101
|
Monleón D, Colson K, Moseley HNB, Anklin C, Oswald R, Szyperski T, Montelione GT. Rapid analysis of protein backbone resonance assignments using cryogenic probes, a distributed Linux-based computing architecture, and an integrated set of spectral analysis tools. JOURNAL OF STRUCTURAL AND FUNCTIONAL GENOMICS 2003; 2:93-101. [PMID: 12836666 DOI: 10.1023/a:1020499629298] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Rapid data collection, spectral referencing, processing by time domain deconvolution, peak picking and editing, and assignment of NMR spectra are necessary components of any efficient integrated system for protein NMR structure analysis. We have developed a set of software tools designated AutoProc, AutoPeak, and AutoAssign, which function together with the data processing and peak-picking programs NMRPipe and Sparky, to provide an integrated software system for rapid analysis of protein backbone resonance assignments. In this paper we demonstrate that these tools, together with high-sensitivity triple resonance NMR cryoprobes for data collection and a Linux-based computer cluster architecture, can be combined to provide nearly complete backbone resonance assignments and secondary structures (based on chemical shift data) for a 59-residue protein in less than 30 hours of data collection and processing time. In this optimum case of a small protein providing excellent spectra, extensive backbone resonance assignments could also be obtained using less than 6 hours of data collection and processing time. These results demonstrate the feasibility of high throughput triple resonance NMR for determining resonance assignments and secondary structures of small proteins, and the potential for applying NMR in large scale structural proteomics projects.
Collapse
Affiliation(s)
- Daniel Monleón
- Center for Advanced Biotechnology, and Medicine and Department of Molecular Biology and Biochemistry, Rutgers University, 679 Hoes Lane, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | |
Collapse
|
102
|
Buchanan MV, Larimer FW, Wiley HS, Kennel SJ, Squier TJ, Ramsey JM, Rodland KD, Hurst GB, Smith RD, Xu Y, Dixon D, Doktycz MJ, Colson S, Gesteland R, Giometti C, Young M, Giddings M. Genomes to Life "Center for Molecular and Cellular Systems": a research program for identification and characterization of protein complexes. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2003; 6:287-303. [PMID: 12630408 DOI: 10.1089/153623102321112737] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Goal 1 of Department of Energy's Genomes to Life (GTL) program seeks to identify and characterize the complete set of protein complexes within a cell. Goal 1 forms the foundation necessary to accomplish the other objectives of the GTL program, which focus on gene regulatory networks and molecular level characterization of interactions in microbial communities. Together this information would allow cells and their components to be understood in sufficient detail to predict, test and understand the responses of a biological system to its environment. The Center for Molecular and Cellular Systems has been established to identify and characterize protein complexes using high through-put analytical technologies.A dynamic research program is being developed that supports the goals of the Center by focusing on the development new capabilities for sample preparation and complex separations, molecular level identification of the protein complexes by mass spectrometry, characterization of the complexes in living cells by imaging techniques, and bioinformatics and computational tools for the collection and interpretation of data and formation of databases and tools to allow the data to be shared by the biological community.
Collapse
Affiliation(s)
- Michelle V Buchanan
- Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37831-6129, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Kennedy MA, Montelione GT, Arrowsmith CH, Markley JL. Role for NMR in structural genomics. JOURNAL OF STRUCTURAL AND FUNCTIONAL GENOMICS 2003; 2:155-69. [PMID: 12836706 DOI: 10.1023/a:1021261026670] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The 2nd EMSL Workshop on Structural Genomics was held on 28th and 29th July 2000 at the Environmental Molecular Sciences Laboratory at the Department of Energy's Pacific Northwest National Laboratory in Richland, WA. The workshop focused on four topics: 1. The role for NMR in structural and functional genomics; 2. The technical challenges NMR faces for structural and functional genomics; 3. The potential need for a national NMR center for structural and functional genomics in the United States; and 4. Organization of the NMR community. This report summarizes the workshop proceedings and conclusions reached regarding the role of NMR in the emerging fields of structural and functional genomics.
Collapse
Affiliation(s)
- Michael A Kennedy
- Pacific Northwest National Laboratory, Environmental Molecular Sciences Laboratory, Richland, WA 99352, USA.
| | | | | | | |
Collapse
|
104
|
Zheng D, Huang YJ, Moseley HNB, Xiao R, Aramini J, Swapna GVT, Montelione GT. Automated protein fold determination using a minimal NMR constraint strategy. Protein Sci 2003; 12:1232-46. [PMID: 12761394 PMCID: PMC2323888 DOI: 10.1110/ps.0300203] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2003] [Revised: 03/11/2003] [Accepted: 03/12/2003] [Indexed: 10/27/2022]
Abstract
Determination of precise and accurate protein structures by NMR generally requires weeks or even months to acquire and interpret all the necessary NMR data. However, even medium-accuracy fold information can often provide key clues about protein evolution and biochemical function(s). In this article we describe a largely automatic strategy for rapid determination of medium-accuracy protein backbone structures. Our strategy derives from ideas originally introduced by other groups for determining medium-accuracy NMR structures of large proteins using deuterated, (13)C-, (15)N-enriched protein samples with selective protonation of side-chain methyl groups ((13)CH(3)). Data collection includes acquiring NMR spectra for automatically determining assignments of backbone and side-chain (15)N, H(N) resonances, and side-chain (13)CH(3) methyl resonances. These assignments are determined automatically by the program AutoAssign using backbone triple resonance NMR data, together with Spin System Type Assignment Constraints (STACs) derived from side-chain triple-resonance experiments. The program AutoStructure then derives conformational constraints using these chemical shifts, amide (1)H/(2)H exchange, nuclear Overhauser effect spectroscopy (NOESY), and residual dipolar coupling data. The total time required for collecting such NMR data can potentially be as short as a few days. Here we demonstrate an integrated set of NMR software which can process these NMR spectra, carry out resonance assignments, interpret NOESY data, and generate medium-accuracy structures within a few days. The feasibility of this combined data collection and analysis strategy starting from raw NMR time domain data was illustrated by automatic analysis of a medium accuracy structure of the Z domain of Staphylococcal protein A.
Collapse
Affiliation(s)
- Deyou Zheng
- Center for Advanced Biotechnology and Medicine (CABM), Northeast Structural Genomics Consortium, and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08854, USA
| | | | | | | | | | | | | |
Collapse
|
105
|
Chan CH, Lyu PC, Hwang JK. Computation of the Protein Structure Entropy and Its Applications to Protein Folding Processes. J CHIN CHEM SOC-TAIP 2003. [DOI: 10.1002/jccs.200300097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
106
|
Abstract
We present a technique for reconstructing biomolecular structures from scanning force microscope data. The technique works by iteratively refining model molecules by comparison of simulated and experimental images. It can remove instrument artifacts to yield accurate dimensional measurements from tip-broadened data. The result of the reconstruction is a model that can be chosen to include the physically significant parameters for the system at hand. We demonstrate this by reconstructing scanning force microscope images of the cartilage proteoglycan aggrecan. By explicitly including the protein backbone in the model, we are able to associate measured three-dimensional structures with sites in the protein primary structure. The distribution of aggrecan core protein lengths that we measure suggests that 48% of aggrecan molecules found in vivo have been partially catabolized at either the E(1480)-(1481)G or E(1667)-(1668)G aggrecanase cleavage site.
Collapse
Affiliation(s)
- Brian A Todd
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106-7207, USA
| | | | | |
Collapse
|
107
|
Contreras-Moreira B, Fitzjohn PW, Bates PA. In silico protein recombination: enhancing template and sequence alignment selection for comparative protein modelling. J Mol Biol 2003; 328:593-608. [PMID: 12706719 DOI: 10.1016/s0022-2836(03)00309-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Comparative modelling of proteins is a predictive technique to build an atomic model for a given amino acid sequence, on the basis of the structures of other proteins (templates) that have been determined experimentally. Critical problems arise in this procedure: selecting the correct templates, aligning the query sequence with them and building the non-conserved surface loops. In this work, we apply a genetic algorithm, with crossover and mutation, as a new tool to overcome the first two. In silico protein recombination proves to be an effective way to exploit the variability of templates and sequence alignments to produce populations of optimized models by artificial selection. Despite some limitations, the procedure is shown to be robust to alignment errors, while simplifying the task of selecting templates, making it a good candidate for automatic building of reliable protein models.
Collapse
Affiliation(s)
- Bruno Contreras-Moreira
- Biomolecular Modelling Laboratory, Cancer Research UK London Research Institute, Lincoln's Inn Fields Laboratories, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
| | | | | |
Collapse
|
108
|
Vincentelli R, Bignon C, Gruez A, Canaan S, Sulzenbacher G, Tegoni M, Campanacci V, Cambillau C. Medium-scale structural genomics: strategies for protein expression and crystallization. Acc Chem Res 2003; 36:165-72. [PMID: 12641473 DOI: 10.1021/ar010130s] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
While high-throughput methods of protein production and crystallization are beginning to be well documented, owing to the output of large structural genomics programs, medium-throughput methods at the laboratory scale lag behind. In this paper, we report a possible way for an academic laboratory to adapt high-throughput to medium-throughput methods, on the basis of the first results of two projects aimed at solving the 3D structures of Escherichia coli and Mycobacterium tuberculosis (Tb) proteins of unknown function. We have developed sequential and iterative procedures as well as new technical processes for these programs. Our results clearly demonstrate the value of this medium-throughput approach. For instance, in the first 14 months of the E. coli program, 69 out of 108 target genes led to soluble proteins, 36 were brought to crystallization, and 28 yielded crystals; among the latter, 13 led to usable data sets and 9 to structures. These results, still incomplete, might help in planning future directions of expression and crystallization of proteins applied to medium-throughput structural genomics programs.
Collapse
Affiliation(s)
- Renaud Vincentelli
- AFMB, UMR 6098, CNRS & Universités Aix-Marseille I & II, 31 Chemin J. Aiguier, 13402 Marseille Cedex 20, France
| | | | | | | | | | | | | | | |
Collapse
|
109
|
Yee A, Pardee K, Christendat D, Savchenko A, Edwards AM, Arrowsmith CH. Structural proteomics: toward high-throughput structural biology as a tool in functional genomics. Acc Chem Res 2003; 36:183-9. [PMID: 12641475 DOI: 10.1021/ar010126g] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Structural proteomics is the determination of atomic resolution three-dimensional protein structures on a genome-wide scale in order to better understand the relationship between protein sequence, structure, and function. Here we describe our ongoing structural proteomics project on the nonmembrane proteins of the archeaon, Methanobacterium thermoautotrophicum. This article provides a snapshot of an ongoing pilot project in an emerging area of multidisciplinary research that involves bioinformatics, molecular biology, biochemistry, and instrumental methods such as NMR spectroscopy and X-ray crystallography. An assessment of the technical challenges in this type of large-scale project along with a comparison of the efficiency of sample production for both X-ray crystallography and NMR spectroscopy will be discussed. Examples of new insights into protein function and the relationship between structure and sequence will also be presented.
Collapse
Affiliation(s)
- Adelinda Yee
- Ontario Cancer Institute and Department of Medical Biophysics, University of Toronto, 200 Elizabeth Street, ON, Canada M5G 2C4
| | | | | | | | | | | |
Collapse
|
110
|
Adams MWW, Dailey HA, DeLucas LJ, Luo M, Prestegard JH, Rose JP, Wang BC. The Southeast Collaboratory for Structural Genomics: a high-throughput gene to structure factory. Acc Chem Res 2003; 36:191-8. [PMID: 12641476 DOI: 10.1021/ar0101382] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Southeast Collaboratory for Structural Genomics consists of four working groups. The protein production group supplies/develops high-output production of Pyrococcus furiosus, Caenorhabditis elegans, and selected human proteins. The X-ray crystallography group conducts high-throughput structure production in parallel with production-related research/development in nanocrystallization robotics, capillary crystallization cassette, synchrotron/home X-ray instrumentation, sample mounting robotics, data processing and pipelined structure analysis, combined refinement/validation protocols, and direct use of unlabeled native crystals (Direct Crystallography). The NMR group emphasizes/develops sample screening and backbone structure determination from residual dipolar coupling data. The bioinformatics group implements/develops local database interfaces, pipelined sequence/structure information search/updates, and database/bioinformatics toolkits.
Collapse
Affiliation(s)
- Michael W W Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens 30602, USA
| | | | | | | | | | | | | |
Collapse
|
111
|
Kim S, Szyperski T. GFT NMR, a new approach to rapidly obtain precise high-dimensional NMR spectral information. J Am Chem Soc 2003; 125:1385-93. [PMID: 12553842 DOI: 10.1021/ja028197d] [Citation(s) in RCA: 303] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Widely used higher-dimensional Fourier transform (FT) NMR spectroscopy suffers from two major drawbacks: (i) The minimal measurement time of an N-dimensional FT NMR experiment, which is constrained by the need to sample N - 1 indirect dimensions, may exceed by far the measurement time required to achieve sufficient signal-to-noise ratios. (ii) The low resolution in the indirect dimensions severely limits the precision of the indirect chemical shift measurements. To relax on constraints arising from these drawbacks, we present here an acquisition scheme which is based on the phase-sensitive joint sampling of the indirect dimensions spanning a subspace of a conventional NMR experiment. This allows one to very rapidly obtain high-dimensional NMR spectral information. Because the phase-sensitive joint sampling yields subspectra containing "chemical shift multiplets", alternative data processing is required for editing the components of the multiplets. The subspectra are linearly combined using a so-called "G-matrix" and subsequently Fourier-transformed. The chemical shifts are multiply encoded in the resonance lines constituting the shift multiplets. This corresponds to performing statistically independent multiple measurements, and the chemical shifts can thus be obtained with high precision. To indicate that a combined G-matrix and FT is employed, we named the new approach "GFT NMR spectroscopy". GFT NMR opens new avenues to establish high-throughput protein structure determination, to investigate systems with a higher degree of chemical shift degeneracy, and to study dynamic phenomena such as slow folding of biological macromolecules in greater detail.
Collapse
Affiliation(s)
- Seho Kim
- Department of Chemistry, University at Buffalo, The State University of New York, The Northeast Structural Genomics Consortium, Buffalo, New York 14260, USA
| | | |
Collapse
|
112
|
Hillisch A, Hilgenfeld R. The role of protein 3D-structures in the drug discovery process. EXS 2003:157-81. [PMID: 12613176 DOI: 10.1007/978-3-0348-7997-2_8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
|
113
|
|
114
|
Rehm T, Huber R, Holak TA. Application of NMR in structural proteomics: screening for proteins amenable to structural analysis. Structure 2002; 10:1613-8. [PMID: 12467568 DOI: 10.1016/s0969-2126(02)00894-8] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In the time of structural proteomics when protein structures are targeted on a genome-wide scale, the detection of "well-behaved" proteins that would yield good quality NMR spectra or X-ray images is the key to high-throughput structure determination. Already, simple one-dimensional proton NMR spectra provide enough information for assessing the folding properties of proteins. Heteronuclear two-dimensional spectra are routinely used for screenings that reveal structural, as well as binding, properties of proteins. NMR can thus provide important information for optimizing conditions for protein constructs that are amenable to structural studies.
Collapse
Affiliation(s)
- Till Rehm
- Max-Planck-Institut für Biochemie, Am Klopferspitz 18a, D-82152 München, Germany
| | | | | |
Collapse
|
115
|
Sawasaki T, Ogasawara T, Morishita R, Endo Y. A cell-free protein synthesis system for high-throughput proteomics. Proc Natl Acad Sci U S A 2002; 99:14652-7. [PMID: 12409616 PMCID: PMC137474 DOI: 10.1073/pnas.232580399] [Citation(s) in RCA: 386] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2002] [Accepted: 09/24/2002] [Indexed: 11/18/2022] Open
Abstract
We report a cell-free system for the high-throughput synthesis and screening of gene products. The system, based on the eukaryotic translation apparatus of wheat seeds, has significant advantages over other commonly used cell-free expression systems. To maximize the yield and throughput of the system, we optimized the mRNA UTRs, designed an expression vector for large-scale protein production, and developed a new strategy to construct PCR-generated DNAs for high-throughput production of many proteins in parallel. The resulting system achieves high-yield expression and can maintain productive translation for 14 days. Additionally, in the integration of a PCR-directed system for template creation, at least 50 genes can be translated in parallel, yielding between 0.1 and 2.3 mg of protein by one person within 2 days. Assessment of correct protein folding by the products of this high-throughput protein-expression system were performed by enzymatic assays of kinases and by NMR spectroscopic analysis. The cell-free system, reported here, bypasses many of the time-consuming cloning steps of conventional expression systems and lends itself to a robotic automation for the high-throughput expression of proteins.
Collapse
Affiliation(s)
- Tatsuya Sawasaki
- Department of Applied Chemistry, Faculty of Engineering, and Venture Business Laboratory, Ehime University, Matsuyama 790-8577, Japan
| | | | | | | |
Collapse
|
116
|
Norin M, Sundström M. Structural proteomics: lessons learnt from the early case studies. FARMACO (SOCIETA CHIMICA ITALIANA : 1989) 2002; 57:947-51. [PMID: 12484544 DOI: 10.1016/s0014-827x(02)01212-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The genomics efforts have identified a large number of novel genes and thus provided a pool of interesting but not functionally characterized target proteins. It has been suggested that structural proteomics will significantly impact the success rate of functional characterization of such identified genes and proteins by providing structure-function hypotheses by fold and feature recognition and analysis. Structural proteomics initiatives, both in academic and industrial settings, are today generating protein structures at an unprecedented rate although relatively few large-scale efforts have been displayed in the public domain. However, a number of individual studies have provided a 'road-map' for selected approaches that hold the promise to significantly impact the process of deriving function from structure.
Collapse
Affiliation(s)
- Martin Norin
- Biovitrum, Department of Structural Chemistry, Nordenflychtsvägen 62:6, SE-112 76 Stockholm, Sweden.
| | | |
Collapse
|
117
|
Travers KJ, Patil CK, Weissman JS. Functional genomic approaches to understanding molecular chaperones and stress responses. ADVANCES IN PROTEIN CHEMISTRY 2002; 59:345-90. [PMID: 11868277 DOI: 10.1016/s0065-3233(01)59011-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- K J Travers
- Howard Hughes Medical Institute, Department of Cellular and Molecular Pharmacology, Department of Biochemistry and Biophysics, University of California-San Francisco, San Francisco, California, USA
| | | | | |
Collapse
|
118
|
Szyperski T, Yeh DC, Sukumaran DK, Moseley HNB, Montelione GT. Reduced-dimensionality NMR spectroscopy for high-throughput protein resonance assignment. Proc Natl Acad Sci U S A 2002; 99:8009-14. [PMID: 12060747 PMCID: PMC123011 DOI: 10.1073/pnas.122224599] [Citation(s) in RCA: 155] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2001] [Accepted: 04/12/2002] [Indexed: 11/18/2022] Open
Abstract
A suite of reduced-dimensionality (13)C,(15)N,(1)H-triple-resonance NMR experiments is presented for rapid and complete protein resonance assignment. Even when using short measurement times, these experiments allow one to retain the high spectral resolution required for efficient automated analysis. "Sampling limited" and "sensitivity limited" data collection regimes are defined, respectively, depending on whether the sampling of the indirect dimensions or the sensitivity of a multidimensional NMR experiments per se determines the minimally required measurement time. We show that reduced-dimensionality NMR spectroscopy is a powerful approach to avoid the "sampling limited regime"--i.e., a standard set of ten experiments proposed here allows one to effectively adapt minimal measurement times to sensitivity requirements. This is of particular interest in view of the greatly increased sensitivity of NMR spectrometers equipped with cryogenic probes. As a step toward fully automated analysis, the program AUTOASSIGN has been extended to provide sequential backbone and (13)C(beta) resonance assignments from these reduced-dimensionality NMR data.
Collapse
Affiliation(s)
- Thomas Szyperski
- Departments of Chemistry and Structural Biology, State University of New York, Buffalo, NY 14260, USA.
| | | | | | | | | |
Collapse
|
119
|
Aravind L, Mazumder R, Vasudevan S, Koonin EV. Trends in protein evolution inferred from sequence and structure analysis. Curr Opin Struct Biol 2002; 12:392-9. [PMID: 12127460 DOI: 10.1016/s0959-440x(02)00334-2] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Complementary developments in comparative genomics, protein structure determination and in-depth comparison of protein sequences and structures have provided a better understanding of the prevailing trends in the emergence and diversification of protein domains. The investigation of deep relationships among different classes of proteins involved in key cellular functions, such as nucleic acid polymerases and other nucleotide-dependent enzymes, indicates that a substantial set of diverse protein domains evolved within the primordial, ribozyme-dominated RNA world.
Collapse
Affiliation(s)
- L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | | | | | | |
Collapse
|
120
|
Al-Hashimi HM, Gorin A, Majumdar A, Gosser Y, Patel DJ. Towards structural genomics of RNA: rapid NMR resonance assignment and simultaneous RNA tertiary structure determination using residual dipolar couplings. J Mol Biol 2002; 318:637-49. [PMID: 12054812 DOI: 10.1016/s0022-2836(02)00160-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We report a new residual dipolar couplings (RDCs) based NMR procedure for rapidly determining RNA tertiary structure demonstrated on a uniformly (15)N/(13)C-labeled 27 nt variant of the trans-activation response element (TAR) RNA from HIV-I. In this procedure, the time-consuming nuclear Overhauser enhancement (NOE)-based sequential assignment step is replaced by a fully automated RDC-based assignment strategy. This approach involves examination of all allowed sequence-specific resonance assignment permutations for best-fit agreement between measured RDCs and coordinates for sub-structures in a target RNA. Using idealized A-form geometries to model Watson-Crick helices and coordinates from a previous X-ray structure to model a hairpin loop in TAR, the best-fit RDC assignment solutions are determined very rapidly (<five minutes of computational time) and are in complete agreement with corresponding NOE-based assignments. Orientational constraints derived from RDCs are used simultaneously to assemble sub-structures into an RNA tertiary conformation. Through enhanced speeds of application and reduced reliance on chemical shift dispersion, this RDC-based approach lays the foundation for rapidly determining RNA conformations in a structural genomics context, and may increase the size limit of RNAs that can be examined by NMR.
Collapse
Affiliation(s)
- Hashim M Al-Hashimi
- Cellular Biochemistry and Biophysics Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021, USA.
| | | | | | | | | |
Collapse
|
121
|
Abstract
The major challenge for post-genomic research is to functionally assign and validate a large number of novel target genes and their corresponding proteins. Functional genomics approaches have, therefore, gained considerable attention in the quest to convert this massive data set into useful information. One of the crucial components for the functional understanding of unassigned proteins is the analysis of their experimental or modeled 3D structures. Structural proteomics initiatives are generating protein structures at an unprecedented rate but our current knowledge of 3D-structural space is still limited. Estimates on the completeness of the 3D-structural coverage of proteins vary but it is generally accepted that only a minority of the structural proteome has a template structure from which reliable conclusions can be drawn. Thus, structural proteomics has set out to build a map of protein structures that will represent all protein folds included in the 'global proteome'.
Collapse
Affiliation(s)
- Martin Norin
- Biovitrum, Department of Structural Chemistry., Stockholm, Sweden
| | | |
Collapse
|
122
|
Smit JW, Romijn JA. Structural genomics in endocrinology. Pharmacogenomics 2001; 2:353-60. [PMID: 11722285 DOI: 10.1517/14622416.2.4.353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Traditionally, endocrine research evolved from the phenotypical characterisation of endocrine disorders to the identification of underlying molecular pathophysiology. This approach has been, and still is, extremely successful. The introduction of genomics and proteomics has resulted in a reversal of this sequence of endocrine research: reverse endocrinology. This approach has provided endocrinology with powerful tools to dissect novel molecular pathways involved in health and disease and to identify new drug targets, like the peroxisome-proliferator activated receptor (PPAR) nuclear receptor family. The reiterative combination of innovative genomics and proteomics, and classical endocrine approaches will enable maintenance of endocrinology as a front-runner in biological research and innovate therapeutical approaches in a continuing interaction between bed and bench.
Collapse
Affiliation(s)
- J W Smit
- Department of Endocrinology and Metabolic Diseases, Leiden University Medical Center, C4-R, PO Box 9600, 3500 RC Leiden, The Netherlands
| | | |
Collapse
|
123
|
Abstract
Structural genomics projects aim to provide an experimental or computational three-dimensional model structure for all of the tractable macromolecules that are encoded by complete genomes. To this end, pilot centres worldwide are now exploring the feasibility of large-scale structure determination. Their experimental structures and computational models are expected to yield insight into the molecular function and mechanism of thousands of proteins. The pervasiveness of this information is likely to change the use of structure in molecular biology and biochemistry.
Collapse
Affiliation(s)
- S E Brenner
- Department of Plant and Microbial Biology, University of California, 461A Koshland Hall, Berkeley, California 94720-3102, USA.
| |
Collapse
|
124
|
Greenfield NJ, Huang YJ, Palm T, Swapna GV, Monleon D, Montelione GT, Hitchcock-DeGregori SE. Solution NMR structure and folding dynamics of the N terminus of a rat non-muscle alpha-tropomyosin in an engineered chimeric protein. J Mol Biol 2001; 312:833-47. [PMID: 11575936 DOI: 10.1006/jmbi.2001.4982] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tropomyosin is an alpha-helical coiled-coil protein that aligns head-to-tail along the length of the actin filament and regulates its function. The solution structure of the functionally important N terminus of a short 247-residue non-muscle tropomyosin was determined in an engineered chimeric protein, GlyTM1bZip, consisting of the first 19 residues of rat short alpha-tropomyosin and the last 18 residues of the GCN4 leucine zipper. A gene encoding GlyTM1bZip was synthesized, cloned and expressed in Escherichia coli. Triple resonance NMR spectra were analyzed with the program AutoAssign to assign its backbone resonances. Multidimensional nuclear Overhauser effect spectra, X-filtered spectra and (3)J(H(N)-H(alpha)) scalar coupling were analyzed using AutoStructure. This is the first application of this new program to determine the three-dimensional structure of a symmetric homodimer and a structure not previously reported. Residues 7-35 in GlyTM1bZip form a coiled coil, but neither end is helical. Heteronuclear (15)N-(1)H nuclear Overhauser effect data showed that the non-helical N-terminal residues are flexible. The (13)C' chemical shifts of the coiled-coil backbone carbonyl groups in GlyTM1bZip showed a previously unreported periodicity, where resonances arising from residues at the coiled-coil interface in a and d positions of the heptad repeat were displaced relatively upfield and those arising from residues in c positions were displaced relatively downfield. Heteronuclear single quantum coherence spectra, collected as a function of temperature, showed that cross-peaks arising from the alpha-helical backbone and side-chains at the coiled-coil interface broadened or shifted with T(M) values approximately 20 degrees C lower than the loss of alpha-helix measured by circular dichroism, suggesting the presence of a folding intermediate. The side-chain of Ile14, a residue essential for binding interactions, exhibited multiple conformations. The conformational flexibility of the N termini of short tropomyosins may be important for their binding specificity.
Collapse
Affiliation(s)
- N J Greenfield
- Department of Neuroscience and Cell Biology, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ 08854-5635, USA.
| | | | | | | | | | | | | |
Collapse
|
125
|
Abstract
Following the complete genome sequencing of an increasing number of organisms, structural biology is engaging in a systematic approach of high-throughput structure determination called structural genomics to create a complete inventory of protein folds/structures that will help predict functions for all proteins. First results show that structural genomics will be highly effective in finding functional annotations for proteins of unknown function.
Collapse
Affiliation(s)
- P R Mittl
- Institute of Biochemistry, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | | |
Collapse
|
126
|
Skalicky JJ, Mills JL, Sharma S, Szyperski T. Aromatic ring-flipping in supercooled water: implications for NMR-based structural biology of proteins. J Am Chem Soc 2001; 123:388-97. [PMID: 11456540 DOI: 10.1021/ja003220l] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have characterized, for the first time, motional modes of a protein dissolved in supercooled water: the flipping kinetics of phenylalanyl and tyrosinyl rings of the 6 kDa protein BPTI have been investigated by NMR at temperatures between -3 and -16.5 degrees C. At T = -15 degrees C, the ring-flipping rate constants of Tyr 23, Tyr 35, and Phe 45 are smaller than 2 s(-1), i.e., flip-broadening of aromatic NMR lines is reduced beyond detection and averaging of NOEs through ring-flipping is abolished. This allows neat detection of distinct NOE sets for the individual aromatic (1)H spins. In contrast, the rings of Phe 4, Tyr 10, Tyr 21, Phe 22, and Phe 33 are flipping rapidly on the chemical shift time scale with rate constants being in the range from approximately 10(2) to 10(5) s(-1) even at T = -15 degrees C. Line width measurements in 2D [(1)H,(1)H]-NOESY showed that flipping of the Phe 4 and Phe 33 rings is, however, slowed to an extent that the onset of associated line broadening in the fast exchange limit is registered. The reduced ring-flipping rate constant of Phe 45 in supercooled water allowed very precise determination of Eyring activation enthalpy and entropy from cross relaxation suppressed 2D [(1)H,(1)H]-exchange spectroscopy. This yielded DeltaH = 14 +/- 0.5 kcal.mol(-1) and DeltaS = -4 +/- 1 cal.mol(-1).K(-1), i.e., values close to those previously derived by Wagner and Wüthrich for the temperature range from 4 to 72 degrees C (DeltaH = 16 +/- 1 kcal.mol(-1) and DeltaS = 6 +/- 2 cal.mol(-1).K(-1)). The preservation of the so far uniquely low value for DeltaS indicates that the distribution of internal motional modes associated with the ring flip of Phe 45 is hardly affected by lowering T well below 0 degrees C. Hence, if a globular protein does not cold denature, aromatic flipping rates, and thus likely also the rates of other conformational and/or chemical exchange processes occurring in supercooled water, can be expected to be well estimated from activation parameters obtained at ambient T. This is of keen interest to predict the impact of supercooling for future studies of biological macromolecules, and shows that our approach enables one to conduct NMR-based structural biology at below 0 degrees C in an unperturbed aqueous environment. A search of the BioMagResBank indicated that the overwhelming majority of the Phe and Tyr rings (>95%) are flipping rapidly on the chemical shift time scale at ambient T, while our data for BPTI and activation parameters available for ring-flipping in Iso-2-cytochrome c reveal that in these smaller proteins a total of six out of seventeen rings ( approximately 35%) are "frozen in" at T = -15 degrees C. This suggests that a large fraction of Tyr and Phe rings in globular proteins that are flipping rapidly on the chemical shift time scale at ambient T can be effectively slowed in supercooled water. The present investigation demonstrates that supercooling of protein solutions appears to be an effective means to (i) harvest potential benefits of stalled ring-flipping for refining NMR solution structures, (ii) recruit additional aromatic rings for investigating protein dynamics, and (iii) use multiple slowly flipping rings to probe cold denaturation. The implications for NMR-based structural biology in supercooled water are addressed.
Collapse
Affiliation(s)
- J J Skalicky
- Contribution from the Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14260, USA
| | | | | | | |
Collapse
|