101
|
Kariolis MS, Miao YR, Diep A, Nash SE, Olcina MM, Jiang D, Jones DS, Kapur S, Mathews II, Koong AC, Rankin EB, Cochran JR, Giaccia AJ. Inhibition of the GAS6/AXL pathway augments the efficacy of chemotherapies. J Clin Invest 2016; 127:183-198. [PMID: 27893463 DOI: 10.1172/jci85610] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 10/18/2016] [Indexed: 12/22/2022] Open
Abstract
The AXL receptor and its activating ligand, growth arrest-specific 6 (GAS6), are important drivers of metastasis and therapeutic resistance in human cancers. Given the critical roles that GAS6 and AXL play in refractory disease, this signaling axis represents an attractive target for therapeutic intervention. However, the strong picomolar binding affinity between GAS6 and AXL and the promiscuity of small molecule inhibitors represent important challenges faced by current anti-AXL therapeutics. Here, we have addressed these obstacles by engineering a second-generation, high-affinity AXL decoy receptor with an apparent affinity of 93 femtomolar to GAS6. Our decoy receptor, MYD1-72, profoundly inhibited disease progression in aggressive preclinical models of human cancers and induced cell killing in leukemia cells. When directly compared with the most advanced anti-AXL small molecules in the clinic, MYD1-72 achieved superior antitumor efficacy while displaying no toxicity. Moreover, we uncovered a relationship between AXL and the cellular response to DNA damage whereby abrogation of AXL signaling leads to accumulation of the DNA-damage markers γH2AX, 53BP1, and RAD51. MYD1-72 exploited this relationship, leading to improvements upon the therapeutic index of current standard-of-care chemotherapies in preclinical models of advanced pancreatic and ovarian cancer.
Collapse
|
102
|
Targeting the TAM Receptors in Leukemia. Cancers (Basel) 2016; 8:cancers8110101. [PMID: 27834816 PMCID: PMC5126761 DOI: 10.3390/cancers8110101] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/21/2016] [Accepted: 11/01/2016] [Indexed: 12/20/2022] Open
Abstract
Targeted inhibition of members of the TAM (TYRO-3, AXL, MERTK) family of receptor tyrosine kinases has recently been investigated as a novel strategy for treatment of hematologic malignancies. The physiologic functions of the TAM receptors in innate immune control, natural killer (NK) cell differentiation, efferocytosis, clearance of apoptotic debris, and hemostasis have previously been described and more recent data implicate TAM kinases as important regulators of erythropoiesis and megakaryopoiesis. The TAM receptors are aberrantly or ectopically expressed in many hematologic malignancies including acute myeloid leukemia, B- and T-cell acute lymphoblastic leukemia, chronic lymphocytic leukemia, and multiple myeloma. TAM receptors contribute to leukemic phenotypes through activation of pro-survival signaling pathways and interplay with other oncogenic proteins such as FLT3, LYN, and FGFR3. The TAM receptors also contribute to resistance to both cytotoxic chemotherapeutics and targeted agents, making them attractive therapeutic targets. A number of translational strategies for TAM inhibition are in development, including small molecule inhibitors, ligand traps, and monoclonal antibodies. Emerging areas of research include modulation of TAM receptors to enhance anti-tumor immunity, potential roles for TYRO-3 in leukemogenesis, and the function of the bone marrow microenvironment in mediating resistance to TAM inhibition.
Collapse
|
103
|
The Gas6/TAM System and Multiple Sclerosis. Int J Mol Sci 2016; 17:ijms17111807. [PMID: 27801848 PMCID: PMC5133808 DOI: 10.3390/ijms17111807] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 10/22/2016] [Accepted: 10/26/2016] [Indexed: 01/25/2023] Open
Abstract
Growth arrest specific 6 (Gas6) is a multimodular circulating protein, the biological actions of which are mediated by the interaction with three transmembrane tyrosine kinase receptors: Tyro3, Axl, and MerTK, collectively named TAM. Over the last few decades, many progresses have been done in the understanding of the biological activities of this highly pleiotropic system, which plays a role in the regulation of immune response, inflammation, coagulation, cell growth, and clearance of apoptotic bodies. Recent findings have further related Gas6 and TAM receptors to neuroinflammation in general and, specifically, to multiple sclerosis (MS). In this paper, we review the biology of the Gas6/TAM system and the current evidence supporting its potential role in the pathogenesis of MS.
Collapse
|
104
|
Tan L, Zhang Z, Gao D, Luo J, Tu ZC, Li Z, Peng L, Ren X, Ding K. 4-Oxo-1,4-dihydroquinoline-3-carboxamide Derivatives as New Axl Kinase Inhibitors. J Med Chem 2016; 59:6807-25. [PMID: 27379978 DOI: 10.1021/acs.jmedchem.6b00608] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Li Tan
- State
Key Laboratory of Respiratory Diseases, Guangzhou Institutes of Biomedicine
and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Zhang Zhang
- State
Key Laboratory of Respiratory Diseases, Guangzhou Institutes of Biomedicine
and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
- School
of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Donglin Gao
- State
Key Laboratory of Respiratory Diseases, Guangzhou Institutes of Biomedicine
and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Jinfeng Luo
- State
Key Laboratory of Respiratory Diseases, Guangzhou Institutes of Biomedicine
and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Zheng-Chao Tu
- State
Key Laboratory of Respiratory Diseases, Guangzhou Institutes of Biomedicine
and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
| | - Zhengqiu Li
- School
of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Lijie Peng
- School
of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Xiaomei Ren
- State
Key Laboratory of Respiratory Diseases, Guangzhou Institutes of Biomedicine
and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
- School
of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Ke Ding
- State
Key Laboratory of Respiratory Diseases, Guangzhou Institutes of Biomedicine
and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
- School
of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| |
Collapse
|
105
|
Tian W, Wang L, Yuan L, Duan W, Zhao W, Wang S, Zhang Q. A prognostic risk model for patients with triple negative breast cancer based on stromal natural killer cells, tumor-associated macrophages and growth-arrest specific protein 6. Cancer Sci 2016; 107:882-9. [PMID: 27145494 PMCID: PMC4946705 DOI: 10.1111/cas.12964] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/28/2016] [Accepted: 05/01/2016] [Indexed: 12/11/2022] Open
Abstract
The aim of this study was to establish a prognostic risk model for patients with triple negative breast cancer (TNBC). A total of 278 specimens of human TNBC tissues were investigated by immunohistochemistry for growth‐arrest specific protein 6 expression, infiltrations of stromal natural killer cells and tumor‐associated macrophages. According to their prognostic risk scores based on the model, patients were divided into three groups (score 0, 1–2, 3). Correlations of prognostic risk scores, clinicopathologic features and overall survival (OS) were analyzed. To study the clinical value of this stratification model in early disease recurrence or metastasis, 177 patients were screened out for further analysis. Based on disease free survival (DFS), 90 patients fell within the DFS ≤3 years group and 87 patients within the DFS ≥5 years group. We analyzed the differences in prognostic risk scores between the two groups. The prognostic risk scores were negatively related to tumor size, lymph node metastasis and P53 status (P < 0.001 for all). Patients with low prognostic risk scores had longer OS (P = 0.001). Using multivariate analysis, it was determined that TNM stage (HR = 0.432, 95% confidence interval [CI] = 0.281–0.665, P = 0.003), FOXP3 positive lymphocytes (HR = 1.712, 95% CI = 1.085–2.702, P = 0.021) and prognostic risk scores (HR = 1.340, 95% CI = 1.192–1.644, P = 0.005) were independent prognostic factors for OS. Compared with the DFS ≥5 years group, the DFS ≤3 years group patients had significantly higher prognostic risk scores (P < 0.001). In conclusion, the prognostic risk score of the model was a significant indicator of prognosis for patients with TNBC.
Collapse
Affiliation(s)
- Wenjing Tian
- Department of Medical Oncology, Cancer Hospital of Harbin Medical University, Harbin, China
| | - Le Wang
- Department of Medical Oncology, Cancer Hospital of Harbin Medical University, Harbin, China
| | - Lili Yuan
- Cancer Research Institute of Heilong Jiang Province, Harbin, China
| | - Wenming Duan
- Department of Physiology and Experimental Medicine, The Hospital for Sick Children, Toronto, Canada
| | - Wenhui Zhao
- Department of Medical Oncology, Cancer Hospital of Harbin Medical University, Harbin, China
| | - Shuhuai Wang
- Department of Pathology, Cancer Hospital of Harbin Medical University, Harbin, China
| | - Qingyuan Zhang
- Department of Medical Oncology, Cancer Hospital of Harbin Medical University, Harbin, China.,Oncology Key Lab of Heilongjiang Province Institution of Higher Education, Harbin, China
| |
Collapse
|
106
|
Mukherjee SK, Wilhelm A, Antoniades CG. TAM receptor tyrosine kinase function and the immunopathology of liver disease. Am J Physiol Gastrointest Liver Physiol 2016; 310:G899-905. [PMID: 26867565 PMCID: PMC4935487 DOI: 10.1152/ajpgi.00382.2015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/28/2016] [Indexed: 01/31/2023]
Abstract
Tyro3, Axl, MERTK (TAM) receptor tyrosine kinases are implicated in the regulation of the innate immune response through clearance of apoptotic cellular debris and control of cytokine signaling cascades. As a result they are pivotal in regulating the inflammatory response to tissue injury. Within the liver, immune regulatory signaling is employed to prevent the overactivation of innate immunity in response to continual antigenic challenge from the gastrointestinal tract. In this review we appraise current understanding of the role of TAM receptor function in the regulation of both innate and adaptive immunity, with a focus on its impact upon hepatic inflammatory pathology.
Collapse
Affiliation(s)
- S. K. Mukherjee
- 1Division of Digestive Diseases, Department of Medicine, Imperial College London, London, United Kingdom; and
| | - A. Wilhelm
- 1Division of Digestive Diseases, Department of Medicine, Imperial College London, London, United Kingdom; and
| | - C. G. Antoniades
- 1Division of Digestive Diseases, Department of Medicine, Imperial College London, London, United Kingdom; and ,2Division of Transplantation Immunology & Mucosal Biology, Institute of Liver Sciences, King's College London, London, United Kingdom
| |
Collapse
|
107
|
Liu J, Wang K, Yan Z, Xia Y, Li J, Shi L, Zou Q, Wan X, Jiao B, Wang H, Wu M, Zhang Y, Shen F. Axl Expression Stratifies Patients with Poor Prognosis after Hepatectomy for Hepatocellular Carcinoma. PLoS One 2016; 11:e0154767. [PMID: 27182739 PMCID: PMC4868325 DOI: 10.1371/journal.pone.0154767] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 04/19/2016] [Indexed: 01/04/2023] Open
Abstract
Background Axl is a receptor tyrosine kinase which plays an important role in multiple human malignancies. Design The Axl expression was examined in several hepatocellular carcinoma(HCC) cell lines, paired tumor and nontumorous samples. Then, we examined cell growth curve, cell apoptosis and cell migration in SMMC-7721 cells over-expressed with Axl or siRNA against Axl, respectively. Finally, the prognostic value of Axl was investigated in a prospective cohort of 246 consecutive HCC patients undergoing curative hepatoectomy. Results We found Axl was positive in 22% of examined tumor tissues and all four cell lines. Over-expressing Axl in SMMC-7721 cells accelerated cell growth, cell migration and inhibited cell apoptosis, while knock-down of Axl exerted opposite effect. Axl expression was closely associated with serum AFP, multiple tumors, absence of encapsulation, microvascular invasion, and advanced BCLC or TNM stage. Patients with positive Axl staining had a higher 5-year recurrence rate (92% vs. 71%, P<0.001) and a lower 5-year survival rate (9% vs. 48%, P<0.001) than those with negative staining. The multivariate analyses showed that Axl expression was an independent factor for both tumor recurrence (HR: 1.725; 95% CI: 1.219–2.441) and survival (1.847; 1.291–2.642). Conclusion Axl expression suggests more aggressive tumor invasiveness and predicts worse prognosis for HCC patients undergoing resection.
Collapse
Affiliation(s)
- Jian Liu
- Department of Hepatic Surgery, the Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Kui Wang
- Department of Hepatic Surgery, the Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Zhenlin Yan
- Department of Hepatic Surgery, the Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Yong Xia
- Department of Hepatic Surgery, the Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Jun Li
- Department of Hepatic Surgery, the Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Lehua Shi
- Department of Hepatic Surgery, the Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Qifei Zou
- Department of Hepatic Surgery, the Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Xuying Wan
- Department of Clinical Database, the Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Binghua Jiao
- Department of Biochemistry and Molecular Biology, Second Military Medical University, Shanghai, China
| | - Hongyang Wang
- National Scientific Center for Liver Cancer, Shanghai, China
| | - Mengchao Wu
- Department of Hepatic Surgery, the Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
- National Scientific Center for Liver Cancer, Shanghai, China
| | - Yongjie Zhang
- Department of Biliary Surgery, the Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
- * E-mail: (FS); (YZ)
| | - Feng Shen
- Department of Hepatic Surgery, the Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
- * E-mail: (FS); (YZ)
| |
Collapse
|
108
|
Scaltriti M, Elkabets M, Baselga J. Molecular Pathways: AXL, a Membrane Receptor Mediator of Resistance to Therapy. Clin Cancer Res 2016; 22:1313-7. [PMID: 26763248 DOI: 10.1158/1078-0432.ccr-15-1458] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 12/21/2015] [Indexed: 01/21/2023]
Abstract
AXL is a tyrosine kinase membrane receptor that signals via PI3K, MAPK, and protein kinase C (PKC), among other pathways. AXL has oncogenic potential and interacts with other membrane receptors, depending on their relative abundance and availability. The increased expression of AXL in cancer is often the result of pharmacologic selective pressure to a number of chemotherapies and targeted therapies and acts as a mechanism of acquired drug resistance. This resistance phenotype, frequently accompanied by epithelial-to-mesenchymal transition, can be reversed by AXL inhibition. In tumors with high levels of EGFR, including lung, head and neck, and triple-negative breast cancer, AXL dimerizes with this receptor and initiates signaling that circumvents the antitumor effects of anti-EGFR therapies. Likewise, AXL overexpression and dimerization with EGFR can overcome PI3K inhibition by activating the phospholipase C-γ-PKC cascade that, in turn, sustains mTORC1 activity. The causative role of AXL in inducing drug resistance is underscored by the fact that the suppression of AXL restores sensitivity to these agents. Hence, these observations indicate that AXL is selectively expressed in tumor cells refractory to therapy and that cotargeting AXL in this setting would potentially overcome drug resistance. The use of AXL inhibitors should be considered in the clinic.
Collapse
Affiliation(s)
- Maurizio Scaltriti
- Human Oncology & Pathogenesis Program (HOPP), Memorial Sloan Kettering Cancer Center, New York, New York. Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York.
| | - Moshe Elkabets
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - José Baselga
- Human Oncology & Pathogenesis Program (HOPP), Memorial Sloan Kettering Cancer Center, New York, New York. Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|
109
|
Esteghamati A, Fotouhi A, Faghihi-Kashani S, Hafezi-Nejad N, Heidari B, Sheikhbahaei S, Zandieh A, Nakhjavani M. Non-linear contribution of serum vitamin D to symptomatic diabetic neuropathy: A case-control study. Diabetes Res Clin Pract 2016; 111:44-50. [PMID: 26548603 DOI: 10.1016/j.diabres.2015.10.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 08/23/2015] [Accepted: 10/12/2015] [Indexed: 12/12/2022]
Abstract
AIMS Vitamin D deficiency has recently been speculated to be associated with increased risk of diabetes neuropathy (DN). The aim of this study was to evaluate the odds of symptomatic DN across serum vitamin D levels. METHODS All patients with DM were assessed using diabetic neuropathy symptoms and diabetic neuropathy examination score. Overall, 150 cases with DN and 600 controls were included. Serum 25-hydroxyvitamin D (25-OH-D) was measured to determine vitamin D status. RESULTS A non-linear association between 25-OH-D and suffering from symptomatic DN was observed which was extracted after stratifying the ORs across different serum 25-OH-D levels. When compared to individuals with 25-OH-D of 30-40 ng/mL, patients with deficient (<20 ng/mL) vitamin D levels had higher odds of having symptomatic DN (OR: 2.04, 95%CI: 0.99-4.02, P=0.054). Participants with vitamin D values of greater than 40 ng/mL were also more likely to exhibit symptomatic DN (fully adjusted OR: 4.29, 95%CI: 1.59-11.55). CONCLUSIONS We hypothesize a non-linear contribution of serum vitamin D to symptomatic DN occurrence, which emphasizes that administration of vitamin D should be monitored and evaluated more carefully, especially in patients with diabetes.
Collapse
Affiliation(s)
- Alireza Esteghamati
- Endocrinology and Metabolism Research Center (EMRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| | - Akbar Fotouhi
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| | - Sara Faghihi-Kashani
- Endocrinology and Metabolism Research Center (EMRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran; Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| | - Nima Hafezi-Nejad
- Endocrinology and Metabolism Research Center (EMRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| | - Behnam Heidari
- Endocrinology and Metabolism Research Center (EMRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| | - Sara Sheikhbahaei
- Endocrinology and Metabolism Research Center (EMRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| | - Ali Zandieh
- Endocrinology and Metabolism Research Center (EMRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| | - Manouchehr Nakhjavani
- Endocrinology and Metabolism Research Center (EMRC), Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| |
Collapse
|
110
|
Kim KC, Baek SH, Lee C. Curcumin-induced downregulation of Axl receptor tyrosine kinase inhibits cell proliferation and circumvents chemoresistance in non-small lung cancer cells. Int J Oncol 2015; 47:2296-303. [PMID: 26498137 DOI: 10.3892/ijo.2015.3216] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 10/13/2015] [Indexed: 12/14/2022] Open
Abstract
Lung cancer is still in the first place in terms of both incidence and mortality. In the present study, we demonstrated the effect of curcumin, a phytochemical of the plant Curcuma longa, on expression and activation of Axl receptor tyrosine kinase (RTK) which plays an important role in cell survival, proliferation and anti-apoptosis. Curcumin treatment of non-small cell lung cancer (NSCLC) A549 and H460 cells, was found to decrease Axl protein as well as mRNA levels in a dose- and time-dependent manner. Axl promoter activity was also reduced by curcumin, indicating that curcumin downregulates Axl expression at the transcriptional level. Moreover, Axl phosphorylation in response to binding of its ligand, Gas6, was abrogated by curcumin, suggesting the inhibitory effect of curcumin on Gas6-induced Axl activation. We next found cytotoxic effect of cucumin on both the parental A549 and H460 cells, and their variants which are resistant to cisplatin (A549/CisR and H460/CisR) and paclitaxel (A549/TR and H460/TR). Exposure of these cells to curcumin resulted in dose-dependent decline of cell viability and clonogenic ability. It is further observed that the anti-proliferative effect of curcumin on A549 cells overexpressing Axl protein was reduced, while that on H460 cells transfected Axl specific siRNA was augmented, confirming that curcumin inhibits cell proliferation via downregulation of Axl expression. In addition, curcumin was found to cause the induction of p21, a cyclin-dependent kinase inhibitor, and reduction of X-linked inhibitor of apoptosis protein (XIAP), an anti-apoptotic molecule, in parental H460 cells as well as chemoresistant cells, H460/CisR and H460/TR. Taken together, our data imply that Axl RTK is a novel target of curcumin through which it exerts anti-proliferative effect in both parental and chemoresistant NSCLC cells.
Collapse
Affiliation(s)
- Kyung-Chan Kim
- Department of Internal Medicine, College of Medicine, Catholic University of Daegu, Daegu 47472, Republic of Korea
| | - Suk-Hwan Baek
- Department of Biochemistry and Molecular Biology, School of Medicine, Yeungnam University, Daegu 42415, Republic of Korea
| | - Chuhee Lee
- Department of Biochemistry and Molecular Biology, School of Medicine, Yeungnam University, Daegu 42415, Republic of Korea
| |
Collapse
|
111
|
Zhao YF, Xu DC, Zhu GF, Zhu MY, Tang K, Li WM, Xu YW. Growth Arrest-Specific 6 Exacerbates Pressure Overload-Induced Cardiac Hypertrophy. Hypertension 2015; 67:118-29. [PMID: 26573712 DOI: 10.1161/hypertensionaha.115.06254] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 10/26/2015] [Indexed: 01/03/2023]
Abstract
Growth arrest-specific 6 (GAS6) is a member of the vitamin K-dependent protein family that is involved in the regulation of the cardiovascular system, including vascular remodeling, homeostasis, and atherosclerosis. However, there is still no study that systemically elucidates the role of GAS6 in cardiac hypertrophy. Here, we found that GAS6 was upregulated in human dilated cardiomyopathic hearts, hypertrophic murine hearts, and angiotensin II-treated cardiomyocytes. Next, we examined the influence of GAS6 expression in response to a cardiac stress by inducing chronic pressure overload with aortic banding in wild-type and GAS6-knockout mice or cardiac-specific GAS6 overexpressing mice. Under basal conditions, the GAS6-knockout mice had normal left ventricular structure and function but after aortic banding, the mice demonstrated less hypertrophy, fibrosis, and contractile dysfunction when compared with wild-type mice. Conversely, cardiac-specific overexpression of GAS6 exacerbated aortic banding-induced cardiac hypertrophy, fibrosis, and dysfunction. Furthermore, we demonstrated that GAS6 activated the mitogen-activated protein kinase kinase 1/2-extracellular signal-regulated kinase 1/2 pathway during pressure overload-induced cardiac hypertrophy, and the pharmacological mitogen-activated protein kinase kinase 1/2 inhibitor U0126 almost completely reversed GAS6 overexpression-induced cardiac hypertrophy and fibrosis, resulting in improved cardiac function. Collectively, our data support the notion that GAS6 impairs ventricular adaptation to chronic pressure overload by activating mitogen-activated protein kinase kinase 1/2-extracellular signal-regulated kinase 1/2 signaling. Our findings suggest that strategies to reduce GAS6 activity in cardiac tissue may be a novel approach to attenuate the development of congestive heart failure.
Collapse
Affiliation(s)
- Yi-Fan Zhao
- From the Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Da-Chun Xu
- From the Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Guo-Fu Zhu
- From the Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Meng-Yun Zhu
- From the Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Kai Tang
- From the Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Wei-Ming Li
- From the Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Ya-Wei Xu
- From the Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, P.R. China.
| |
Collapse
|
112
|
DiNicolantonio JJ, Bhutani J, O'Keefe JH. The health benefits of vitamin K. Open Heart 2015; 2:e000300. [PMID: 26468402 PMCID: PMC4600246 DOI: 10.1136/openhrt-2015-000300] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 08/27/2015] [Accepted: 09/18/2015] [Indexed: 02/07/2023] Open
Abstract
Vitamin K has important functions within the body, some of which are still being discovered. Research has shown that vitamin K is an anticalcification, anticancer, bone-forming and insulin-sensitising molecule. Recent data indicate that subclinical vitamin K deficiency is not uncommon. Additionally, vitamin K antagonists such as warfarin may cause detrimental side effects, which may partly be blunted through vitamin K supplementation.
Collapse
Affiliation(s)
| | - Jaikrit Bhutani
- Pt. BD Sharma Post Graduate Institute of Medical Sciences , Rohtak, Haryana , India
| | - James H O'Keefe
- Mid America Heart Institute at Saint Luke's Hospital , Kansas City, Missouri , USA
| |
Collapse
|
113
|
Oldenburg J, Watzka M, Bevans CG. VKORC1 and VKORC1L1: Why do Vertebrates Have Two Vitamin K 2,3-Epoxide Reductases? Nutrients 2015; 7:6250-80. [PMID: 26264021 PMCID: PMC4555119 DOI: 10.3390/nu7085280] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/08/2015] [Accepted: 07/15/2015] [Indexed: 01/01/2023] Open
Abstract
Among all cellular life on earth, with the exception of yeasts, fungi, and some prokaryotes, VKOR family homologs are ubiquitously encoded in nuclear genomes, suggesting ancient and important biological roles for these enzymes. Despite single gene and whole genome duplications on the largest evolutionary timescales, and the fact that most gene duplications eventually result in loss of one copy, it is surprising that all jawed vertebrates (gnathostomes) have retained two paralogous VKOR genes. Both VKOR paralogs function as entry points for nutritionally acquired and recycled K vitamers in the vitamin K cycle. Here we present phylogenetic evidence that the human paralogs likely arose earlier than gnathostomes, possibly in the ancestor of crown chordates. We ask why gnathostomes have maintained these paralogs throughout evolution and present a current summary of what we know. In particular, we look to published studies about tissue- and developmental stage-specific expression, enzymatic function, phylogeny, biological roles and associated pathways that together suggest subfunctionalization as a major influence in evolutionary fixation of both paralogs. Additionally, we investigate on what evolutionary timescale the paralogs arose and under what circumstances in order to gain insight into the biological raison d’être for both VKOR paralogs in gnathostomes.
Collapse
Affiliation(s)
- Johannes Oldenburg
- Institute of Experimental Haematology and Transfusion Medicine, University Clinic Bonn, Bonn 53105, Germany.
| | - Matthias Watzka
- Institute of Experimental Haematology and Transfusion Medicine, University Clinic Bonn, Bonn 53105, Germany.
| | | |
Collapse
|
114
|
Kirane A, Ludwig KF, Sorrelle N, Haaland G, Sandal T, Ranaweera R, Toombs JE, Wang M, Dineen SP, Micklem D, Dellinger MT, Lorens JB, Brekken RA. Warfarin Blocks Gas6-Mediated Axl Activation Required for Pancreatic Cancer Epithelial Plasticity and Metastasis. Cancer Res 2015. [PMID: 26206560 DOI: 10.1158/0008-5472.can-14-2887-t] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Repurposing "old" drugs can facilitate rapid clinical translation but necessitates novel mechanistic insight. Warfarin, a vitamin K "antagonist" used clinically for the prevention of thrombosis for more than 50 years, has been shown to have anticancer effects. We hypothesized that the molecular mechanism underlying its antitumor activity is unrelated to its effect on coagulation, but is due to inhibition of the Axl receptor tyrosine kinase on tumor cells. Activation of Axl by its ligand Gas6, a vitamin K-dependent protein, is inhibited at doses of warfarin that do not affect coagulation. Here, we show that inhibiting Gas6-dependent Axl activation with low-dose warfarin, or with other tumor-specific Axl-targeting agents, blocks the progression and spread of pancreatic cancer. Warfarin also inhibited Axl-dependent tumor cell migration, invasiveness, and proliferation while increasing apoptosis and sensitivity to chemotherapy. We conclude that Gas6-induced Axl signaling is a critical driver of pancreatic cancer progression and its inhibition with low-dose warfarin or other Axl-targeting agents may improve outcome in patients with Axl-expressing tumors.
Collapse
Affiliation(s)
- Amanda Kirane
- Division of Surgical Oncology, Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas. Department of Surgery, Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Kathleen F Ludwig
- Department of Surgery, Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas. Division of Hematology/Oncology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Noah Sorrelle
- Department of Surgery, Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas. Cell Regulation Graduate Program, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Gry Haaland
- Department of Biomedicine, Centre for Cancer Biomarkers, Norwegian Centre of Excellence, University of Bergen, Bergen, Norway
| | - Tone Sandal
- Department of Biomedicine, Centre for Cancer Biomarkers, Norwegian Centre of Excellence, University of Bergen, Bergen, Norway
| | - Renate Ranaweera
- Department of Biomedicine, Centre for Cancer Biomarkers, Norwegian Centre of Excellence, University of Bergen, Bergen, Norway
| | - Jason E Toombs
- Division of Surgical Oncology, Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas. Department of Surgery, Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Miao Wang
- Division of Surgical Oncology, Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas. Department of Surgery, Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Sean P Dineen
- Division of Surgical Oncology, Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas
| | | | - Michael T Dellinger
- Division of Surgical Oncology, Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas. Department of Surgery, Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas
| | - James B Lorens
- Department of Biomedicine, Centre for Cancer Biomarkers, Norwegian Centre of Excellence, University of Bergen, Bergen, Norway
| | - Rolf A Brekken
- Division of Surgical Oncology, Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas. Department of Surgery, Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas. Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
115
|
Okimoto RA, Bivona TG. AXL receptor tyrosine kinase as a therapeutic target in NSCLC. LUNG CANCER-TARGETS AND THERAPY 2015; 6:27-34. [PMID: 28210148 PMCID: PMC5217513 DOI: 10.2147/lctt.s60438] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The AXL receptor tyrosine kinase and its ligand, Gas6, regulate key processes in lung cancer growth, metastasis, and epithelial–mesenchymal transition-associated drug resistance. Gas6 and AXL expression have been correlated with poor prognosis and advanced clinical stage in patients with lung cancer, and targeting the Gas6/AXL pathway demonstrates antitumor activity, decreases cellular invasion, and restores sensitivity in de novo and acquired drug resistance models. These findings implicate AXL as a promising therapeutic target in lung cancer. In this review, we explore the role of AXL in lung cancer progression, from tumor development to disseminated disease, and highlight the current clinical landscape of anti-AXL therapeutics.
Collapse
Affiliation(s)
- Ross A Okimoto
- Division of Hematology and Medical Oncology, University of California San Francisco, San Francisco, CA, USA
| | - Trever G Bivona
- Division of Hematology and Medical Oncology, University of California San Francisco, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
116
|
Zhu JQ, Ou WB. Therapeutic targets in gastrointestinal stromal tumors. World J Transl Med 2015; 4:25-37. [DOI: 10.5528/wjtm.v4.i1.25] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 09/14/2014] [Accepted: 12/01/2014] [Indexed: 02/05/2023] Open
Abstract
Gastrointestinal stromal tumors (GISTs) are the most common type of mesenchymal tumor of the gastrointestinal tract. The tumorigenesis of GISTs is driven by gain-of-function mutations in KIT or platelet-derived growth factor receptor α (PDGFRA), resulting in constitutive activation of the tyrosine kinase and its downstream signaling pathways. Oncogenic KIT or PDGFRA mutations are compelling therapeutic targets for the treatment of GISTs, and the KIT/PDGFRA inhibitor imatinib is the standard of care for patients with metastatic GISTs. However, most GIST patients develop clinical resistance to imatinib and other tyrosine kinase inhibitors. Five mechanisms of resistance have been characterized: (1) acquisition of a secondary point mutation in KIT or PDGFRA; (2) genomic amplification of KIT; (3) activation of an alternative receptor tyrosine kinase; (4) loss of KIT oncoprotein expression; and (5) wild-type GIST. Currently, sunitinib is used as a second-line treatment for patients after imatinib failure, and regorafenib has been approved for patients whose disease is progressing on both imatinib and sunitinib. Phase II/III trials are currently in progress to evaluate novel inhibitors and immunotherapies targeting KIT, its downstream effectors such as phosphatidylinositol 3-kinase, protein kinase B and mammalian target of rapamycin, heat shock protein 90, and histone deacetylase inhibitor. Other candidate targets have been identified, including ETV1, AXL, insulin-like growth factor 1 receptor, KRAS, FAS receptor, protein kinase c theta, ANO1 (DOG1), CDC37, and aurora kinase A. These candidates warrant clinical evaluation as novel therapeutic targets in GIST.
Collapse
|
117
|
Li D, Liu S, Liu R, Park R, Yu H, Krasnoperov V, Gill PS, Li Z, Shan H, Conti PS. Axl-targeted cancer imaging with humanized antibody h173. Mol Imaging Biol 2015; 16:511-8. [PMID: 24424460 DOI: 10.1007/s11307-013-0714-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
PURPOSE The tyrosine kinase receptor Axl is overexpressed in various types of cancer and correlated with cancer malignancy. Selective Axl blockade reduces tumor growth and metastasis. The purpose of this study was to examine whether the humanized anti-Axl antibody humanized 173 (h173) labeled with near-infrared fluorescence (NIRF) dye Cy5.5 could be applied as a molecular imaging probe for NIRF imaging of Axl expression in tumor models. PROCEDURES NIRF dye Cy5.5 was conjugated to h173 or human normal immunoglobulin G (hIgG) control through amino groups. The resulting probes were evaluated in both A549 (Axl positive) and NCI-H249 (Axl negative) lung cancer xenografts through in vivo NIRF imaging. Ex vivo imaging and probe distribution assay were also carried out to confirm the in vivo imaging results. RESULTS After conjugation, binding activity of h173-Cy5.5 was determined to be 97.75 % ± 2.09 % of the unmodified h173. In vitro fluorescence-activated cell sorting (FACS) and fluorescence microscopy analysis validated the specific binding of h173 toward Axl-positive A549 cells. h173-Cy5.5 was then applied to image Axl expression in vivo. In A549 (Axl positive) cancer xenografts, the tumor uptake of h173-Cy5.5 was significantly higher than that of the hIgG-Cy5.5 control (P < 0.05) at late time points (1, 2, 3, 4, and 7 days). On the contrary, in NCI-H249 (Axl negative) cancer xenografts, the tumor uptake of both hIgG-Cy5.5 and h173-Cy5.5 was low and showed no significant difference (P > 0.05) at all time points examined. Ex vivo imaging and immunofluorescence staining analysis further validated the in vivo imaging results. CONCLUSIONS Collectively, all in vitro, in vivo, and ex vivo data suggested that h173-Cy5.5 could serve as a valid probe for Axl-targeted cancer imaging, which could therefore aid in tumor diagnosis, prognosis, and treatment monitoring.
Collapse
Affiliation(s)
- Dan Li
- Molecular Imaging Center, Department of Radiology, University of Southern California, 2250 Alcazar St. CSC103, Los Angeles, CA, 90033, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Targeted GAS6 delivery to the CNS protects axons from damage during experimental autoimmune encephalomyelitis. J Neurosci 2015; 34:16320-35. [PMID: 25471571 DOI: 10.1523/jneurosci.2449-14.2014] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Growth arrest-specific protein 6 (GAS6) is a soluble agonist of the TYRO3, AXL, MERTK (TAM) family of receptor tyrosine kinases identified to have anti-inflammatory, neuroprotective, and promyelinating properties. During experimental autoimmune encephalomyelitis (EAE), wild-type (WT) mice demonstrate a significant induction of Gas6, Axl, and Mertk but not Pros1 or Tyro3 mRNA. We tested the hypothesis that intracerebroventricular delivery of GAS6 directly into the CNS of WT mice during myelin oligodendrocyte glycoprotein (MOG)-induced EAE would improve the clinical course of disease relative to artificial CSF (ACSF)-treated mice. GAS6 did not delay disease onset, but significantly reduced the clinical scores during peak and chronic EAE. Mice receiving GAS6 for 28 d had preserved SMI31(+) neurofilament immunoreactivity, significantly fewer SMI32(+) axonal swellings and spheroids and less demyelination relative to ACSF-treated mice. Alternate-day subcutaneous IFNβ injection did not enhance GAS6 treatment effectiveness. Gas6(-/-) mice sensitized with MOG35-55 peptide exhibit higher clinical scores during late peak to early chronic disease, with significantly increased SMI32(+) axonal swellings and Iba1(+) microglia/macrophages, enhanced expression of several proinflammatory mRNA molecules, and decreased expression of early oligodendrocyte maturation markers relative to WT mouse spinal cords with scores for 8 consecutive days. During acute EAE, flow cytometry showed significantly more macrophages but not T-cell infiltrates in Gas6(-/-) spinal cords than WT spinal cords. Our data are consistent with GAS6 being protective during EAE by dampening the inflammatory response, thereby preserving axonal integrity and myelination.
Collapse
|
119
|
AXL as a modulator of sunitinib response in glioblastoma cell lines. Exp Cell Res 2015; 332:1-10. [PMID: 25637219 DOI: 10.1016/j.yexcr.2015.01.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Revised: 01/15/2015] [Accepted: 01/19/2015] [Indexed: 02/01/2023]
Abstract
Receptor tyrosine kinase (RTK) targeted therapy has been explored for glioblastoma treatment. However, it is unclear which RTK inhibitors are the most effective and there are no predictive biomarkers available. We recently identified the RTK AXL as a putative target for the pan-RTK inhibitors cediranib and sunitinib, which are under clinical trials for glioblastoma patients. Here, we provide evidence that AXL activity can modulate sunitinib response in glioblastoma cell lines. We found that AXL knockdown conferred lower sensitivity to sunitinib by rescuing migratory defects and inhibiting apoptosis in cells expressing high AXL basal levels. Accordingly, overactivation of AXL by its ligand GAS6 rendered AXL positive glioblastoma cells more sensitive to sunitinib. AXL knockdown induced a cellular rewiring of several growth signaling pathways through activation of RTKs, such as EGFR, as well as intracellular pathways such as MAPK and AKT. The combination of sunitinib with a specific AKT inhibitor reverted the resistance of AXL-silenced cells to sunitinib. Together, our results suggest that sunitinib inhibits AXL and AXL activation status modulates therapy response of glioblastoma cells to sunitinib. Moreover, it indicates that combining sunitinib therapy with AKT pathway inhibitors could overcome sunitinib resistance.
Collapse
|
120
|
Activation of HER3 interferes with antitumor effects of Axl receptor tyrosine kinase inhibitors: suggestion of combination therapy. Neoplasia 2015; 16:301-18. [PMID: 24862757 DOI: 10.1016/j.neo.2014.03.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 03/10/2014] [Accepted: 03/11/2014] [Indexed: 12/14/2022] Open
Abstract
The Axl receptor tyrosine kinase (RTK) has been established as a strong candidate for targeted therapy of cancer. However, the benefits of targeted therapies are limited due to acquired resistance and activation of alternative RTKs. Therefore, we asked if cancer cells are able to overcome targeted Axl therapies. Here, we demonstrate that inhibition of Axl by short interfering RNA or the tyrosine kinase inhibitor (TKI) BMS777607 induces the expression of human epidermal growth factor receptor 3 (HER3) and the neuregulin 1(NRG1)-dependent phosphorylation of HER3 in MDA-MB231 and Ovcar8 cells. Moreover, analysis of 20 Axl-expressing cancer cell lines of different tissue origin indicates a low basal phosphorylation of RAC-α serine/threonine-protein kinase (AKT) as a general requirement for HER3 activation on Axl inhibition. Consequently, phosphorylation of AKT arises as an independent biomarker for Axl treatment. Additionally, we introduce phosphorylation of HER3 as an independent pharmacodynamic biomarker for monitoring of anti-Axl therapy response. Inhibition of cell viability by BMS777607 could be rescued by NRG1-dependent activation of HER3, suggesting an escape mechanism by tumor microenvironment. The Axl-TKI MPCD84111 simultaneously blocked Axl and HER2/3 signaling and thereby prohibited HER3 feedback activation. Furthermore, dual inhibition of Axl and HER2/3 using BMS777607 and lapatinib led to a significant inhibition of cell viability in Axl-expressing MDA-MB231 and Ovcar8 cells. Therefore, we conclude that, in patient cohorts with expression of Axl and low basal activity of AKT, a combined inhibition of Axl and HER2/3 kinase would be beneficial to overcome acquired resistance to Axl-targeted therapies.
Collapse
|
121
|
Graham DK, DeRyckere D, Davies KD, Earp HS. The TAM family: phosphatidylserine sensing receptor tyrosine kinases gone awry in cancer. Nat Rev Cancer 2014; 14:769-85. [PMID: 25568918 DOI: 10.1038/nrc3847] [Citation(s) in RCA: 544] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The TYRO3, AXL (also known as UFO) and MERTK (TAM) family of receptor tyrosine kinases (RTKs) are aberrantly expressed in multiple haematological and epithelial malignancies. Rather than functioning as oncogenic drivers, their induction in tumour cells predominately promotes survival, chemoresistance and motility. The unique mode of maximal activation of this RTK family requires an extracellular lipid–protein complex. For example, the protein ligand, growth arrest-specific protein 6 (GAS6), binds to phosphatidylserine (PtdSer) that is externalized on apoptotic cell membranes, which activates MERTK on macrophages. This triggers engulfment of apoptotic material and subsequent anti-inflammatory macrophage polarization. In tumours, autocrine and paracrine ligands and apoptotic cells are abundant, which provide a survival signal to the tumour cell and favour an anti-inflammatory, immunosuppressive microenvironment. Thus, TAM kinase inhibition could stimulate antitumour immunity, reduce tumour cell survival, enhance chemosensitivity and diminish metastatic potential.
Collapse
|
122
|
Messoussi A, Peyronnet L, Feneyrolles C, Chevé G, Bougrin K, Yasri A. Structural elucidation of the DFG-Asp in and DFG-Asp out states of TAM kinases and insight into the selectivity of their inhibitors. Molecules 2014; 19:16223-39. [PMID: 25310149 PMCID: PMC6271404 DOI: 10.3390/molecules191016223] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 09/24/2014] [Accepted: 09/26/2014] [Indexed: 01/24/2023] Open
Abstract
Structural elucidation of the active (DFG-Asp in) and inactive (DFG-Asp out) states of the TAM family of receptor tyrosine kinases is required for future development of TAM inhibitors as drugs. Herein we report a computational study on each of the three TAM members Tyro-3, Axl and Mer. DFG-Asp in and DFG-Asp out homology models of each one were built based on the X-ray structure of c-Met kinase, an enzyme with a closely related sequence. Structural validation and in silico screening enabled identification of critical amino acids for ligand binding within the active site of each DFG-Asp in and DFG-Asp out model. The position and nature of amino acids that differ among Tyro-3, Axl and Mer, and the potential role of these residues in the design of selective TAM ligands, are discussed.
Collapse
Affiliation(s)
- Abdellah Messoussi
- OriBase Pharma, Parc Euromedecine, Cap Gamma, 1682, rue de la Valsière, 34189 Montpellier, France.
| | - Lucile Peyronnet
- OriBase Pharma, Parc Euromedecine, Cap Gamma, 1682, rue de la Valsière, 34189 Montpellier, France.
| | - Clémence Feneyrolles
- OriBase Pharma, Parc Euromedecine, Cap Gamma, 1682, rue de la Valsière, 34189 Montpellier, France.
| | - Gwénaël Chevé
- OriBase Pharma, Parc Euromedecine, Cap Gamma, 1682, rue de la Valsière, 34189 Montpellier, France.
| | - Khalid Bougrin
- Laboratoire de Chimie des Plantes et de Synthèse Organique et Bioorganique, URAC23, Université Mohammed V, Faculté des Sciences B.P., 1014 Rabat, Morocco.
| | - Aziz Yasri
- OriBase Pharma, Parc Euromedecine, Cap Gamma, 1682, rue de la Valsière, 34189 Montpellier, France.
| |
Collapse
|
123
|
Lew ED, Oh J, Burrola PG, Lax I, Zagórska A, Través PG, Schlessinger J, Lemke G. Differential TAM receptor-ligand-phospholipid interactions delimit differential TAM bioactivities. eLife 2014; 3. [PMID: 25265470 PMCID: PMC4206827 DOI: 10.7554/elife.03385] [Citation(s) in RCA: 206] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 09/28/2014] [Indexed: 12/22/2022] Open
Abstract
The TAM receptor tyrosine kinases Tyro3, Axl, and Mer regulate key features of cellular physiology, yet the differential activities of the TAM ligands Gas6 and Protein S are poorly understood. We have used biochemical and genetic analyses to delineate the rules for TAM receptor–ligand engagement and find that the TAMs segregate into two groups based on ligand specificity, regulation by phosphatidylserine, and function. Tyro3 and Mer are activated by both ligands but only Gas6 activates Axl. Optimal TAM signaling requires coincident TAM ligand engagement of both its receptor and the phospholipid phosphatidylserine (PtdSer): Gas6 lacking its PtdSer-binding ‘Gla domain’ is significantly weakened as a Tyro3/Mer agonist and is inert as an Axl agonist, even though it binds to Axl with wild-type affinity. In two settings of TAM-dependent homeostatic phagocytosis, Mer plays a predominant role while Axl is dispensable, and activation of Mer by Protein S is sufficient to drive phagocytosis. DOI:http://dx.doi.org/10.7554/eLife.03385.001 Cells send out and receive signals to communicate with other cells. Detecting these signals is largely carried out by proteins called receptors that span the cell surface membrane. These proteins typically have extracellular domains outside of the cell that can bind to specific signaling molecules and an intracellular domain inside the cell that relays the information inwards to trigger a response. Three such receptor proteins are collectively known as the TAM receptors. Each day, many billions of cells in the human body die and are engulfed by other cells and broken down so that their building blocks can be reused. TAM receptors are required for this process; and the TAM receptors also help prevent the immune system from going out of control, which would damage the body's own tissues. Two different signaling proteins, called Gas6 and Protein S, can bind to and activate TAM receptors. Both of the signaling proteins can also bind to a phospholipid molecule that is found on the surface membrane of dead cells. However, it is not known if all three TAM receptors bind to both signaling proteins equally, and the importance of the phospholipid-binding domain in the signaling proteins remains unclear. To shed light on the workings of these receptors, Lew et al. created mouse cells that each only express one out of the three TAM receptors. These cells were then exposed to intact Gas6 and Protein S, or shortened versions that lacked the phospholipid-binding domain. Lew et al. found that Gas6 could trigger a response through all three TAM receptors but that Protein S was specific for only two out of the three receptors. Signaling proteins with or without their phospholipid-binding domains bound equally well to the receptors, but the maximum level of response was only triggered when both signaling proteins were intact and the phospholipid molecule was present. This is important since the phospholipid can be thought of as an ‘eat-me’ signal by which the dead cells are recognized by the TAM receptor-expressing cells that will engulf them. Using mice that only produce a TAM receptor called Mer, Lew et al. show that Protein S alone can trigger the process that engulfs and breaks down cells in a living organism. These data and previous work suggest that two TAM receptors—including Mer—are involved in the daily engulfment of dying cells, whereas the third mediates this process during infection and tissue damage. Molecules that inhibit or activate the function of TAM receptors are currently being developed to treat cancer and other diseases. By revealing which receptors respond to which signaling molecules, the findings of Lew et al. will serve to guide these efforts. DOI:http://dx.doi.org/10.7554/eLife.03385.002
Collapse
Affiliation(s)
- Erin D Lew
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, United States
| | - Jennifer Oh
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, United States
| | - Patrick G Burrola
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, United States
| | - Irit Lax
- Department of Pharmacology, Yale University School of Medicine, New Haven, United States
| | - Anna Zagórska
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, United States
| | - Paqui G Través
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, United States
| | - Joseph Schlessinger
- Department of Pharmacology, Yale University School of Medicine, New Haven, United States
| | - Greg Lemke
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, United States
| |
Collapse
|
124
|
An engineered Axl 'decoy receptor' effectively silences the Gas6-Axl signaling axis. Nat Chem Biol 2014; 10:977-83. [PMID: 25242553 DOI: 10.1038/nchembio.1636] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 08/14/2014] [Indexed: 12/24/2022]
Abstract
Aberrant signaling through the Axl receptor tyrosine kinase has been associated with a myriad of human diseases, most notably metastatic cancer, identifying Axl and its ligand Gas6 as important therapeutic targets. Using rational and combinatorial approaches, we engineered an Axl 'decoy receptor' that binds Gas6 with high affinity and inhibits its function, offering an alternative approach from drug discovery efforts that directly target Axl. Four mutations within this high-affinity Axl variant caused structural alterations in side chains across the Gas6-Axl binding interface, stabilizing a conformational change on Gas6. When reformatted as an Fc fusion, the engineered decoy receptor bound Gas6 with femtomolar affinity, an 80-fold improvement compared to binding of the wild-type Axl receptor, allowing effective sequestration of Gas6 and specific abrogation of Axl signaling. Moreover, increased Gas6 binding affinity was critical and correlative with the ability of decoy receptors to potently inhibit metastasis and disease progression in vivo.
Collapse
|
125
|
Feneyrolles C, Spenlinhauer A, Guiet L, Fauvel B, Daydé-Cazals B, Warnault P, Chevé G, Yasri A. Axl kinase as a key target for oncology: focus on small molecule inhibitors. Mol Cancer Ther 2014; 13:2141-8. [PMID: 25139999 DOI: 10.1158/1535-7163.mct-13-1083] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Receptor tyrosine kinases (RTK) are transmembrane receptors that regulate signal transduction in cells. As a member of the TAM (Tyro-3, Axl, Mer) RTK subfamily, Axl regulates key processes such as cell growth, migration, aggregation, and apoptosis through several pathways. Its overexpression/overactivation has been underlined in several conditions, especially cancers, and in both chemotherapy and targeted therapy sensitivity loss. In this review, we propose to highlight the therapeutic implication of Axl, starting with the pathways it regulates, validating its interest as a therapeutic target, and defining the tools available to develop strategies for its inhibition. We especially focus on small molecule inhibitors, their structure, inhibition profile, and development stages.
Collapse
Affiliation(s)
| | | | - Léa Guiet
- OriBase Pharma, Cap Gamma, Montpellier, France
| | | | | | | | | | - Aziz Yasri
- OriBase Pharma, Cap Gamma, Montpellier, France
| |
Collapse
|
126
|
Hemmati AA, Houshmand G, Ghorbanzadeh B, Nemati M, Behmanesh MA. Topical vitamin K1 promotes repair of full thickness wound in rat. Indian J Pharmacol 2014; 46:409-12. [PMID: 25097279 PMCID: PMC4118534 DOI: 10.4103/0253-7613.135953] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 05/01/2014] [Accepted: 05/28/2014] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES Application of vitamin K to the skin has been used for suppression of pigmentation and resolution of bruising. However, in rats, no study was reported on its effect regarding wound healing. Thus, the present study was designed to examine the healing effects of creams prepared from vitamin K1 on full-thickness wound in rats. MATERIALS AND METHODS For inducing full-thickness wound in rats, the excisional wound model was used. Five groups consisting of 8 rats each were used. Vitamin K cream (1% and 2%, w/w) was prepared in eucerin base and applied on the wound once a day until complete healing had occurred. Healing was defined by decreased wound margin (wound contraction), re-epithelialization, tensile strength and hydroxyproline content. Histopathological examination was also done. RESULTS The effects produced by the topical vitamin K showed significant (P < 0.01) healing when compared with control group in parameters such as wound contraction, epithelialization period, hydroxyproline content and tensile strength. Histopathological studies also showed improvement with vitamin K. CONCLUSIONS Topical vitamin K demonstrates wound healing potential in full-thickness wound model.
Collapse
Affiliation(s)
- Ali Asghar Hemmati
- Department of Pharmacology and Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Physiology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Gholamreza Houshmand
- Department of Pharmacology and Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Behnam Ghorbanzadeh
- Department of Pharmacology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Nemati
- Department of Pharmacology and Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Amin Behmanesh
- Department of Histology, School of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
127
|
Abstract
Abstract
TAM receptors (Tyro3, Axl, and Mer) belong to a family of receptor tyrosine kinases that have important effects on hemostasis and inflammation. Also, they affect cell proliferation, survival, adhesion, and migration. TAM receptors can be activated by the vitamin K–dependent proteins Gas6 and protein S. Protein S is more commonly known as an important cofactor for protein C as well as a direct inhibitor of multiple coagulation factors. To our knowledge, the functions of Gas6 are limited to TAM receptor activation. When activated, the TAM receptors have effects on primary hemostasis and coagulation and display an anti-inflammatory or a proinflammatory effect, depending on cell type. To comprehend the effects that the TAM receptors and their ligands have on hemostasis and inflammation, we compare studies that report the different phenotypes displayed by mice with deficiencies in the genes of this receptor family and its ligands (protein S+/−, Gas6−/−, TAM−/−, and variations of these). In this manner, we aim to display which features are attributable to the different ligands. Because of the effects TAM receptors have on hemostasis, inflammation, and cancer growth, their modulation could make interesting therapeutic targets in thromboembolic disease, atherosclerosis, sepsis, autoimmune disease, and cancer.
Collapse
|
128
|
Ghosh AK, Kay NE. Critical signal transduction pathways in CLL. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 792:215-39. [PMID: 24014299 DOI: 10.1007/978-1-4614-8051-8_10] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Receptor tyrosine kinases (RTKs) are cell-surface transmembrane receptors that contain regulated kinase activity within their cytoplasmic domain and play a critical role in signal transduction in both normal and malignant cells. Besides B cell receptor (BCR) signaling in chronic lymphocytic leukemia (CLL), multiple RTKs have been reported to be constitutively active in CLL B cells, resulting in enhanced survival and resistance to apoptosis of the leukemic cells induced by chemotherapeutic agents. In addition to increased plasma levels of various types of cytokines/growth factors in CLL, we and others have detected that CLL B cells spontaneously produce multiple cytokines in vitro which may constitute an autocrine loop of RTK activation on the leukemic B cells. Moreover, aberrant expression and activation of non-RTKs, for example, Src/Syk kinases, induce resistance of the leukemic B cells to therapy. Based on current available knowledge, we detailed the impact of aberrant activities of various RTKs/non-RTKs on CLL B cell survival and the potential of using these signaling components as future therapeutic targets in CLL therapy.
Collapse
Affiliation(s)
- Asish K Ghosh
- Division of Hematology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | | |
Collapse
|
129
|
Azuma K, Tsukui T, Ikeda K, Shiba S, Nakagawa K, Okano T, Urano T, Horie-Inoue K, Ouchi Y, Ikawa M, Inoue S. Liver-specific γ-glutamyl carboxylase-deficient mice display bleeding diathesis and short life span. PLoS One 2014; 9:e88643. [PMID: 24520408 PMCID: PMC3919827 DOI: 10.1371/journal.pone.0088643] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 01/06/2014] [Indexed: 12/19/2022] Open
Abstract
Vitamin K is a fat-soluble vitamin that plays important roles in blood coagulation and bone metabolism. One of its functions is as a co-factor for γ-glutamyl carboxylase (Ggcx). Conventional knockout of Ggcx causes death shortly after birth in homozygous mice. We created Ggcx-floxed mice by inserting loxP sequences at the sites flanking exon 6 of Ggcx. By mating these mice with albumin-Cre mice, we generated Ggcx-deficient mice specifically in hepatocytes (GgcxΔliver/Δliver mice). In contrast to conventional Ggcx knockout mice, GgcxΔliver/Δliver mice had very low activity of Ggcx in the liver and survived several weeks after birth. Furthermore, compared with heterozygous mice (Ggcx+/Δliver), GgcxΔliver/Δliver mice had shorter life spans. GgcxΔliver/Δliver mice displayed bleeding diathesis, which was accompanied by decreased activity of coagulation factors II and IX. Ggcx-floxed mice can prove useful in examining Ggcx functions in vivo.
Collapse
Affiliation(s)
- Kotaro Azuma
- Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Tohru Tsukui
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama, Japan
| | - Kazuhiro Ikeda
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama, Japan
| | - Sachiko Shiba
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama, Japan
| | - Kimie Nakagawa
- Department of Hygienic Sciences, Kobe Pharmaceutical University, Kobe, Hyogo, Japan
| | - Toshio Okano
- Department of Hygienic Sciences, Kobe Pharmaceutical University, Kobe, Hyogo, Japan
| | - Tomohiko Urano
- Department of Anti-Aging Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Kuniko Horie-Inoue
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama, Japan
| | - Yasuyoshi Ouchi
- Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Satoshi Inoue
- Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama, Japan
- Department of Anti-Aging Medicine, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- * E-mail:
| |
Collapse
|
130
|
Rettew AN, Getty PJ, Greenfield EM. Receptor tyrosine kinases in osteosarcoma: not just the usual suspects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 804:47-66. [PMID: 24924168 DOI: 10.1007/978-3-319-04843-7_3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Despite aggressive surgical and chemotherapy protocols, survival rates for osteosarcoma patients have not improved over the last 30 years. Therefore, novel therapeutic agents are needed. Receptor tyrosine kinases have emerged as targets for the development of new cancer therapies since their activation leads to enhanced proliferation, survival, and metastasis. In fact, aberrant expression and activation of RTKs have been associated with the progression of many cancers. Studies from our lab using phosphoproteomic screening identified RTKs that are activated and thus may contribute to the signaling within metastatic human osteosarcoma cells. Functional genomic screening using siRNA was performed to distinguish which of the activated RTKs contribute to in vitro phenotypes associated with metastatic potential (motility, invasion, colony formation, and cell growth). The resulting RTK hits were then validated using independent validation experiments. From these results, we identified four RTKs (Axl, EphB2, FGFR2, and Ret) that have not been previously studied in osteosarcoma and provide targets for the development of novel therapeutics.
Collapse
Affiliation(s)
- Ashley N Rettew
- Department of Orthopaedics, Case Medical Center, Case Western Reserve University, Cleveland, OH, USA,
| | | | | |
Collapse
|
131
|
Laurance S, Aghourian MN, Jiva Lila Z, Lemarié CA, Blostein MD. Gas6-induced tissue factor expression in endothelial cells is mediated through caveolin-1-enriched microdomains. J Thromb Haemost 2014; 12:395-408. [PMID: 24354620 DOI: 10.1111/jth.12481] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Indexed: 12/14/2022]
Abstract
BACKGROUND Gas6 has been shown to interact with Axl in endothelial cells and to induce several signaling pathways involved in cell survival and proliferation. However, the interaction of Gas6/Axl with lipid raft/caveolin-1 in endothelial cells and its role in thrombosis are unknown. OBJECTIVES We tested whether Axl and/or caveolin-1 is involved in Gas6-induced Akt, ERK1/2, and c-Src activation leading to altered tissue factor expression in endothelial cells. METHODS Gas6-treated endothelial cells were transfected with small interfering RNA (siRNA) for Axl, caveolin-1, c-Src, and Akt or treated with pharmacological inhibitors of c-Src and ERK1/2. Sucrose gradient centrifugation and confocal microscopy were used to study lipid raft/caveolin-1-enriched fractions. Akt, ERK1/2, p38, and c-Src activation was analyzed by Western blot analysis. Tissue factor expression was assessed by real-time quantitative polymerase chain reaction and immunofluorescence. RESULTS AND CONCLUSION Gas6 induced Axl and c-Src localization into lipid raft/caveolin-1-enriched fractions. Gas6 increased the phosphorylation of Akt, ERK1/2, and c-Src but not p38. Using siRNA, we demonstrated that Axl is required for Akt, ERK1/2, and c-Src activation after Gas6 stimulation. siRNA for caveolin-1 blocked Gas6-induced phosphorylation of Akt, ERK1/2, and c-Src. c-Src downregulation inhibited Gas6-induced Akt but not ERK1/2 phosphorylation. Finally, Gas6 increased tissue factor mRNA and protein expression in endothelial cells. Tissue factor expression was blocked by siRNA for Axl, caveolin-1, or Akt as well as c-Src inhibition. These data demonstrate that the signaling pathway Gas6/Axl/caveolin-1/c-Src/Akt is required for tissue factor expression in endothelial cells, providing mechanistic insight into how Gas6 exerts its prothrombotic role in the vasculature.
Collapse
Affiliation(s)
- S Laurance
- Lady Davis Institute for Medical Research, McGill University, Montreal, QC, Canada
| | | | | | | | | |
Collapse
|
132
|
Pierce AM, Keating AK. TAM receptor tyrosine kinases: expression, disease and oncogenesis in the central nervous system. Brain Res 2013; 1542:206-20. [PMID: 24184575 DOI: 10.1016/j.brainres.2013.10.049] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 10/18/2013] [Accepted: 10/24/2013] [Indexed: 01/10/2023]
Abstract
Receptor tyrosine kinases (RTKs) are cell surface proteins that tightly regulate a variety of downstream intra-cellular processes; ligand-receptor interactions result in cascades of signaling events leading to growth, proliferation, differentiation and migration. There are 58 described RTKs, which are further categorized into 20 different RTK families. When dysregulated or overexpressed, these RTKs are implicated in disordered growth, development, and oncogenesis. The TAM family of RTKs, consisting of Tyro3, Axl, and MerTK, is prominently expressed during the development and function of the central nervous system (CNS). Aberrant expression and dysregulated activation of TAM family members has been demonstrated in a variety of CNS-related disorders and diseases, including the most common but least treatable brain cancer in children and adults: glioblastoma multiforme.
Collapse
Affiliation(s)
- Angela M Pierce
- University of Colorado School of Medicine, Department of Pediatrics, 12800 E. 19th Avenue, P18-4105, MS 8302 Aurora, CO 80045, USA.
| | - Amy K Keating
- University of Colorado School of Medicine, Department of Pediatrics, 12800 E. 19th Avenue, P18-4105, MS 8302 Aurora, CO 80045, USA.
| |
Collapse
|
133
|
Bhoj E, Dubbs H, McDonald-McGinn D, Zackai E. Late-onset partial complex seizures secondary to cortical dysplasia in a patient with maternal vitamin K deficient embryopathy: Comments on the article by Toriello et al. [2013] and first report of the natural history. Am J Med Genet A 2013; 161A:2396-8. [DOI: 10.1002/ajmg.a.36043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 04/22/2013] [Indexed: 12/23/2022]
Affiliation(s)
- Elizabeth Bhoj
- Department of Clinical Genetics; Children's Hospital of Philadelphia; Philadelphia Pennsylvania
| | - Holly Dubbs
- Department of Clinical Genetics; Children's Hospital of Philadelphia; Philadelphia Pennsylvania
| | - Donna McDonald-McGinn
- Department of Clinical Genetics; Children's Hospital of Philadelphia; Philadelphia Pennsylvania
| | - Elaine Zackai
- Department of Clinical Genetics; Children's Hospital of Philadelphia; Philadelphia Pennsylvania
| |
Collapse
|
134
|
Cook RS, Jacobsen KM, Wofford AM, DeRyckere D, Stanford J, Prieto AL, Redente E, Sandahl M, Hunter DM, Strunk KE, Graham DK, Earp HS. MerTK inhibition in tumor leukocytes decreases tumor growth and metastasis. J Clin Invest 2013; 123:3231-42. [PMID: 23867499 DOI: 10.1172/jci67655] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 05/10/2013] [Indexed: 01/14/2023] Open
Abstract
MerTK, a receptor tyrosine kinase (RTK) of the TYRO3/AXL/MerTK family, is expressed in myeloid lineage cells in which it acts to suppress proinflammatory cytokines following ingestion of apoptotic material. Using syngeneic mouse models of breast cancer, melanoma, and colon cancer, we found that tumors grew slowly and were poorly metastatic in MerTK-/- mice. Transplantation of MerTK-/- bone marrow, but not wild-type bone marrow, into lethally irradiated MMTV-PyVmT mice (a model of metastatic breast cancer) decreased tumor growth and altered cytokine production by tumor CD11b+ cells. Although MerTK expression was not required for tumor infiltration by leukocytes, MerTK-/- leukocytes exhibited lower tumor cell-induced expression of wound healing cytokines, e.g., IL-10 and growth arrest-specific 6 (GAS6), and enhanced expression of acute inflammatory cytokines, e.g., IL-12 and IL-6. Intratumoral CD8+ T lymphocyte numbers were higher and lymphocyte proliferation was increased in tumor-bearing MerTK-/- mice compared with tumor-bearing wild-type mice. Antibody-mediated CD8+ T lymphocyte depletion restored tumor growth in MerTK-/- mice. These data demonstrate that MerTK signaling in tumor-associated CD11b+ leukocytes promotes tumor growth by dampening acute inflammatory cytokines while inducing wound healing cytokines. These results suggest that inhibition of MerTK in the tumor microenvironment may have clinical benefit, stimulating antitumor immune responses or enhancing immunotherapeutic strategies.
Collapse
Affiliation(s)
- Rebecca S Cook
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
135
|
Paccez JD, Vogelsang M, Parker MI, Zerbini LF. The receptor tyrosine kinase Axl in cancer: biological functions and therapeutic implications. Int J Cancer 2013; 134:1024-33. [PMID: 23649974 DOI: 10.1002/ijc.28246] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 04/24/2013] [Indexed: 12/11/2022]
Abstract
The receptor tyrosine kinase Axl has been implicated in the malignancy of different types of cancer. Emerging evidence of Axl upregulation in numerous cancers, as well as reports demonstrating that its inhibition blocks tumor formation in animal models, highlight the importance of Axl as a new potential therapeutic target. Furthermore, recent data demonstrate that Axl plays a pivotal role in resistance to chemotherapeutic regimens. In this review we discuss the functions of Axl and its regulation and role in cancer development, resistance to therapy, and its importance as a potential drug target, focusing on acute myeloid leukemia, breast, prostate and non-small cell lung cancers.
Collapse
Affiliation(s)
- Juliano D Paccez
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town, South Africa; Division of Medical Biochemistry, University of Cape Town, Cape Town, South Africa
| | | | | | | |
Collapse
|
136
|
Growth arrest specific gene 6 protein concentration in cerebrospinal fluid correlates with relapse severity in multiple sclerosis. Mediators Inflamm 2013; 2013:406483. [PMID: 23781120 PMCID: PMC3678413 DOI: 10.1155/2013/406483] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 04/08/2013] [Accepted: 04/22/2013] [Indexed: 12/23/2022] Open
Abstract
Background. Growth arrest specific gene 6 (Gas6) protein enhances survival of oligodendrocytes and neurons, and it is involved in autoimmunity. Therefore, we aimed to verify whether cerebrospinal-fluid (CSF) Gas6 concentration may represent a biomarker of disease activity in multiple sclerosis. Methods. Sixty-five patients who underwent a spinal tap during relapse of relapsing/remitting multiple sclerosis (RR-MS)(McDonald-criteria) were studied. Forty patients affected by noninflammatory/nonautoimmune neurological diseases served as controls. Relapse was defined according to Schumacher criteria. Symptoms were grouped according to Kurtzke-Functional System (FS). Clinical characteristics of the relapse, duration, Expanded-Disability-Status Scale (EDSS) change, number of FS involved, completeness of recovery, age, steroid therapy, were categorised. Patients were followed at 6-month intervals to assess relapse rate and EDSS progression. Gas6 was measured (CSF, plasma) by in-house-enzyme-linked immunoassay (ELISA). Results. Higher CSF Gas6 concentrations were observed in relapses lasting ≤60 days (8.7 ± 3.9 ng/mL) versus >60 days (6.5 ± 2.6) or controls (6.5 ± 2.4; P = 0.05), with ≤2 FS involved (8.5 ± 3.8) versus >2 FS (5.6 ± 2.5) (P < 0.05) and EDSS change ≤2.5 points (8.8 ± 3.7) versus >2.5 (6.5 ± 3.5) (P = 0.04). Conversely, CSF Gas6 was not predictive of the completeness of recovery. Plasma and CSF concentrations were not related (R2 = 0.0003), and neither were predictive of relapse rate or EDSS progression after first relapse. Conclusions. CSF concentration of Gas6 is inversely correlated with the severity of relapse in RR-MS patients but does not predict the subsequent course of the disease.
Collapse
|
137
|
Azuma K, Ouchi Y, Inoue S. Vitamin K: novel molecular mechanisms of action and its roles in osteoporosis. Geriatr Gerontol Int 2013; 14:1-7. [PMID: 23530597 DOI: 10.1111/ggi.12060] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2013] [Indexed: 12/31/2022]
Abstract
Vitamin K is a fat-soluble vitamin, which is involved in blood coagulation mediated by maintaining the activity of coagulation factors in the liver. Vitamin K also has extrahepatic actions and has been shown to prevent bone fractures in clinical studies. In addition, epidemiological studies suggest that a lack of vitamin K is associated with several geriatric diseases, including osteoporosis, osteoarthritis, dementia and arteriosclerosis. It has also been shown that vitamin K contributes to the prevention and treatment of some kinds of malignancies. Recently, we discovered a novel role for vitamin K as a ligand of the nuclear receptor, steroid and xenobiotic receptor (SXR), and its murine ortholog, pregnane X receptor (PXR). In addition to its established roles as a cofactor of γ-glutamyl carboxylase (GGCX) in mediating post-transcriptional modifications, vitamin K has a different mode of action mediated by transcriptional regulation of SXR/PXR target genes. Analysis of bone tissue from PXR-deficient mice showed that the bone protective effects of vitamin K are partially mediated by SXR/PXR-dependent signaling. The discoveries of a novel mode of vitamin K action have opened up new possibilities that vitamin K might be useful for prevention or treatment of a variety of diseases that affect the geriatric population.
Collapse
Affiliation(s)
- Kotaro Azuma
- Department of Geriatric Medicine, The University of Tokyo, Tokyo, Japan; Department of Anti-Aging Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | | | |
Collapse
|
138
|
Akitake-Kawano R, Seno H, Nakatsuji M, Kimura Y, Nakanishi Y, Yoshioka T, Kanda K, Kawada M, Kawada K, Sakai Y, Chiba T. Inhibitory role of Gas6 in intestinal tumorigenesis. Carcinogenesis 2013; 34:1567-74. [PMID: 23430954 DOI: 10.1093/carcin/bgt069] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Growth arrest-specific gene (Gas) 6 is a γ-carboxyglutamic acid domain-containing protein, which shares 43% amino acid identity with protein S. Gas6 has been shown to enhance cancer cell proliferation in vitro. On the other hand, recent studies have demonstrated that Gas6 inhibits toll-like receptor-mediated immune reactions. Immune reactions are known to affect intestinal tumorigenesis. In this study, we investigated how Gas6 contributes to tumorigenesis in the intestine. Administration of recombinant Gas6 weakly, but significantly, enhanced proliferation of intestinal cancer cells (SW480 and HT29), whereas it suppressed the inflammatory responses of Lipopolysaccharide (LPS)-stimulated monocytes (THP-1). Compared with Gas6(+/+) mice, Gas6(-/-) mice exhibited enhanced azoxymethane/dextran sulfate sodium (DSS)-induced tumorigenesis and had a shorter survival. Gas6(-/-) mice also exhibited more severe DSS-induced colitis. DSS-treated Gas6(-/-) mice showed attenuated Socs1/3 messenger RNA expression and enhanced nuclear factor-kappaB activation in the colonic stroma, suggesting that the target of Gas6 is stromal cells. Bone marrow transplantation experiments indicated that both epithelial cells and bone marrow-derived cells are Gas6 sources. Furthermore, the number of intestinal tumors in Apc(Min) Gas6(-/-) mice was higher than that in Apc(Min) Gas6(+/+) mice, resulting in shorter survival. In a group of 62 patients with advanced colorectal cancer, Gas6 immunoreactivity in cancer tissues was positively correlated with prognosis. Thus, we revealed a unique in vivo inhibitory role of Gas6 during the progression of intestinal tumors associated with suppression of stromal immune reactions. These results suggest a novel therapeutic approach for colorectal cancer patients by regulation of stromal immune responses.
Collapse
Affiliation(s)
- Reiko Akitake-Kawano
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto 606–8507, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
139
|
Ishikawa M, Sonobe M, Nakayama E, Kobayashi M, Kikuchi R, Kitamura J, Imamura N, Date H. Higher expression of receptor tyrosine kinase Axl, and differential expression of its ligand, Gas6, predict poor survival in lung adenocarcinoma patients. Ann Surg Oncol 2013; 20 Suppl 3:S467-76. [PMID: 23242819 PMCID: PMC3853411 DOI: 10.1245/s10434-012-2795-3] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Indexed: 12/14/2022]
Abstract
BACKGROUND Downstream activation through receptor tyrosine kinases (RTKs) plays important roles in carcinogenesis. In this study, we assessed the clinical involvement of Axl, an RTK, and its ligand, Gas6, in surgically treated lung adenocarcinoma. METHODS Axl and Gas6 mRNA and protein expression levels were quantified using quantitative real-time polymerase chain reaction and immunohistochemistry, respectively, in completely resected lung adenocarcinoma tissues (n = 88) and were evaluated for correlation with clinicopathologic features and patient survival. RESULTS Higher expressions of Axl mRNA/protein and Gas6 protein were significantly related to worse clinicopathological features and prognosis (5-year overall survival rates: Axl mRNA low: 72.3 %, high: 49.7 %, P = 0.047; Axl protein low: 77.5 %, high: 38.6 %, P < 0.001; and Gas6 protein low: 70.5 %, high: 48 %, P = 0.042). On the contrary, higher Gas6 mRNA expression was related to better clinicopathological features and prognosis (5-year overall survival rates: Gas6 mRNA low: 59.2 %, high: 81.8 %, P = 0.054). Multivariate analysis suggests that high Axl mRNA expression may be an independent factor for poor patient prognosis (P = 0.04). CONCLUSIONS In lung adenocarcinoma, Axl and Gas6 expression levels were associated with tumor advancement and patient survival, thus rendering them as reliable biomarkers and potential targets for treatment of lung adenocarcinoma.
Collapse
Affiliation(s)
- Masashi Ishikawa
- Department of Thoracic Surgery, Faculty of Medicine, Kyoto University, Kyoto, Japan
| | - Makoto Sonobe
- Department of Thoracic Surgery, Faculty of Medicine, Kyoto University, Kyoto, Japan
| | - Ei Nakayama
- Department of Thoracic Surgery, Faculty of Medicine, Kyoto University, Kyoto, Japan
| | - Masashi Kobayashi
- Department of Thoracic Surgery, Faculty of Medicine, Kyoto University, Kyoto, Japan
| | - Ryutaro Kikuchi
- Department of Thoracic Surgery, Faculty of Medicine, Kyoto University, Kyoto, Japan
| | - Jiro Kitamura
- Department of Thoracic Surgery, Faculty of Medicine, Kyoto University, Kyoto, Japan
| | - Naoto Imamura
- Department of Thoracic Surgery, Faculty of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroshi Date
- Department of Thoracic Surgery, Faculty of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
140
|
Abstract
Axl is a tyrosine kinase receptor that was first identified as a transforming gene in human myeloid leukemia. Recent converging evidence suggests its implication in cancer progression and invasion for several solid tumors, including lung, breast, brain, thyroid, and pancreas. In the last decade, Axl has thus become an attractive target for therapeutic development of more aggressive cancers. An emerging class of therapeutic inhibitors is now represented by short nucleic acid aptamers. These molecules act as high affinity ligands with several advantages over conventional antibodies for their use in vivo, including their small size and negligible immunogenicity. Furthermore, these molecules can easily form conjugates able to drive the specific delivery of interfering RNAs, nanoparticles, or chemotherapeutics. We have thus generated and characterized a selective RNA-based aptamer, GL21.T that binds the extracellular domain of Axl at high affinity (12 nmol/l) and inhibits its catalytic activity. GL21.T blocked Axl-dependent transducing events in vitro, including Erk and Akt phosphorylation, cell migration and invasion, as well as in vivo lung tumor formation in mice xenografts. In this respect, the GL21.T aptamer represents a promising therapeutic molecule for Axl-dependent cancers whose importance is highlighted by the paucity of available Axl-specific inhibitory molecules.
Collapse
|
141
|
Jønch AE, Larsen LG, Pouplier S, Nielsen K, Brøndum-Nielsen K, Tümer Z. Partial duplication of 13q31.3-q34 and deletion of 13q34 associated with diaphragmatic hernia as a sole malformation in a fetus. Am J Med Genet A 2012; 158A:2302-8. [DOI: 10.1002/ajmg.a.35505] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2011] [Accepted: 05/06/2012] [Indexed: 01/13/2023]
|
142
|
Scroyen I, Frederix L, Lijnen HR. Axl deficiency does not affect adipogenesis or adipose tissue development. Obesity (Silver Spring) 2012; 20:1168-73. [PMID: 22187042 DOI: 10.1038/oby.2011.399] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To evaluate a potential role of Axl, the high-affinity receptor of growth arrest-specific protein 6 (GAS6) in adiposity, murine embryonic fibroblasts (MEF) derived from mice with genetic deficiency of Axl (Axl(-/-)) or wild-type littermates (Axl(+/+)) were differentiated into mature adipocytes. In addition, Axl(-/-) and Axl(+/+) mice were kept on standard fat diet (SFD) or on high-fat diet (HFD) for 15 weeks. Deficiency of Axl in MEF did not affect differentiation, as shown by a similar uptake of Oil Red O and expression of the adipogenic markers aP2 and peroxisome proliferator activator receptor γ (PPARγ) at the end of the differentiation. In the first 7 weeks of HFD feeding, Axl(-/-) mice gained less weight than their wild-type littermates. Weight gain for both genotypes on either SFD of HFD over 15 weeks was, however, not significantly different, resulting in comparable body weights, as well as subcutaneous (s.c.) and gonadal (GON) fat mass. Adipocyte size in the fat tissues was not affected by Axl deficiency. Gene expression analysis indicated that the absence of Axl in vivo may be compensated for by the other TAM family members Mer and Tyro3. Glucose and insulin tolerance tests (ITT) in Axl(-/-) and Axl(+/+) mice did not reveal significant differences in glucose homeostasis. Thus, Axl deficiency had no significant effect on adipogenesis in vitro or in vivo.
Collapse
Affiliation(s)
- Ilse Scroyen
- Center for Molecular and Vascular Biology, Leuven, Belgium
| | | | | |
Collapse
|
143
|
Brown JE, Krodel M, Pazos M, Lai C, Prieto AL. Cross-phosphorylation, signaling and proliferative functions of the Tyro3 and Axl receptors in Rat2 cells. PLoS One 2012; 7:e36800. [PMID: 22606290 PMCID: PMC3351477 DOI: 10.1371/journal.pone.0036800] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 04/07/2012] [Indexed: 12/29/2022] Open
Abstract
The dysregulation of receptor protein tyrosine kinase (RPTK) function can result in changes in cell proliferation, cell growth and metastasis leading to malignant transformation. Among RPTKs, the TAM receptor family composed of three members Tyro3, Axl, and Mer has been recognized to have a prominent role in cell transformation. In this study we analyzed the consequences of Tyro3 overexpression on cell proliferation, activation of signaling pathways and its functional interactions with Axl. Overexpression of Tyro3 in the Rat2 cell line that expresses Axl, but not Mer or Tyro3, resulted in a 5 fold increase in cell proliferation. This increase was partially blocked by inhibitors of the mitogen-activated protein kinase (MAPK) signaling pathway but not by inhibitors of the phosphatidylinositol 3-kinase (PI(3)K) signaling pathway. Consistent with these findings, an increase in ERK1/2 phosphorylation was detected with Tyro3 but not with Axl overexpression. In contrast, activation of Axl stimulated the PI(3)K pathway, which was mitigated by co-expression of Tyro3. The overexpression of Tyro3 enhanced Gas6-mediated Axl phosphorylation, which was not detected upon overexpression of a “kinase dead” form of Tyro3 (kdTyro3). In addition, the overexpression of Axl induced kdTyro3 phosphorylation. Co-immunoprecipitation experiments confirmed that the Axl and Tyro3 receptors are closely associated. These findings show that overexpression of Tyro3 in the presence of Axl promotes cell proliferation, and that co-expression of Axl and Tyro3 can affect the outcome of Gas6-initiated signaling. Furthermore, they demonstrate a functional interaction between the members of the TAM receptor family which can shed light on the molecular mechanisms underlying the functional consequences of TAM receptor activation in cell transformation, neural function, immune function, and reproductive function among others.
Collapse
Affiliation(s)
- Jessica E. Brown
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States of America
- Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Meredith Krodel
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States of America
| | - Mauricio Pazos
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States of America
| | - Cary Lai
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States of America
| | - Anne L. Prieto
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States of America
- * E-mail:
| |
Collapse
|
144
|
Schmidt T, Ben-Batalla I, Schultze A, Loges S. Macrophage-tumor crosstalk: role of TAMR tyrosine kinase receptors and of their ligands. Cell Mol Life Sci 2012; 69:1391-414. [PMID: 22076650 PMCID: PMC11115155 DOI: 10.1007/s00018-011-0863-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2011] [Revised: 10/14/2011] [Accepted: 10/14/2011] [Indexed: 02/07/2023]
Abstract
Ample clinical and preclinical evidence indicates that macrophages interact with tumor cells as well as with virtually all populations of host cells present in the tumor microenvironment. This crosstalk can strongly promote malignancy, but also has in principle the potential to inhibit tumor growth. Thus, it is of the utmost importance to improve our understanding of the mechanisms driving the pro- and antimalignant behavior of tumor-associated macrophages (TAMs) in order to develop better anticancer therapies. In this review, we discuss the biological consequences of reciprocal interactions between TAMs, cancer cells, endothelial cells, fibroblasts and other leukocyte subfractions within tumors. It was recently elucidated that tumors specifically educate macrophages to secrete growth arrest-specific gene 6 (Gas6), the common ligand of the Tyro3, Axl, Mer receptor (TAMR) family. In turn, Gas6 fosters tumor growth by promoting cancer cell proliferation. Therefore, the Gas6-TAMR axis might represent a novel target for disrupting tumor-macrophage crosstalk. We summarize here what is known about TAMR and their ligands in (human) cancer biology. In order to shed more light on the role of macrophages in human cancer, we additionally provide an overview of what is currently known about the prognostic impact of TAMs in human cancer.
Collapse
Affiliation(s)
- Thomas Schmidt
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Isabel Ben-Batalla
- Department of Hematology and Oncology with Sections BMT and Pneumology, Hubertus Wald Tumorzentrum, University Comprehensive Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
- Institute of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexander Schultze
- Department of Hematology and Oncology with Sections BMT and Pneumology, Hubertus Wald Tumorzentrum, University Comprehensive Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
- Institute of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sonja Loges
- Department of Hematology and Oncology with Sections BMT and Pneumology, Hubertus Wald Tumorzentrum, University Comprehensive Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
- Institute of Tumor Biology, Center of Experimental Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
145
|
Mishra A, Wang J, Shiozawa Y, McGee S, Kim J, Jung Y, Joseph J, Berry JE, Havens A, Pienta KJ, Taichman RS. Hypoxia stabilizes GAS6/Axl signaling in metastatic prostate cancer. Mol Cancer Res 2012; 10:703-12. [PMID: 22516347 DOI: 10.1158/1541-7786.mcr-11-0569] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The receptor tyrosine kinase Axl is overexpressed in a variety of cancers and is known to play a role in proliferation and invasion. Previous data from our laboratory indicate that Axl and its ligand growth arrest-specific 6 (GAS6) may play a role in establishing metastatic dormancy in the bone marrow microenvironment. In the current study, we found that Axl is highly expressed in metastatic prostate cancer cell lines PC3 and DU145 and has negligible levels of expression in a nonmetastatic cancer cell line LNCaP. Knockdown of Axl in PC3 and DU145 cells resulted in decreased expression of several mesenchymal markers including Snail, Slug, and N-cadherin, and enhanced expression of the epithelial marker E-cadherin, suggesting that Axl is involved in the epithelial-mesenchymal transition in prostate cancer cells. The Axl-knockdown PC3 and DU145 cells also displayed decreased in vitro migration and invasion. Interestingly, when PC3 and DU145 cells were treated with GAS6, Axl protein levels were downregulated. Moreover, CoCl(2), a hypoxia mimicking agent, prevented GAS6-mediated downregulation of Axl in these cell lines. Immunochemical staining of human prostate cancer tissue microarrays showed that Axl, GAS6, and hypoxia-inducible factor-1α (Hif-1α; indicator of hypoxia) were all coexpressed in prostate cancer and in bone metastases compared with normal tissues. Together, our studies indicate that Axl plays a crucial role in prostate cancer metastasis and that GAS6 regulates the expression of Axl. Importantly, in a hypoxic tumor microenvironment Axl expression is maintained leading to enhanced signaling.
Collapse
Affiliation(s)
- Anjali Mishra
- Department of Periodontics & Oral Medicine, University of Michigan School of Dentistry, 1011 North University Ave., Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
146
|
The receptor tyrosine kinase Axl is an essential regulator of prostate cancer proliferation and tumor growth and represents a new therapeutic target. Oncogene 2012; 32:689-98. [PMID: 22410775 DOI: 10.1038/onc.2012.89] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Deregulation of the receptor tyrosine kinase Axl has been implicated in the progression of several human cancers. However, the role of Axl in prostate cancer remains poorly understood, and the therapeutic efficacy of Axl targeting remains untested. In this report we identified Axl as a new therapeutic target for prostate cancer. Axl is consistently overexpressed in prostate cancer cell lines and human prostate tumors. Interestingly, the blockage of Axl gene expression strongly inhibits proliferation, migration, invasion and tumor growth. Furthermore, inhibition of Axl expression by small interfering RNA regulates a transcriptional program of genes involved in cell survival, strikingly all connected to the nuclear factor-κB pathway. Additionally, blockage of Axl expression leads to inhibition of Akt, IKKα and IκBα phosphorylation, increasing IκBα expression and stability. Furthermore, induction of Akt phosphorylation by insulin-like growth factor 1 in Axl knockdown cells restores Akt activity and proliferation. Taken together, our results establish an unambiguous role for Axl in prostate cancer tumorigenesis with implications for prostate cancer treatment.
Collapse
|
147
|
Abstract
The role of vitamin K in the nervous system has been somewhat neglected compared with other physiological systems despite the fact that this nutrient was identified some 40 y ago as essential for the synthesis of sphingolipids. Present in high concentrations in brain cell membranes, sphingolipids are now known to possess important cell signaling functions in addition to their structural role. In the past 20 y, additional support for vitamin K functions in the nervous system has come from the discovery and characterization of vitamin K-dependent proteins that are now known to play key roles in the central and peripheral nervous systems. Notably, protein Gas6 has been shown to be actively involved in cell survival, chemotaxis, mitogenesis, and cell growth of neurons and glial cells. Although limited in number, studies focusing on the relationship between vitamin K nutritional status and behavior and cognition have also become available, pointing to diet and certain drug treatments (i.e., warfarin derivatives) as potential modulators of the action of vitamin K in the nervous system. This review presents an overview of the research that first identified vitamin K as an important nutrient for the nervous system and summarizes recent findings that support this notion.
Collapse
Affiliation(s)
- Guylaine Ferland
- Department of Nutrition, Université de Montréal, Quebec, Canada.
| |
Collapse
|
148
|
Laurance S, Lemarié CA, Blostein MD. Growth arrest-specific gene 6 (gas6) and vascular hemostasis. Adv Nutr 2012; 3:196-203. [PMID: 22516727 PMCID: PMC3648720 DOI: 10.3945/an.111.001826] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Gas6 (growth arrest-specific 6) belongs structurally to the family of plasma vitamin K-dependent proteins. Gas6 has a high structural homology with the natural anticoagulant protein S, sharing the same modular composition. Interestingly, despite the presence of a γ-carboxyglutamic acid domain in its structure, no role in the coagulation cascade has been identified for gas6. Gas6 has been shown to be involved in vascular homeostasis and more precisely is involved in proliferation, apoptosis, efferocytosis, leukocyte migration, and sequestration and platelet aggregation. It is also involved in the activation of different cell types, from platelets to endothelial and vascular smooth muscle cells. Thus, it has been shown to play a role in several pathophysiological processes such as atherosclerosis, cancer, and thrombosis. Interestingly, studies using gas6 null mice highlighted that gas6 may represent a novel potential target for anticoagulant therapy, because these animals are protected from lethal venous thromboembolism without excessive bleeding. However, the mechanism in thrombus occurrence remains to be further explored. In the present review, we will focus on the role of gas6 in innate immunity, atherosclerosis, thrombosis, and cancer-related events.
Collapse
Affiliation(s)
| | | | - Mark D. Blostein
- Lady Davis Institute for Medical Research, and,To whom correspondence should be addressed. E-mail:
| |
Collapse
|
149
|
Abstract
Historically discovered for its role in blood coagulation, there is now convincing evidence that vitamin K has important actions in the nervous system. As a unique cofactor to the γ-glutamyl carboxylase enzyme, vitamin K contributes to the biological activation of proteins Gas6 and protein S, ligands for the receptor tyrosine kinases of the TAM family (Tyro3, Axl, and Mer). Functionally, Gas6 has been involved in a wide range of cellular processes that include cell growth, survival, and apoptosis. In brain, vitamin K also participates in the synthesis of sphingolipids, an important class of lipids present in high concentrations in brain cell membranes. In addition to their structural role, sphingolipids are now known to partake in important cellular events such as proliferation, differentiation, senescence and cell-cell interactions. In recent years, studies have linked alterations in sphingolipid metabolism to age-related cognitive decline and neurodegenerative diseases such as Alzheimer's disease (AD). Emerging data also point to unique actions of the K vitamer menaquinone-4 (MK-4) against oxidative stress and inflammation. Finally, there is now data to suggest that vitamin K has the potential to influence psychomotor behavior and cognition. This review presents an overview of what is known of the role of vitamin K in brain function.
Collapse
Affiliation(s)
- Guylaine Ferland
- Département de Nutrition, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
150
|
Abstract
Axl is a receptor tyrosine kinase that was originally cloned from cancer cells. Axl belongs to the TAM (Tyro3, Axl and Mertk) family of receptor tyrosine kinases. Gas6 (growth-arrest-specific protein 6) is a ligand for Axl. Activation of Axl protects cells from apoptosis, and increases migration, aggregation and growth through multiple downstream pathways. Up-regulation of the Gas6/Axl pathway is more evident in pathological conditions compared with normal physiology. Recent advances in Axl receptor biology are summarized in the present review. The emphasis is given to translational aspects of Axl-dependent signalling under pathological conditions. In particular, inhibition of Axl reduces tumorigenesis and prevents metastasis as well. Axl-dependent signals are important for the progression of cardiovascular diseases. In contrast, deficiency of Axl in innate immune cells contributes to the pathogenesis of autoimmune disorders. Current challenges in Axl biology are related to the functional interactions of Axl with other members of the TAM family or other tyrosine kinases, mechanisms of ligand-independent activation, inactivation of the receptor and cell-cell interactions (with respect to immune cells) in chronic diseases.
Collapse
|