101
|
Nie H, Crooijmans RPMA, Lammers A, van Schothorst EM, Keijer J, Neerincx PBT, Leunissen JAM, Megens HJ, Groenen MAM. Gene expression in chicken reveals correlation with structural genomic features and conserved patterns of transcription in the terrestrial vertebrates. PLoS One 2010; 5:e11990. [PMID: 20700537 PMCID: PMC2916831 DOI: 10.1371/journal.pone.0011990] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 07/13/2010] [Indexed: 11/26/2022] Open
Abstract
Background The chicken is an important agricultural and avian-model species. A survey of gene expression in a range of different tissues will provide a benchmark for understanding expression levels under normal physiological conditions in birds. With expression data for birds being very scant, this benchmark is of particular interest for comparative expression analysis among various terrestrial vertebrates. Methodology/Principal Findings We carried out a gene expression survey in eight major chicken tissues using whole genome microarrays. A global picture of gene expression is presented for the eight tissues, and tissue specific as well as common gene expression were identified. A Gene Ontology (GO) term enrichment analysis showed that tissue-specific genes are enriched with GO terms reflecting the physiological functions of the specific tissue, and housekeeping genes are enriched with GO terms related to essential biological functions. Comparisons of structural genomic features between tissue-specific genes and housekeeping genes show that housekeeping genes are more compact. Specifically, coding sequence and particularly introns are shorter than genes that display more variation in expression between tissues, and in addition intergenic space was also shorter. Meanwhile, housekeeping genes are more likely to co-localize with other abundantly or highly expressed genes on the same chromosomal regions. Furthermore, comparisons of gene expression in a panel of five common tissues between birds, mammals and amphibians showed that the expression patterns across tissues are highly similar for orthologuous genes compared to random gene pairs within each pair-wise comparison, indicating a high degree of functional conservation in gene expression among terrestrial vertebrates. Conclusions The housekeeping genes identified in this study have shorter gene length, shorter coding sequence length, shorter introns, and shorter intergenic regions, there seems to be selection pressure on economy in genes with a wide tissue distribution, i.e. these genes are more compact. A comparative analysis showed that the expression patterns of orthologous genes are conserved in the terrestrial vertebrates during evolution.
Collapse
Affiliation(s)
- Haisheng Nie
- Animal Breeding and Genomics Centre, Wageningen University, Wageningen, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
102
|
Levine MT, Eckert ML, Begun DJ. Whole-genome expression plasticity across tropical and temperate Drosophila melanogaster populations from Eastern Australia. Mol Biol Evol 2010; 28:249-56. [PMID: 20671040 DOI: 10.1093/molbev/msq197] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The genotypic signature of spatially varying selection is ubiquitous across the Drosophila melanogaster genome. Spatially structured adaptive phenotypic differences are also commonly found, particularly along New World and Australian latitudinal gradients. However, investigation of gene expression variation in one or multiple environments across these well-studied populations is surprisingly limited. Here, we report genome-wide transcript levels of tropical and temperate eastern Australian populations reared at two temperatures. As expected, a large number of genes exhibit geographic origin-dependent expression plasticity. Less expected was evidence for an enrichment of down-regulated genes in both temperate and tropical populations when lines were reared at the temperature less commonly encountered in the native range; that is, evidence for significant differences in a "directionality" of plasticity across these two climatic regions. We also report evidence of small scale "neighborhood effects" around those genes significant for geographic origin-dependent plasticity, a result consistent with the evolution of high level, likely chromatin based gene regulation during range expansion in D. melanogaster populations.
Collapse
Affiliation(s)
- Mia T Levine
- Department of Evolution and Ecology, University of California, Davis, USA.
| | | | | |
Collapse
|
103
|
Gene density profile reveals the marking of late replicated domains in the Drosophila melanogaster genome. Chromosoma 2010; 119:589-600. [PMID: 20602235 DOI: 10.1007/s00412-010-0280-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 06/04/2010] [Accepted: 06/07/2010] [Indexed: 10/19/2022]
Abstract
Regulation of replication timing has been a focus of many studies. It has been shown that numerous chromosomal regions switch their replication timing on cell differentiation in Drosophila and mice. However, it is not clear which features of these regions are essential for such regulation. In this study, we examined the organization of late underreplicated regions (URs) of the Drosophila melanogaster genome. When compared with their flanks, these regions showed decreased gene density. A detailed view revealed that these regions originate from unusual combination of short genes and long intergenic spacers. Furthermore, gene expression study showed that this pattern is mostly contributed by short testis-specific genes abundant in the URs. Based on these observations, we developed a genome scanning algorithm and identified 110 regions possessing similar gene density and transcriptional profiles. According to the published data, replication of these regions has been significantly shifted towards late S-phase in two Drosophila cell lines and in polytene chromosomes. Our results suggest that genomic organization of the underreplicated areas of Drosophila polytene chromosomes may be associated with the regulation of their replication timing.
Collapse
|
104
|
von Grotthuss M, Ashburner M, Ranz JM. Fragile regions and not functional constraints predominate in shaping gene organization in the genus Drosophila. Genome Res 2010; 20:1084-96. [PMID: 20601587 DOI: 10.1101/gr.103713.109] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
During evolution, gene repatterning across eukaryotic genomes is not uniform. Some genomic regions exhibit a gene organization conserved phylogenetically, while others are recurrently involved in chromosomal rearrangement, resulting in breakpoint reuse. Both gene order conservation and breakpoint reuse can result from the existence of functional constraints on where chromosomal breakpoints occur or from the existence of regions that are susceptible to breakage. The balance between these two mechanisms is still poorly understood. Drosophila species have very dynamic genomes and, therefore, can be very informative. We compared the gene organization of the main five chromosomal elements (Muller's elements A-E) of nine Drosophila species. Under a parsimonious evolutionary scenario, we estimate that 6116 breakpoints differentiate the gene orders of the species and that breakpoint reuse is associated with approximately 80% of the orthologous landmarks. The comparison of the observed patterns of change in gene organization with those predicted under different simulated modes of evolution shows that fragile regions alone can explain the observed key patterns of Muller's element A (X chromosome) more often than for any other Muller's element. High levels of fragility plus constraints operating on approximately 15% of the genome are sufficient to explain the observed patterns of change and conservation across species. The orthologous landmarks more likely to be under constraint exhibit both a remarkable internal functional heterogeneity and a lack of common functional themes with the exception of the presence of highly conserved noncoding elements. Fragile regions rather than functional constraints have been the main determinant of the evolution of the Drosophila chromosomes.
Collapse
Affiliation(s)
- Marcin von Grotthuss
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, California 92697, USA
| | | | | |
Collapse
|
105
|
Amthauer HA, Tsatsoulis C. Classifying genes to the correct Gene Ontology Slim term in Saccharomyces cerevisiae using neighbouring genes with classification learning. BMC Genomics 2010; 11:340. [PMID: 20509921 PMCID: PMC2890565 DOI: 10.1186/1471-2164-11-340] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Accepted: 05/28/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND There is increasing evidence that gene location and surrounding genes influence the functionality of genes in the eukaryotic genome. Knowing the Gene Ontology Slim terms associated with a gene gives us insight into a gene's functionality by informing us how its gene product behaves in a cellular context using three different ontologies: molecular function, biological process, and cellular component. In this study, we analyzed if we could classify a gene in Saccharomyces cerevisiae to its correct Gene Ontology Slim term using information about its location in the genome and information from its nearest-neighbouring genes using classification learning. RESULTS We performed experiments to establish that the MultiBoostAB algorithm using the J48 classifier could correctly classify Gene Ontology Slim terms of a gene given information regarding the gene's location and information from its nearest-neighbouring genes for training. Different neighbourhood sizes were examined to determine how many nearest neighbours should be included around each gene to provide better classification rules. Our results show that by just incorporating neighbour information from each gene's two-nearest neighbours, the percentage of correctly classified genes to their correct Gene Ontology Slim term for each ontology reaches over 80% with high accuracy (reflected in F-measures over 0.80) of the classification rules produced. CONCLUSIONS We confirmed that in classifying genes to their correct Gene Ontology Slim term, the inclusion of neighbour information from those genes is beneficial. Knowing the location of a gene and the Gene Ontology Slim information from neighbouring genes gives us insight into that gene's functionality. This benefit is seen by just including information from a gene's two-nearest neighbouring genes.
Collapse
Affiliation(s)
- Heather A Amthauer
- Department of Computer Science, Frostburg State University, Frostburg, Maryland, USA.
| | | |
Collapse
|
106
|
Dávila López M, Martínez Guerra JJ, Samuelsson T. Analysis of gene order conservation in eukaryotes identifies transcriptionally and functionally linked genes. PLoS One 2010; 5:e10654. [PMID: 20498846 PMCID: PMC2871058 DOI: 10.1371/journal.pone.0010654] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Accepted: 04/26/2010] [Indexed: 01/03/2023] Open
Abstract
The order of genes in eukaryotes is not entirely random. Studies of gene order conservation are important to understand genome evolution and to reveal mechanisms why certain neighboring genes are more difficult to separate during evolution. Here, genome-wide gene order information was compiled for 64 species, representing a wide variety of eukaryotic phyla. This information is presented in a browser where gene order may be displayed and compared between species. Factors related to non-random gene order in eukaryotes were examined by considering pairs of neighboring genes. The evolutionary conservation of gene pairs was studied with respect to relative transcriptional direction, intergenic distance and functional relationship as inferred by gene ontology. The results show that among gene pairs that are conserved the divergently and co-directionally transcribed genes are much more common than those that are convergently transcribed. Furthermore, highly conserved pairs, in particular those of fungi, are characterized by a short intergenic distance. Finally, gene pairs of metazoa and fungi that are evolutionary conserved and that are divergently transcribed are much more likely to be related by function as compared to poorly conserved gene pairs. One example is the ribosomal protein gene pair L13/S16, which is unusual as it occurs both in fungi and alveolates. A specific functional relationship between these two proteins is also suggested by the fact that they are part of the same operon in both eubacteria and archaea. In conclusion, factors associated with non-random gene order in eukaryotes include relative gene orientation, intergenic distance and functional relationships. It seems likely that certain pairs of genes are conserved because the genes involved have a transcriptional and/or functional relationship. The results also indicate that studies of gene order conservation aid in identifying genes that are related in terms of transcriptional control.
Collapse
Affiliation(s)
- Marcela Dávila López
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Göteborg, Sweden
| | - Juan José Martínez Guerra
- Departmento de Química, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Aguascalientes, Aguascalientes, Mexico
| | - Tore Samuelsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, Göteborg, Sweden
- * E-mail:
| |
Collapse
|
107
|
White-Cooper H. Molecular mechanisms of gene regulation during Drosophila spermatogenesis. Reproduction 2010; 139:11-21. [PMID: 19755484 DOI: 10.1530/rep-09-0083] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The differentiation of sperm from morphologically unremarkable cells into highly specialised free-living, motile cells requires the co-ordinated action of a very large number of gene products. The expression of these products must be regulated in a developmental context to ensure normal cellular differentiation. Many genes essential for spermatogenesis are not used elsewhere in the animal, or are expressed elsewhere, but using a different transcription regulation module. Spermatogenesis is thus a good system for elucidating the principles of tissue-specific gene expression, as well as being interesting in its own right. Here, I discuss the regulation of gene expression during spermatogenesis in Drosophila, focussing on the processes underlying the expression of testis-specific genes in the male germline.
Collapse
Affiliation(s)
- Helen White-Cooper
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK.
| |
Collapse
|
108
|
Nie H, Crooijmans RPMA, Bastiaansen JWM, Megens HJ, Groenen MAM. Regional regulation of transcription in the chicken genome. BMC Genomics 2010; 11:28. [PMID: 20074332 PMCID: PMC2817690 DOI: 10.1186/1471-2164-11-28] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Accepted: 01/14/2010] [Indexed: 12/02/2022] Open
Abstract
Background Over the past years, the relationship between gene transcription and chromosomal location has been studied in a number of different vertebrate genomes. Regional differences in gene expression have been found in several different species. The chicken genome, as the closest sequenced genome relative to mammals, is an important resource for investigating regional effects on transcription in birds and studying the regional dynamics of chromosome evolution by comparative analysis. Results We used gene expression data to survey eight chicken tissues and create transcriptome maps for all chicken chromosomes. The results reveal the presence of two distinct types of chromosomal regions characterized by clusters of highly or lowly expressed genes. Furthermore, these regions correlate highly with a number of genome characteristics. Regions with clusters of highly expressed genes have higher gene densities, shorter genes, shorter average intron and higher GC content compared to regions with clusters of lowly expressed genes. A comparative analysis between the chicken and human transcriptome maps constructed using similar panels of tissues suggests that the regions with clusters of highly expressed genes are relatively conserved between the two genomes. Conclusions Our results revealed the presence of a higher order organization of the chicken genome that affects gene expression, confirming similar observations in other species. These results will aid in the further understanding of the regional dynamics of chromosome evolution. The microarray data used in this analysis have been submitted to NCBI GEO database under accession number GSE17108. The reviewer access link is: http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=tjwjpscyceqawjk&acc=GSE17108
Collapse
Affiliation(s)
- Haisheng Nie
- Animal Breeding and Genomics Centre, Wageningen University, Marijkeweg 40, 6709 PG, Wageningen, the Netherlands
| | | | | | | | | |
Collapse
|
109
|
Contrasting patterns of transposable element insertions in Drosophila heat-shock promoters. PLoS One 2009; 4:e8486. [PMID: 20041194 PMCID: PMC2793543 DOI: 10.1371/journal.pone.0008486] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Accepted: 11/22/2009] [Indexed: 01/22/2023] Open
Abstract
The proximal promoter regions of heat-shock genes harbor a remarkable number of P transposable element (TE) insertions relative to both positive and negative control proximal promoter regions in natural populations of Drosophila melanogaster. We have screened the sequenced genomes of 12 species of Drosophila to test whether this pattern is unique to these populations. In the 12 species' genomes, transposable element insertions are no more abundant in promoter regions of single-copy heat-shock genes than in promoters with similar or dissimilar architecture. Also, insertions appear randomly distributed across the promoter region, whereas insertions clustered near the transcription start site in promoters of single-copy heat-shock genes in D. melanogaster natural populations. Hsp70 promoters exhibit more TE insertions per promoter than all other genesets in the 12 species, similarly to in natural populations of D. melanogaster. Insertions in the Hsp70 promoter region, however, cluster away from the transcription start site in the 12 species, but near it in natural populations of D. melanogaster. These results suggest that D. melanogaster heat-shock promoters are unique in terms of their interaction with transposable elements, and confirm that Hsp70 promoters are distinctive in TE insertions across Drosophila.
Collapse
|
110
|
Wallace HA, Plata MP, Kang HJ, Ross M, Labrador M. Chromatin insulators specifically associate with different levels of higher-order chromatin organization in Drosophila. Chromosoma 2009; 119:177-94. [PMID: 20033198 DOI: 10.1007/s00412-009-0246-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Revised: 10/20/2009] [Accepted: 10/30/2009] [Indexed: 01/08/2023]
Abstract
Chromatin insulators are required for proper temporal and spatial expression of genes in metazoans. Here, we have analyzed the distribution of insulator proteins on the 56F-58A region of chromosome 2R in Drosophila polytene chromosomes to assess the role of chromatin insulators in shaping genome architecture. Data show that the suppressor of Hairy-wing protein [Su(Hw)] is found in three structures differentially associated with insulator proteins: bands, interbands, and multi-gene domains of coexpressed genes. Results show that bands are generally formed by condensation of chromatin that belongs to genes containing one or more Su(Hw) binding sites, whereas, in interbands, Su(Hw) sites appear associated with open chromatin. In addition, clusters of coexpressed genes in this region form bands characterized by the lack of CP190 and BEAF-32 insulator proteins. This pattern correlates with the distribution of specific chromatin marks and is conserved in nurse cells, suggesting that this organization may not be limited to one cell type but represents the basic organization of interphasic chromosomes.
Collapse
Affiliation(s)
- Heather A Wallace
- Department of Biochemistry, Cellular and Molecular Biology, The University of Tennessee, M407 Walters Life Sciences, 1414 Cumberland Avenue, Knoxville, TN 37996, USA
| | | | | | | | | |
Collapse
|
111
|
Chen PY, Chang WSW, Lai YK, Wu CW. c-Myc regulates the coordinated transcription of brain disease-related PDCD10-SERPINI1 bidirectional gene pair. Mol Cell Neurosci 2009; 42:23-32. [PMID: 19442737 DOI: 10.1016/j.mcn.2009.05.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Revised: 04/05/2009] [Accepted: 05/04/2009] [Indexed: 10/20/2022] Open
Abstract
Two brain disease-related genes, one coding for the protease inhibitor SERPINI1 which is down-regulated in brain tumors, and the other for the PDCD10 programmed cell death gene which is often mutated in cerebral cavernous malformation, are closely adjacent in a head-to-head configuration and separated by only 851 bp on human chromosome 3q26. The 851-bp intergenic region contains a GC-rich 175-bp minimal bidirectional promoter which is essential for transcriptional activation of the two flanking genes. The oncogenic c-Myc transcription factor was identified to bind to a non-canonical E-box element (5'-CATGCG-3') of the minimal bidirectional promoter to drive both gene expressions. Methylation at the specific C nucleotide within the E-box sequence (5'-CATG(m)CG-3'), however, would severely interfere with the binding of c-Myc to the E-box. These results suggest that c-Myc plays an important role in regulating the coordinated transcription of the PDCD10-SERPINI1 bidirectional gene pair, and is possibly involved in differential expressions of these two neighboring genes in central nervous system diseases such as brain cancer.
Collapse
Affiliation(s)
- Ping-Yen Chen
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Miaoli County 35053, Taiwan, ROC
| | | | | | | |
Collapse
|
112
|
Sawarkar R, Visweswariah SS, Nellen W, Nanjundiah V. Histone deacetylases regulate multicellular development in the social amoeba Dictyostelium discoideum. J Mol Biol 2009; 391:833-48. [PMID: 19576222 DOI: 10.1016/j.jmb.2009.06.067] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 06/18/2009] [Accepted: 06/25/2009] [Indexed: 11/29/2022]
Abstract
Epigenetic modifications of histones regulate gene expression and lead to the establishment and maintenance of cellular phenotypes during development. Histone acetylation depends on a balance between the activities of histone acetyltransferases and histone deacetylases (HDACs) and influences transcriptional regulation. In this study, we analyse the roles of HDACs during growth and development of one of the cellular slime moulds, the social amoeba Dictyostelium discoideum. The inhibition of HDAC activity by trichostatin A results in histone hyperacetylation and a delay in cell aggregation and differentiation. Cyclic AMP oscillations are normal in starved amoebae treated with trichostatin A but the expression of a subset of cAMP-regulated genes is delayed. Bioinformatic analysis indicates that there are four genes encoding putative HDACs in D. discoideum. Using biochemical, genetic and developmental approaches, we demonstrate that one of these four genes, hdaB, is dispensable for growth and development under laboratory conditions. A knockout of the hdaB gene results in a social context-dependent phenotype: hdaB(-) cells develop normally but sporulate less efficiently than the wild type in chimeras. We infer that HDAC activity is important for regulating the timing of gene expression during the development of D. discoideum and for defining aspects of the phenotype that mediate social behaviour in genetically heterogeneous groups.
Collapse
Affiliation(s)
- Ritwick Sawarkar
- Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore, India.
| | | | | | | |
Collapse
|
113
|
Boutanaev AM, Postnikova OA, Nemchinov LG. Mapping of heterologous expressed sequence tags as an alternative to microarrays for study of defense responses in plants. BMC Genomics 2009; 10:273. [PMID: 19538747 PMCID: PMC2706895 DOI: 10.1186/1471-2164-10-273] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Accepted: 06/18/2009] [Indexed: 11/19/2022] Open
Abstract
Background Microarray technology helped to accumulate an immense pool of data on gene expression changes in response to different environmental factors. Yet, computer- generated gene profiling using expressed sequence tags (EST) represents a valuable alternative to microarrays, which allows efficient discovery of homologous sequences in evolutionarily different species and comparison of gene sets on the whole genome scale. In this study, we used publicly available EST database derived from different plant species infected with a variety of pathogens, to generate an expression profile of homologous genes involved in defense response of a model organism, Arabidopsis thaliana. Results EST-driven prediction identified 4,935 genes (16% of the total Arabidopsis genome) which, according to the origin of EST sets, were associated with defense responses in the reference genome. Profiles of defense-related genes, obtained by mapping of heterologous EST, represent putative Arabidopsis homologs of the corresponding species. Comparison of these profiles in pairs and locating common genes allowed estimating similarity between defense-related gene sets of different plant species. To experimentally support computer data, we arbitrarily selected a number of transcription factor genes (TF) detected by EST mapping. Their expression levels were examined by real-time polymerase chain reaction during infection with yellow strain of Cucumber mosaic virus, a compatible virus systemically infecting Arabidopsis. We observed that 65% of the designated TF were upregulated in accordance with the EST-generated profile. Conclusion We demonstrated that heterologous EST mapping may be efficiently used to reveal genes involved in host defense responses to pathogens. Upregulated genes identified in this study substantially overlap with those previously obtained by microarrays.
Collapse
Affiliation(s)
- Alexander M Boutanaev
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, Russia.
| | | | | |
Collapse
|
114
|
Li H, Xing X, Ding G, Li Q, Wang C, Xie L, Zeng R, Li Y. SysPTM: a systematic resource for proteomic research on post-translational modifications. Mol Cell Proteomics 2009; 8:1839-49. [PMID: 19366988 DOI: 10.1074/mcp.m900030-mcp200] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
With the rapid expansion of protein post-translational modification (PTM) research based on large-scale proteomic work, there is an increasing demand for a suitable repository to analyze PTM data. Here we present a curated, web-accessible PTM data base, SysPTM. SysPTM provides a systematic and sophisticated platform for proteomic PTM research equipped not only with a knowledge base of manually curated multi-type modification data but also with four fully developed, in-depth data mining tools. Currently, SysPTM contains data detailing 117,349 experimentally determined PTM sites on 33,421 proteins involving nearly 50 PTM types, curated from public resources including five data bases and four web servers and more than one hundred peer-reviewed mass spectrometry papers. Protein annotations including Pfam domains, KEGG pathways, GO functional classification, and ortholog groups are integrated into the data base. Four online tools have been developed and incorporated, including PTMBlast, to compare a user's PTM dataset with PTM data in SysPTM; PTMPathway, to map PTM proteins to KEGG pathways; PTMPhylog, to discover potentially conserved PTM sites; and PTMCluster, to find clusters of multi-site modifications. The workflow of SysPTM was demonstrated by analyzing an in-house phosphorylation dataset identified by MS/MS. It is shown that in SysPTM, the role of single-type and multi-type modifications can be systematically investigated in a full biological context. SysPTM could be an important contribution to modificomics research. SysPTM is freely available online at www.sysbio.ac.cn/SysPTM.
Collapse
Affiliation(s)
- Hong Li
- Key Lab of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | | | | | | | |
Collapse
|
115
|
Towbin BD, Meister P, Gasser SM. The nuclear envelope--a scaffold for silencing? Curr Opin Genet Dev 2009; 19:180-6. [PMID: 19303765 DOI: 10.1016/j.gde.2009.01.006] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2009] [Revised: 01/23/2009] [Accepted: 01/27/2009] [Indexed: 01/19/2023]
Abstract
An increasing number of studies indicate that chromosomes are spatially organized in the interphase nucleus and that some genes tend to occupy characteristic zones of the nuclear volume. FISH studies in mammalian cells suggest a differential localization of active and inactive loci, with inactive heterochromatin being largely perinuclear. Recent genome-wide mapping techniques confirm that the nuclear lamina, which lies beneath the nuclear envelope, interacts preferentially with silent genes. To address the functional significance of spatial compartmentation, gain-of-function assays in which chromatin is targeted to the nuclear periphery have now been carried out. Such experiments yielded coherent models in yeast; however, conflicting results in mammalian cells leave it unclear whether these concepts apply to higher organisms. Nevertheless, the recent discovery that evolutionarily conserved inner nuclear membrane proteins support the peripheral anchoring of yeast heterochromatin suggests that certain principles of nuclear organization may hold true from yeast to man.
Collapse
Affiliation(s)
- Benjamin D Towbin
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | | | | |
Collapse
|
116
|
Schwaiger M, Stadler MB, Bell O, Kohler H, Oakeley EJ, Schübeler D. Chromatin state marks cell-type- and gender-specific replication of the Drosophila genome. Genes Dev 2009; 23:589-601. [PMID: 19270159 DOI: 10.1101/gad.511809] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Duplication of eukaryotic genomes during S phase is coordinated in space and time. In order to identify zones of initiation and cell-type- as well as gender-specific plasticity of DNA replication, we profiled replication timing, histone acetylation, and transcription throughout the Drosophila genome. We observed two waves of replication initiation with many distinct zones firing in early-S phase and multiple, less defined peaks at the end of S phase, suggesting that initiation becomes more promiscuous in late-S phase. A comparison of different cell types revealed widespread plasticity of replication timing on autosomes. Most occur in large regions, but only half coincide with local differences in transcription. In contrast to confined autosomal differences, a global shift in replication timing occurs throughout the single male X chromosome. Unlike in females, the dosage-compensated X chromosome replicates almost exclusively early. This difference occurs at sites that are not transcriptionally hyperactivated, but show increased acetylation of Lys 16 of histone H4 (H4K16ac). This suggests a transcription-independent, yet chromosome-wide process related to chromatin. Importantly, H4K16ac is also enriched at initiation zones as well as early replicating regions on autosomes during S phase. Together, our study reveals novel organizational principles of DNA replication of the Drosophila genome and suggests that H4K16ac is more closely correlated with replication timing than is transcription.
Collapse
Affiliation(s)
- Michaela Schwaiger
- Friedrich Miescher Institute for Biomedical Research, CH-4058 Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
117
|
Duplicated proteasome subunit genes in Drosophila and their roles in spermatogenesis. Heredity (Edinb) 2009; 103:23-31. [PMID: 19277057 DOI: 10.1038/hdy.2009.23] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The proteasome is a large, multisubunit complex that acts as the cell's 'protein-degrading machine' in the ubiquitin-mediated proteolytic pathway for regulated protein turnover. Although proteasomes are usually thought of as being homogeneous structures, recent studies have revealed their more dynamic and heterogeneous nature. For example, in a number of plant and animal species, multiple isoforms of several proteasome subunits, encoded by paralogous genes, have been discovered, and in some cases, these alternative isoforms have been shown to be functionally distinct from their conventional counterparts. A particularly striking example of this phenomenon is seen in Drosophila melanogaster, where 12 of the 33 subunits that make up the 26S proteasome holoenzyme are represented in the genome by multiple paralogous genes. Remarkably, in every case, the 'extra' genes are expressed in a testis-specific manner. Here, we describe the extent and nature of these testis-specific gene duplications and discuss their functional significance, and speculate on why this situation might have evolved.
Collapse
|
118
|
The B-type lamin is required for somatic repression of testis-specific gene clusters. Proc Natl Acad Sci U S A 2009; 106:3282-7. [PMID: 19218438 DOI: 10.1073/pnas.0811933106] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Large clusters of coexpressed tissue-specific genes are abundant on chromosomes of diverse species. The genes coordinately misexpressed in diverse diseases are also found in similar clusters, suggesting that evolutionarily conserved mechanisms regulate expression of large multigenic regions both in normal development and in its pathological disruptions. Studies on individual loci suggest that silent clusters of coregulated genes are embedded in repressed chromatin domains, often localized to the nuclear periphery. To test this model at the genome-wide scale, we studied transcriptional regulation of large testis-specific gene clusters in somatic tissues of Drosophila. These gene clusters showed a drastic paucity of known expressed transgene insertions, indicating that they indeed are embedded in repressed chromatin. Bioinformatics analysis suggested the major role for the B-type lamin, LamDm(o), in repression of large testis-specific gene clusters, showing that in somatic cells as many as three-quarters of these clusters interact with LamDm(o). Ablation of LamDm(o) by using mutants and RNAi led to detachment of testis-specific clusters from nuclear envelope and to their selective transcriptional up-regulation in somatic cells, thus providing the first direct evidence for involvement of the B-type lamin in tissue-specific gene repression. Finally, we found that transcriptional activation of the lamina-bound testis-specific gene cluster in male germ line is coupled with its translocation away from the nuclear envelope. Our studies, which directly link nuclear architecture with coordinated regulation of tissue-specific genes, advance understanding of the mechanisms underlying both normal cell differentiation and developmental disorders caused by lesions in the B-type lamins and interacting proteins.
Collapse
|
119
|
Koonin EV. Evolution of genome architecture. Int J Biochem Cell Biol 2009; 41:298-306. [PMID: 18929678 PMCID: PMC3272702 DOI: 10.1016/j.biocel.2008.09.015] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Revised: 09/16/2008] [Accepted: 09/16/2008] [Indexed: 11/26/2022]
Abstract
Charles Darwin believed that all traits of organisms have been honed to near perfection by natural selection. The empirical basis underlying Darwin's conclusions consisted of numerous observations made by him and other naturalists on the exquisite adaptations of animals and plants to their natural habitats and on the impressive results of artificial selection. Darwin fully appreciated the importance of heredity but was unaware of the nature and, in fact, the very existence of genomes. A century and a half after the publication of the "Origin", we have the opportunity to draw conclusions from the comparisons of hundreds of genome sequences from all walks of life. These comparisons suggest that the dominant mode of genome evolution is quite different from that of the phenotypic evolution. The genomes of vertebrates, those purported paragons of biological perfection, turned out to be veritable junkyards of selfish genetic elements where only a small fraction of the genetic material is dedicated to encoding biologically relevant information. In sharp contrast, genomes of microbes and viruses are incomparably more compact, with most of the genetic material assigned to distinct biological functions. However, even in these genomes, the specific genome organization (gene order) is poorly conserved. The results of comparative genomics lead to the conclusion that the genome architecture is not a straightforward result of continuous adaptation but rather is determined by the balance between the selection pressure, that is itself dependent on the effective population size and mutation rate, the level of recombination, and the activity of selfish elements. Although genes and, in many cases, multigene regions of genomes possess elaborate architectures that ensure regulation of expression, these arrangements are evolutionarily volatile and typically change substantially even on short evolutionary scales when gene sequences diverge minimally. Thus, the observed genome architectures are, mostly, products of neutral processes or epiphenomena of more general selective processes, such as selection for genome streamlining in successful lineages with large populations. Selection for specific gene arrangements (elements of genome architecture) seems only to modulate the results of these processes.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD 20894, USA.
| |
Collapse
|
120
|
Xiao G, Reilly C, Khodursky AB. Improved Detection of Differentially Expressed Genes Through Incorporation of Gene Locations. Biometrics 2009; 65:805-14. [DOI: 10.1111/j.1541-0420.2008.01161.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
121
|
Ng YK, Wu W, Zhang L. Positive correlation between gene coexpression and positional clustering in the zebrafish genome. BMC Genomics 2009; 10:42. [PMID: 19159490 PMCID: PMC2654907 DOI: 10.1186/1471-2164-10-42] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Accepted: 01/22/2009] [Indexed: 11/10/2022] Open
Abstract
Background Co-expressing genes tend to cluster in eukaryotic genomes. This paper analyzes correlation between the proximity of eukaryotic genes and their transcriptional expression pattern in the zebrafish (Danio rerio) genome using available microarray data and gene annotation. Results The analyses show that neighbouring genes are significantly coexpressed in the zebrafish genome, and the coexpression level is influenced by the intergenic distance and transcription orientation. This fact is further supported by examining the coexpression level of genes within positional clusters in the neighbourhood model. There is a positive correlation between gene coexpression and positional clustering in the zebrafish genome. Conclusion The study provides another piece of evidence for the hypothesis that coexpressed genes do cluster in the eukaryotic genomes.
Collapse
Affiliation(s)
- Yen Kaow Ng
- Department of Mathematics, National University of Singapore, 2 Science Drive 2, Singapore 117543, Singapore.
| | | | | |
Collapse
|
122
|
Complex organizational structure of the genome revealed by genome-wide analysis of single and alternative promoters in Drosophila melanogaster. BMC Genomics 2009; 10:9. [PMID: 19128496 PMCID: PMC2631479 DOI: 10.1186/1471-2164-10-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Accepted: 01/07/2009] [Indexed: 12/31/2022] Open
Abstract
Background The promoter is a critical necessary transcriptional cis-regulatory element. In addition to its role as an assembly site for the basal transcriptional apparatus, the promoter plays a key part in mediating temporal and spatial aspects of gene expression through differential binding of transcription factors and selective interaction with distal enhancers. Although many genes have multiple promoters, little attention has been focused on how these relate to one another; nor has much study been directed at relationships between promoters of adjacent genes. Results We have undertaken a systematic investigation of Drosophila promoters. We divided promoters into three groups: unique promoters, first alternative promoters (the most 5' of a gene's multiple promoters), and downstream alternative promoters (the remaining alternative promoters 3' to the first). We observed distinct nucleotide distribution and sequence motif preferences among these three classes. We also investigated the promoters of neighboring genes and found that a greater than expected number of adjacent genes have similar sequence motif profiles, which may allow the genes to be regulated in a coordinated fashion. Consistent with this, there is a positive correlation between similar promoter motifs and related gene expression profiles for these genes. Conclusions Our results suggest that different regulatory mechanisms may apply to each of the three promoter classes, and provide a mechanism for "gene expression neighborhoods," local clusters of co-expressed genes. As a whole, our data reveal an unexpected complexity of genomic organization at the promoter level with respect to both alternative and neighboring promoters.
Collapse
|
123
|
Testicular Development and Spermatogenesis: Harvesting the Postgenomics Bounty. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 636:16-41. [DOI: 10.1007/978-0-387-09597-4_2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
124
|
Quijano C, Tomancak P, Lopez-Marti J, Suyama M, Bork P, Milan M, Torrents D, Manzanares M. Selective maintenance of Drosophila tandemly arranged duplicated genes during evolution. Genome Biol 2008; 9:R176. [PMID: 19087263 PMCID: PMC2646280 DOI: 10.1186/gb-2008-9-12-r176] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 10/15/2008] [Accepted: 12/16/2008] [Indexed: 02/06/2023] Open
Abstract
Genes occurring in conserved, tandemly-arrayed clusters in Drosophila melanogaster are co-expressed to a much higher extent than other duplicated genes. Background The physical organization and chromosomal localization of genes within genomes is known to play an important role in their function. Most genes arise by duplication and move along the genome by random shuffling of DNA segments. Higher order structuring of the genome occurs in eukaryotes, where groups of physically linked genes are co-expressed. However, the contribution of gene duplication to gene order has not been analyzed in detail, as it is believed that co-expression due to recent duplicates would obscure other domains of co-expression. Results We have catalogued ordered duplicated genes in Drosophila melanogaster, and found that one in five of all genes is organized as tandem arrays. Furthermore, among arrays that have been spatially conserved over longer periods than would be expected on the basis of random shuffling, a disproportionate number contain genes encoding developmental regulators. Using in situ gene expression data for more than half of the Drosophila genome, we find that genes in these conserved clusters are co-expressed to a much higher extent than other duplicated genes. Conclusions These results reveal the existence of functional constraints in insects that retain copies of genes encoding developmental and regulatory proteins as neighbors, allowing their co-expression. This co-expression may be the result of shared cis-regulatory elements or a shared need for a specific chromatin structure. Our results highlight the association between genome architecture and the gene regulatory networks involved in the construction of the body plan.
Collapse
Affiliation(s)
- Carlos Quijano
- Instituto de Investigaciones Biomédicas CSIC-UAM, Arturo Duperier 4, 28029 Madrid, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
125
|
de Wit E, van Steensel B. Chromatin domains in higher eukaryotes: insights from genome-wide mapping studies. Chromosoma 2008; 118:25-36. [PMID: 18853173 DOI: 10.1007/s00412-008-0186-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 09/22/2008] [Accepted: 09/23/2008] [Indexed: 01/22/2023]
Abstract
In genomes of higher eukaryotes, adjacent genes often show coordinated regulation of their expression. Compartmentalization of multiple neighboring genes into a shared chromatin environment can facilitate this coordinated expression. New mapping techniques have begun to reveal that such multigene chromatin domains are a common feature of fly and mammalian genomes. Many different types of chromatin domains have been identified based on the genomic binding patterns of various proteins and histone modifications. In addition, maps of genome-nuclear lamina associations and of looping interactions between loci provide the first systematic views of the three-dimensional folding of interphase chromosomes. These genome-wide datasets uncover new architectural principles of eukaryotic genomes and indicate that multigene chromatin domains are prevalent and important regulatory units.
Collapse
Affiliation(s)
- Elzo de Wit
- Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | |
Collapse
|
126
|
Blanco E, Pignatelli M, Beltran S, Punset A, Pérez-Lluch S, Serras F, Guigó R, Corominas M. Conserved chromosomal clustering of genes governed by chromatin regulators in Drosophila. Genome Biol 2008; 9:R134. [PMID: 18783608 PMCID: PMC2592712 DOI: 10.1186/gb-2008-9-9-r134] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Revised: 09/04/2008] [Accepted: 09/10/2008] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The trithorax group (trxG) and Polycomb group (PcG) proteins are responsible for the maintenance of stable transcriptional patterns of many developmental regulators. They bind to specific regions of DNA and direct the post-translational modifications of histones, playing a role in the dynamics of chromatin structure. RESULTS We have performed genome-wide expression studies of trx and ash2 mutants in Drosophila melanogaster. Using computational analysis of our microarray data, we have identified 25 clusters of genes potentially regulated by TRX. Most of these clusters consist of genes that encode structural proteins involved in cuticle formation. This organization appears to be a distinctive feature of the regulatory networks of TRX and other chromatin regulators, since we have observed the same arrangement in clusters after experiments performed with ASH2, as well as in experiments performed by others with NURF, dMyc, and ASH1. We have also found many of these clusters to be significantly conserved in D. simulans, D. yakuba, D. pseudoobscura and partially in Anopheles gambiae. CONCLUSION The analysis of genes governed by chromatin regulators has led to the identification of clusters of functionally related genes conserved in other insect species, suggesting this chromosomal organization is biologically important. Moreover, our results indicate that TRX and other chromatin regulators may act globally on chromatin domains that contain transcriptionally co-regulated genes.
Collapse
Affiliation(s)
- Enrique Blanco
- Departament de Genètica and Institut de Biomedicina de la Universitat de Barcelona, Universitat de Barcelona, Barcelona, Catalonia, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
127
|
Haerty W, Artieri C, Khezri N, Singh RS, Gupta BP. Comparative analysis of function and interaction of transcription factors in nematodes: extensive conservation of orthology coupled to rapid sequence evolution. BMC Genomics 2008; 9:399. [PMID: 18752680 PMCID: PMC2533025 DOI: 10.1186/1471-2164-9-399] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2008] [Accepted: 08/27/2008] [Indexed: 11/23/2022] Open
Abstract
Background Much of the morphological diversity in eukaryotes results from differential regulation of gene expression in which transcription factors (TFs) play a central role. The nematode Caenorhabditis elegans is an established model organism for the study of the roles of TFs in controlling the spatiotemporal pattern of gene expression. Using the fully sequenced genomes of three Caenorhabditid nematode species as well as genome information from additional more distantly related organisms (fruit fly, mouse, and human) we sought to identify orthologous TFs and characterized their patterns of evolution. Results We identified 988 TF genes in C. elegans, and inferred corresponding sets in C. briggsae and C. remanei, containing 995 and 1093 TF genes, respectively. Analysis of the three gene sets revealed 652 3-way reciprocal 'best hit' orthologs (nematode TF set), approximately half of which are zinc finger (ZF-C2H2 and ZF-C4/NHR types) and HOX family members. Examination of the TF genes in C. elegans and C. briggsae identified the presence of significant tandem clustering on chromosome V, the majority of which belong to ZF-C4/NHR family. We also found evidence for lineage-specific duplications and rapid evolution of many of the TF genes in the two species. A search of the TFs conserved among nematodes in Drosophila melanogaster, Mus musculus and Homo sapiens revealed 150 reciprocal orthologs, many of which are associated with important biological processes and human diseases. Finally, a comparison of the sequence, gene interactions and function indicates that nematode TFs conserved across phyla exhibit significantly more interactions and are enriched in genes with annotated mutant phenotypes compared to those that lack orthologs in other species. Conclusion Our study represents the first comprehensive genome-wide analysis of TFs across three nematode species and other organisms. The findings indicate substantial conservation of transcription factors even across distant evolutionary lineages and form the basis for future experiments to examine TF gene function in nematodes and other divergent phyla.
Collapse
Affiliation(s)
- Wilfried Haerty
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada.
| | | | | | | | | |
Collapse
|
128
|
Inda MA, van Batenburg MF, Roos M, Belloum ASZ, Vasunin D, Wibisono A, van Kampen AHC, Breit TM. SigWin-detector: a Grid-enabled workflow for discovering enriched windows of genomic features related to DNA sequences. BMC Res Notes 2008; 1:63. [PMID: 18710516 PMCID: PMC2533338 DOI: 10.1186/1756-0500-1-63] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Accepted: 08/08/2008] [Indexed: 11/16/2022] Open
Abstract
Background Chromosome location is often used as a scaffold to organize genomic information in both the living cell and molecular biological research. Thus, ever-increasing amounts of data about genomic features are stored in public databases and can be readily visualized by genome browsers. To perform in silico experimentation conveniently with this genomics data, biologists need tools to process and compare datasets routinely and explore the obtained results interactively. The complexity of such experimentation requires these tools to be based on an e-Science approach, hence generic, modular, and reusable. A virtual laboratory environment with workflows, workflow management systems, and Grid computation are therefore essential. Findings Here we apply an e-Science approach to develop SigWin-detector, a workflow-based tool that can detect significantly enriched windows of (genomic) features in a (DNA) sequence in a fast and reproducible way. For proof-of-principle, we utilize a biological use case to detect regions of increased and decreased gene expression (RIDGEs and anti-RIDGEs) in human transcriptome maps. We improved the original method for RIDGE detection by replacing the costly step of estimation by random sampling with a faster analytical formula for computing the distribution of the null hypothesis being tested and by developing a new algorithm for computing moving medians. SigWin-detector was developed using the WS-VLAM workflow management system and consists of several reusable modules that are linked together in a basic workflow. The configuration of this basic workflow can be adapted to satisfy the requirements of the specific in silico experiment. Conclusion As we show with the results from analyses in the biological use case on RIDGEs, SigWin-detector is an efficient and reusable Grid-based tool for discovering windows enriched for features of a particular type in any sequence of values. Thus, SigWin-detector provides the proof-of-principle for the modular e-Science based concept of integrative bioinformatics experimentation.
Collapse
Affiliation(s)
- Márcia A Inda
- Integrative Bioinformatics Unit, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, PO Box 94062, 1090 GB Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
129
|
Liao BY, Zhang J. Coexpression of linked genes in Mammalian genomes is generally disadvantageous. Mol Biol Evol 2008; 25:1555-65. [PMID: 18440951 PMCID: PMC2734128 DOI: 10.1093/molbev/msn101] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2008] [Indexed: 01/06/2023] Open
Abstract
Similarity in gene expression pattern between closely linked genes is known in several eukaryotes. Two models have been proposed to explain the presence of such coexpression patterns. The adaptive model assumes that coexpression is advantageous and is established by relocation of initially unlinked but coexpressed genes, whereas the neutral model asserts that coexpression is a type of leaky expression due to similar expressional environments of linked genes, but is neither advantageous nor detrimental. However, these models are incompatible with several empirical observations. Here, we propose that coexpression of linked genes is a form of transcriptional interference that is disadvantageous to the organism. We show that even distantly linked genes that are tens of megabases away exhibit significant coexpression in the human genome. However, the linkage is more likely to be broken during evolution between genes of high coexpression than those of low coexpression and the breakage of linkage reduces gene coexpression. These results support our hypothesis that coexpression of linked genes in mammalian genomes is generally disadvantageous, implying that many mammalian genes may never reach their optimal expression pattern due to the interference of their genomic environment and that such transcriptional interference may be a force promoting recurrent relocation of genes in the genome.
Collapse
Affiliation(s)
- Ben-Yang Liao
- Department of Ecology and Evolutionary Biology, University of Michigan, USA
| | | |
Collapse
|
130
|
Matsui A, Ishida J, Morosawa T, Mochizuki Y, Kaminuma E, Endo TA, Okamoto M, Nambara E, Nakajima M, Kawashima M, Satou M, Kim JM, Kobayashi N, Toyoda T, Shinozaki K, Seki M. Arabidopsis transcriptome analysis under drought, cold, high-salinity and ABA treatment conditions using a tiling array. PLANT & CELL PHYSIOLOGY 2008; 49:1135-49. [PMID: 18625610 DOI: 10.1093/pcp/pcn101] [Citation(s) in RCA: 334] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plants respond and adapt to drought, cold and high-salinity stresses in order to survive. In this study, we applied Arabidopsis Affymetrix tiling arrays to study the whole genome transcriptome under drought, cold, high-salinity and ABA treatment conditions. The bioinformatic analysis using the tiling array data showed that 7,719 non-AGI transcriptional units (TUs) exist in the unannotated "intergenic" regions of Arabidopsis genome. These include 1,275 and 181 TUs that are induced and downregulated, respectively, by the stress or ABA treatments. Most of the non-AGI TUs are hypothetical non-protein-coding RNAs. About 80% of the non-AGI TUs belong to pairs of the fully overlapping sense-antisense transcripts (fSATs). Significant linear correlation between the expression ratios (treated/untreated) of the sense TUs and the ratios of the antisense TUs was observed in the SATs of AGI code/non-AGI TU. We studied the biogenesis mechanisms of the stress- or ABA-inducible antisense RNAs and found that the expression of sense TUs is necessary for the stress- or ABA-inducible expression of the antisense TUs in the fSATs (AGI code/non-AGI TU).
Collapse
Affiliation(s)
- Akihiro Matsui
- Plant Genomic Network Research Team, Plant Functional Genomics Research Group, RIKEN Plant Science Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045 Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
131
|
Wegner KM. Clustering of Drosophila melanogaster immune genes in interplay with recombination rate. PLoS One 2008; 3:e2835. [PMID: 18665272 PMCID: PMC2475659 DOI: 10.1371/journal.pone.0002835] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2008] [Accepted: 07/07/2008] [Indexed: 11/19/2022] Open
Abstract
Background Gene order in eukaryotic chromosomes is not random and has been linked to coordination of gene expression, chromatin structure and also recombination rate. The evolution of recombination rate is especially relevant for genes involved in immunity because host-parasite co-evolution could select for increased recombination rate (Red Queen hypothesis). To identify patterns left by the intimate interaction between hosts and parasites, I analysed the genomic parameters of the immune genes from 24 gene families/groups of Drosophila melanogaster. Principal Findings Immune genes that directly interact with the pathogen (i.e. recognition and effector genes) clustered in regions of higher recombination rates. Out of these, clustered effector genes were transcribed fastest indicating that transcriptional control might be one major cause for cluster formation. The relative position of clusters to each other, on the other hand, cannot be explained by transcriptional control per se. Drosophila immune genes that show epistatic interactions can be found at an average distance of 15.44±2.98 cM, which is considerably closer than genes that do not interact (30.64±1.95 cM). Conclusions Epistatically interacting genes rarely belong to the same cluster, which supports recent models of optimal recombination rates between interacting genes in antagonistic host-parasite co-evolution. These patterns suggest that formation of local clusters might be a result of transcriptional control, but that in the condensed genome of D. melanogaster relative position of these clusters may be a result of selection for optimal rather than maximal recombination rates between these clusters.
Collapse
Affiliation(s)
- K Mathias Wegner
- Institute for Integrative Biology, Experimental Ecology, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
132
|
Dorus S, Freeman ZN, Parker ER, Heath BD, Karr TL. Recent origins of sperm genes in Drosophila. Mol Biol Evol 2008; 25:2157-66. [PMID: 18653731 DOI: 10.1093/molbev/msn162] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Newly created genes often acquire testis-specific or enhanced expression but neither the mechanisms responsible for this specificity nor the functional consequences of these evolutionary processes are well understood. Genomic analyses of the Drosophila melanogaster sperm proteome has identified 2 recently evolved gene families on the melanogaster lineage and 4 genes created by retrotransposition during the evolution of the melanogaster group that encode novel sperm components. The expanded Mst35B (protamine) and tektin gene families are the result of tandem duplication events with all family members displaying testis-specific expression. The Mst35B family encodes rapidly evolving protamines that display a robust signature of positive selection within the DNA-binding high-mobility group box consistent with functional diversification in genome repackaging during sperm nuclear remodeling. The Mst35B paralogs also reside in a significant regional cluster of testis-overexpressed genes. Tektins, known components of the axoneme, are encoded by 3 nearly identical X-linked genes, a finding consistent with very recent gene family expansion. In addition to localized duplication events, the evolution of the sperm proteome has also been driven by recent retrotransposition events resulting in Cdlc2, CG13340, Vha36, and CG4706. Cdlc2, CG13340, and Vha36 all display high levels of overexpression in the testis, and Cdlc2 and CG13340 reside within testis-overexpressed gene clusters. Thus, gene creation is a dynamic force in the evolution of sperm composition and possibly function, which further suggests that acquisition of molecular functionality in sperm may be an influential pathway in the fixation of new genes.
Collapse
Affiliation(s)
- Steve Dorus
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | | | | | | | | |
Collapse
|
133
|
Holohan EE, Kwong C, Adryan B, Bartkuhn M, Herold M, Renkawitz R, Russell S, White R. CTCF genomic binding sites in Drosophila and the organisation of the bithorax complex. PLoS Genet 2008; 3:e112. [PMID: 17616980 PMCID: PMC1904468 DOI: 10.1371/journal.pgen.0030112] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2007] [Accepted: 05/21/2007] [Indexed: 11/19/2022] Open
Abstract
Insulator or enhancer-blocking elements are proposed to play an important role in the regulation of transcription by preventing inappropriate enhancer/promoter interaction. The zinc-finger protein CTCF is well studied in vertebrates as an enhancer blocking factor, but Drosophila CTCF has only been characterised recently. To date only one endogenous binding location for CTCF has been identified in the Drosophila genome, the Fab-8 insulator in the Abdominal-B locus in the Bithorax complex (BX-C). We carried out chromatin immunopurification coupled with genomic microarray analysis to identify CTCF binding sites within representative regions of the Drosophila genome, including the 3-Mb Adh region, the BX-C, and the Antennapedia complex. Location of in vivo CTCF binding within these regions enabled us to construct a robust CTCF binding-site consensus sequence. CTCF binding sites identified in the BX-C map precisely to the known insulator elements Mcp, Fab-6, and Fab-8. Other CTCF binding sites correlate with boundaries of regulatory domains allowing us to locate three additional presumptive insulator elements; “Fab-2,” “Fab-3,” and “Fab-4.” With the exception of Fab-7, our data indicate that CTCF is directly associated with all known or predicted insulators in the BX-C, suggesting that the functioning of these insulators involves a common CTCF-dependent mechanism. Comparison of the locations of the CTCF sites with characterised Polycomb target sites and histone modification provides support for the domain model of BX-C regulation. There is still much to learn about the organisation of regulatory elements that control where, when, and how much individual genes in the genome are transcribed. Several types of regulatory element have been identified; some, such as enhancers, act over large genomic distances. This creates a problem: how do such long-range elements only regulate their appropriate target genes? Insulator elements have been proposed to act as barriers within the genome, confining the effects of long-range regulatory elements. Here we have mapped the locations of one insulator-binding protein, CTCF, in several regions of the Drosophila genome. In particular, we have focussed on the Hox gene cluster in the Bithorax complex; a region whose regulation has been extensively characterised. Previous investigations have identified independent regulatory domains that control the expression of Bithorax complex genes in different segments of the fly, however the molecular nature of the domain boundaries is unclear. Our major result is that we find CTCF binding sites precisely located at the boundaries of these regulatory domains, giving a common molecular basis for these boundaries. This provides a clear example of the link between the positioning of insulators and the organisation of gene regulation in the Drosophila genome.
Collapse
Affiliation(s)
- Eimear E Holohan
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Camilla Kwong
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Boris Adryan
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Marek Bartkuhn
- Institute for Genetics, Justus-Liebig-University Giessen, Giessen, Germany
| | - Martin Herold
- Institute for Genetics, Justus-Liebig-University Giessen, Giessen, Germany
| | - Rainer Renkawitz
- Institute for Genetics, Justus-Liebig-University Giessen, Giessen, Germany
| | - Steven Russell
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Robert White
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
134
|
Bai Y, Casola C, Betrán E. Evolutionary origin of regulatory regions of retrogenes in Drosophila. BMC Genomics 2008; 9:241. [PMID: 18498650 PMCID: PMC2413143 DOI: 10.1186/1471-2164-9-241] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Accepted: 05/22/2008] [Indexed: 12/29/2022] Open
Abstract
Background Retrogenes are processed copies of other genes. This duplication mechanism produces a copy of the parental gene that should not contain introns, and usually does not contain cis-regulatory regions. Here, we computationally address the evolutionary origin of promoter and other cis-regulatory regions in retrogenes using a total of 94 Drosophila retroposition events we recently identified. Previous tissue expression data has revealed that a large fraction of these retrogenes are specifically and/or highly expressed in adult testes of Drosophila. Results In this work, we infer that retrogenes do not generally carry regulatory regions from aberrant upstream or normal transcripts of their parental genes, and that expression patterns of neighboring genes are not consistently shared by retrogenes. Additionally, transposable elements do not appear to substantially provide regulatory regions to retrogenes. Interestingly, we find that there is an excess of retrogenes in male testis neighborhoods that is not explained by insertional biases of the retroelement machinery used for retroposition. Conclusion We conclude that retrogenes' regulatory regions mostly do not represent a random set of existing regulatory regions. On the contrary, our conclusion is that selection is likely to have played an important role in the persistence of autosomal testis biased retrogenes. Selection in favor of retrogenes inserted in male testis neighborhoods and at the sequence level to produce testis expression is postulated to have occurred.
Collapse
Affiliation(s)
- Yongsheng Bai
- Department of Biology, University of Texas at Arlington, Arlington, TX, USA.
| | | | | |
Collapse
|
135
|
Belyaeva ES, Andreyeva EN, Belyakin SN, Volkova EI, Zhimulev IF. Intercalary heterochromatin in polytene chromosomes of Drosophila melanogaster. Chromosoma 2008; 117:411-8. [PMID: 18491121 DOI: 10.1007/s00412-008-0163-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Revised: 03/06/2008] [Accepted: 04/10/2008] [Indexed: 01/06/2023]
Abstract
Intercalary heterochromatin consists of extended chromosomal domains which are interspersed throughout the euchromatin and contain silent genetic material. These domains comprise either clusters of functionally unrelated genes or tandem gene duplications and possibly stretches of noncoding sequences. Strong repression of genetic activity means that intercalary heterochromatin displays properties that are normally attributable to classic pericentric heterochromatin: high compaction, late replication and underreplication in polytene chromosomes, and the presence of heterochromatin-specific proteins. Late replication and underreplication occurs when the suppressor of underreplication protein is present in intercalary heterochromatic regions. Intercalary heterochromatin underreplication in polytene chromosomes results in free double-stranded ends of DNA molecules; ligation of these free ends is the most likely mechanism for ectopic pairing between intercalary heterochromatic and pericentric heterochromatic regions. No support has been found for the view that the frequency of chromosome aberrations is elevated in intercalary heterochromatin.
Collapse
Affiliation(s)
- E S Belyaeva
- Institute of Cytology and Genetics, Prospekt Lavrentyeva 10, Novosibirsk 630090, Russia
| | | | | | | | | |
Collapse
|
136
|
Mikhaylova LM, Nguyen K, Nurminsky DI. Analysis of the Drosophila melanogaster testes transcriptome reveals coordinate regulation of paralogous genes. Genetics 2008; 179:305-15. [PMID: 18493055 PMCID: PMC2390609 DOI: 10.1534/genetics.107.080267] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2007] [Accepted: 02/25/2008] [Indexed: 01/29/2023] Open
Abstract
Gene duplications have been broadly implicated in the generation of testis-specific genes. To perform a comprehensive analysis of paralogous testis-biased genes, we characterized the testes transcriptome of Drosophila melanogaster by comparing gene expression in testes vs. ovaries, heads, and gonadectomized males. A number of the identified 399 testis-biased genes code for the known components of mature sperm. Among the detected 69 genes downregulated in testes, a large fraction is required for viability. By analyzing paralogs of testis-biased genes, we identified "co-regulated" paralogous pairs in which both genes are testis biased, "anti-regulated" pairs in which one paralog is testis biased and the other downregulated in testes, and "neutral" pairs in which one paralog is testis biased and the other constitutively expressed. The numbers of identified co-regulated and anti-regulated pairs were higher than expected by chance. Testis-biased genes included in these pairs show decreased frequency of lethal mutations, suggesting their specific role in male reproduction. These genes also show exceptionally high interspecific variability of expression in comparison between D. melanogaster and the closely related D. simulans. Further, interspecific changes in testis bias of expression are generally correlated within the co-regulated pairs and are anti-correlated within the anti-regulated pairs, suggesting coordinated regulation within both types of paralogous gene pairs.
Collapse
Affiliation(s)
- Lyudmila M Mikhaylova
- Department of Anatomy and Cellular Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | | | | |
Collapse
|
137
|
Transcription factor and microRNA motif discovery: the Amadeus platform and a compendium of metazoan target sets. Genome Res 2008; 18:1180-9. [PMID: 18411406 DOI: 10.1101/gr.076117.108] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We present a threefold contribution to the computational task of motif discovery, a key component in the effort of delineating the regulatory map of a genome: (1) We constructed a comprehensive large-scale, publicly-available compendium of transcription factor and microRNA target gene sets derived from diverse high-throughput experiments in several metazoans. We used the compendium as a benchmark for motif discovery tools. (2) We developed Amadeus, a highly efficient, user-friendly software platform for genome-scale detection of novel motifs, applicable to a wide range of motif discovery tasks. Amadeus improves upon extant tools in terms of accuracy, running time, output information, and ease of use and is the only program that attained a high success rate on the metazoan compendium. (3) We demonstrate that by searching for motifs based on their genome-wide localization or chromosomal distributions (without using a predefined target set), Amadeus uncovers diverse known phenomena, as well as novel regulatory motifs.
Collapse
|
138
|
Tanis KQ, Duman RS, Newton SS. CREB binding and activity in brain: regional specificity and induction by electroconvulsive seizure. Biol Psychiatry 2008; 63:710-20. [PMID: 17936724 PMCID: PMC3691692 DOI: 10.1016/j.biopsych.2007.08.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2007] [Revised: 07/28/2007] [Accepted: 08/01/2007] [Indexed: 12/12/2022]
Abstract
BACKGROUND The transcription factor cyclic adenosine monophosphate response element binding protein (CREB) orchestrates diverse neurobiological processes including cell differentiation, survival, and plasticity. Alterations in CREB-mediated transcription have been implicated in numerous central nervous system (CNS) disorders including depression, anxiety, addiction, and cognitive decline. However, it remains unclear how CREB contributes to normal and aberrant CNS function, as the identity of CREB-regulated genes in brain and the regional and temporal dynamics of CREB function remain largely undetermined. METHODS We combined microarray and chromatin immunoprecipitation technology to analyze CREB-DNA interactions in brain. We compared the occupancy and activity of CREB at gene promoters in rat frontal cortex, hippocampus, and striatum before and after a rodent model of electroconvulsive therapy. RESULTS Our analysis identified >860 CREB binding sites in rat brain. We identified multiple genomic loci enriched with CREB binding sites and find that CREB-occupied transcripts interact extensively to promote cell proliferation, plasticity, and resiliency. We discovered regional differences in CREB occupancy and activity that explain, in part, the diverse biological and behavioral outputs of CREB activity in frontal cortex, hippocampus, and striatum. Electroconvulsive seizure rapidly increased CREB occupancy and/or phosphorylation at select promoters, demonstrating that both events contribute to the temporal regulation of the CREB transcriptome. CONCLUSIONS Our data provide a mechanistic basis for CREB's ability to integrate regional and temporal cues to orchestrate state-specific patterns of transcription in the brain, indicate that CREB is an important mediator of the biological responses to electroconvulsive seizure, and provide global mechanistic insights into CREB's role in psychiatric and cognitive function.
Collapse
Affiliation(s)
- Keith Quincy Tanis
- Division of Molecular Psychiatry, Abraham Ribibcoff Research Facilities, Department of Psychiatry and Pharmacology, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | |
Collapse
|
139
|
Shoguchi E, Hamaguchi M, Satoh N. Genome-wide network of regulatory genes for construction of a chordate embryo. Dev Biol 2008; 316:498-509. [DOI: 10.1016/j.ydbio.2008.01.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2007] [Revised: 12/29/2007] [Accepted: 01/09/2008] [Indexed: 11/26/2022]
|
140
|
de Wit E, Braunschweig U, Greil F, Bussemaker HJ, van Steensel B. Global chromatin domain organization of the Drosophila genome. PLoS Genet 2008; 4:e1000045. [PMID: 18369463 PMCID: PMC2274884 DOI: 10.1371/journal.pgen.1000045] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Accepted: 02/29/2008] [Indexed: 01/30/2023] Open
Abstract
In eukaryotes, neighboring genes can be packaged together in specific chromatin structures that ensure their coordinated expression. Examples of such multi-gene chromatin domains are well-documented, but a global view of the chromatin organization of eukaryotic genomes is lacking. To systematically identify multi-gene chromatin domains, we constructed a compendium of genome-scale binding maps for a broad panel of chromatin-associated proteins in Drosophila melanogaster. Next, we computationally analyzed this compendium for evidence of multi-gene chromatin domains using a novel statistical segmentation algorithm. We find that at least 50% of all fly genes are organized into chromatin domains, which often consist of dozens of genes. The domains are characterized by various known and novel combinations of chromatin proteins. The genes in many of the domains are coregulated during development and tend to have similar biological functions. Furthermore, during evolution fewer chromosomal rearrangements occur inside chromatin domains than outside domains. Our results indicate that a substantial portion of the Drosophila genome is packaged into functionally coherent, multi-gene chromatin domains. This has broad mechanistic implications for gene regulation and genome evolution. Genes are packaged into chromatin by a variety of specialized proteins. Many different types of chromatin exist, and each may regulate gene expression in different ways. It was previously observed that neighboring genes are sometimes packaged together into a single type of chromatin, which can facilitate their coordinated regulation. However, it has been unclear whether such multi-gene chromatin domains are exceptional, or may occur more frequently. Here, we report a systematic analysis of genome-wide binding patterns of a large set of chromatin components in the fruit fly Drosophila melanogaster. Strikingly, we find that at least 50% of all genes in this organism are packaged together with several of their neighboring genes into a single type of chromatin. Each chromatin domain can include dozens of genes and can be made up of different combinations of chromatin proteins. We show that genes in each domain often have similar functions and are coordinately expressed during development. Moreover, we find that many of these multi-gene domains have been kept intact during evolution, indicating that they are important functional units. In summary, multi-gene chromatin domains are much more common than previously thought, and they are likely to play important roles in the orchestration of gene expression.
Collapse
Affiliation(s)
- Elzo de Wit
- Department of Molecular Biology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ulrich Braunschweig
- Department of Molecular Biology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Frauke Greil
- Department of Molecular Biology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Harmen J. Bussemaker
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
- * E-mail: (HJB); (BvS)
| | - Bas van Steensel
- Department of Molecular Biology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- * E-mail: (HJB); (BvS)
| |
Collapse
|
141
|
Coexpression, coregulation, and cofunctionality of neighboring genes in eukaryotic genomes. Genomics 2008; 91:243-8. [DOI: 10.1016/j.ygeno.2007.11.002] [Citation(s) in RCA: 214] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Revised: 11/09/2007] [Accepted: 11/10/2007] [Indexed: 02/03/2023]
|
142
|
Zhu D, Hero AO, Qin ZS, Swaroop A. High throughput screening of co-expressed gene pairs with controlled false discovery rate (FDR) and minimum acceptable strength (MAS). J Comput Biol 2008; 12:1029-45. [PMID: 16201920 DOI: 10.1089/cmb.2005.12.1029] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Many exploratory microarray data analysis tools such as gene clustering and relevance networks rely on detecting pairwise gene co-expression. Traditional screening of pairwise co-expression either controls biological significance or statistical significance, but not both. The former approach does not provide stochastic error control, and the later approach screens many co-expressions with excessively low correlation. We have designed and implemented a statistically sound two-stage co-expression detection algorithm that controls both statistical significance (false discovery rate, FDR) and biological significance (minimum acceptable strength, MAS) of the discovered co-expressions. Based on estimation of pairwise gene correlation, the algorithm provides an initial co-expression discovery that controls only FDR, which is then followed by a second stage co-expression discovery which controls both FDR and MAS. It also computes and thresholds the set of FDR p-values for each correlation that satisfied the MAS criterion. Using simulated data, we validated asymptotic null distributions of the Pearson and Kendall correlation coefficients and the two-stage error-control procedure; we also compared our two-stage test procedure with another two-stage test procedure using the receiver operating characteristic (ROC) curve. We then used yeast galactose metabolism data to illustrate the advantage of our method for clustering genes and constructing a relevance network. The method has been implemented in an R package "GeneNT" that is freely available from the Comprehensive R Archive Network (CRAN): www.cran.r-project.org/.
Collapse
Affiliation(s)
- Dongxiao Zhu
- Bioinformatics Program, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | | | |
Collapse
|
143
|
Pal S, Wu J, Wu LP. Microarray analyses reveal distinct roles for Rel proteins in the Drosophila immune response. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2008; 32:50-60. [PMID: 17537510 PMCID: PMC2225591 DOI: 10.1016/j.dci.2007.04.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2007] [Revised: 03/28/2007] [Accepted: 04/08/2007] [Indexed: 05/15/2023]
Abstract
The NF-kappaB group of transcription factors play an important role in mediating immune responses in organisms as diverse as insects and mammals. The fruit fly Drosophila melanogaster express three closely related NF-kappaB-like transcription factors: Dorsal, Dif, and Relish. To study their roles in vivo, we used microarrays to determine the effect of null mutations in individual Rel transcription factors on larval immune gene expression. Of the 188 genes that were significantly up-regulated in wild-type larvae upon bacterial challenge, overlapping but distinct groups of genes were affected in the Rel mutants. We also ectopically expressed Dorsal or Dif and used cDNA microarrays to determine the genes that were up-regulated in the presence of these transcription factors. This expression was sufficient to drive expression of some immune genes, suggesting redundancy in the regulation of these genes. Combining this data, we also identified novel genes that may be specific targets of Dif.
Collapse
Affiliation(s)
- Subhamoy Pal
- Center for Biosystems Research, University of Maryland Biotechnology Institute, 5115 Plant Sciences Bldg., College Park MD 20742, USA
| | - Junlin Wu
- Center for Biosystems Research, University of Maryland Biotechnology Institute, 5115 Plant Sciences Bldg., College Park MD 20742, USA
| | - Louisa P. Wu
- Center for Biosystems Research, University of Maryland Biotechnology Institute, 5115 Plant Sciences Bldg., College Park MD 20742, USA
- Corresponding Author: Louisa P. Wu E-mail: Phone: (301) 405 5151 Fax: (301) 314 9075
| |
Collapse
|
144
|
Spitz F, Duboule D. Global control regions and regulatory landscapes in vertebrate development and evolution. ADVANCES IN GENETICS 2008; 61:175-205. [PMID: 18282506 DOI: 10.1016/s0065-2660(07)00006-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During the course of evolution, many genes that control the development of metazoan body plans were co-opted to exert novel functions, along with the emergence or modification of structures. Gene amplification and/or changes in the cis-regulatory modules responsible for the transcriptional activity of these genes have certainly contributed in a major way to evolution of gene functions. In some cases, these processes led to the formation of groups of adjacent genes that appear to be controlled by both global and shared mechanisms.
Collapse
Affiliation(s)
- Francois Spitz
- Developmental Biology Unit, EMBL, 69117 Heidelberg, Germany
| | | |
Collapse
|
145
|
Baker DA, Meadows LA, Wang J, Dow JA, Russell S. Variable sexually dimorphic gene expression in laboratory strains of Drosophila melanogaster. BMC Genomics 2007; 8:454. [PMID: 18070343 PMCID: PMC2244638 DOI: 10.1186/1471-2164-8-454] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Accepted: 12/10/2007] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Wild-type laboratory strains of model organisms are typically kept in isolation for many years, with the action of genetic drift and selection on mutational variation causing lineages to diverge with time. Natural populations from which such strains are established, show that gender-specific interactions in particular drive many aspects of sequence level and transcriptional level variation. Here, our goal was to identify genes that display transcriptional variation between laboratory strains of Drosophila melanogaster, and to explore evidence of gender-biased interactions underlying that variability. RESULTS Transcriptional variation among the laboratory genotypes studied occurs more frequently in males than in females. Qualitative differences are also apparent to suggest that genes within particular functional classes disproportionately display variation in gene expression. Our analysis indicates that genes with reproductive functions are most often divergent between genotypes in both sexes, however a large proportion of female variation can also be attributed to genes without expression in the ovaries. CONCLUSION The present study clearly shows that transcriptional variation between common laboratory strains of Drosophila can differ dramatically due to sexual dimorphism. Much of this variation reflects sex-specific challenges associated with divergent physiological trade-offs, morphology and regulatory pathways operating within males and females.
Collapse
Affiliation(s)
- Dean A Baker
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB1 3QA, UK.
| | | | | | | | | |
Collapse
|
146
|
|
147
|
Ranz JM, Maurin D, Chan YS, von Grotthuss M, Hillier LW, Roote J, Ashburner M, Bergman CM. Principles of genome evolution in the Drosophila melanogaster species group. PLoS Biol 2007; 5:e152. [PMID: 17550304 PMCID: PMC1885836 DOI: 10.1371/journal.pbio.0050152] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Accepted: 04/02/2007] [Indexed: 12/19/2022] Open
Abstract
That closely related species often differ by chromosomal inversions was discovered by Sturtevant and Plunkett in 1926. Our knowledge of how these inversions originate is still very limited, although a prevailing view is that they are facilitated by ectopic recombination events between inverted repetitive sequences. The availability of genome sequences of related species now allows us to study in detail the mechanisms that generate interspecific inversions. We have analyzed the breakpoint regions of the 29 inversions that differentiate the chromosomes of Drosophila melanogaster and two closely related species, D. simulans and D. yakuba, and reconstructed the molecular events that underlie their origin. Experimental and computational analysis revealed that the breakpoint regions of 59% of the inversions (17/29) are associated with inverted duplications of genes or other nonrepetitive sequences. In only two cases do we find evidence for inverted repetitive sequences in inversion breakpoints. We propose that the presence of inverted duplications associated with inversion breakpoint regions is the result of staggered breaks, either isochromatid or chromatid, and that this, rather than ectopic exchange between inverted repetitive sequences, is the prevalent mechanism for the generation of inversions in the melanogaster species group. Outgroup analysis also revealed evidence for widespread breakpoint recycling. Lastly, we have found that expression domains in D. melanogaster may be disrupted in D. yakuba, bringing into question their potential adaptive significance. The organization of genes on chromosomes changes over evolutionary time. In some organisms, such as fruit flies and mosquitoes, inversions of chromosome regions are widespread. This has been associated with adaptation to environmental pressures and speciation. However, the mechanisms by which inversions are generated at the molecular level are poorly understood. The prevailing view involves the interactions of sequences that are moderately repeated in the genome. Here, we use molecular and computational methods to study 29 inversions that differentiate the chromosomes of three closely related fruit fly species. We find little support for a causal role of repetitive sequences in the origin of inversions and, instead, detect the presence of inverted duplications of ancestrally unique sequences (generally protein-coding genes) in the breakpoint regions of many inversions. This leads us to propose an alternative model in which the generation of inversions is coupled with the generation of duplications of flanking sequences. Additionally, we find evidence for genomic regions that are prone to breakage, being associated with inversions generated independently during the evolution of the ancestors of existing species. Chromosomal inversion breakpoints were compared between three closely related Drosophila species. Many are associated with inverted gene duplications, suggesting that the prevalent mechanism for their generation involves staggered breakpoints.
Collapse
Affiliation(s)
- José M Ranz
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
148
|
Roze LV, Arthur AE, Hong SY, Chanda A, Linz JE. The initiation and pattern of spread of histone H4 acetylation parallel the order of transcriptional activation of genes in the aflatoxin cluster. Mol Microbiol 2007; 66:713-26. [PMID: 17919289 DOI: 10.1111/j.1365-2958.2007.05952.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The 27 genes involved in aflatoxin biosynthesis are clustered within a 70 kb region in the Aspergillus parasiticus genome. Using chromatin immunoprecipitation, we demonstrated a positive correlation between the initiation and spread of histone H4 acetylation in aflatoxin promoters and the onset of accumulation of aflatoxin proteins and aflatoxin. Histone H4 acetylation in the pksA (encodes an 'early' biosynthetic pathway enzyme) promoter peaked at 30 h, prior to the increased acetylation in the omtA and ordA (encode 'late' enzymes) promoters detected at 40 h. The specific order in which pksA, ver-1 (encodes a 'middle' enzyme) and omtA transcripts accumulated in cells paralleled the pattern of spread of histone H4 acetylation. Binding of AflR, a positive regulator of aflatoxin biosynthesis, to the ordA promoter showed a positive correlation with the spread of histone H4 acetylation. The data suggest that the order of genes within the aflatoxin cluster determines the timing and order of transcriptional activation, and that the site of initiation and spread of histone H4 acetylation mediate this process. Our data indicate that the aflatoxin and adjacent sugar utilization clusters are part of a larger 'regulatory unit'.
Collapse
Affiliation(s)
- Ludmila V Roze
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | | | |
Collapse
|
149
|
Dottorini T, Nicolaides L, Ranson H, Rogers DW, Crisanti A, Catteruccia F. A genome-wide analysis in Anopheles gambiae mosquitoes reveals 46 male accessory gland genes, possible modulators of female behavior. Proc Natl Acad Sci U S A 2007; 104:16215-20. [PMID: 17901209 PMCID: PMC2042187 DOI: 10.1073/pnas.0703904104] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The male accessory glands (MAGs) of many insect species produce and secrete a number of reproductive proteins collectively named Acps. These proteins, many of which are rapidly evolving, are essential for male fertility and represent formidable modulators of female postmating behavior. Upon copulation, the transfer of Acps has been shown in Drosophila and other insects to trigger profound physiological and behavioral changes in females, including enhanced ovulation/oviposition and reduced mating receptivity. In Anopheles gambiae mosquitoes, the principal vectors of human malaria, experimental evidence clearly demonstrates a key role of MAG products in inducing female responses. However, no Acp has been experimentally identified to date in this or in any other mosquito species. In this study we report on the identification of 46 MAG genes from An. gambiae, 25 of which are male reproductive tract-specific. This was achieved through a combination of bioinformatics searches and manual annotation confirmed by transcriptional profiling. Among these genes are the homologues of 40% of the Drosophila Acps analyzed, including Acp70A, or sex peptide, which in the fruit fly is the principal modulator of female postmating behavior. Although many Anopheles Acps belong to the same functional classes reported for Drosophila, suggesting a conserved role for these proteins in mosquitoes, some represent novel lineage-specific Acps that may have evolved to perform functions relevant to Anopheles reproductive behavior. Our findings imply that the molecular basis of Anopheles female postmating responses can now be studied, opening novel avenues for the field control of these important vectors of human disease.
Collapse
Affiliation(s)
- Tania Dottorini
- *Dipartimento di Medicina Sperimentale e Scienze Biochimiche, Università degli Studi di Perugia, Via Del Giochetto, 06122 Perugia, Italy; and
| | - Lietta Nicolaides
- Division of Cell and Molecular Biology, Imperial College London, Imperial College Road, London SW7 2AZ, United Kingdom
| | - Hilary Ranson
- Division of Cell and Molecular Biology, Imperial College London, Imperial College Road, London SW7 2AZ, United Kingdom
| | - David W. Rogers
- Division of Cell and Molecular Biology, Imperial College London, Imperial College Road, London SW7 2AZ, United Kingdom
| | - Andrea Crisanti
- Division of Cell and Molecular Biology, Imperial College London, Imperial College Road, London SW7 2AZ, United Kingdom
| | - Flaminia Catteruccia
- Division of Cell and Molecular Biology, Imperial College London, Imperial College Road, London SW7 2AZ, United Kingdom
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
150
|
Carney GE. A rapid genome-wide response to Drosophila melanogaster social interactions. BMC Genomics 2007; 8:288. [PMID: 17714588 PMCID: PMC1999498 DOI: 10.1186/1471-2164-8-288] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Accepted: 08/22/2007] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The actions and reactions integral to mate recognition and reproduction are examples of multifaceted behaviors for which we are only beginning to comprehend the underlying genetic and molecular complexity. I hypothesized that social interactions, such as those involved in reproductive behaviors, would lead to immediate and assayable changes in gene expression. Such changes may have important effects on individual reproductive success and fitness through alterations in physiology or via short-term or long-term changes in nervous system function. RESULTS I used Affymetrix Drosophila Genome arrays to identify genes whose expression profiles would change rapidly due to the social interactions occurring during Drosophila melanogaster courtship. I identified 43 loci with significant expression profile changes during a 5-min exposure period. These results indicate that social interactions can lead to extremely rapid changes in mRNA abundance. CONCLUSION The known functions of the up-regulated genes identified in this study include nervous system signaling and spermatogenesis, while the majority of down-regulated loci are implicated in immune signaling. Expression of two of the up-regulated genes, Odorant-binding protein 99b (Obp99b) and female-specific independent of transformer (fit), is controlled by the Drosophila sex-determination gene hierarchy, which regulates male and female mating behaviors and somatic differentiation. Therefore, additional identified loci may represent other long-elusive targets of Drosophila sex-determination genes.
Collapse
Affiliation(s)
- Ginger E Carney
- Department of Biology, Texas A&M University, College Station, TX, USA.
| |
Collapse
|