101
|
Bian D, Mahanivong C, Yu J, Frisch SM, Pan ZK, Ye RD, Huang S. The G12/13-RhoA signaling pathway contributes to efficient lysophosphatidic acid-stimulated cell migration. Oncogene 2006; 25:2234-44. [PMID: 16301993 DOI: 10.1038/sj.onc.1209261] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The membrane redistribution and phosphorylation of focal adhesion kinase (FAK) have been reported to be important for cell migration. We previously showed that Lysophosphatidic acid (LPA) induced FAK membrane redistribution and autophosphorylation in ovarian cancer SK-OV3 cells and the signaling pathway consisting of Gi-Ras-MEKK1 mediated LPA-induced FAK membrane redistribution but not FAK autophosphorylation. We also showed that the disruption of the Gi-Ras-MEKK1 pathway led to a significant reduction in LPA-stimulated cell migration. These findings raised the question of whether LPA-induced FAK autophosphorylation was required for LPA-stimulated cell migration and what signaling mechanism was involved in LPA-induced FAK autophosphorylation. In this study, we expressed the membrane anchored wild-type FAK (CD2-FAK) in SK-OV3 cells and found that the expression of CD2-FAK greatly rescued LPA-stimulated cell migration in Gi or Ras-inhibited cells. However, Gi inhibitor pertussis toxin or dominant-negative H-Ras still significantly inhibited LPA-stimulated cell migration in cells expressing the membrane anchored FAK containing a mutation in the autophosphorylation site [CD2-FAK(Y397A)]. These results suggest that FAK autophosphorylation plays a role in LPA-stimulated cell migration. With the aid of p115RhoGEF-RGS, G12 and G13 minigenes to inhibit G12/13, we found that the G12/13 pathway was required for LPA-induced FAK autophosphorylation and efficient cell migration. Moreover, LPA activated RhoA and Rho kinase (ROCK) in a G12/13-dependent manner and their activities were required for LPA-induced FAK autophosphorylation. However, Rho or ROCK inhibitors displayed no effect on LPA-induced FAK membrane redistribution although they abolished LPA-induced cytoskeleton reorganization. Our studies show that the G12/13-RhoA-ROCK signaling pathway mediates LPA-induced FAK autophosphorylation and contributes to LPA-stimulated cell migration.
Collapse
Affiliation(s)
- D Bian
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|
102
|
Kishi Y, Okudaira S, Tanaka M, Hama K, Shida D, Kitayama J, Yamori T, Aoki J, Fujimaki T, Arai H. Autotaxin is overexpressed in glioblastoma multiforme and contributes to cell motility of glioblastoma by converting lysophosphatidylcholine to lysophosphatidic acid. J Biol Chem 2006; 281:17492-17500. [PMID: 16627485 DOI: 10.1074/jbc.m601803200] [Citation(s) in RCA: 173] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Autotaxin (ATX) is a multifunctional phosphodiesterase originally isolated from melanoma cells as a potent cell motility-stimulating factor. ATX is identical to lysophospholipase D, which produces a bioactive phospholipid, lysophosphatidic acid (LPA), from lysophosphatidylcholine (LPC). Although enhanced expression of ATX in various tumor tissues has been repeatedly demonstrated, and thus, ATX is implicated in progression of tumor, the precise role of ATX expressed by tumor cells was unclear. In this study, we found that ATX is highly expressed in glioblastoma multiforme (GBM), the most malignant glioma due to its high infiltration into the normal brain parenchyma, but not in tissues from other brain tumors. In addition, LPA1, an LPA receptor responsible for LPA-driven cell motility, is predominantly expressed in GBM. One of the glioblastomas that showed the highest ATX expression (SNB-78), as well as ATX-stable transfectants, showed LPA1-dependent cell migration in response to LPA in both Boyden chamber and wound healing assays. Interestingly these ATX-expressing cells also showed chemotactic response to LPC. In addition, knockdown of the ATX level using small interfering RNA technique in SNB-78 cells suppressed their migratory response to LPC. These results suggest that the autocrine production of LPA by cancer cell-derived ATX and exogenously supplied LPC contribute to the invasiveness of cancer cells and that LPA1, ATX, and LPC-producing enzymes are potential targets for cancer therapy, including GBM.
Collapse
Affiliation(s)
- Yasuhiro Kishi
- Graduate School of Pharmaceutical Sciences, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033
| | - Shinichi Okudaira
- Graduate School of Pharmaceutical Sciences, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033
| | - Masayuki Tanaka
- Graduate School of Pharmaceutical Sciences, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033
| | - Kotaro Hama
- Graduate School of Pharmaceutical Sciences, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033
| | - Dai Shida
- Graduate School of Medicine, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033
| | - Joji Kitayama
- Graduate School of Medicine, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033
| | - Takao Yamori
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Toshima-ku, Tokyo 170-8455
| | - Junken Aoki
- Graduate School of Pharmaceutical Sciences, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033.
| | - Takamitsu Fujimaki
- Department of Neurosurgery, Teikyo University School of Medicine, 2-11-1, Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Hiroyuki Arai
- Graduate School of Pharmaceutical Sciences, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033
| |
Collapse
|
103
|
Lee Z, Swaby RF, Liang Y, Yu S, Liu S, Lu KH, Bast RC, Mills GB, Fang X. Lysophosphatidic acid is a major regulator of growth-regulated oncogene alpha in ovarian cancer. Cancer Res 2006; 66:2740-8. [PMID: 16510595 DOI: 10.1158/0008-5472.can-05-2947] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Growth-regulated oncogene alpha (GROalpha), a member of the chemokine superfamily, is commonly expressed in transformed cells and contributes to angiogenesis and tumorigenesis. Here, we report that increased GROalpha levels are detected in the plasma and ascites of ovarian cancer patients. Ovarian cancer cell lines in culture express and secrete GROalpha. However, when they are starved in serum-free medium, ovarian cancer cells ceased producing GROalpha, suggesting that GROalpha is not constitutively expressed but rather is produced in response to exogenous growth factors in ovarian cancer cells. The prototype peptide growth factors present in serum such as platelet-derived growth factor, insulin-like growth factor I, and insulin do not stimulate GROalpha production by ovarian cancer cells. In contrast, lysophosphatidic acid (LPA), a glycerol backbone phospholipid mediator present in serum and ascites of ovarian cancer patients, is a potent inducer of GROalpha expression in ovarian cancer cell lines. Treatment of ovarian cancer cells with LPA leads to transcriptional activation of the GROalpha gene promoter and robust accumulation of GROalpha protein in culture supernatants. The action of LPA on GROalpha expression is mediated by LPA receptors, particularly the LPA(2) receptor in that ectopic expression of these receptors restores the LPA-dependent GROalpha production in nonresponsive cells. Down-regulation of LPA(2) expression by small interfering RNA (siRNA) in ovarian cancer cells desensitizes GROalpha production in response to LPA. The effect of serum on GROalpha production is also significantly decreased by siRNA inhibition of LPA(2) expression. These studies identify LPA as a primary regulator of GROalpha expression in ovarian cancer.
Collapse
Affiliation(s)
- Zendra Lee
- Department of Biochemistry, Virginia Commonwealth University, Richmond, Virginia 23298, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Ren J, Xiao YJ, Singh LS, Zhao X, Zhao Z, Feng L, Rose TM, Prestwich GD, Xu Y. Lysophosphatidic acid is constitutively produced by human peritoneal mesothelial cells and enhances adhesion, migration, and invasion of ovarian cancer cells. Cancer Res 2006; 66:3006-14. [PMID: 16540649 DOI: 10.1158/0008-5472.can-05-1292] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Lysophosphatidic acid (LPA) is both a potential marker and a therapeutic target for ovarian cancer. It is critical to identify the sources of elevated LPA levels in ascites and blood of patients with ovarian cancer. We show here that human peritoneal mesothelial cells constitutively produce LPA, which accounts for a significant portion of the chemotactic activity of the conditioned medium from peritoneal mesothelial cells to ovarian cancer cells. Both production of LPA by peritoneal mesothelial cells and the chemotactic activity in the conditioned medium can be blocked by HELSS [an inhibitor of the calcium-independent phospholipase A(2) (iPLA(2))] and AACOCF(3) [an inhibitor of both cytosolic PLA(2) (cPLA(2)) and iPLA(2)]. Moreover, cell-based enzymatic activity assays for PLA(2) indicate that peritoneal mesothelial cells have strong constitutive PLA(2) activity. Receptors for LPA, LPA(2), and LPA(3) are involved in the conditioned medium-induced chemotactic activity. Invasion of ovarian cancer cells into peritoneal mesothelial cells has also been analyzed and shown to require PLA(2), LPA receptors, and the mitogen-activated protein/extracellular signal-regulated kinase kinase/extracellular signal-regulated kinase signaling pathway. Thus, we show here, for the first time, that human peritoneal mesothelial cells constitutively produce bioactive lipid signaling molecules, such as LPA, via iPLA(2) and/or cPLA(2) activities. Conditioned medium from peritoneal mesothelial cells stimulate migration, adhesion, and invasion of ovarian cancer cells, and may play similar roles in vivo.
Collapse
Affiliation(s)
- Juan Ren
- Department of Cancer Biology, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Yamashita H, Kitayama J, Shida D, Ishikawa M, Hama K, Aoki J, Arai H, Nagawa H. Differential expression of lysophosphatidic acid receptor-2 in intestinal and diffuse type gastric cancer. J Surg Oncol 2006; 93:30-5. [PMID: 16353194 DOI: 10.1002/jso.20397] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND OBJECTIVES Lysophosphatidic acid (LPA), a natural phospholipid, can modulate diverse cellular responses through LPA receptor, LPA1-4. Although LPA1 is known to be widely expressed in human tissues, the distribution of other LPA receptors is not characterized in malignant tissues. Recently, it was reported that malignant transformation resulted in aberrant expression of LPA2 in a various type of cancer, suggesting the positive role of LPA2 in tumor development. METHODS We investigated the expression of the LPA2 receptor immunohistochemically in 204 gastric cancers and analyzed the relationship between the expression of LPA2 and clinicopathological features. RESULTS LPA2 was preferentially expressed (67%) in intestinal-type cancer that was significantly higher than that in diffuse-type cancer (32%, P < 0.0001). The expression of LPA2 showed correlation with a higher rate of lymphatic and venous invasion, lymphatic metastasis, and resultingly tumor stage in diffuse-type cancer, but not in intestinal-type cancer. CONCLUSIONS Our results highlight the possibility that LPA2 expression is an important process in the carcinogenesis of gastric cancer, especially in intestinal-type cancer. Since LPA can transactivate HGF receptor (c-Met) as well as EGF-receptor, LPA may promote the progression of gastric cancer in diffuse-type with high expression of c-Met. The development of LPA2-specific antagonists might have future therapeutic relevance in the treatment as well as prevention of gastric cancer.
Collapse
Affiliation(s)
- Hiroharu Yamashita
- Department of Surgical Oncology, University of Tokyo Graduate School of Medicine, Tokyo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
106
|
Tsujiuchi T, Shimizu K, Onishi M, Shigemura M, Shano S, Honoki K, Fukushima N. Aberrant Expressions of Lysophosphatidic Acid Receptor Genes in Lung and Liver Tumors of Rats. J Toxicol Pathol 2006. [DOI: 10.1293/tox.19.137] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Toshifumi Tsujiuchi
- Laboratory of Cancer Biology and Bioinformatics, Department of Life Science, Faculty of Science and Engineering, Kinki University
| | - Kyoko Shimizu
- Laboratory of Cancer Biology and Bioinformatics, Department of Life Science, Faculty of Science and Engineering, Kinki University
| | - Mariko Onishi
- Laboratory of Cancer Biology and Bioinformatics, Department of Life Science, Faculty of Science and Engineering, Kinki University
| | - Mayumi Shigemura
- Laboratory of Cancer Biology and Bioinformatics, Department of Life Science, Faculty of Science and Engineering, Kinki University
| | - Shinya Shano
- Laboratory of Molecular Neurobiology, Department of Life Science, Faculty of Science and Engineering, Kinki University
| | - Kanya Honoki
- Department of Orthopedic Surgery, Nara Medical University
| | - Nobuyuki Fukushima
- Laboratory of Molecular Neurobiology, Department of Life Science, Faculty of Science and Engineering, Kinki University
| |
Collapse
|
107
|
Shida D, Kitayama J, Mori K, Watanabe T, Nagawa H. Transactivation of epidermal growth factor receptor is involved in leptin-induced activation of janus-activated kinase 2 and extracellular signal-regulated kinase 1/2 in human gastric cancer cells. Cancer Res 2005; 65:9159-63. [PMID: 16230373 DOI: 10.1158/0008-5472.can-05-0598] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Leptin is known to act as a growth factor through the Janus-activated kinase (JAK)/signal transducer and activator of transcription signaling pathway as well as the mitogen-activated protein kinase pathway. In this study, we showed a novel signal transduction pathway using two human gastric cancer cell lines, MKN28 and MKN74. Both gastric cancer cells expressed leptin and its receptors (Ob-R) at the protein level. We found that leptin, even at as low as 0.1 ng/mL, induced significant tyrosine phosphorylation of epidermal growth factor receptor (EGFR). Time-course experiments revealed that phosphorylation was maximal after 5 minutes of stimulation and declined thereafter. We also revealed that tyrosine phosphorylation of EGFR induced by leptin was significantly attenuated by two inhibitors, an EGFR tyrosine kinase inhibitor, AG1478, and a broad-spectrum matrix metalloproteinase inhibitor, GM6001. This indicates that the pathway of EGFR transactivation induced by leptin is dependent on proteolytically released EGFR ligands. Leptin induced JAK2 activation and extracellular signal-regulated kinase (ERK) 1/2 activation in these gastric cancer cells, both of which occurred after the peak of EGFR transactivation. Pretreatment of gastric cancer cells with AG1478 significantly reduced the degree of phosphorylation of both JAK2 and ERK1/2. These findings indicate the involvement of EGFR transactivation in the activation of JAK2 and ERK1/2. Our results reveal that EGFR transactivation is involved in the leptin signaling pathway in gastric cancer cells, which extends the physiologic action of leptin beyond its central effects in the hypothalamus to regulate body weight.
Collapse
Affiliation(s)
- Dai Shida
- Department of Surgical Oncology, University of Tokyo Graduate School of Medicine, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
108
|
Mori K, Kitayama J, Shida D, Yamashita H, Watanabe T, Nagawa H. Lysophosphatidic acid-induced effects in human colon carcinoma DLD1 cells are partially dependent on transactivation of epidermal growth factor receptor. J Surg Res 2005; 132:56-61. [PMID: 16289596 DOI: 10.1016/j.jss.2005.07.040] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Revised: 07/19/2005] [Accepted: 07/28/2005] [Indexed: 10/25/2022]
Abstract
BACKGROUND Lysophosphatidic acid (LPA) is a lipid mediator of diverse effects on various cells. LPA is well known to induce phosphorylation of the epidermal growth factor receptor (EGFR), which is termed transactivation, in some cell types. In this study, we investigated the contribution of EGFR transactivation in LPA-induced responses in colon cancer DLD1 cells. MATERIALS AND METHODS Immunoprecipitation was performed to investigate whether LPA induced EGFR phosphorylation. Then, we investigated LPA-induced migration and IL-8 secretion in DLD1 cells. Migration was measured in a modified Boyden chamber and IL-8 secretion was measured by ELISA. In these experiments we used an EGFR inhibitor, AG1478 or matrix metalloproteinase (MMP) inhibitor, GM6001. RESULTS Immunoprecipitation analysis revealed that LPA induced a significant level of tyrosine phosphorylation of EGFR in DLD1 cells. The LPA-induced phosphorylation of EGFR was almost completely abrogated by either AG1478 or GM6001. LPA induced significant migration and IL-8 secretion in DLD1, both of which were significantly inhibited by AG1478 or GM6001. However, the inhibitory effects were only partial (migration; 29% +/- 2%, 32 +/- 13% inhibition, IL-8 secretion; 33% +/- 1%, 26% +/- 5% inhibition, respectively). CONCLUSION These results clearly indicate that LPA acts upstream of EGFR and compensates the EGF signal and antagonism of the EGF signal cannot completely block tumor progression in colon cancer cells. Blockade of the LPA signal may have clinical significance in the treatment of colon cancer.
Collapse
Affiliation(s)
- Ken Mori
- Department of Surgical Oncology, University of Tokyo Graduate School of Medicine, Tokyo 113-8655, Japan.
| | | | | | | | | | | |
Collapse
|
109
|
Blanchot-Jossic F, Jarry A, Masson D, Bach-Ngohou K, Paineau J, Denis MG, Laboisse CL, Mosnier JF. Up-regulated expression of ADAM17 in human colon carcinoma: co-expression with EGFR in neoplastic and endothelial cells. J Pathol 2005; 207:156-63. [PMID: 16041691 DOI: 10.1002/path.1814] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The ADAM17 metalloproteinase (a disintegrin and metalloprotease 17) controls epidermal growth factor receptor (EGFR) activation through regulated shedding of EGFR ligands. With the advent of new therapeutic options targeting EGFR signalling in colon carcinoma, it was decided to determine ADAM17 status in relation to clinico-pathological parameters and EGFR status. To this end, a series of 39 colon carcinomas were analysed. Immunohistochemistry and immunofluorescence were used to localize ADAM17, EGFR, and the activated forms of EGFR. The activated form of ADAM17 was assessed in primary cancers and colon cell lines by immunoblotting. ADAM17 and EGFR mRNA levels were assessed by quantitative RT-PCR. Chromogenic in situ hybridization (CISH) was used to quantify the HER1 gene. ADAM17 was strongly expressed in all tumours, by both neoplastic and endothelial cells. It was expressed both as a pro- and as an active form in tumours and colonic cancer cell lines. ADAM17 mRNA was up-regulated in 90% of colon carcinomas relative to the paired normal mucosa, whatever the tumour grade or stage. When present, activated EGFR was co-expressed with ADAM17 by colon carcinomas, although at a variable level among tumour cells, and by endothelial cells. EGFR mRNA was overexpressed in 77% of colon carcinomas compared with the paired normal mucosa. One case showed high-level amplification of HER1. In conclusion, this study is the first demonstration that ADAM17 is overexpressed in human primary colon carcinoma, whatever the tumour stage and differentiation and whatever the level of EGFR expression. Its co-expression with EGFR, in both neoplastic and endothelial cells, suggests a role for ADAM17 in tumour growth and angiogenesis.
Collapse
|
110
|
Shida D, Kitayama J, Yamaguchi H, Yamashita H, Mori K, Watanabe T, Nagawa H. Lysophosphatidic acid transactivates both c-Met and epidermal growth factor receptor, and induces cyclooxygenase-2 expression in human colon cancer LoVo cells. World J Gastroenterol 2005; 11:5638-43. [PMID: 16237757 PMCID: PMC4481480 DOI: 10.3748/wjg.v11.i36.5638] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To examine whether lysophosphatidic acid (LPA) induces phosphorylation of c-Met and epidermal growth factor receptor (EGFR), both of which have been proposed as prognostic markers of colorectal cancer, and whether LPA induces cyclooxygenase-2 (COX-2) expression in human colon cancer cells.
METHODS: Using a human colon cancer cell line, LoVo cells, we performed immunoprecipitation analysis, followed by Western blot analysis. We also examined whether LPA induced COX-2 expression, by Western blot analysis.
RESULTS: Immunoprecipitation analysis revealed that 10 µmol/L LPA induced tyrosine phosphorylation of c-Met and EGFR in LoVo cells within a few minutes. We found that c-Met tyrosine phosphorylation induced by LPA was not attenuated by pertussis toxin or a matrix metalloproteinase inhibitor, in marked contrast to the results for EGFR. In addition, 0.2-40 µmol/L LPA induced COX-2 expression in a dose-dependent manner.
CONCLUSION: Our results suggest that LPA acts upstream of various receptor tyrosine kinases (RTKs) and COX-2, and thus may act as a potent stimulator of colorectal cancer.
Collapse
Affiliation(s)
- Dai Shida
- Department of Surgical Oncology, University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Japan.
| | | | | | | | | | | | | |
Collapse
|
111
|
Yang M, Zhong WW, Srivastava N, Slavin A, Yang J, Hoey T, An S. G protein-coupled lysophosphatidic acid receptors stimulate proliferation of colon cancer cells through the {beta}-catenin pathway. Proc Natl Acad Sci U S A 2005; 102:6027-32. [PMID: 15837931 PMCID: PMC1087935 DOI: 10.1073/pnas.0501535102] [Citation(s) in RCA: 154] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Recent studies suggest that lysophosphatidic acid (LPA) and its G protein-coupled receptors (GPCRs) LPA(1), LPA(2), or LPA(3) may play a role in the development of several types of cancers, including colorectal cancer. However, the specific receptor subtype(s) and their signal-transduction pathways responsible for LPA-induced cancer cell proliferation have not been fully elucidated. We show by specific RNA interference (RNAi) that LPA(2) and LPA(3) but not LPA(1) are targets for LPA-induced proliferation of HCT116 and LS174T colon cancer cells. We determined that LPA-induced colon cancer cell proliferation requires the beta-catenin signaling pathway, because knockdown of beta-catenin by RNAi abolished LPA-induced proliferation of HCT116 cells. Moreover, LPA activates the main signaling events in the beta-catenin pathway: phosphorylation of glycogen synthase kinase 3beta (GSK3beta), nuclear translocation of beta-catenin, transcriptional activation of T cell factor (Tcf)/lymphoid-enhancer factor (Lef), and expression of target genes. Inhibition of conventional protein kinase C (cPKC) blocked the effects, suggesting its involvement in LPA-induced activation of the beta-catenin pathway. Thus, LPA(2) and LPA(3) signal the proliferation of colon cancer cells through cPKC-mediated activation of the beta-catenin pathway. These results link LPA and its GPCRs to cancer through a major oncogenic signaling pathway.
Collapse
Affiliation(s)
- Ming Yang
- Department of Biology, Amgen, Inc., 1120 Veterans Boulevard, South San Francisco, CA 94080, USA
| | | | | | | | | | | | | |
Collapse
|
112
|
Shida D, Kitayama J, Yamaguchi H, Yamashita H, Mori K, Watanabe T, Nagawa H. Lysophospholipids transactivate HER2/neu (erbB-2) in human gastric cancer cells. Biochem Biophys Res Commun 2005; 327:907-14. [PMID: 15649431 DOI: 10.1016/j.bbrc.2004.12.088] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2004] [Indexed: 12/31/2022]
Abstract
The ligand-less receptor HER2/neu (erbB-2) has been proposed as a prognostic marker of gastric cancer that correlates with poor clinical outcome, indicating that HER2 signals play an important role in gastric cancer progression. This study demonstrated that two major natural lysophospholipids, lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P), induce rapid and transient phosphorylation of HER2 in two human gastric cancer cell lines, MKN28 and MKN74 cells. We also revealed that tyrosine phosphorylation of HER2 induced by both lysophospholipids was significantly attenuated by two inhibitors, an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor, AG1478, and a broad-spectrum matrix metalloproteinase inhibitor, GM6001. This suggests that the pathway of HER2 transactivation induced by these lysophospholipids is dependent on the proteolytically released EGFR ligands. Our results indicate that LPA and S1P act upstream of HER2 in gastric cancer cells, and thus may act as potent stimulators of gastric cancer.
Collapse
Affiliation(s)
- Dai Shida
- Department of Surgical Oncology, University of Tokyo Graduate School of Medicine, Tokyo 113-8655, Japan.
| | | | | | | | | | | | | |
Collapse
|
113
|
Yun CC, Sun H, Wang D, Rusovici R, Castleberry A, Hall RA, Shim H. LPA2 receptor mediates mitogenic signals in human colon cancer cells. Am J Physiol Cell Physiol 2005; 289:C2-11. [PMID: 15728708 DOI: 10.1152/ajpcell.00610.2004] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Lysophosphatidic acid (LPA) is a mediator of multiple cellular responses. LPA mediates its effects predominantly through the G protein-coupled receptors LPA1, LPA2, and LPA3. In the present work, we studied LPA2-mediated signaling using human colon cancer cell lines, which predominantly express LPA2. LPA2 activated Akt and Erk1/2 in response to LPA. LPA mediated Akt activation was inhibited by pertussis toxin (PTX), whereas Erk1/2 activation was completely inhibited by a blocker of phospholipase Cbeta, U-73122. LPA also induced interleukin-8 (IL-8) synthesis in the colon cancer cells by primarily activating LPA2 receptor. We also found that LPA2 interacts with Na+/H+ exchanger regulatory factor 2 (NHERF2). Activation of Akt and Erk1/2 was significantly attenuated by silencing of NHERF2 expression by RNA interference, suggesting a pivotal role of NHERF2 in LPA2-mediated signaling. We found that expression of LPA2 was elevated, whereas expression of LPA1 downregulated in several types of cancers, including ovarian and colon cancer. We conclude that LPA2 is the major LPA receptor in colon cancer cells and cellular signals by LPA2 are largely mediated through its ability to interact with NHERF2.
Collapse
Affiliation(s)
- C Chris Yun
- Department of Medicine, Division of Digestive Diseases, Emory University School of Medicine, Whitehead Bldg., Suite 201, 615 Michael St., Atlanta, Georgia 30322, USA.
| | | | | | | | | | | | | |
Collapse
|
114
|
Budnik LT, Brunswig-Spickenheier B. Differential effects of lysolipids on steroid synthesis in cells expressing endogenous LPA2 receptor. J Lipid Res 2005; 46:930-41. [PMID: 15716590 DOI: 10.1194/jlr.m400423-jlr200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Incubation of ovarian luteal cells with the bioactive lipid mediator lysophosphatidic acid (LPA) for 180 min abolishes gonadotropin-induced steroid production with no attenuation of the cyclic AMP accumulation. Treatment with the lysolipid also diminishes [14C]steroid production in cells preloaded with either [14C]cholesterol or [14C]acetate. Neither the expression of steroidogenic acute regulatory (StAR) protein nor in vitro steroid synthesis is affected in isolated mitochondrial fractions. The LPA-induced attenuation of steroid production occurs only in the mid-cycle corpus luteum and is associated with a transient endogenous expression of mRNA for the lysophosphatidic acid A2 (LPA2) receptor (with no concomitant changes in the expression of LPA1 receptor). Expression of LPA2 is accompanied by LPA-induced sphingosine-1-phosphate (S1P) production. Because luteal cells, in the presence of the sphingosine kinase inhibitor dihydrosphingosine, can overcome the inhibitory effects of LPA on steroid synthesis, we suggest the possible requirement of intracellular S1P production. Interestingly, no LPA-induced inhibition of 8Br-cAMP-stimulated progesterone synthesis can be detected in Leydig tumor cell line MA10 cells expressing only LPA2 receptor. Surprisingly, however, exogenous S1P inhibits agonist-stimulated progesterone in both cell types by inhibiting cyclic AMP accumulation, suggesting different mechanisms of action.
Collapse
Affiliation(s)
- Lygia T Budnik
- Institute for Hormone and Fertility Research, Anatomy I, University Hospital Eppendorf, Martinistrasse 52, D-20246, Hamburg, Germany.
| | | |
Collapse
|
115
|
Shida D, Kitayama J, Yamaguchi H, Yamashita H, Mori K, Watanabe T, Yatomi Y, Nagawa H. Sphingosine 1-phosphate transactivates c-Met as well as epidermal growth factor receptor (EGFR) in human gastric cancer cells. FEBS Lett 2005; 577:333-8. [PMID: 15556605 DOI: 10.1016/j.febslet.2004.10.024] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2004] [Revised: 09/30/2004] [Accepted: 10/01/2004] [Indexed: 01/12/2023]
Abstract
Receptor tyrosine kinases (RTKs) are transactivated by the stimulation of G protein-coupled receptors (GPCRs). Sphingosine 1-phosphate (S1P), a ligand of GPCR, is known as a tumor-promoting lipid, but its signaling pathways are not fully understood. We here demonstrated that S1P induces rapid and transient tyrosine phosphorylation of epidermal growth factor receptor (EGFR) and c-Met in gastric cancer cells, both of which have been proposed as prognostic markers of gastric cancers. The pathway of S1P-induced c-Met transactivation is Gi-independent and matrix metalloproteinase-independent, which differs from that of EGFR transactivation. Our results indicate that S1P acts upstream of various RTKs and thus may act as a potent stimulator of gastric cancer.
Collapse
Affiliation(s)
- Dai Shida
- Department of Surgical Oncology, University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
116
|
Shida D, Kitayama J, Yamaguchi H, Hama K, Aoki J, Arai H, Yamashita H, Mori K, Sako A, Konishi T, Watanabe T, Sakai T, Suzuki R, Ohta H, Takuwa Y, Nagawa H. Dual mode regulation of migration by lysophosphatidic acid in human gastric cancer cells. Exp Cell Res 2005; 301:168-78. [PMID: 15530853 DOI: 10.1016/j.yexcr.2004.08.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2004] [Revised: 08/09/2004] [Indexed: 12/17/2022]
Abstract
Lysophosphatidic acid (LPA), which interacts with at least three G protein-coupled receptors (GPCRs), LPA1/Edg-2, LPA2/Edg-4, and LPA3/Edg-7, is a lipid mediator with diverse effects on various cells. Here, we investigated the expression profiles of LPA receptors and patterns of LPA-induced migration in gastric cancer cells. Northern blot analysis revealed that various gastric cancer cells expressed variable levels of LPA1, LPA2, and LPA3 without a consistent pattern. Using a Boyden chamber assay, LPA markedly increased cell migration of LPA1-expressing cells, the effects of which were almost totally abrogated by Ki16425, an LPA antagonist against LPA1 and LPA3. In contrast, LPA by itself did not significantly induce migration in MKN28 and MKN74 cells, which exclusively expressed LPA2. However, when hepatocyte growth factor (HGF) was placed with LPA in the lower chamber, LPA induced migration of these cells in a dose-dependent manner. Immunoprecipitation analysis revealed that LPA induced transient tyrosine phosphorylation of c-Met in LPA2-expressing cells, which suggests that the transactivation of c-Met by LPA causes a cooperative migratory response with HGF to these cells. Our results indicate that LPA regulates the migration of gastric cancer cells in a receptor-specific manner and suggest that the expression pattern of LPA receptors may affect the metastatic behavior of gastric cancer.
Collapse
Affiliation(s)
- Dai Shida
- Department of Surgical Oncology, University of Tokyo Graduate School of Medicine, Tokyo 113-8655, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|