Citation(s) in RCA: 177] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Experimental therapeutics for degenerative and traumatic diseases of the nervous system have been recently enriched with the addition of neural stem cells (NSCs) as alternatives to fetal tissues for cell replacement. Neurodegenerative diseases present the additional problem that cell death signals may interfere with the viability of grafted cells. The adult spinal cord raises further challenges for NSC differentiation because of lack of intrinsic developmental potential and the negative outcomes of several prior attempts. METHOD NSCs from human fetal spinal cord were grafted into the lumbar cord of SOD1 G93A rats. The differentiation fate of grafted NSCs and their effects on motor neuron number, locomotor performance, disease onset, and survival trends/longevity were assessed. Trophic mechanisms of observed clinical effects were explored with molecular and cellular methodologies. RESULT Human NSCs showed extensive differentiation into neurons that formed synaptic contacts with host nerve cells and expressed and released glial cell line-derived neurotrophic factor and brain-derived neurotrophic factor. NSC grafts delayed the onset and progression of the fulminant motor neuron disease typical of the rat SOD1 G93A model and extended the lifespan of these animals by more than 10 days, despite the restricted grafting schedule that was limited to the lumbar protuberance. CONCLUSION NSC grafts can survive well in a neurodegenerative environment and exert powerful clinical effects; at least a portion of these effects may be related to the ability of these grafts to express and release motor neuron growth factors delivered to host motor neurons via graft-host connections.
Collapse
Affiliation(s)
- Leyan Xu
- Department of Pathology, Division of Neuropathology, The Johns Hopkins Medical Institutions, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | |
Collapse
|
133
|
Nayak MS, Kim YS, Goldman M, Keirstead HS, Kerr DA. Cellular therapies in motor neuron diseases. Biochim Biophys Acta Mol Basis Dis 2006; 1762:1128-38. [PMID: 16872810 DOI: 10.1016/j.bbadis.2006.06.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2006] [Revised: 05/28/2006] [Accepted: 06/08/2006] [Indexed: 12/13/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) and spinal muscular atrophy (SMA) are prototypical motor neuron diseases that result in progressive weakness as a result of motor neuron dysfunction and death. Though much work has been done in both diseases to identify the cellular mechanisms of motor neuron dysfunction, once motor neurons have died, one of potential therapies to restore function would be through the use of cellular transplantation. In this review, we discuss potential strategies whereby cellular therapies, including the use of stem cells, neural progenitors and cells engineered to secrete trophic factors, may be used in motor neuron diseases. We review pre-clinical data in rodents with each of these approaches and discuss advances and regulatory issues regarding the use of cellular therapies in human motor neuron diseases.
Collapse
Affiliation(s)
- Mamatha S Nayak
- Department of Neurology, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD 21287, USA
| | | | | | | | | |
Collapse
|
134
|
Larsen KE, Benn SC, Ay I, Chian RJ, Celia SA, Remington MP, Bejarano M, Liu M, Ross J, Carmillo P, Sah D, Phillips KA, Sulzer D, Pepinsky RB, Fishman PS, Brown RH, Francis JW. A glial cell line-derived neurotrophic factor (GDNF):tetanus toxin fragment C protein conjugate improves delivery of GDNF to spinal cord motor neurons in mice. Brain Res 2006; 1120:1-12. [PMID: 17020749 DOI: 10.1016/j.brainres.2006.08.079] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Revised: 08/07/2006] [Accepted: 08/16/2006] [Indexed: 10/24/2022]
Abstract
Glial cell line-derived neurotrophic factor (GDNF) has shown robust neuroprotective and neuroreparative activities in various animal models of Parkinson's Disease or amyotrophic lateral sclerosis (ALS). The successful use of GDNF as a therapeutic in humans, however, appears to have been hindered by its poor bioavailability to target neurons in the central nervous system (CNS). To improve delivery of exogenous GDNF protein to CNS motor neurons, we employed chemical conjugation techniques to link recombinant human GDNF to the neuronal binding fragment of tetanus toxin (tetanus toxin fragment C, or TTC). The predominant species present in the purified conjugate sample, GDNF:TTC, had a molecular weight of approximately 80 kDa as determined by non-reducing SDS-PAGE. Like GDNF, addition of GDNF:TTC to culture media of neuroblastoma cells expressing GFRalpha-1/c-RET produced a dose-dependent increase in cellular phospho-c-RET levels. Treatment of cultured midbrain dopaminergic neurons with either GDNF or the conjugate similarly promoted both DA neuron survival and neurite outgrowth. However, in contrast to mice treated with GDNF by intramuscular injection, mice receiving GDNF:TTC revealed intense GDNF immunostaining associated with spinal cord motor neurons in fixed tissue sections. That GDNF:TTC provided neuroprotection of axotomized motor neurons in neonatal rats further revealed that the conjugate retained its GDNF activity in vivo. These results indicate that TTC can serve as a non-viral vehicle to substantially improve the delivery of functionally active growth factors to motor neurons in the mammalian CNS.
Collapse
Affiliation(s)
- Kristin E Larsen
- Columbia University, Department of Neurology, New York, NY 10032, and Cecil B. Day Laboratory for Neuromuscular Research, Massachusetts General Hospital, Charlestown 02129, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Ekestern E. Neurotrophic factors and amyotrophic lateral sclerosis. NEURODEGENER DIS 2006; 1:88-100. [PMID: 16908980 DOI: 10.1159/000080049] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2003] [Accepted: 03/22/2004] [Indexed: 12/15/2022] Open
Abstract
The cause of motor neuron death in amyotrophic lateral sclerosis (ALS) remains a mystery. Initial implications of neurotrophic factor impairment involved in disease progression causing selective motor neuron death were brought forward in the late 1980s. These implications were based on several in vitro studies of motor neuron cultures in which a near to complete rescue of axotomized neonatal motor neurons in the presence of supplementary neurotrophic factors were revealed. These findings pawed the way for extensive investigations in experimental animal models of ALS. Neurotrophic factor administration in rodent ALS models demonstrated a remarkable effect on survival of degenerating motor neurons and rescue of axotomized motor neurons, both in vivo and in vitro. In the absence of efficient therapy for ALS, some of these promising neurotrophic factors have been administered to groups of ALS patients, as they appeared available for clinical trials. Up to date, none of tested factors has lived up to expectations, altering the outcome of the disease. This review summarizes current findings on neurotrophic factor expression in ALS tissue and these factors' potential/debatable clinical relevance to ALS and the treatment of ALS. It also discusses possible interventions improving clinical trial design to obtain efficacy of neurotrophic factor treatment in patients suffering from ALS.
Collapse
Affiliation(s)
- Eva Ekestern
- Department of Neuroimmunology, Brain Research Institute, University of Vienna, Austria.
| |
Collapse
|
136
|
Pitts EV, Potluri S, Hess DM, Balice-Gordon RJ. Neurotrophin and Trk-mediated signaling in the neuromuscular system. Int Anesthesiol Clin 2006; 44:21-76. [PMID: 16849956 DOI: 10.1097/00004311-200604420-00004] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
137
|
Aremu DA, Meshitsuka S. Some aspects of astroglial functions and aluminum implications for neurodegeneration. ACTA ACUST UNITED AC 2006; 52:193-200. [PMID: 16529821 DOI: 10.1016/j.brainresrev.2006.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2005] [Revised: 01/24/2006] [Accepted: 02/02/2006] [Indexed: 01/29/2023]
Abstract
The present decade had witnessed an unprecedented attention focused on glial cells as a result of their unusual physiological roles that are being unraveled. It is now known that, rather than being a mere supporter of neurons, astroglia are actively involved in their modulation. The aluminum hypothesis seems to have been laid to rest, probably due to contradictory epidemiological reports on it as a causative factor of neurodegenerative diseases. Surprisingly, newer scientific evidences continue to appear and recent findings have implicated astrocytes as the principal target of its toxic action. In view of the likely detrimental effects of the interaction between these two infamous partners in neuroscience on neurons and nervous system, we have reviewed some aspects of glia-neuron interaction and discussed the implications of aluminum-impaired astrocytic functions on neurodegeneration. Because sporadic causes still account for the majority of the neurodegenerative diseases of which Alzheimer's disease is the most prominent, it has been suggested that neurotoxicologists should not relent in screening for the environmental agents, such as aluminum, and that considerable attention should be given to glial cells in view of the likely implications of environmental toxicants on their never-imagined newly reported roles in the central nervous system (CNS).
Collapse
Affiliation(s)
- David A Aremu
- Division of Medical Environmentology, Department of Social Medicine, Graduate School of Medical Sciences, Tottori University, Yonago 683-8503, Japan.
| | | |
Collapse
|
138
|
Araki K, Shiotani A, Watabe K, Saito K, Moro K, Ogawa K. Adenoviral GDNF gene transfer enhances neurofunctional recovery after recurrent laryngeal nerve injury. Gene Ther 2006; 13:296-303. [PMID: 16251996 DOI: 10.1038/sj.gt.3302665] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To assess the possibility of gene therapy for recurrent laryngeal nerve (RLN) injury, we examined functional and histological recovery after glial cell line-derived neurotrophic factor (GDNF) gene transfer in a rat RLN crush model. Adenoviral vector encoding beta-galactosidase gene (AxCALacZ) or human GDNF gene (AxCAhGDNF) was injected into the crush site of the RLN. Neurons in the nucleus ambiguus on the crushed side were labeled with X-gal or GDNF immnohistochemistry after AxCALacZ or AxCAhGDNF injection. Reverse transcription-polymerase chain reaction analysis revealed expression of human GDNF mRNA transcripts in brainstem tissue containing the nucleus ambiguus on the crushed side after AxCAhGDNF injection. Animals injected with AxCAhGDNF displayed significantly improved motor nerve conduction velocity of the RLN and recovery rate of vocal fold movement at 2 and 4 weeks after treatment as compared to controls. AxCAhGDNF-injected animals showed a significantly larger axonal diameter and improved remyelination in crushed RLN as compared to controls. Adenoviral GDNF gene transfer may thus promote laryngeal function recovery after RLN injury. Inoculation of adenoviral vector containing the GDNF gene at the site of damage soon after nerve injury may assist patients with laryngeal paralysis caused by nerve injury during head and neck surgery.
Collapse
Affiliation(s)
- K Araki
- Department of Otolaryngology, Head and Neck Surgery, Keio University School of Medicine, Shinjukuku, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
139
|
Abstract
Neurotrophic factors are proteins which promote the survival of specific neuronal populations. Many have other physiological effects on neurons such as inducing morphological differentiation, enhancing nerve regeneration, stimulating neurotransmitter expression, and otherwise altering the physiological characteristics of neurons. These properties suggest that neurotrophic factors are highly promising as potential therapeutic agents for neurological disease. Neurotrophic factors will most likely be applied to the peripheral nervous system initially, since there are fewer problems for large proteins to gain access to peripheral neurons. Many of the most intensively studied factors are active in the peripheral nervous system. These include the neurotrophins (nerve growth factor, brain derived neurotrophic factor, neurotrophin-3, neurotrophin-4/5), the insulin like growth factors, ciliary neurotrophic factor, and glial cell derived neurotrophic factor and its related proteins. The biology of these factors and their receptors in the peripheral nervous system is reviewed here. We also review data suggesting that abnormal availability of some factors may contribute towards the pathogenesis of certain types of peripheral neuropathy. Finally, the pre-clinical data suggesting that individual factors might be effective in treating neuropathy is reviewed, along with data relating to possible side effects of neurotrophic factor therapy. Several factors have already entered clinical trials with variable success. The data from these trials is reviewed as well.
Collapse
Affiliation(s)
- S C Apfel
- Dept. of Neurology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
140
|
Abstract
For regrowth of injured nerve fibers following spinal cord injury (SCI), the environment must be favorable for axonal growth. The delivery of a therapeutic gene, beneficial for axonal growth, into the central nervous system for repair can be accomplished in many ways. Perhaps the most simple and elegant strategy is the so-called direct gene therapy approach that uses a single injection for delivery of a gene therapy vehicle. Among the vectors that have been used to transduce neural tissue in vivo are non-viral, herpes simplex viral, adeno-associated viral, adenoviral, and lentiviral vectors, each with their own merits and limitations. Many studies have been undertaken using direct gene therapy, ranging from strategies for neuroprotection to axonal growth promotion at the injury site, dorsal root injury repair, and initiation of a growth-supporting genetic program. The limitations and successes of direct gene transfer for spinal cord repair are discussed in this review.
Collapse
Affiliation(s)
- Bas Blits
- The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida 33101, USA
| | | |
Collapse
|
141
|
Nakamura TY, Jeromin A, Smith G, Kurushima H, Koga H, Nakabeppu Y, Wakabayashi S, Nabekura J. Novel role of neuronal Ca2+ sensor-1 as a survival factor up-regulated in injured neurons. ACTA ACUST UNITED AC 2006; 172:1081-91. [PMID: 16549499 PMCID: PMC2063765 DOI: 10.1083/jcb.200508156] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A molecular basis of survival from neuronal injury is essential for the development of therapeutic strategy to remedy neurodegenerative disorders. In this study, we demonstrate that an EF-hand Ca2+-binding protein neuronal Ca2+ sensor-1 (NCS-1), one of the key proteins for various neuronal functions, also acts as an important survival factor. Overexpression of NCS-1 rendered cultured neurons more tolerant to cell death caused by several kinds of stressors, whereas the dominant-negative mutant (E120Q) accelerated it. In addition, NCS-1 proteins increased upon treatment with glial cell line-derived neurotrophic factor (GDNF) and mediated GDNF survival signal in an Akt (but not MAPK)-dependent manner. Furthermore, NCS-1 is significantly up-regulated in response to axotomy-induced injury in the dorsal motor nucleus of the vagus neurons of adult rats in vivo, and adenoviral overexpression of E120Q resulted in a significant loss of surviving neurons, suggesting that NCS-1 is involved in an antiapoptotic mechanism in adult motor neurons. We propose that NCS-1 is a novel survival-promoting factor up-regulated in injured neurons that mediates the GDNF survival signal via the phosphatidylinositol 3-kinase-Akt pathway.
Collapse
Affiliation(s)
- Tomoe Y Nakamura
- Department of Molecular Physiology, National Cardiovascular Center Research Institute, Suita, Osaka 565-8565, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
142
|
Kamholz J, Awatramani R, Menichella D, Jiang H, Xu W, Shy M. Regulation of Myelin-Specific Gene Expression: Relevance to CMT1. Ann N Y Acad Sci 2006; 883:91-108. [PMID: 29086995 DOI: 10.1111/j.1749-6632.1999.tb08572.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Schwann cells, the myelinating cells of the peripheral nervous system, are derived from the neural crest. Once neural crest cells are committed to the Schwann cell fate, they can take on one of two phenotypes to become myelinating or nonmyelinating Schwann cells, a decision that is determined by interactions with axons. The critical step in the differentiation of myelinating Schwann cells is the establishment of a one-to-one relationship with axons, the so-called "promyelinating" stage of Schwann cell development. The transition from the promyelinating to the myelinating stage of development is then accompanied by a number of significant changes in the pattern of gene expression, including the activation of a set of genes encoding myelin structural proteins and lipid biosynthetic enzymes, and the inactivation of a set of genes expressed only in immature or nonmyelinating Schwann cells. These changes are regulated mainly at the transcriptional level and also require continuous interaction between Schwann cells and their axons. Two transcription factors, Krox 20 (EGR2) and Oct 6 (SCIP/Tst1), are necessary for the transition from the promyelinating to the myelinating stage of Schwann cell development. Krox 20, expressed in myelinating but not promyelinating Schwann cells, is absolutely required for this transition, and myelination cannot occur in its absence. Oct 6, expressed mainly in promyelinating Schwann cells and then downregulated before myelination, is necessary for the correct timing of this transition, since myelination is delayed in its absence. Neither Krox 20 nor Oct 6, however, is required for the initial activation of myelin gene expression. Although the mechanisms of Krox 20 and Oct 6 action during myelination are not known, mutation in Krox 20 has been shown to cause CMT1, further implicating this protein in the pathogenesis of this disease. Identifying the molecular mechanisms of Krox 20 and Oct 6 action will thus be important both for understanding myelination and for designing future treatments for CMT1. Point mutations in the genes encoding the myelin proteins PMP22 and P0 cause CMT1A without a gene duplication and CMT1B, respectively. Although the clinical and pathological phenotypes of CMT1A and CMT1B are similar, their molecular pathogenesis is quite different. Point mutations in PMP22 alter the trafficking of the protein, so that it accumulates in the endoplasmic reticulum (ER) and intermediate compartment (IC). Mutant PMP22 also sequesters its normal counterpart in the ER, further reducing the amount of PMP22 available for myelin synthesis at the membrane, and accounting, at least in part, for its severe effect on myelination. Mutant PMP22 probably also activates an ER-to-nucleus signal transduction pathway associated with misfolded proteins, which may account for the decrease of myelin gene expression in Schwann cells in Trembler mutant mice. In contrast, absence of expression of the homotypic adhesion molecule, P0, in mice in which the gene has been inactivated, produces a unique pattern of Schwann cell gene expression, demonstrating that P0 plays a regulatory as well as a structural role in myelination. Whether this role is direct, through a P0-mediated adhesion pathway, or indirect, through adhesion pathways mediated by cadherins or integrins, however, remains to be determined. The molecular mechanisms underlying dysmyelination in CMT1 are thus complex, with pleitropic effects on Schwann cell physiology that are determined both by the type of mutation and the protein mutated. Identifying these molecular mechanisms, however, are important both for understanding myelination and for designing future treatments for CMT1. Although demyelination is the hallmark of CMT1, the clinical signs and symptoms of this disease are probably produced by axonal degeneration, not demyelination. Interestingly, a number of recent studies have demonstrated that Schwann cells from Trembler mice or patients with CMT1A can induce local axonal abnormalities, including decreased axonal transport, and altered neurofilament phosphorylation. These data thus suggest that disability of patients with CMT1 is caused by abnormal Schwann cell-axonal interactions. Efforts both to understand the effects of myelinating Schwann cells on their axons and to prevent axonal degeneration or promote axonal regeneration are thus central for the future development of a rational molecular therapy for CMT1.
Collapse
Affiliation(s)
- John Kamholz
- Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan 48201, USAGraduate Program in Molecular Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USAInstitute of Neurology, University of Milan, IRCCS, Ospedale Maggiore, Policlinico, Milan, ItalyCenter for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | - Raj Awatramani
- Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan 48201, USAGraduate Program in Molecular Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USAInstitute of Neurology, University of Milan, IRCCS, Ospedale Maggiore, Policlinico, Milan, ItalyCenter for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | - Daniela Menichella
- Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan 48201, USAGraduate Program in Molecular Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USAInstitute of Neurology, University of Milan, IRCCS, Ospedale Maggiore, Policlinico, Milan, ItalyCenter for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | - Huiyuan Jiang
- Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan 48201, USAGraduate Program in Molecular Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USAInstitute of Neurology, University of Milan, IRCCS, Ospedale Maggiore, Policlinico, Milan, ItalyCenter for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | - Wenbo Xu
- Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan 48201, USAGraduate Program in Molecular Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USAInstitute of Neurology, University of Milan, IRCCS, Ospedale Maggiore, Policlinico, Milan, ItalyCenter for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | - Michael Shy
- Department of Neurology, Wayne State University School of Medicine, Detroit, Michigan 48201, USAGraduate Program in Molecular Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USAInstitute of Neurology, University of Milan, IRCCS, Ospedale Maggiore, Policlinico, Milan, ItalyCenter for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| |
Collapse
|
143
|
Watabe K, Hayashi Y, Kawazoe Y. Peripheral nerve avulsion injuries as experimental models for adult motoneuron degeneration. Neuropathology 2006; 25:371-80. [PMID: 16382788 DOI: 10.1111/j.1440-1789.2005.00609.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have used adult rat peripheral nerve avulsion models to evaluate the effects of neuroprotective molecules on motoneuron degeneration. The right facial nerves of adult Fischer 344 male rats were avulsed and adenoviral vectors encoding glial cell line-derived neurotrophic factor (GDNF), brain-derived neurotrophic factor (BDNF), transforming growth factor-beta2 (TGFbeta2), and growth inhibitory factor (GIF) were injected into the facial canal. The treatment with the vectors significantly prevented the loss of lesioned facial motoneurons, improved choline acetyltransferase (ChAT) immunoreactivity and suppressed the induction of nitric oxide synthase activity in these neurons. In separate experiments, animals were orally administered a solution of a neuroprotective compound T-588 after avulsion. Both free oral administration and oral tube administration of T-588 improved the survival of injured motoneurons and ameliorated their ChAT immunoreactivity. These results indicate that the gene transfer of GDNF, BDNF, TGFbeta2, and GIF and oral administration of T-588 may prevent the degeneration of motoneurons in adult humans with motoneuron injury and motor neuron diseases.
Collapse
Affiliation(s)
- Kazuhiko Watabe
- Department of Molecular Neuropathology, Tokyo Metropolitan Institute for Neuroscience, 2-6, Musashidai, Fuchu, Tokyo 183-8526, Japan.
| | | | | |
Collapse
|
144
|
Glial Cell Line-derived Neurotrophic Factor in Myoepithelial Cells of Major and Minor Salivary Glands of Mice. J Oral Biosci 2006. [DOI: 10.1016/s1349-0079(06)80009-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
145
|
Nagano I, Shiote M, Murakami T, Kamada H, Hamakawa Y, Matsubara E, Yokoyama M, Moritaz K, Shoji M, Abe K. Beneficial effects of intrathecal IGF-1 administration in patients with amyotrophic lateral sclerosis. Neurol Res 2005; 27:768-72. [PMID: 16197815 DOI: 10.1179/016164105x39860] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVES There is currently no effective pharmacological treatment for amyotrophic lateral sclerosis (ALS). In a transgenic mouse model of ALS, intrathecal infusion of insulin-like growth factor (IGF)-1 showed a promising increase in survival. We performed a double-blind clinical trial to assess the effect of intrathecal administration of IGF-1 on disease progression in patients with ALS. METHODS Nine patients with ALS were randomly assigned to receive either a high dose (3 microg/kg of body weight) or low dose (0.5 microg/kg of body weight) of IGF-1 every 2 weeks for 40 weeks. The outcome measurements were the rate of decline of bulbar and limb functions (Norris scales) and forced vital capacity. RESULTS The high-dose treatment slowed a decline of motor functions of the ALS patients in total Norris and limb Norris scales, but not in bulbar Norris or vital capacity. The intrathecal administration of IGF-1 had a modest but significant beneficial effect in ALS patients without any serious adverse effects. DISCUSSION Intrathecal IGF-1 treatment could provide an effective choice for ALS although further studies in more patients are needed to confirm its efficacy and optimize dosages of IGF-1.
Collapse
Affiliation(s)
- Isao Nagano
- Department of Neurology, Graduate School of Medicine and Dentistry, Okayama University, 2-5-1 Shikata-cho, Okayama, 700-8558 Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
146
|
Morcuende S, Benítez-Temiño B, Pecero ML, Pastor AM, de la Cruz RR. Abducens internuclear neurons depend on their target motoneurons for survival during early postnatal development. Exp Neurol 2005; 195:244-56. [PMID: 15935346 DOI: 10.1016/j.expneurol.2005.05.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2004] [Revised: 04/07/2005] [Accepted: 05/04/2005] [Indexed: 10/25/2022]
Abstract
The highly specific projection of abducens internuclear neurons onto medial rectus motoneurons in the oculomotor nucleus is a good model to evaluate the dependence on target cells for survival during development and in the adult. Thus, the procedure we chose to selectively deprive abducens internuclear neurons of their natural target was the enucleation of postnatal day 1 rats to induce the death of medial rectus motoneurons. Two months later, we evaluated both the extent of reduction in target size, by immunocytochemistry against choline acetyltransferase (ChAT) and Nissl counting, and the percentage of abducens internuclear neurons surviving target loss, by calretinin immunostaining and horseradish peroxidase (HRP) retrograde tracing. Firstly, axotomized oculomotor motoneurons died in a high percentage ( approximately 80%) as visualized 2 months after lesion. In addition, we showed a transient (1 month) and reversible down-regulation of ChAT expression in extraocular motoneurons induced by injury. Secondly, 2 months after enucleation, 61.6% and 60.5% of the population of abducens internuclear neurons appeared stained by retrograde tracing and calretinin immunoreaction, respectively, indicating a significant extent of cell death after target loss (38.4% or 39.5%). By contrast, in the adult rat, neither extraocular motoneurons died in response to axotomy nor abducens internuclear neurons died due to the loss of their target motoneurons induced by the retrograde transport of toxic ricin injected in the medial rectus muscle. These results indicate that, during development, abducens internuclear neurons depend on their target motoneurons for survival, and that they lose this dependence with maturation.
Collapse
Affiliation(s)
- Sara Morcuende
- Departamento de Fisiología y Zoología, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes 6, 41012-Sevilla, Spain
| | | | | | | | | |
Collapse
|
147
|
Arighi E, Borrello MG, Sariola H. RET tyrosine kinase signaling in development and cancer. Cytokine Growth Factor Rev 2005; 16:441-67. [PMID: 15982921 DOI: 10.1016/j.cytogfr.2005.05.010] [Citation(s) in RCA: 319] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The variety of diseases caused by mutations in RET receptor tyrosine kinase provides a classic example of phenotypic heterogeneity. Gain-of-function mutations of RET are associated with human cancer. Gene rearrangements juxtaposing the tyrosine kinase domain to heterologous gene partners have been found in sporadic papillary carcinomas of the thyroid (PTC). These rearrangements generate chimeric RET/PTC oncogenes. In the germline, point mutations of RET are responsible for multiple endocrine neoplasia type 2 (MEN 2A and 2B) and familial medullary thyroid carcinoma (FMTC). Both MEN 2 mutations and PTC gene rearrangements potentiate the intrinsic tyrosine kinase activity of RET and, ultimately, activate the RET downstream targets. Loss-of-function mutations of RET cause Hirschsprung's disease (HSCR) or colonic aganglionosis. A deeper understanding of the molecular signaling of normal versus abnormal RET activity in cancer will enable the development of potential new treatments for patients with sporadic and inherited thyroid cancer or MEN 2 syndrome. We now review the role and mechanisms of RET signaling in development and carcinogenesis.
Collapse
Affiliation(s)
- Elena Arighi
- Developmental Biology, Institute of Biomedicine, Biomedicum Helsinki, University of Helsinki, Finland
| | | | | |
Collapse
|
148
|
Hase A, Saito F, Yamada H, Arai K, Shimizu T, Matsumura K. Characterization of glial cell line-derived neurotrophic factor family receptor α-1 in peripheral nerve Schwann cells. J Neurochem 2005; 95:537-43. [PMID: 16086681 DOI: 10.1111/j.1471-4159.2005.03391.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Glial cell line-derived neurotrophic factor (GDNF) family receptor alpha-1 (GFRalpha-1) is a receptor component of GDNF that associates with and activates the tyrosine kinase receptor Ret. To further understand GDNF and its receptor system in the PNS, we first characterized the expression of GFRalpha-1 in bovine peripheral nerve in vivo. GFRalpha-1 immunoreactivity was localized adjacent to the outermost layer of myelin sheath, as well as in the endoneurium and axoplasm. In a fractionation study, GFRalpha-1 was recovered mostly in the soluble fraction, although a small amount was recovered in the membrane fraction. A substantial amount of GFRalpha-1 in the membrane fraction was extractable by detergent and alkaline conditions. To further clarify the expression of GFRalpha-1 in Schwann cells, we examined cultured rat Schwann cells and the Schwannoma cell line RT4. Schwann cells expressed GFRalpha-1 in both the soluble/cytosolic and membrane fractions, and the membrane form of GFRalpha-1 was expressed at the outer surface of the Schwann cell plasma membrane. We also confirmed the secretion of the soluble form of GFRalpha-1 from Schwannoma cells in a metabolic labeling experiment. These data contribute to our knowledge of the production, expression and functions of GFRalpha-1 in the PNS.
Collapse
Affiliation(s)
- Asako Hase
- Department of Neurology and Neuroscience, Teikyo University School of Medicine, Kaga, Tokyo Japan
| | | | | | | | | | | |
Collapse
|
149
|
Takeda M, Suzuki Y, Obara N, Uchida N, Kawakoshi K. Expression of glial cell line-derived neurotrophic factor (GDNF) and GDNF family receptor alpha1 in mouse taste bud cells after denervation. Anat Sci Int 2005; 80:105-10. [PMID: 15960316 DOI: 10.1111/j.1447-073x.2005.00105.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Glial cell line-derived neurotrophic' factor (GDNF) has been isolated as a neurotrophic factor that affects the survival and maintenance of central and peripheral neurons. Using immunocytochemical methods, we examined whether the taste bud cells in mouse circumvallate papillae after transection of the glossopharyngeal nerves expressed GDNF and its receptor, GDNF family receptor alpha1 (GFRalpha1). By 5 and 10 days after denervation, the number of taste buds had decreased markedly; however, the remaining taste bud cells still expressed GDNF and GFRalpha1. By 14 days after denervation, most of the taste buds had disappeared and GDNF- and GFRalpha1-immunoreactive cells were not seen. By 4 weeks after denervation, numerous TrkB-immunoreactive nerve fibers had invaded the papilla and a few taste buds expressing GDNF and GFRalpha1 had regenerated. Thus, GDNF- and GFRalpha1-immunoreactive taste bud cells after denervation vanished following the disappearance of the taste buds and reappeared at the same time as the taste buds reappeared.
Collapse
Affiliation(s)
- Masako Takeda
- Department of Oral Anatomy, School of Dentistry, Health Sciences University of Hokkaido, Tobetsu, Ishikari, Hokkaido, Japan.
| | | | | | | | | |
Collapse
|
150
|
McPhail LT, Oschipok LW, Liu J, Tetzlaff W. Both positive and negative factors regulate gene expression following chronic facial nerve resection. Exp Neurol 2005; 195:199-207. [PMID: 15935349 DOI: 10.1016/j.expneurol.2005.04.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2005] [Revised: 04/19/2005] [Accepted: 04/26/2005] [Indexed: 10/25/2022]
Abstract
Previously, we reported that following a chronic nerve resection, removal of the neuroma reversed the atrophy, increased the number of countable motoneurons and resulted in the re-expression of GAP-43 and alpha tubulin mRNA. In the present study, we questioned whether this response was due to the removal of the neuroma, or a result of factors such as neurotrophins, produced at the injury site. To test this hypothesis, 10 weeks after axotomy, the axonal transport blocker colchicine or, glial derived neurotrophic factor (GDNF) was injected proximal to the neuroma. The injection of GDNF or colchicine elicited an increase in motoneuron size and in GAP-43, but not alpha tubulin, mRNA. These data suggest that in addition to factors produced at the injury site, the neuroma acts as a source of target-like repressive signals that when removed results in an increase in gene expression and motoneuron size. To analyze the regenerative potential of chronically resected motoneurons, mice without a previous nerve injury and mice with a chronic resection received a pre-degenerated segment of sciatic nerve attached to the proximal facial nerve stump. Axons from both the chronic and acute groups grew into the grafts, however, significantly more retrogradely labeled motoneurons were counted in the acute group compared to the chronic resection group. No difference in motoneuron cell size was observed between the two groups of regenerated neurons. Therefore, despite severe atrophy, many of the surviving mouse facial motoneurons retain the propensity to extend their axons when provided with the appropriate environment.
Collapse
Affiliation(s)
- Lowell T McPhail
- ICORD (International Collaboration On Repair Discoveries), University of British Columbia, Rm 2465 Biosciences Building, 6270 University Boulevard, Vancouver, BC, Canada V6T1Z4
| | | | | | | |
Collapse
|