101
|
Sakata JT, Woolley SC. Scaling the Levels of Birdsong Analysis. THE NEUROETHOLOGY OF BIRDSONG 2020. [DOI: 10.1007/978-3-030-34683-6_1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
102
|
Cornez G, Collignon C, Müller W, Ball GF, Cornil CA, Balthazart J. Seasonal changes of perineuronal nets and song learning in adult canaries (Serinus canaria). Behav Brain Res 2019; 380:112437. [PMID: 31857148 DOI: 10.1016/j.bbr.2019.112437] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/16/2019] [Accepted: 12/14/2019] [Indexed: 01/31/2023]
Abstract
Songbirds learn their song during a sensitive period of development associated with enhanced neural plasticity. In addition, in open-ended learners such as canaries, a sensitive period for sensorimotor vocal learning reopens each year in the fall and leads to song modifications between successive breeding seasons. The variability observed in song production across seasons in adult canaries correlates with seasonal fluctuations of testosterone concentrations and with morphological changes in nuclei of the song control system (SCS). The sensitive periods for song learning during ontogeny and then again in adulthood could be controlled by the development of perineuronal nets (PNN) around parvalbumin-expressing interneurones (PV) which limits learning-induced neuroplasticity. However, this relationship has never been investigated in the context of adult vocal learning in adult songbirds. Here we explored PNN and PV expression in the SCS of adult male Fife Fancy canaries in relation to the seasonal variations of their singing behaviour. We found a clear pattern of seasonal variation in testosterone concentrations and song production. Furthermore, PNN expression was significantly higher in two specific song control nuclei, the robust nucleus of the arcopallium (RA) and the Area X of the basal ganglia, during the breeding season and during the later stages of sensorimotor song development compared to birds in an earlier stage of sensorimotor development during the fall. These data provide the first evidence that changes in PNN expression could represent a mechanism regulating the closing-reopening of sensitive periods for vocal learning across seasons in adult songbirds.
Collapse
Affiliation(s)
- Gilles Cornez
- Laboratory of Behavioral Neuroendocrinology, GIGA Neurosciences, University of Liege, Belgium
| | - Clémentine Collignon
- Laboratory of Behavioral Neuroendocrinology, GIGA Neurosciences, University of Liege, Belgium
| | - Wendt Müller
- Behavioural Ecology and Ecophysiology Research Group, University of Antwerp, Belgium
| | - Gregory F Ball
- Department of Psychology, University of Maryland, College Park MD, USA
| | - Charlotte A Cornil
- Laboratory of Behavioral Neuroendocrinology, GIGA Neurosciences, University of Liege, Belgium
| | - Jacques Balthazart
- Laboratory of Behavioral Neuroendocrinology, GIGA Neurosciences, University of Liege, Belgium.
| |
Collapse
|
103
|
Abstract
Vocal communication is critical for social interactions across a diversity of animals. A subset of those animals, including humans and songbirds, must learn how to produce their vocal communication signals. In this issue of PLOS Biology, Wang and colleagues use genome-wide investigations of gene expression in species hybrids to uncover transcriptional networks that could influence species differences in song learning and production. We provide an overview of birdsong learning and discuss how the study by Wang and colleagues advances our understanding of mechanisms of song learning and evolution. This Primer explores vocal learning in songbirds, focusing on the use of cross-fostering and species hybrids methods employed in a recent study to uncover transcriptional networks important for between-species differences in song learning and production.
Collapse
|
104
|
Singing behind the stage: thrush nightingales produce more variable songs on their wintering grounds. Behav Ecol Sociobiol 2019. [DOI: 10.1007/s00265-019-2765-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
105
|
Inda M, Hotta K, Oka K. Neural properties of fundamental function encoding of sound selectivity in the female avian auditory cortex. Eur J Neurosci 2019; 51:1770-1783. [PMID: 31705589 DOI: 10.1111/ejn.14616] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 11/03/2019] [Accepted: 11/05/2019] [Indexed: 11/28/2022]
Abstract
Zebra finches (Taeniopygia guttata) use their voices for communication. Song structures in the songs of individual males are important for sound recognition in females. The caudomedial mesopallium (CMM) and nidopallium (NCM) are known to be essential higher auditory regions for sound recognition. These two regions have also been discussed with respect to their fundamental functions and song selectivity. To clarify their functions and selectivity, we investigated latencies and spiking patterns and also developed a novel correlation analysis to evaluate the relationship between neural activity and the characteristics of acoustic factors. We found that the latencies and spiking patterns in response to song stimuli differed between the CMM and NCM. In addition, our correlation analysis revealed that amplitude and frequency structures were important temporal acoustic factors for both regions. Although the CMM and NCM have different fundamental functions, they share similar encoding systems for acoustic factors.
Collapse
Affiliation(s)
- Masahiro Inda
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama, Japan
| | - Kohji Hotta
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama, Japan
| | - Kotaro Oka
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Yokohama, Japan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
106
|
Yu PH, Hsiao YT. Delayed evoked potentials in zebra finch ( Taeniopygia guttata) under midazolam-butorphanol-isoflurane anesthesia. PeerJ 2019; 7:e7937. [PMID: 31660277 PMCID: PMC6815651 DOI: 10.7717/peerj.7937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 09/23/2019] [Indexed: 12/12/2022] Open
Abstract
Avian animals are visually inclined, which has caused them to attract increasing attention for visual neurophysiology or electrophysiology studies, including the study of the visual evoked potential (VEP). VEP has developed into an investigative tool for understanding the physiology and the pathology of the visual pathway. Chemical restraint is a common method to minimize motion artifacts in animals when acquiring VEP data, but little is known about its influence on the signal in an avian animal. In addition, it is difficult to make comparisons between conscious state data when the animals are ultimately under anesthesia. Therefore, finding drugs and developing protocols that have an acceptable effect is valuable. We compared the local field potentials of physically and chemically restrained zebra finches (Taeniopygia guttata), a small avian species, to simulate a relatively challenging recording condition. Finches were sedated with midazolam-butorphanol, and anesthesia was maintained by isoflurane. Electrodes were implanted into the left nucleus rotundus, which is a visual nucleus in birds. The VEPs of the control group (N = 3) were recorded after they fully recovered and were restrained by towels. The other birds (N = 3) were recorded under anesthesia. The results show that without the visual stimuli, anesthesia generally suppressed the overall power of field potentials. However, by focusing on the spectra during VEPs, visual stimuli still triggered significant VEPs in frequencies below 30.8 Hz, which were even stronger than towel-restrained birds. The drugs also prolonged the latency of the VEP, increased the duration of the VEP when compared to towel-restrained birds. As regard to towel-restrained zebra finches, the field potentials were less synchronized and may need data preprocessing to have clear VEPs. In conclusion, the current study presents evidence of basic VEP for zebra finch under midazolam-butorphanol-isoflurane anesthesia with a protocol that is a safe and feasible anesthetic combination for chemical restraint, which is particularly useful for small animals when obtaining evoked potentials.
Collapse
Affiliation(s)
- Pin Huan Yu
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Tse Hsiao
- Department of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
107
|
Dhawale AK, Miyamoto YR, Smith MA, Ölveczky BP. Adaptive Regulation of Motor Variability. Curr Biol 2019; 29:3551-3562.e7. [PMID: 31630947 DOI: 10.1016/j.cub.2019.08.052] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 07/11/2019] [Accepted: 08/20/2019] [Indexed: 11/16/2022]
Abstract
Trial-to-trial movement variability can both drive motor learning and interfere with expert performance, suggesting benefits of regulating it in context-specific ways. Here we address whether and how the brain regulates motor variability as a function of performance by training rats to execute ballistic forelimb movements for reward. Behavioral datasets comprising millions of trials revealed that motor variability is regulated by two distinct processes. A fast process modulates variability as a function of recent trial outcomes, increasing it when performance is poor and vice versa. A slower process tunes the gain of the fast process based on the uncertainty in the task's reward landscape. Simulations demonstrated that this regulation strategy optimizes reward accumulation over a wide range of time horizons, while also promoting learning. Our results uncover a sophisticated algorithm implemented by the brain to adaptively regulate motor variability to improve task performance. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Ashesh K Dhawale
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Center for Brain Science, Harvard University, Cambridge, MA 02138, USA
| | - Yohsuke R Miyamoto
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA; John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Maurice A Smith
- Center for Brain Science, Harvard University, Cambridge, MA 02138, USA; John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Bence P Ölveczky
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA; Center for Brain Science, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
108
|
Abstract
Language is a cornerstone of human culture, yet the evolution of this cognitive-demanding ability is shrouded in mystery. Studying how different species demonstrate this trait can provide clues for its evolutionary route. Indeed, recent decades saw ample scientific attempts to compare human speech, the prominent behavioral manifestation of language, with other animals' vocalizations. Diligent studies have found only elementary parallels to speech in other animals, fortifying the belief that language is uniquely human. But have we really tested this uniqueness claim? Surprisingly, a true impartial comparison between human speech and other animals' vocalizations has hardly ever been conducted. Here, I illustrate how treating humans as an equal species in vocal-communication research is expected to provide us with no evidence for human superiority in this realm. Thus, novel balanced and unbiased comparative studies are vital for identifying any unique component of human speech and language.
Collapse
Affiliation(s)
- Yosef Prat
- School of Zoology, Faculty of Life Sciences, Tel-Aviv University
| |
Collapse
|
109
|
James LS, Sakata JT. Developmental modulation and predictability of age-dependent vocal plasticity in adult zebra finches. Brain Res 2019; 1721:146336. [PMID: 31310739 DOI: 10.1016/j.brainres.2019.146336] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 02/07/2023]
Abstract
Predicting the nature of behavioral plasticity can provide insight into mechanisms of behavioral expression and control. Songbirds like the zebra finch rely on vocal signals for communication, and the performance of these signals demonstrate considerable plasticity over development. Traditionally, these signals were thought to be fixed in adulthood, but recent studies have revealed significant age-dependent changes to spectral and temporal features of song in adult songbirds. A number of age-dependent changes to song resemble acute changes to adult song performance across social contexts (e.g., when an adult male sings to a female relative to when he sings in isolation). The ability of variation in social context-dependent changes to predict variation in age-dependent plasticity would suggest shared mechanisms, but little is known about this predictability. In addition, although developmental experiences can shape adult plasticity, little is known about the extent to which social interactions during development affect age-dependent change to adult song. To this end, we systematically analyzed age- and context-dependent changes to adult zebra finch song, and then examined the degree to which age-dependent changes varied across birds that were social or non-socially tutored birds and to which social context-dependent changes predicted age-dependent changes. Non-socially tutored birds showed more dramatic changes to the broad structure of their motif over time than socially tutored birds, but non-socially and socially tutored birds did not differ in the extent of changes to various spectral and temporal features of song. Overall, we found that adult zebra finches produced longer and more spectrally stereotyped songs when they were older than when they were younger. Moreover, regardless of developmental tutoring, individual variation in age-dependent changes to song bout duration and syllable repetition were predicted by variation in social context-dependent changes to these features. These data indicate that social experiences during development can shape some aspects of adult plasticity and that acute context-dependent and long-term age-dependent changes to some song features could be mediated by modifications within similar neural substrates.
Collapse
Affiliation(s)
- Logan S James
- Department of Biology, McGill University, Montreal, QC H3A 1B1, Canada; Centre for Research for Brain, Language, and Music, Montreal, QC H3G 2A8, Canada
| | - Jon T Sakata
- Department of Biology, McGill University, Montreal, QC H3A 1B1, Canada; Centre for Research for Brain, Language, and Music, Montreal, QC H3G 2A8, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC H3A 2B4, Canada.
| |
Collapse
|
110
|
Fröhlich M, Sievers C, Townsend SW, Gruber T, van Schaik CP. Multimodal communication and language origins: integrating gestures and vocalizations. Biol Rev Camb Philos Soc 2019; 94:1809-1829. [PMID: 31250542 DOI: 10.1111/brv.12535] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 05/22/2019] [Accepted: 05/29/2019] [Indexed: 12/21/2022]
Abstract
The presence of divergent and independent research traditions in the gestural and vocal domains of primate communication has resulted in major discrepancies in the definition and operationalization of cognitive concepts. However, in recent years, accumulating evidence from behavioural and neurobiological research has shown that both human and non-human primate communication is inherently multimodal. It is therefore timely to integrate the study of gestural and vocal communication. Herein, we review evidence demonstrating that there is no clear difference between primate gestures and vocalizations in the extent to which they show evidence for the presence of key language properties: intentionality, reference, iconicity and turn-taking. We also find high overlap in the neurobiological mechanisms producing primate gestures and vocalizations, as well as in ontogenetic flexibility. These findings confirm that human language had multimodal origins. Nonetheless, we note that in great apes, gestures seem to fulfil a carrying (i.e. predominantly informative) role in close-range communication, whereas the opposite holds for face-to-face interactions of humans. This suggests an evolutionary shift in the carrying role from the gestural to the vocal stream, and we explore this transition in the carrying modality. Finally, we suggest that future studies should focus on the links between complex communication, sociality and cooperative tendency to strengthen the study of language origins.
Collapse
Affiliation(s)
- Marlen Fröhlich
- Department of Anthropology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Christine Sievers
- Department of Philosophy and Media Studies, Philosophy Seminar, University of Basel, Holbeinstrasse 12, 4051, Basel, Switzerland
| | - Simon W Townsend
- Department of Comparative Linguistics, University of Zurich, Plattenstrasse 54, 8032, Zurich, Switzerland.,Department of Psychology, University of Warwick, University Road, CV4 7AL, Coventry, UK
| | - Thibaud Gruber
- Swiss Center for Affective Sciences, CISA, University of Geneva, Chemin des Mines 9, 1202, Geneva, Switzerland.,Department of Zoology, University of Oxford, 11a Mansfield Road, OX1 3SZ, Oxford, UK
| | - Carel P van Schaik
- Department of Anthropology, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| |
Collapse
|
111
|
A duetting perspective on avian song learning. Behav Processes 2019; 163:71-80. [DOI: 10.1016/j.beproc.2017.12.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 07/19/2017] [Accepted: 12/14/2017] [Indexed: 11/21/2022]
|
112
|
Pyle R, Rosenbaum R. A Reservoir Computing Model of Reward-Modulated Motor Learning and Automaticity. Neural Comput 2019; 31:1430-1461. [PMID: 31113300 DOI: 10.1162/neco_a_01198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Reservoir computing is a biologically inspired class of learning algorithms in which the intrinsic dynamics of a recurrent neural network are mined to produce target time series. Most existing reservoir computing algorithms rely on fully supervised learning rules, which require access to an exact copy of the target response, greatly reducing the utility of the system. Reinforcement learning rules have been developed for reservoir computing, but we find that they fail to converge on complex motor tasks. Current theories of biological motor learning pose that early learning is controlled by dopamine-modulated plasticity in the basal ganglia that trains parallel cortical pathways through unsupervised plasticity as a motor task becomes well learned. We developed a novel learning algorithm for reservoir computing that models the interaction between reinforcement and unsupervised learning observed in experiments. This novel learning algorithm converges on simulated motor tasks on which previous reservoir computing algorithms fail and reproduces experimental findings that relate Parkinson's disease and its treatments to motor learning. Hence, incorporating biological theories of motor learning improves the effectiveness and biological relevance of reservoir computing models.
Collapse
Affiliation(s)
- Ryan Pyle
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN 46556, U.S.A.
| | - Robert Rosenbaum
- Department of Applied and Computational Mathematics and Statistics and Interdisciplinary Center for Network Science and Applications, University of Notre Dame, Notre Dame, IN 46556, U.S.A.
| |
Collapse
|
113
|
|
114
|
James LS, Dai JB, Sakata JT. Ability to modulate birdsong across social contexts develops without imitative social learning. Biol Lett 2019. [PMID: 29540565 DOI: 10.1098/rsbl.2017.0777] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Many important behaviours are socially learned. For example, the acoustic structure of courtship songs in songbirds is learned by listening to and interacting with conspecifics during a sensitive period in development. Signallers modify the spectral and temporal structures of their vocalizations depending on the social context, but the degree to which this modulation requires imitative social learning remains unknown. We found that male zebra finches (Taeniopygia guttata) that were not exposed to context-dependent song modulations throughout development significantly modulated their song in ways that were typical of socially reared birds. Furthermore, the extent of these modulations was not significantly different between finches that could or could not observe these modulations during tutoring. These data suggest that this form of vocal flexibility develops without imitative social learning in male zebra finches.
Collapse
Affiliation(s)
- Logan S James
- Department of Biology, McGill University, Montreal, Quebec, Canada H3A 1B1
| | - Jennifer B Dai
- Neuroscience Program, McGill University, Montreal, Quebec, Canada H3A 3R1
| | - Jon T Sakata
- Department of Biology, McGill University, Montreal, Quebec, Canada H3A 1B1.,Center for Studies in Behavioral Neurobiology, Montreal, Quebec, Canada H4B 1R6
| |
Collapse
|
115
|
Geddes CE, Li H, Jin X. Optogenetic Editing Reveals the Hierarchical Organization of Learned Action Sequences. Cell 2019; 174:32-43.e15. [PMID: 29958111 DOI: 10.1016/j.cell.2018.06.012] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/09/2018] [Accepted: 06/06/2018] [Indexed: 12/20/2022]
Abstract
The organization of action into sequences underlies complex behaviors that are essential for organismal survival and reproduction. Despite extensive studies of innate sequences in relation to central pattern generators, how learned action sequences are controlled and whether they are organized as a chain or a hierarchy remain largely unknown. By training mice to perform heterogeneous action sequences, we demonstrate that striatal direct and indirect pathways preferentially encode different behavioral levels of sequence structure. State-dependent closed-loop optogenetic stimulation of the striatal direct pathway can selectively insert a single action element into the sequence without disrupting the overall sequence length. Optogenetic manipulation of the striatal indirect pathway completely removes the ongoing subsequence while leaving the following subsequence to be executed with the appropriate timing and length. These results suggest that learned action sequences are not organized in a serial but rather a hierarchical structure that is distinctly controlled by basal ganglia pathways.
Collapse
Affiliation(s)
- Claire E Geddes
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Hao Li
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Xin Jin
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| |
Collapse
|
116
|
Parrell B, Lammert AC, Ciccarelli G, Quatieri TF. Current models of speech motor control: A control-theoretic overview of architectures and properties. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2019; 145:1456. [PMID: 31067944 DOI: 10.1121/1.5092807] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 02/13/2019] [Indexed: 06/09/2023]
Abstract
This paper reviews the current state of several formal models of speech motor control, with particular focus on the low-level control of the speech articulators. Further development of speech motor control models may be aided by a comparison of model attributes. The review builds an understanding of existing models from first principles, before moving into a discussion of several models, showing how each is constructed out of the same basic domain-general ideas and components-e.g., generalized feedforward, feedback, and model predictive components. This approach allows for direct comparisons to be made in terms of where the models differ, and their points of agreement. Substantial differences among models can be observed in their use of feedforward control, process of estimating system state, and method of incorporating feedback signals into control. However, many commonalities exist among the models in terms of their reliance on higher-level motor planning, use of feedback signals, lack of time-variant adaptation, and focus on kinematic aspects of control and biomechanics. Ongoing research bridging hybrid feedforward/feedback pathways with forward dynamic control, as well as feedback/internal model-based state estimation, is discussed.
Collapse
Affiliation(s)
- Benjamin Parrell
- Department of Communication Sciences & Disorders, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Adam C Lammert
- Bioengineering Systems & Technologies, MIT Lincoln Laboratory, Lexington, Massachusetts 02421, USA
| | - Gregory Ciccarelli
- Bioengineering Systems & Technologies, MIT Lincoln Laboratory, Lexington, Massachusetts 02421, USA
| | - Thomas F Quatieri
- Bioengineering Systems & Technologies, MIT Lincoln Laboratory, Lexington, Massachusetts 02421, USA
| |
Collapse
|
117
|
Neuronal mechanisms regulating the critical period of sensory experience-dependent song learning. Neurosci Res 2019; 140:53-58. [DOI: 10.1016/j.neures.2018.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/09/2018] [Accepted: 10/15/2018] [Indexed: 12/22/2022]
|
118
|
Pardo MA, Poole JH, Stoeger AS, Wrege PH, O’Connell-Rodwell CE, Padmalal UK, de Silva S. Differences in combinatorial calls among the 3 elephant species cannot be explained by phylogeny. Behav Ecol 2019. [DOI: 10.1093/beheco/arz018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Michael A Pardo
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY, USA
| | | | - Angela S Stoeger
- Mammal Communication Lab, Department of Cognitive Biology, University of Vienna, Vienna, Austria
| | - Peter H Wrege
- Elephant Listening Project, Cornell Lab of Ornithology, Ithaca, NY, USA
| | - Caitlin E O’Connell-Rodwell
- Department of Otolargyngology, Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Shermin de Silva
- Division of Biological Sciences, UC San Diego, Ecology Behavior and Evolution Section, CA, USA
| |
Collapse
|
119
|
Dopaminergic regulation of vocal-motor plasticity and performance. Curr Opin Neurobiol 2019; 54:127-133. [DOI: 10.1016/j.conb.2018.10.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/04/2018] [Indexed: 12/12/2022]
|
120
|
The Role of Sleep in Song Learning Processes in Songbird. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/b978-0-12-813743-7.00026-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
121
|
|
122
|
Experience-Dependent Intrinsic Plasticity During Auditory Learning. J Neurosci 2018; 39:1206-1221. [PMID: 30541908 DOI: 10.1523/jneurosci.1036-18.2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 11/14/2018] [Accepted: 12/05/2018] [Indexed: 11/21/2022] Open
Abstract
Song learning in zebra finches (Taeniopygia guttata) requires exposure to the song of a tutor, resulting in an auditory memory. This memory is the foundation for later sensorimotor learning, resulting in the production of a copy of the tutor's song. The cortical premotor nucleus HVC (proper name) is necessary for auditory and sensorimotor learning as well as the eventual production of adult song. We recently discovered that the intrinsic physiology of HVC neurons changes across stages of song learning, but are those changes the result of learning or are they experience-independent developmental changes? To test the role of auditory experience in driving intrinsic changes, patch-clamp experiments were performed comparing HVC neurons in juvenile birds with varying amounts of tutor exposure. The intrinsic physiology of HVC neurons changed as a function of tutor exposure. Counterintuitively, tutor deprivation resulted in juvenile HVC neurons showing an adult-like phenotype not present in tutor-exposed juveniles. Biophysical models were developed to predict which ion channels were modulated by experience. The models indicate that tutor exposure transiently suppressed the I h and T-type Ca2+ currents in HVC neurons that target the basal ganglia, whereas tutor exposure increased the resting membrane potential and decreased the spike amplitude in HVC neurons that drive singing. Our findings suggest that intrinsic plasticity may be part of the mechanism for auditory learning in the HVC. More broadly, models of learning and memory should consider intrinsic plasticity as a possible mechanism by which the nervous system encodes the lasting effects of experience.SIGNIFICANCE STATEMENT It is well established that learning involves plasticity of the synapses between neurons. However, the activity of a neural circuit can also be dramatically altered by changes in the intrinsic properties (ion channels) of the component neurons. The present experiments show experience-dependent changes in the intrinsic physiology of neurons in the cortical premotor nucleus HVC (proper name) in juvenile zebra finches (Taeniopygia guttata) during auditory learning of a tutor's song. Tutor deprivation does not "arrest" development of intrinsic properties, but rather results in neurons with a premature adult-like physiological phenotype. It is possible that auditory learning involves a form of nonsynaptic plasticity and that experience-dependent suppression of specific ion channels may work in concert with synaptic plasticity to promote vocal learning.
Collapse
|
123
|
Giordani C, Rivera-Gutierrez H, Zhe S, Micheletto R. Simulation of the song motor pathway in birds: A single neuron initiates a chain of events that produces birdsong with realistic spectra properties. PLoS One 2018; 13:e0200998. [PMID: 30289918 PMCID: PMC6173377 DOI: 10.1371/journal.pone.0200998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 07/06/2018] [Indexed: 11/19/2022] Open
Abstract
Birdsong is a complex learned behavior regulated by Neuromuscular coordination of different muscle sets necessary for producing relevant sounds. We developed a heterogeneous and stochastically connected neural network representing the pathway from the high vocal center (HVC) to the robust nucleus of the arcopallium (RA) neurons that drive the muscles to generate sounds. We show that a single active neuron is sufficient to initiate a chain of spiking events that results to excite the entire network system. The network could synthesize realistic bird sounds spectra, with spontaneous generation of intermittent sound bursts typical of birdsong (song syllables). This study confirms experiments on animals and on humans, where results have shown that single neurons are responsible for the activation of complex behavior or are associated with high-level perception events.
Collapse
Affiliation(s)
- Cristiano Giordani
- Instituto de Fisica, Universidad de Antioquia, Calle 70 No. 52-21, Medellin, Colombia
| | | | - Sun Zhe
- Computational Engineering Applications Unit, Head Office for Information Systems and Cybersecurity, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama, Japan
- Riken Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama, Japan
- Yokohama City University, 22-2 Seto, Kanazawa Ward, Yokohama, Japan
| | - Ruggero Micheletto
- Yokohama City University, 22-2 Seto, Kanazawa Ward, Yokohama, Japan
- * E-mail:
| |
Collapse
|
124
|
Wild Birds Learn Songs from Experimental Vocal Tutors. Curr Biol 2018; 28:3273-3278.e4. [DOI: 10.1016/j.cub.2018.08.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/29/2018] [Accepted: 08/02/2018] [Indexed: 01/31/2023]
|
125
|
Bell BA, Phan ML, Meillère A, Evans JK, Leitner S, Vicario DS, Buchanan KL. Influence of early-life nutritional stress on songbird memory formation. Proc Biol Sci 2018; 285:rspb.2018.1270. [PMID: 30257911 DOI: 10.1098/rspb.2018.1270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/31/2018] [Indexed: 11/12/2022] Open
Abstract
In birds, vocal learning enables the production of sexually selected complex songs, dialects and song copy matching. But stressful conditions during development have been shown to affect song production and complexity, mediated by changes in neural development. However, to date, no studies have tested whether early-life stress affects the neural processes underlying vocal learning, in contrast to song production. Here, we hypothesized that developmental stress alters auditory memory formation and neural processing of song stimuli. We experimentally stressed male nestling zebra finches and, in two separate experiments, tested their neural responses to song playbacks as adults, using either immediate early gene (IEG) expression or electrophysiological response. Once adult, nutritionally stressed males exhibited a reduced response to tutor song playback, as demonstrated by reduced expressions of two IEGs (Arc and ZENK) and reduced neuronal response, in both the caudomedial nidopallium (NCM) and mesopallium (CMM). Furthermore, nutritionally stressed males also showed impaired neuronal memory for novel songs heard in adulthood. These findings demonstrate, for the first time, that developmental conditions affect auditory memories that subserve vocal learning. Although the fitness consequences of such memory impairments remain to be determined, this study highlights the lasting impact early-life experiences can have on cognitive abilities.
Collapse
Affiliation(s)
- B A Bell
- Department of Psychology, Rutgers University, Piscataway, NJ, USA
| | - M L Phan
- Department of Psychology, Rutgers University, Piscataway, NJ, USA
| | - A Meillère
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| | - J K Evans
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| | - S Leitner
- Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - D S Vicario
- Department of Psychology, Rutgers University, Piscataway, NJ, USA
| | - K L Buchanan
- School of Life and Environmental Sciences, Deakin University, Geelong, Victoria, Australia
| |
Collapse
|
126
|
Chance, long tails, and inference in a non-Gaussian, Bayesian theory of vocal learning in songbirds. Proc Natl Acad Sci U S A 2018; 115:E8538-E8546. [PMID: 30127024 DOI: 10.1073/pnas.1713020115] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Traditional theories of sensorimotor learning posit that animals use sensory error signals to find the optimal motor command in the face of Gaussian sensory and motor noise. However, most such theories cannot explain common behavioral observations, for example, that smaller sensory errors are more readily corrected than larger errors and large abrupt (but not gradually introduced) errors lead to weak learning. Here, we propose a theory of sensorimotor learning that explains these observations. The theory posits that the animal controls an entire probability distribution of motor commands rather than trying to produce a single optimal command and that learning arises via Bayesian inference when new sensory information becomes available. We test this theory using data from a songbird, the Bengalese finch, that is adapting the pitch (fundamental frequency) of its song following perturbations of auditory feedback using miniature headphones. We observe the distribution of the sung pitches to have long, non-Gaussian tails, which, within our theory, explains the observed dynamics of learning. Further, the theory makes surprising predictions about the dynamics of the shape of the pitch distribution, which we confirm experimentally.
Collapse
|
127
|
Knowles JM, Doupe AJ, Brainard MS. Zebra finches are sensitive to combinations of temporally distributed features in a model of word recognition. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2018; 144:872. [PMID: 30180710 PMCID: PMC6103769 DOI: 10.1121/1.5050910] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/21/2018] [Indexed: 06/08/2023]
Abstract
Discrimination between spoken words composed of overlapping elements, such as "captain" and "captive," relies on sensitivity to unique combinations of prefix and suffix elements that span a "uniqueness point" where the word candidates diverge. To model such combinatorial processing, adult female zebra finches were trained to discriminate between target and distractor syllable sequences that shared overlapping "contextual" prefixes and differed only in their "informative" suffixes. The transition from contextual to informative syllables thus created a uniqueness point analogous to that present between overlapping word candidates, where targets and distractors diverged. It was found that target recognition depended not only on informative syllables, but also on contextual syllables that were shared with distractors. Moreover, the influence of each syllable depended on proximity to the uniqueness point. Birds were then trained birds with targets and distractors that shared both prefix and suffix sequences and could only be discriminated by recognizing unique combinations of those sequences. Birds learned to robustly discriminate target and distractor combinations and maintained significant discrimination when the local transitions from prefix to suffix were disrupted. These findings indicate that birds, like humans, combine information across temporally distributed features, spanning contextual and informative elements, in recognizing and discriminating word-like stimuli.
Collapse
Affiliation(s)
- Jeffrey M Knowles
- Center for Integrative Neuroscience, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, California 94158, USA
| | - Allison J Doupe
- Center for Integrative Neuroscience, University of California, San Francisco, 675 Nelson Rising Lane, San Francisco, California 94158, USA
| | - Michael S Brainard
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, California 94158, USA
| |
Collapse
|
128
|
Pidoux L, Le Blanc P, Levenes C, Leblois A. A subcortical circuit linking the cerebellum to the basal ganglia engaged in vocal learning. eLife 2018; 7:32167. [PMID: 30044222 PMCID: PMC6112851 DOI: 10.7554/elife.32167] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 07/24/2018] [Indexed: 01/09/2023] Open
Abstract
Speech is a complex sensorimotor skill, and vocal learning involves both the basal ganglia and the cerebellum. These subcortical structures interact indirectly through their respective loops with thalamo-cortical and brainstem networks, and directly via subcortical pathways, but the role of their interaction during sensorimotor learning remains undetermined. While songbirds and their song-dedicated basal ganglia-thalamo-cortical circuitry offer a unique opportunity to study subcortical circuits involved in vocal learning, the cerebellar contribution to avian song learning remains unknown. We demonstrate that the cerebellum provides a strong input to the song-related basal ganglia nucleus in zebra finches. Cerebellar signals are transmitted to the basal ganglia via a disynaptic connection through the thalamus and then conveyed to their cortical target and to the premotor nucleus controlling song production. Finally, cerebellar lesions impair juvenile song learning, opening new opportunities to investigate how subcortical interactions between the cerebellum and basal ganglia contribute to sensorimotor learning.
Collapse
Affiliation(s)
- Ludivine Pidoux
- Center for Neurophysics, Physiology and Pathology (UMR CNRS 8119), Centre National de la Recherche Scientifique (CNRS), Institute for Neuroscience and Cognition, Paris Descartes University, Paris, France
| | - Pascale Le Blanc
- Center for Neurophysics, Physiology and Pathology (UMR CNRS 8119), Centre National de la Recherche Scientifique (CNRS), Institute for Neuroscience and Cognition, Paris Descartes University, Paris, France
| | - Carole Levenes
- Center for Neurophysics, Physiology and Pathology (UMR CNRS 8119), Centre National de la Recherche Scientifique (CNRS), Institute for Neuroscience and Cognition, Paris Descartes University, Paris, France
| | - Arthur Leblois
- Center for Neurophysics, Physiology and Pathology (UMR CNRS 8119), Centre National de la Recherche Scientifique (CNRS), Institute for Neuroscience and Cognition, Paris Descartes University, Paris, France
| |
Collapse
|
129
|
Cornez G, Jonckers E, Ter Haar SM, Van der Linden A, Cornil CA, Balthazart J. Timing of perineuronal net development in the zebra finch song control system correlates with developmental song learning. Proc Biol Sci 2018; 285:rspb.2018.0849. [PMID: 30051835 DOI: 10.1098/rspb.2018.0849] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/25/2018] [Indexed: 12/22/2022] Open
Abstract
The appearance of perineuronal nets (PNNs) represents one of the mechanisms that contribute to the closing of sensitive periods for neural plasticity. This relationship has mostly been studied in the ocular dominance model in rodents. Previous studies also indicated that PNN might control neural plasticity in the song control system of songbirds. To further elucidate this relationship, we quantified PNN expression and their localization around parvalbumin interneurons at key time-points during ontogeny in both male and female zebra finches, and correlated these data with the well-described development of song in this species. We also extended these analyses to the auditory system. The development of PNN during ontogeny correlated with song crystallization although the timing of PNN appearance in the four main telencephalic song control nuclei slightly varied between nuclei in agreement with the established role these nuclei play during song learning. Our data also indicate that very few PNN develop in the secondary auditory forebrain areas even in adult birds, which may allow constant adaptation to a changing acoustic environment by allowing synaptic reorganization during adulthood.
Collapse
Affiliation(s)
- Gilles Cornez
- GIGA Neuroscience, University of Liege, Liege 4000, Belgium
| | | | | | | | | | | |
Collapse
|
130
|
Lattenkamp EZ, Vernes SC. Vocal learning: a language-relevant trait in need of a broad cross-species approach. Curr Opin Behav Sci 2018. [DOI: 10.1016/j.cobeha.2018.04.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
131
|
Gultekin YB, Hage SR. Limiting parental interaction during vocal development affects acoustic call structure in marmoset monkeys. SCIENCE ADVANCES 2018; 4:eaar4012. [PMID: 29651461 PMCID: PMC5895450 DOI: 10.1126/sciadv.aar4012] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 02/21/2018] [Indexed: 05/30/2023]
Abstract
Human vocal development is dependent on learning by imitation through social feedback between infants and caregivers. Recent studies have revealed that vocal development is also influenced by parental feedback in marmoset monkeys, suggesting vocal learning mechanisms in nonhuman primates. Marmoset infants that experience more contingent vocal feedback than their littermates develop vocalizations more rapidly, and infant marmosets with limited parental interaction exhibit immature vocal behavior beyond infancy. However, it is yet unclear whether direct parental interaction is an obligate requirement for proper vocal development because all monkeys in the aforementioned studies were able to produce the adult call repertoire after infancy. Using quantitative measures to compare distinct call parameters and vocal sequence structure, we show that social interaction has a direct impact not only on the maturation of the vocal behavior but also on acoustic call structures during vocal development. Monkeys with limited parental interaction during development show systematic differences in call entropy, a measure for maturity, compared with their normally raised siblings. In addition, different call types were occasionally uttered in motif-like sequences similar to those exhibited by vocal learners, such as birds and humans, in early vocal development. These results indicate that a lack of parental interaction leads to long-term disturbances in the acoustic structure of marmoset vocalizations, suggesting an imperative role for social interaction in proper primate vocal development.
Collapse
|
132
|
|
133
|
Pearse WD, Morales-Castilla I, James LS, Farrell M, Boivin F, Davies TJ. Global macroevolution and macroecology of passerine song. Evolution 2018; 72:944-960. [PMID: 29441527 DOI: 10.1111/evo.13450] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 01/11/2018] [Indexed: 11/30/2022]
Abstract
Studying the macroevolution of the songs of Passeriformes (perching birds) has proved challenging. The complexity of the task stems not just from the macroevolutionary and macroecological challenge of modeling so many species, but also from the difficulty in collecting and quantifying birdsong itself. Using machine learning techniques, we extracted songs from a large citizen science dataset, and then analyzed the evolution, and biotic and abiotic predictors of variation in birdsong across 578 passerine species. Contrary to expectations, we found few links between life-history traits (monogamy and sexual dimorphism) and the evolution of song pitch (peak frequency) or song complexity (standard deviation of frequency). However, we found significant support for morphological constraints on birdsong, as reflected in a negative correlation between bird size and song pitch. We also found that broad-scale biogeographical and climate factors such as net primary productivity, temperature, and regional species richness were significantly associated with both the evolution and present-day distribution of bird song features. Our analysis integrates comparative and spatial modeling with newly developed data cleaning and curation tools, and suggests that evolutionary history, morphology, and present-day ecological processes shape the distribution of song diversity in these charismatic and important birds.
Collapse
Affiliation(s)
- William D Pearse
- Department of Biology, McGill University, Montréal, QC H3A 0G4, Canada.,Département des Sciences Biologiques, Université du Québec à Montréal, Succursale Centre-ville, Montréal, QC H3A 0G4, Canada.,Department of Biology and Ecology Center, Utah State University, Logan, Utah 84322
| | - Ignacio Morales-Castilla
- Department of Biology, McGill University, Montréal, QC H3A 0G4, Canada.,Département des Sciences Biologiques, Université du Québec à Montréal, Succursale Centre-ville, Montréal, QC H3A 0G4, Canada.,Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138.,Department of Life Sciences, Universidad de Alcalá, Alcalá de Henares 28805, Spain
| | - Logan S James
- Department of Biology, McGill University, Montréal, QC H3A 0G4, Canada
| | - Maxwell Farrell
- Department of Biology, McGill University, Montréal, QC H3A 0G4, Canada
| | - Frédéric Boivin
- Département des Sciences Biologiques, Université du Québec à Montréal, Succursale Centre-ville, Montréal, QC H3A 0G4, Canada
| | - T Jonathan Davies
- Department of Biology, McGill University, Montréal, QC H3A 0G4, Canada
| |
Collapse
|
134
|
Colquitt BM, Mets DG, Brainard MS. Draft genome assembly of the Bengalese finch, Lonchura striata domestica, a model for motor skill variability and learning. Gigascience 2018; 7:1-6. [PMID: 29618046 PMCID: PMC5861438 DOI: 10.1093/gigascience/giy008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 12/12/2017] [Accepted: 02/06/2018] [Indexed: 12/18/2022] Open
Abstract
Background Vocal learning in songbirds has emerged as a powerful model for sensorimotor learning. Neurobehavioral studies of Bengalese finch (Lonchura striata domestica) song, naturally more variable and plastic than songs of other finch species, have demonstrated the importance of behavioral variability for initial learning, maintenance, and plasticity of vocalizations. However, the molecular and genetic underpinnings of this variability and the learning it supports are poorly understood. Findings To establish a platform for the molecular analysis of behavioral variability and plasticity, we generated an initial draft assembly of the Bengalese finch genome from a single male animal to 151× coverage and an N50 of 3.0 MB. Furthermore, we developed an initial set of gene models using RNA-seq data from 8 samples that comprise liver, muscle, cerebellum, brainstem/midbrain, and forebrain tissue from juvenile and adult Bengalese finches of both sexes. Conclusions We provide a draft Bengalese finch genome and gene annotation to facilitate the study of the molecular-genetic influences on behavioral variability and the process of vocal learning. These data will directly support many avenues for the identification of genes involved in learning, including differential expression analysis, comparative genomic analysis (through comparison to existing avian genome assemblies), and derivation of genetic maps for linkage analysis. Bengalese finch gene models and sequences will be essential for subsequent manipulation (molecular or genetic) of genes and gene products, enabling novel mechanistic investigations into the role of variability in learned behavior.
Collapse
Affiliation(s)
- Bradley M Colquitt
- Department of Physiology, University of California-San Francisco, San Francisco, 94158 California
| | - David G Mets
- Department of Physiology, University of California-San Francisco, San Francisco, 94158 California
| | - Michael S Brainard
- Department of Physiology, University of California-San Francisco, San Francisco, 94158 California
- Howard Hughes Medical Institute, Chevy Chase, Maryland
| |
Collapse
|
135
|
Louder MIM, Hauber ME, Balakrishnan CN. Early social experience alters transcriptomic responses to species-specific song stimuli in female songbirds. Behav Brain Res 2018; 347:69-76. [PMID: 29501507 DOI: 10.1016/j.bbr.2018.02.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/22/2018] [Accepted: 02/23/2018] [Indexed: 01/20/2023]
Abstract
Amongst an array of stimuli from countless species, animals must recognize salient signals, including those of their own species. In songbirds, behavioral tests have demonstrated that preferences for conspecific male songs are determined by both preexisting biases and social experience with a male 'tutor' during the sensitive period for learning. Although immediate early gene expression (e.g. ZENK) and electrophysiological experiments generally find greater neural responses for conspecific songs, it remains unclear whether distinct mechanisms, such as sensory gating, are engaged to filter out irrelevant heterospecific songs. Here we compare the transcriptomic profiles, via RNA-seq, of non-singing females of a songbird, the zebra finch (Taeniopygia guttata), by focusing on the auditory forebrain, a region known to be critical in the processing of conspecific vs. heterospecific songs. Gene expression profiles demonstrate that different neural mechanisms are involved in the processing of conspecific versus heterospecific Bengalese finch (Lonchura striata) songs. In particular, one gene known to mediate sensory gating, the alpha 3 subunit member of nicotinic cholinergic receptors (CHRNA3), was significantly downregulated in response to hearing Bengalese finch song, but not when young females were tutored by a Bengalese male during early development. Overall, our results confirm previous behavioral and physiological studies, such that heterospecific-tutored individuals processed both conspecific and tutor songs similarly. Using transcriptomic profiling of peripheral blood samples, we also demonstrate the methodological potential of non-terminal sampling to identify transcriptomic biomarkers for conspecific auditory recognition. These results show how experience and inherited preferences facilitate the neural processing of salient songs by female songbirds.
Collapse
Affiliation(s)
- Matthew I M Louder
- Department of Biology, East Carolina University, Greenville, NC, 27858, USA; Department of Animal Biology, School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Mark E Hauber
- Department of Animal Biology, School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA; Institute for Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, IL, 61801, USA
| | | |
Collapse
|
136
|
Pomberger T, Risueno-Segovia C, Löschner J, Hage SR. Precise Motor Control Enables Rapid Flexibility in Vocal Behavior of Marmoset Monkeys. Curr Biol 2018; 28:788-794.e3. [DOI: 10.1016/j.cub.2018.01.070] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/11/2018] [Accepted: 01/23/2018] [Indexed: 11/24/2022]
|
137
|
|
138
|
Van Ruijssevelt L, Chen Y, von Eugen K, Hamaide J, De Groof G, Verhoye M, Güntürkün O, Woolley SC, Van der Linden A. fMRI Reveals a Novel Region for Evaluating Acoustic Information for Mate Choice in a Female Songbird. Curr Biol 2018; 28:711-721.e6. [PMID: 29478859 DOI: 10.1016/j.cub.2018.01.048] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 12/05/2017] [Accepted: 01/17/2018] [Indexed: 01/02/2023]
Abstract
Selection of sexual partners is among the most critical decisions that individuals make and is therefore strongly shaped by evolution. In social species, where communication signals can convey substantial information about the identity, state, or quality of the signaler, accurate interpretation of communication signals for mate choice is crucial. Despite the importance of social information processing, to date, relatively little is known about the neurobiological mechanisms that contribute to sexual decision making and preferences. In this study, we used a combination of whole-brain functional magnetic resonance imaging (fMRI), immediate early gene expression, and behavior tests to identify the circuits that are important for the perception and evaluation of courtship songs in a female songbird, the zebra finch (Taeniopygia guttata). Female zebra finches are sensitive to subtle differences in male song performance and strongly prefer the longer, faster, and more stereotyped courtship songs to non-courtship renditions. Using BOLD fMRI and EGR1 expression assays, we uncovered a novel region involved in auditory perceptual decision making located in a sensory integrative region of the avian central nidopallium outside the traditionally studied auditory forebrain pathways. Changes in activity in this region in response to acoustically similar but categorically divergent stimuli showed stronger parallels to behavioral responses than an auditory sensory region. These data highlight a potential role for the caudocentral nidopallium (NCC) as a novel node in the avian circuitry underlying the evaluation of acoustic signals and their use in mate choice.
Collapse
Affiliation(s)
- Lisbeth Van Ruijssevelt
- Bio-Imaging lab, Department of Biomedical Sciences, University of Antwerp, 2610 Antwerpen, Belgium
| | - Yining Chen
- Department of Biology, McGill University, Montreal QC H3A 1B1, Canada
| | - Kaya von Eugen
- AE Biopsychologie, Fakultät für Psychologie, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Julie Hamaide
- Bio-Imaging lab, Department of Biomedical Sciences, University of Antwerp, 2610 Antwerpen, Belgium
| | - Geert De Groof
- Bio-Imaging lab, Department of Biomedical Sciences, University of Antwerp, 2610 Antwerpen, Belgium
| | - Marleen Verhoye
- Bio-Imaging lab, Department of Biomedical Sciences, University of Antwerp, 2610 Antwerpen, Belgium
| | - Onur Güntürkün
- AE Biopsychologie, Fakultät für Psychologie, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Sarah C Woolley
- Department of Biology, McGill University, Montreal QC H3A 1B1, Canada.
| | - Annemie Van der Linden
- Bio-Imaging lab, Department of Biomedical Sciences, University of Antwerp, 2610 Antwerpen, Belgium.
| |
Collapse
|
139
|
Bourvis N, Singer M, Saint Georges C, Bodeau N, Chetouani M, Cohen D, Feldman R. Pre-linguistic infants employ complex communicative loops to engage mothers in social exchanges and repair interaction ruptures. ROYAL SOCIETY OPEN SCIENCE 2018; 5:170274. [PMID: 29410790 PMCID: PMC5792867 DOI: 10.1098/rsos.170274] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 12/14/2017] [Indexed: 06/07/2023]
Abstract
Language has long been identified as a powerful communicative tool among humans. Yet, pre-linguistic communication, which is common in many species, is also used by human infants prior to the acquisition of language. The potential communicational value of pre-linguistic vocal interactions between human infants and mothers has been studied in the past decades. With 120 dyads (mothers and three- or six-month-old infants), we used the classical Still Face Paradigm (SFP) in which mothers interact freely with their infants, then refrain from communication (Still Face, SF), and finally resume play. We employed innovative automated techniques to measure infant and maternal vocalization and pause, and dyadic parameters (infant response to mother, joint silence and overlap) and the emotional component of Infant Directed Speech (e-IDS) throughout the interaction. We showed that: (i) during the initial free play mothers use longer vocalizations and more e-IDS when they interact with older infants and (ii) infant boys exhibit longer vocalizations and shorter pauses than girls. (iii) During the SF and reunion phases, infants show marked and sustained changes in vocalizations but their mothers do not and (iv) mother-infant dyadic parameters increase in the reunion phase. Our quantitative results show that infants, from the age of three months, actively participate to restore the interactive loop after communicative ruptures long before vocalizations show clear linguistic meaning. Thus, auditory signals provide from early in life a channel by which infants co-create interactions, enhancing the mother-infant bond.
Collapse
Affiliation(s)
- Nadège Bourvis
- Service de Psychiatrie de l'Enfant et de l'Adolescent, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
- Equipe IMI2S, Institut des Systèmes Intelligents et de Robotique, UMR 7222, Université Paris-Sorbonne, Paris, France
- Pôle de Psychiatrie Infanto-Juvénile, Centre Hospitalier Intercommunal Toulon-La Seyne, Toulon, France
| | - Magi Singer
- Baruch Ivcher School of Psychology, Interdisciplinary Center, Herzlia, Israel
| | - Catherine Saint Georges
- Service de Psychiatrie de l'Enfant et de l'Adolescent, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
- Equipe IMI2S, Institut des Systèmes Intelligents et de Robotique, UMR 7222, Université Paris-Sorbonne, Paris, France
| | - Nicolas Bodeau
- Equipe IMI2S, Institut des Systèmes Intelligents et de Robotique, UMR 7222, Université Paris-Sorbonne, Paris, France
| | - Mohamed Chetouani
- Equipe IMI2S, Institut des Systèmes Intelligents et de Robotique, UMR 7222, Université Paris-Sorbonne, Paris, France
| | - David Cohen
- Service de Psychiatrie de l'Enfant et de l'Adolescent, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Paris, France
- Equipe IMI2S, Institut des Systèmes Intelligents et de Robotique, UMR 7222, Université Paris-Sorbonne, Paris, France
| | - Ruth Feldman
- Baruch Ivcher School of Psychology, Interdisciplinary Center, Herzlia, Israel
| |
Collapse
|
140
|
Gersick AS, White DJ. Male cowbirds vary the attractiveness of courtship songs with changes in the social context. BEHAVIOUR 2018. [DOI: 10.1163/1568539x-00003475] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
Courtship-signalling theory often incorporates the assumption that males must consistently produce the highest-intensity displays they can achieve, thereby indicating their underlying quality to females. Contest-signalling theory, in contrast, assumes that flexible signal performance is routine. The two frameworks thereby suggest conflicting predictions about male flexibility when the same signal operates in both intrasexual and intersexual communication. Sexual competition often occurs within complex social environments where male displays can be received by potential mates, rivals, or both at once. In brown-headed cowbirds’ breeding flocks, for example, multiple males sometimes vie directly for a single female’s attention; at other times males have opportunities to sing to females without interference. We tested whether cowbirds vary the intensity of their signalling across contexts like these. We recorded songs from males courting females both with and without a male competitor in sight. We then played those recordings to solitary, naïve females in sound attenuation chambers, and also to a naïve aviary-housed flock. The songs males had produced when they could see their competitors were more attractive, eliciting more copulatory postures from naïve females and more approaches from birds in the flock. Results suggest high-intensity displays function within a larger, flexible signalling strategy in this species, and the varying audience composition that accompanies social complexity may demand flexible signalling even in classic display behaviours such as birdsong.
Collapse
Affiliation(s)
- Andrew S. Gersick
- aDepartment of Ecology and Evolutionary Biology, 106A Guyot Hall, Princeton University, Princeton, NJ 08544-2016, USA
| | - David J. White
- bDepartment of Psychology, Wilfrid Laurier University, 75 University Avenue West, Waterloo, ON, Canada N2L 3C5
| |
Collapse
|
141
|
Krause ET, Bischof HJ, Engel K, Golüke S, Maraci Ö, Mayer U, Sauer J, Caspers BA. Olfaction in the Zebra Finch ( Taeniopygia guttata ): What Is Known and Further Perspectives. ADVANCES IN THE STUDY OF BEHAVIOR 2018. [DOI: 10.1016/bs.asb.2017.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
142
|
A neuronal signature of accurate imitative learning in wild-caught songbirds (swamp sparrows, Melospiza georgiana). Sci Rep 2017; 7:17320. [PMID: 29229942 PMCID: PMC5725582 DOI: 10.1038/s41598-017-17401-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 11/22/2017] [Indexed: 12/16/2022] Open
Abstract
In humans and other animals, behavioural variation in learning has been associated with variation in neural features like morphology and myelination. By contrast, it is essentially unknown whether cognitive performance scales with electrophysiological properties of individual neurons. Birdsong learning offers a rich system to investigate this topic as song acquisition is similar to human language learning. Here, we address the interface between behavioural learning and neurophysiology in a cohort of wild-caught, hand-reared songbirds (swamp sparrows, Melospiza georgiana). We report the discovery in the forebrain HVC of sensorimotor ‘bridge’ neurons that simultaneously and selectively represent two critical learning-related schemas: the bird’s own song, and the specific tutor model from which that song was copied. Furthermore, the prevalence and response properties of bridge neurons correlate with learning ability – males that copied tutor songs more accurately had more bridge neurons. Our results are consistent with the hypothesis that accurate imitative learning depends on a successful bridge, within single cortical neurons, between the representation of learning models and their sensorimotor copies. Whether such bridge neurons are a necessary mechanism for accurate learning or an outcome of learning accuracy is unknown at this stage, but can now be addressed in future developmental studies.
Collapse
|
143
|
James LS, Sakata JT. Learning Biases Underlie "Universals" in Avian Vocal Sequencing. Curr Biol 2017; 27:3676-3682.e4. [PMID: 29174890 DOI: 10.1016/j.cub.2017.10.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/11/2017] [Accepted: 10/06/2017] [Indexed: 01/08/2023]
Abstract
Biological predispositions in vocal learning have been proposed to underlie commonalities in vocal sequences, including for speech and birdsong, but cultural propagation could also account for such commonalities [1-4]. Songbirds such as the zebra finch learn the sequencing of their acoustic elements ("syllables") during development [5-8]. Zebra finches are not constrained to learn a specific sequence of syllables, but significant consistencies in the positioning and sequencing of syllables have been observed between individuals within populations and between populations [8-10]. To reveal biological predispositions in vocal sequence learning, we individually tutored juvenile zebra finches with randomized and unbiased sequences of syllables and analyzed the extent to which birds produced common sequences. In support of biological predispositions, birds tutored with randomized sequences produced songs with striking similarities. Birds preferentially started and ended their song sequence with particular syllables, consistently positioned shorter and higher frequency syllables in the middle of their song, and sequenced their syllables such that pitch alternated across adjacent syllables. These patterns are reminiscent of those observed in normally tutored birds, suggesting that birds "creolize" aberrant sequence inputs to produce normal sequence outputs. Similar patterns were also observed for syllables that were not used for tutoring (i.e., unlearned syllables), suggesting that motor biases could contribute to sequence learning biases. Furthermore, zebra finches spontaneously produced acoustic patterns that are commonly observed in speech and music, suggesting that sensorimotor processes that are shared across a wide range of vertebrates could underlie these patterns in humans.
Collapse
Affiliation(s)
- Logan S James
- Department of Biology, McGill University, Montreal, QC H3A 1B1, Canada.
| | - Jon T Sakata
- Department of Biology, McGill University, Montreal, QC H3A 1B1, Canada; Centre for Research on Brain, Language, and Music, McGill University, Montreal, QC H3G 2A8, Canada.
| |
Collapse
|
144
|
Neuronal Intrinsic Physiology Changes During Development of a Learned Behavior. eNeuro 2017; 4:eN-NWR-0297-17. [PMID: 29062887 PMCID: PMC5649544 DOI: 10.1523/eneuro.0297-17.2017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 09/07/2017] [Indexed: 01/14/2023] Open
Abstract
Juvenile male zebra finches learn their songs over distinct auditory and sensorimotor stages, the former requiring exposure to an adult tutor song pattern. The cortical premotor nucleus HVC (acronym is name) plays a necessary role in both learning stages, as well as the production of adult song. Consistent with neural network models where synaptic plasticity mediates developmental forms of learning, exposure to tutor song drives changes in the turnover, density, and morphology of HVC synapses during vocal development. A network's output, however, is also influenced by the intrinsic properties (e.g., ion channels) of the component neurons, which could change over development. Here, we use patch clamp recordings to show cell-type-specific changes in the intrinsic physiology of HVC projection neurons as a function of vocal development. Developmental changes in HVC neurons that project to the basal ganglia include an increased voltage sag response to hyperpolarizing currents and an increased rebound depolarization following hyperpolarization. Developmental changes in HVC neurons that project to vocal-motor cortex include a decreased resting membrane potential and an increased spike amplitude. HVC interneurons, however, show a relatively stable range of intrinsic features across vocal development. We used mathematical models to deduce possible changes in ionic currents that underlie the physiological changes and to show that the magnitude of the observed changes could alter HVC circuit function. The results demonstrate developmental plasticity in the intrinsic physiology of HVC projection neurons and suggest that intrinsic plasticity may have a role in the process of song learning.
Collapse
|
145
|
Van Ruijssevelt L, Washington SD, Hamaide J, Verhoye M, Keliris GA, Van der Linden A. Song Processing in the Zebra Finch Auditory Forebrain Reflects Asymmetric Sensitivity to Temporal and Spectral Structure. Front Neurosci 2017; 11:549. [PMID: 29051725 PMCID: PMC5633600 DOI: 10.3389/fnins.2017.00549] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/20/2017] [Indexed: 11/13/2022] Open
Abstract
Despite being commonly referenced throughout neuroscientific research on songbirds, reports of hemispheric specialization in the processing of song remain controversial. The notion of such asymmetries in songbirds is further complicated by evidence that both cerebral hemispheres in humans may be specialized for different aspects of speech perception. Some studies suggest that the auditory neural substrates in the left and right hemispheres of humans process temporal and spectral elements within speech sounds, respectively. To determine whether songbirds process their conspecific songs in such a complementary, bilateral manner, we performed functional magnetic resonance imaging (fMRI) on 15 isoflurane anesthetized adult male zebra finches (Taeniopygia guttata) while presenting them with (1) non-manipulated, (2) spectrally-filtered (reduced spectral structure), and (3) temporally-filtered (reduced temporal structure) conspecific song. Our results revealed sensitivity of both primary (Field L) and secondary (caudomedial nidopallium, NCM) auditory regions to changes in spectral and temporal structure of song. On the one hand, temporally-filtered song elicited a bilateral decrease in neural responses compared to the other stimulus types. On the other hand, spectrally filtered song elicited significantly greater responses in left Field L and NCM than temporally filtered or non-manipulated song while concurrently reducing the response relative to non-manipulated song in the right auditory forebrain. The latter hemispheric difference in sensitivity to manipulations of spectral structure in song, suggests that there is an asymmetry in spectral and temporal domain processing in the zebra finch auditory forebrain bearing some resemblance to what has been observed in human auditory cortex.
Collapse
Affiliation(s)
| | - Stuart D Washington
- Bio-Imaging Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Julie Hamaide
- Bio-Imaging Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Marleen Verhoye
- Bio-Imaging Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Georgios A Keliris
- Bio-Imaging Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Annemie Van der Linden
- Bio-Imaging Lab, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
146
|
Taking turns across channels: Conversation-analytic tools in animal communication. Neurosci Biobehav Rev 2017; 80:201-209. [DOI: 10.1016/j.neubiorev.2017.05.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/21/2017] [Accepted: 05/08/2017] [Indexed: 01/07/2023]
|
147
|
Goldin MA, Mindlin GB. Temperature manipulation of neuronal dynamics in a forebrain motor control nucleus. PLoS Comput Biol 2017; 13:e1005699. [PMID: 28829769 PMCID: PMC5568752 DOI: 10.1371/journal.pcbi.1005699] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 07/25/2017] [Indexed: 01/18/2023] Open
Abstract
Different neuronal types within brain motor areas contribute to the generation of complex motor behaviors. A widely studied songbird forebrain nucleus (HVC) has been recognized as fundamental in shaping the precise timing characteristics of birdsong. This is based, among other evidence, on the stretching and the “breaking” of song structure when HVC is cooled. However, little is known about the temperature effects that take place in its neurons. To address this, we investigated the dynamics of HVC both experimentally and computationally. We developed a technique where simultaneous electrophysiological recordings were performed during temperature manipulation of HVC. We recorded spontaneous activity and found three effects: widening of the spike shape, decrease of the firing rate and change in the interspike interval distribution. All these effects could be explained with a detailed conductance based model of all the neurons present in HVC. Temperature dependence of the ionic channel time constants explained the first effect, while the second was based in the changes of the maximal conductance using single synaptic excitatory inputs. The last phenomenon, only emerged after introducing a more realistic synaptic input to the inhibitory interneurons. Two timescales were present in the interspike distributions. The behavior of one timescale was reproduced with different input balances received form the excitatory neurons, whereas the other, which disappears with cooling, could not be found assuming poissonian synaptic inputs. Furthermore, the computational model shows that the bursting of the excitatory neurons arises naturally at normal brain temperature and that they have an intrinsic delay at low temperatures. The same effect occurs at single synapses, which may explain song stretching. These findings shed light on the temperature dependence of neuronal dynamics and present a comprehensive framework to study neuronal connectivity. This study, which is based on intrinsic neuronal characteristics, may help to understand emergent behavioral changes. The study of the neuronal mechanisms that give rise to the complex behavior of singing in birds has been hotly debated lately. Many models have been tested and novel tools have been developed to try to understand the role of a key brain nucleus in the song pathway: HVC. It is believed that it is highly responsible for generating the precise timing of songs, and this has been tested by manipulating it with temperature. Results showed that cooling can stretch, but that it can also restructure or “break” the song syllables. However, single neuronal mechanisms are not yet described. To better understand this, we cooled HVC in canaries and measured spontaneous activity electrophysiologically. We found three effects: spike shape widening, spike rate reduction and changes in inter-spike-interval (ISI) distributions. To explain them, we built a computational model with a detailed description of ion channel conductances and temperature dependency. We could explain the first effect with a single neuron model. The second, could be explained adding single synapses. Finally, we showed similar ISI modifications of one of the timescales present by means of multiple stochastic inputs. In addition, we found that excitatory neurons show natural bursting behavior at normal brain temperatures and that synaptic delays are the main candidates to explain song stretching at low temperatures.
Collapse
Affiliation(s)
- Matías A. Goldin
- Dynamical Systems Laboratory, Physics Department and IFIBA Conicet, University of Buenos Aires, Pabellón 1, Ciudad Universitaria, Buenos Aires, Argentina
- * E-mail:
| | - Gabriel B. Mindlin
- Dynamical Systems Laboratory, Physics Department and IFIBA Conicet, University of Buenos Aires, Pabellón 1, Ciudad Universitaria, Buenos Aires, Argentina
| |
Collapse
|
148
|
Schaefer N, Rotermund C, Blumrich EM, Lourenco MV, Joshi P, Hegemann RU, Jamwal S, Ali N, García Romero EM, Sharma S, Ghosh S, Sinha JK, Loke H, Jain V, Lepeta K, Salamian A, Sharma M, Golpich M, Nawrotek K, Paidi RK, Shahidzadeh SM, Piermartiri T, Amini E, Pastor V, Wilson Y, Adeniyi PA, Datusalia AK, Vafadari B, Saini V, Suárez-Pozos E, Kushwah N, Fontanet P, Turner AJ. The malleable brain: plasticity of neural circuits and behavior - a review from students to students. J Neurochem 2017. [PMID: 28632905 DOI: 10.1111/jnc.14107] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
One of the most intriguing features of the brain is its ability to be malleable, allowing it to adapt continually to changes in the environment. Specific neuronal activity patterns drive long-lasting increases or decreases in the strength of synaptic connections, referred to as long-term potentiation and long-term depression, respectively. Such phenomena have been described in a variety of model organisms, which are used to study molecular, structural, and functional aspects of synaptic plasticity. This review originated from the first International Society for Neurochemistry (ISN) and Journal of Neurochemistry (JNC) Flagship School held in Alpbach, Austria (Sep 2016), and will use its curriculum and discussions as a framework to review some of the current knowledge in the field of synaptic plasticity. First, we describe the role of plasticity during development and the persistent changes of neural circuitry occurring when sensory input is altered during critical developmental stages. We then outline the signaling cascades resulting in the synthesis of new plasticity-related proteins, which ultimately enable sustained changes in synaptic strength. Going beyond the traditional understanding of synaptic plasticity conceptualized by long-term potentiation and long-term depression, we discuss system-wide modifications and recently unveiled homeostatic mechanisms, such as synaptic scaling. Finally, we describe the neural circuits and synaptic plasticity mechanisms driving associative memory and motor learning. Evidence summarized in this review provides a current view of synaptic plasticity in its various forms, offers new insights into the underlying mechanisms and behavioral relevance, and provides directions for future research in the field of synaptic plasticity. Read the Editorial Highlight for this article on page 788. Cover Image for this issue: doi: 10.1111/jnc.13815.
Collapse
Affiliation(s)
- Natascha Schaefer
- Institute for Clinical Neurobiology, Julius-Maximilians-University of Wuerzburg, Würzburg, Germany
| | - Carola Rotermund
- German Center of Neurodegenerative Diseases, University of Tuebingen, Tuebingen, Germany
| | - Eva-Maria Blumrich
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, Bremen, Germany.,Centre for Environmental Research and Sustainable Technology, University of Bremen, Bremen, Germany
| | - Mychael V Lourenco
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pooja Joshi
- Inserm UMR 1141, Robert Debre Hospital, Paris, France
| | - Regina U Hegemann
- Department of Psychology, Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Sumit Jamwal
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Nilufar Ali
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | | | - Sorabh Sharma
- Neuropharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| | - Shampa Ghosh
- National Institute of Nutrition (NIN), Indian Council of Medical Research (ICMR), Tarnaka, Hyderabad, India
| | - Jitendra K Sinha
- National Institute of Nutrition (NIN), Indian Council of Medical Research (ICMR), Tarnaka, Hyderabad, India
| | - Hannah Loke
- Hudson Institute of Medical Research, Melbourne, Victoria, Australia.,Department of Molecular and Translational Science, Monash University, Melbourne, Victoria, Australia
| | - Vishal Jain
- Defence Institute of Physiology and Allied Sciences, Delhi, India
| | - Katarzyna Lepeta
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Ahmad Salamian
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Mahima Sharma
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Mojtaba Golpich
- Department of Medicine, University Kebangsaan Malaysia Medical Centre (HUKM), Cheras, Kuala Lumpur, Malaysia
| | - Katarzyna Nawrotek
- Department of Process Thermodynamics, Faculty of Process and Environmental Engineering, Lodz University of Technology, Lodz, Poland
| | - Ramesh K Paidi
- CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata, India
| | - Sheila M Shahidzadeh
- Department of Biology, Program in Neuroscience, Syracuse University, Syracuse, New York, USA
| | - Tetsade Piermartiri
- Programa de Pós-Graduação em Neurociências, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Brazil
| | - Elham Amini
- Department of Medicine, University Kebangsaan Malaysia Medical Centre (HUKM), Cheras, Kuala Lumpur, Malaysia
| | - Veronica Pastor
- Instituto de Biología Celular y Neurociencia Prof. Eduardo De Robertis, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Yvette Wilson
- Department of Anatomy and Neuroscience, University of Melbourne, Melbourne, Victoria, Australia
| | - Philip A Adeniyi
- Cell Biology and Neurotoxicity Unit, Department of Anatomy, College of Medicine and Health Sciences, Afe Babalola University, Ado - Ekiti, Ekiti State, Nigeria
| | | | - Benham Vafadari
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Vedangana Saini
- Department of Developmental Neuroscience, Munroe-Meyer Institute, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Edna Suárez-Pozos
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Toxicología, México
| | - Neetu Kushwah
- Defence Institute of Physiology and Allied Sciences, Delhi, India
| | - Paula Fontanet
- Division of Molecular and Cellular Neuroscience, Institute of Cellular Biology and Neuroscience (IBCN), CONICET-UBA, School of Medicine, Buenos Aires, Argentina
| | - Anthony J Turner
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| |
Collapse
|
149
|
Echoes on the motor network: how internal motor control structures afford sensory experience. Brain Struct Funct 2017; 222:3865-3888. [DOI: 10.1007/s00429-017-1484-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 07/25/2017] [Indexed: 01/10/2023]
|
150
|
Raymaekers SR, Darras VM. Thyroid hormones and learning-associated neuroplasticity. Gen Comp Endocrinol 2017; 247:26-33. [PMID: 28390960 DOI: 10.1016/j.ygcen.2017.04.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 03/30/2017] [Accepted: 04/03/2017] [Indexed: 12/11/2022]
Abstract
Thyroid hormones (THs) are crucial for brain development and maturation in all vertebrates. Especially during pre- and perinatal development, disruption of TH signaling leads to a multitude of neurological deficits. Many animal models provided insight in the role of THs in brain development, but specific data on how they affect the brain's ability to learn and adapt depending on environmental stimuli are rather limited. In this review, we focus on a number of learning processes like spatial learning, fear conditioning, vocal learning and imprinting behavior and on how abnormal TH signaling during development shapes subsequent performance. It is clear from multiple studies that TH deprivation leads to defects in learning on all fronts, and interestingly, changes in local expression of the TH activator deiodinase type 2 seem to have an important role. Taking into account that THs are regulated in a very space-specific manner, there is thus increasing pressure to investigate more local TH regulators as potential factors involved in neuroplasticity. As these learning processes are also important for proper adult human functioning, further elucidating the role of THs in developmental neuroplasticity in various animal models is an important field for advancing both fundamental and applied knowledge on human brain function.
Collapse
Affiliation(s)
- Sander R Raymaekers
- Laboratory of Comparative Endocrinology, Biology Department, KU Leuven, Naamsestraat 61, 3000 Leuven, Belgium
| | - Veerle M Darras
- Laboratory of Comparative Endocrinology, Biology Department, KU Leuven, Naamsestraat 61, 3000 Leuven, Belgium.
| |
Collapse
|