101
|
Fine-Tuning of the Actin Cytoskeleton and Cell Adhesion During Drosophila Development by the Unconventional Guanine Nucleotide Exchange Factors Myoblast City and Sponge. Genetics 2015; 200:551-67. [PMID: 25908317 DOI: 10.1534/genetics.115.177063] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 04/18/2015] [Indexed: 01/03/2023] Open
Abstract
The evolutionarily conserved Dock proteins function as unconventional guanine nucleotide exchange factors (GEFs). Upon binding to engulfment and cell motility (ELMO) proteins, Dock-ELMO complexes activate the Rho family of small GTPases to mediate a diverse array of biological processes, including cell motility, apoptotic cell clearance, and axon guidance. Overlapping expression patterns and functional redundancy among the 11 vertebrate Dock family members, which are subdivided into four families (Dock A, B, C, and D), complicate genetic analysis. In both vertebrate and invertebrate systems, the actin dynamics regulator, Rac, is the target GTPase of the Dock-A subfamily. However, it remains unclear whether Rac or Rap1 are the in vivo downstream GTPases of the Dock-B subfamily. Drosophila melanogaster is an excellent genetic model organism for understanding Dock protein function as its genome encodes one ortholog per subfamily: Myoblast city (Mbc; Dock A) and Sponge (Spg; Dock B). Here we show that the roles of Spg and Mbc are not redundant in the Drosophila somatic muscle or the dorsal vessel. Moreover, we confirm the in vivo role of Mbc upstream of Rac and provide evidence that Spg functions in concert with Rap1, possibly to regulate aspects of cell adhesion. Together these data show that Mbc and Spg can have different downstream GTPase targets. Our findings predict that the ability to regulate downstream GTPases is dependent on cellular context and allows for the fine-tuning of actin cytoskeletal or cell adhesion events in biological processes that undergo cell morphogenesis.
Collapse
|
102
|
Stonko DP, Manning L, Starz-Gaiano M, Peercy BE. A mathematical model of collective cell migration in a three-dimensional, heterogeneous environment. PLoS One 2015; 10:e0122799. [PMID: 25875645 PMCID: PMC4395426 DOI: 10.1371/journal.pone.0122799] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 02/13/2015] [Indexed: 12/30/2022] Open
Abstract
Cell migration is essential in animal development, homeostasis, and disease progression, but many questions remain unanswered about how this process is controlled. While many kinds of individual cell movements have been characterized, less effort has been directed towards understanding how clusters of cells migrate collectively through heterogeneous, cellular environments. To explore this, we have focused on the migration of the border cells during Drosophila egg development. In this case, a cluster of different cell types coalesce and traverse as a group between large cells, called nurse cells, in the center of the egg chamber. We have developed a new model for this collective cell migration based on the forces of adhesion, repulsion, migration and stochastic fluctuation to generate the movement of discrete cells. We implement the model using Identical Math Cells, or IMCs. IMCs can each represent one biological cell of the system, or can be aggregated using increased adhesion forces to model the dynamics of larger biological cells. The domain of interest is filled with IMCs, each assigned specific biophysical properties to mimic a diversity of cell types. Using this system, we have successfully simulated the migration of the border cell cluster through an environment filled with larger cells, which represent nurse cells. Interestingly, our simulations suggest that the forces utilized in this model are sufficient to produce behaviors of the cluster that are observed in vivo, such as rotation. Our framework was developed to capture a heterogeneous cell population, and our implementation strategy allows for diverse, but precise, initial position specification over a three- dimensional domain. Therefore, we believe that this model will be useful for not only examining aspects of Drosophila oogenesis, but also for modeling other two or three-dimensional systems that have multiple cell types and where investigating the forces between cells is of interest.
Collapse
Affiliation(s)
- David P. Stonko
- Department of Mathematics and Statistics, University of Maryland Baltimore County, MD, USA
| | - Lathiena Manning
- Department of Biological Sciences, University of Maryland Baltimore County, MD, USA
| | | | - Bradford E. Peercy
- Department of Mathematics and Statistics, University of Maryland Baltimore County, MD, USA
- * E-mail:
| |
Collapse
|
103
|
Westcott JM, Prechtl AM, Maine EA, Dang TT, Esparza MA, Sun H, Zhou Y, Xie Y, Pearson GW. An epigenetically distinct breast cancer cell subpopulation promotes collective invasion. J Clin Invest 2015; 125:1927-43. [PMID: 25844900 DOI: 10.1172/jci77767] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 02/27/2015] [Indexed: 12/21/2022] Open
Abstract
Tumor cells can engage in a process called collective invasion, in which cohesive groups of cells invade through interstitial tissue. Here, we identified an epigenetically distinct subpopulation of breast tumor cells that have an enhanced capacity to collectively invade. Analysis of spheroid invasion in an organotypic culture system revealed that these "trailblazer" cells are capable of initiating collective invasion and promote non-trailblazer cell invasion, indicating a commensal relationship among subpopulations within heterogenous tumors. Canonical mesenchymal markers were not sufficient to distinguish trailblazer cells from non-trailblazer cells, suggesting that defining the molecular underpinnings of the trailblazer phenotype could reveal collective invasion-specific mechanisms. Functional analysis determined that DOCK10, ITGA11, DAB2, PDFGRA, VASN, PPAP2B, and LPAR1 are highly expressed in trailblazer cells and required to initiate collective invasion, with DOCK10 essential for metastasis. In patients with triple-negative breast cancer, expression of these 7 genes correlated with poor outcome. Together, our results indicate that spontaneous conversion of the epigenetic state in a subpopulation of cells can promote a transition from in situ to invasive growth through induction of a cooperative form of collective invasion and suggest that therapeutic inhibition of trailblazer cell invasion may help prevent metastasis.
Collapse
|
104
|
Sopko R, Lin YB, Makhijani K, Alexander B, Perrimon N, Brückner K. A systems-level interrogation identifies regulators of Drosophila blood cell number and survival. PLoS Genet 2015; 11:e1005056. [PMID: 25749252 PMCID: PMC4352040 DOI: 10.1371/journal.pgen.1005056] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 02/05/2015] [Indexed: 12/12/2022] Open
Abstract
In multicellular organisms, cell number is typically determined by a balance of intracellular signals that positively and negatively regulate cell survival and proliferation. Dissecting these signaling networks facilitates the understanding of normal development and tumorigenesis. Here, we study signaling by the Drosophila PDGF/VEGF Receptor (Pvr) in embryonic blood cells (hemocytes) and in the related cell line Kc as a model for the requirement of PDGF/VEGF receptors in vertebrate cell survival and proliferation. The system allows the investigation of downstream and parallel signaling networks, based on the ability of Pvr to activate Ras/Erk, Akt/TOR, and yet-uncharacterized signaling pathway/s, which redundantly mediate cell survival and contribute to proliferation. Using Kc cells, we performed a genome wide RNAi screen for regulators of cell number in a sensitized, Pvr deficient background. We identified the receptor tyrosine kinase (RTK) Insulin-like receptor (InR) as a major Pvr Enhancer, and the nuclear hormone receptors Ecdysone receptor (EcR) and ultraspiracle (usp), corresponding to mammalian Retinoid X Receptor (RXR), as Pvr Suppressors. In vivo analysis in the Drosophila embryo revealed a previously unrecognized role for EcR to promote apoptotic death of embryonic blood cells, which is balanced with pro-survival signaling by Pvr and InR. Phosphoproteomic analysis demonstrates distinct modes of cell number regulation by EcR and RTK signaling. We define common phosphorylation targets of Pvr and InR that include regulators of cell survival, and unique targets responsible for specialized receptor functions. Interestingly, our analysis reveals that the selection of phosphorylation targets by signaling receptors shows qualitative changes depending on the signaling status of the cell, which may have wide-reaching implications for other cell regulatory systems.
Collapse
Affiliation(s)
- Richelle Sopko
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - You Bin Lin
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, California, United States of America
| | - Kalpana Makhijani
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, California, United States of America
| | - Brandy Alexander
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, California, United States of America
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Boston, Massachusetts, United States of America
| | - Katja Brückner
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, California, United States of America
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, California, United States of America
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, United States of America
| |
Collapse
|
105
|
Leader cells regulate collective cell migration via Rac activation in the downstream signaling of integrin β1 and PI3K. Sci Rep 2015; 5:7656. [PMID: 25563751 PMCID: PMC5379035 DOI: 10.1038/srep07656] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Accepted: 12/03/2014] [Indexed: 01/19/2023] Open
Abstract
Collective cell migration plays a crucial role in several biological processes, such as embryonic development, wound healing, and cancer metastasis. Here, we focused on collectively migrating Madin-Darby Canine Kidney (MDCK) epithelial cells that follow a leader cell on a collagen gel to clarify the mechanism of collective cell migration. First, we removed a leader cell from the migrating collective with a micromanipulator. This then caused disruption of the cohesive migration of cells that followed in movement, called “follower” cells, which showed the importance of leader cells. Next, we observed localization of active Rac, integrin β1, and PI3K. These molecules were clearly localized in the leading edge of leader cells, but not in follower cells. Live cell imaging using active Rac and active PI3K indicators was performed to elucidate the relationship between Rac, integrin β1, and PI3K. Finally, we demonstrated that the inhibition of these molecules resulted in the disruption of collective migration. Our findings not only demonstrated the significance of a leader cell in collective cell migration, but also showed that Rac, integrin β1, and PI3K are upregulated in leader cells and drive collective cell migration.
Collapse
|
106
|
Gline S, Kaplan N, Bernadskaya Y, Abdu Y, Christiaen L. Surrounding tissues canalize motile cardiopharyngeal progenitors towards collective polarity and directed migration. Development 2015; 142:544-54. [PMID: 25564651 DOI: 10.1242/dev.115444] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Collectively migrating cells maintain group polarity and interpret external cues to reach their destination. The cardiogenic progenitors (also known as trunk ventral cells, TVCs) of the ascidian Ciona intestinalis provide a simple chordate model with which to study collective migration. Bilateral pairs of associated TVCs undergo a stereotyped polarized migration away from the tail towards the ventral trunk, arguably constituting the simplest possible example of directed collective migration. To identify tissues contributing to TVC polarity and migration, we quantified the contact between TVCs and surrounding tissues, and blocked the secretory pathway in a tissue-specific manner. Even though TVCs normally migrate as an invariably determined leader-trailer polarized pair of adherent cells, they are capable of migrating individually, albeit a shorter distance and with altered morphology. The mesenchyme contacts newborn TVCs and contributes to robust specification of the trailer but appears to have only minor effects on directed migration. The notochord does not contact the TVCs but contributes to the onset of migration. The trunk endoderm first contacts the leader TVC, then 'encases' both migrating cells and provides the inputs maintaining leader-trailer polarity. Migrating TVCs adhere to the epidermis and need this contact for their cohesion. These phenomenological studies reveal that inherently motile cardiopharyngeal progenitors are channeled into stereotyped behaviors by interactions with surrounding tissues.
Collapse
Affiliation(s)
- Stephanie Gline
- Center for Developmental Genetics, Department of Biology, New York University, NY 10003, USA
| | - Nicole Kaplan
- Center for Developmental Genetics, Department of Biology, New York University, NY 10003, USA
| | - Yelena Bernadskaya
- Center for Developmental Genetics, Department of Biology, New York University, NY 10003, USA
| | - Yusuff Abdu
- Center for Developmental Genetics, Department of Biology, New York University, NY 10003, USA
| | - Lionel Christiaen
- Center for Developmental Genetics, Department of Biology, New York University, NY 10003, USA
| |
Collapse
|
107
|
Manning L, Starz-Gaiano M. Culturing Drosophila Egg Chambers and Investigating Developmental Processes Through Live Imaging. Methods Mol Biol 2015; 1328:73-88. [PMID: 26324430 DOI: 10.1007/978-1-4939-2851-4_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Drosophila oogenesis provides many examples of essential processes in development. A myriad of genetic tools combined with recent advances in culturing egg chambers ex vivo has revealed several surprising mechanisms that govern how this tissue develops, and which could not have been determined in fixed tissues. Here we describe a straightforward protocol for dissecting ovaries, culturing egg chambers, and observing egg development in real time by fluorescent microscopy. This technique is suitable for observation of early- or late-stage egg development, and can be adapted to study a variety of cellular, molecular, or developmental processes. Ongoing analysis of oogenesis in living egg chambers has tremendous potential for discovery of new developmental mechanisms.
Collapse
Affiliation(s)
- Lathiena Manning
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, MD, 21250, USA
| | | |
Collapse
|
108
|
Prasad M, Wang X, He L, Cai D, Montell DJ. Border Cell Migration: A Model System for Live Imaging and Genetic Analysis of Collective Cell Movement. Methods Mol Biol 2015; 1328:89-97. [PMID: 26324431 DOI: 10.1007/978-1-4939-2851-4_6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Border cell migration in the Drosophila ovary has emerged as a genetically tractable model for studying collective cell movement. Over many years border cell migration was exclusively studied in fixed samples due to the inability to culture stage 9 egg chambers in vitro. Although culturing late-stage egg chambers was long feasible, stage 9 egg chambers survived only briefly outside the female body. We identified culture conditions that support stage 9 egg chamber development and sustain complete migration of border cells ex vivo. This protocol enables one to compare the dynamics of egg chamber development in wild-type and mutant egg chambers using time-lapse microscopy and taking advantage of a multiposition microscope with a motorized imaging stage. In addition, this protocol has been successfully used in combination with fluorescence resonance energy transfer biosensors, photo-activatable proteins, and pharmacological agents and can be used with wide-field or confocal microscopes in either an upright or an inverted configuration.
Collapse
Affiliation(s)
- Mohit Prasad
- Department of Biological Chemistry, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | | | | | | | | |
Collapse
|
109
|
Feng H, Li Y, Yin Y, Zhang W, Hou Y, Zhang L, Li Z, Xie B, Gao WQ, Sarkaria JN, Raizer JJ, James CD, Parsa AT, Hu B, Cheng SY. Protein kinase A-dependent phosphorylation of Dock180 at serine residue 1250 is important for glioma growth and invasion stimulated by platelet derived-growth factor receptor α. Neuro Oncol 2014; 17:832-42. [PMID: 25468898 DOI: 10.1093/neuonc/nou323] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Accepted: 10/30/2014] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Dedicator of cytokinesis 1 (Dock1 or Dock180), a bipartite guanine nucleotide exchange factor for Rac1, plays critical roles in receptor tyrosine kinase-stimulated cancer growth and invasion. Dock180 activity is required in cell migration cancer tumorigenesis promoted by platelet derived growth factor receptor (PDGFR) and epidermal growth factor receptor. METHODS To demonstrate whether PDGFRα promotes tumor malignant behavior through protein kinase A (PKA)-dependent serine phosphorylation of Dock180, we performed cell proliferation, viability, migration, immunoprecipitation, immunoblotting, colony formation, and in vivo tumorigenesis assays using established and short-term explant cultures of glioblastoma cell lines. RESULTS Stimulation of PDGFRα results in phosphorylation of Dock180 at serine residue 1250 (S1250), whereas PKA inhibitors H-89 and KT5720 oppose this phosphorylation. S1250 locates within the Rac1-binding Dock homology region 2 domain of Dock180, and its phosphorylation activates Rac1, p-Akt, and phosphorylated extracellular signal-regulated kinase 1/2, while promoting cell migration, in vitro. By expressing RNA interference (RNAi)-resistant wild-type Dock180, but not mutant Dock180 S1250L, we were able to rescue PDGFRα-associated signaling and biological activities in cultured glioblastoma multiforme (GBM) cells that had been treated with RNAi for suppression of endogenous Dock180. In addition, expression of the same RNAi-resistant Dock180 rescued an invasive phenotype of GBM cells following intracranial engraftment in immunocompromised mice. CONCLUSION These data describe an important mechanism by which PDGFRα promotes glioma malignant phenotypes through PKA-dependent serine phosphorylation of Dock180, and the data thereby support targeting the PDGFRα-PKA-Dock180-Rac1 axis for treating GBM with molecular profiles indicating PDGFRα signaling dependency.
Collapse
Affiliation(s)
- Haizhong Feng
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (H.F., W.Z., Y.H., L.Z., Z.L., W.-Q.G., S.-Y.C.); Department of Neurology, Northwestern Brain Tumor Institute, Center for Genetic Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois (H.F., J.J.R., B.H., S.-Y.C.); Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (Y.L.); Department of Neurological Surgery (Y.Y., B.X.); Department of Radiotherapy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (Y.H.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (J.N.S.); Department of Neurological Surgery, Northwestern Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois (C.D.J., A.T.P.)
| | - Yanxin Li
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (H.F., W.Z., Y.H., L.Z., Z.L., W.-Q.G., S.-Y.C.); Department of Neurology, Northwestern Brain Tumor Institute, Center for Genetic Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois (H.F., J.J.R., B.H., S.-Y.C.); Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (Y.L.); Department of Neurological Surgery (Y.Y., B.X.); Department of Radiotherapy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (Y.H.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (J.N.S.); Department of Neurological Surgery, Northwestern Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois (C.D.J., A.T.P.)
| | - Yuhua Yin
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (H.F., W.Z., Y.H., L.Z., Z.L., W.-Q.G., S.-Y.C.); Department of Neurology, Northwestern Brain Tumor Institute, Center for Genetic Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois (H.F., J.J.R., B.H., S.-Y.C.); Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (Y.L.); Department of Neurological Surgery (Y.Y., B.X.); Department of Radiotherapy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (Y.H.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (J.N.S.); Department of Neurological Surgery, Northwestern Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois (C.D.J., A.T.P.)
| | - Weiwei Zhang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (H.F., W.Z., Y.H., L.Z., Z.L., W.-Q.G., S.-Y.C.); Department of Neurology, Northwestern Brain Tumor Institute, Center for Genetic Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois (H.F., J.J.R., B.H., S.-Y.C.); Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (Y.L.); Department of Neurological Surgery (Y.Y., B.X.); Department of Radiotherapy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (Y.H.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (J.N.S.); Department of Neurological Surgery, Northwestern Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois (C.D.J., A.T.P.)
| | - Yanli Hou
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (H.F., W.Z., Y.H., L.Z., Z.L., W.-Q.G., S.-Y.C.); Department of Neurology, Northwestern Brain Tumor Institute, Center for Genetic Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois (H.F., J.J.R., B.H., S.-Y.C.); Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (Y.L.); Department of Neurological Surgery (Y.Y., B.X.); Department of Radiotherapy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (Y.H.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (J.N.S.); Department of Neurological Surgery, Northwestern Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois (C.D.J., A.T.P.)
| | - Lei Zhang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (H.F., W.Z., Y.H., L.Z., Z.L., W.-Q.G., S.-Y.C.); Department of Neurology, Northwestern Brain Tumor Institute, Center for Genetic Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois (H.F., J.J.R., B.H., S.-Y.C.); Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (Y.L.); Department of Neurological Surgery (Y.Y., B.X.); Department of Radiotherapy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (Y.H.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (J.N.S.); Department of Neurological Surgery, Northwestern Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois (C.D.J., A.T.P.)
| | - Zuoqing Li
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (H.F., W.Z., Y.H., L.Z., Z.L., W.-Q.G., S.-Y.C.); Department of Neurology, Northwestern Brain Tumor Institute, Center for Genetic Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois (H.F., J.J.R., B.H., S.-Y.C.); Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (Y.L.); Department of Neurological Surgery (Y.Y., B.X.); Department of Radiotherapy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (Y.H.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (J.N.S.); Department of Neurological Surgery, Northwestern Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois (C.D.J., A.T.P.)
| | - Baoshu Xie
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (H.F., W.Z., Y.H., L.Z., Z.L., W.-Q.G., S.-Y.C.); Department of Neurology, Northwestern Brain Tumor Institute, Center for Genetic Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois (H.F., J.J.R., B.H., S.-Y.C.); Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (Y.L.); Department of Neurological Surgery (Y.Y., B.X.); Department of Radiotherapy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (Y.H.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (J.N.S.); Department of Neurological Surgery, Northwestern Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois (C.D.J., A.T.P.)
| | - Wei-Qiang Gao
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (H.F., W.Z., Y.H., L.Z., Z.L., W.-Q.G., S.-Y.C.); Department of Neurology, Northwestern Brain Tumor Institute, Center for Genetic Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois (H.F., J.J.R., B.H., S.-Y.C.); Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (Y.L.); Department of Neurological Surgery (Y.Y., B.X.); Department of Radiotherapy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (Y.H.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (J.N.S.); Department of Neurological Surgery, Northwestern Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois (C.D.J., A.T.P.)
| | - Jann N Sarkaria
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (H.F., W.Z., Y.H., L.Z., Z.L., W.-Q.G., S.-Y.C.); Department of Neurology, Northwestern Brain Tumor Institute, Center for Genetic Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois (H.F., J.J.R., B.H., S.-Y.C.); Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (Y.L.); Department of Neurological Surgery (Y.Y., B.X.); Department of Radiotherapy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (Y.H.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (J.N.S.); Department of Neurological Surgery, Northwestern Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois (C.D.J., A.T.P.)
| | - Jeffery J Raizer
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (H.F., W.Z., Y.H., L.Z., Z.L., W.-Q.G., S.-Y.C.); Department of Neurology, Northwestern Brain Tumor Institute, Center for Genetic Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois (H.F., J.J.R., B.H., S.-Y.C.); Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (Y.L.); Department of Neurological Surgery (Y.Y., B.X.); Department of Radiotherapy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (Y.H.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (J.N.S.); Department of Neurological Surgery, Northwestern Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois (C.D.J., A.T.P.)
| | - C David James
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (H.F., W.Z., Y.H., L.Z., Z.L., W.-Q.G., S.-Y.C.); Department of Neurology, Northwestern Brain Tumor Institute, Center for Genetic Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois (H.F., J.J.R., B.H., S.-Y.C.); Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (Y.L.); Department of Neurological Surgery (Y.Y., B.X.); Department of Radiotherapy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (Y.H.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (J.N.S.); Department of Neurological Surgery, Northwestern Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois (C.D.J., A.T.P.)
| | - Andrew T Parsa
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (H.F., W.Z., Y.H., L.Z., Z.L., W.-Q.G., S.-Y.C.); Department of Neurology, Northwestern Brain Tumor Institute, Center for Genetic Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois (H.F., J.J.R., B.H., S.-Y.C.); Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (Y.L.); Department of Neurological Surgery (Y.Y., B.X.); Department of Radiotherapy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (Y.H.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (J.N.S.); Department of Neurological Surgery, Northwestern Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois (C.D.J., A.T.P.)
| | - Bo Hu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (H.F., W.Z., Y.H., L.Z., Z.L., W.-Q.G., S.-Y.C.); Department of Neurology, Northwestern Brain Tumor Institute, Center for Genetic Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois (H.F., J.J.R., B.H., S.-Y.C.); Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (Y.L.); Department of Neurological Surgery (Y.Y., B.X.); Department of Radiotherapy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (Y.H.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (J.N.S.); Department of Neurological Surgery, Northwestern Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois (C.D.J., A.T.P.)
| | - Shi-Yuan Cheng
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (H.F., W.Z., Y.H., L.Z., Z.L., W.-Q.G., S.-Y.C.); Department of Neurology, Northwestern Brain Tumor Institute, Center for Genetic Medicine, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois (H.F., J.J.R., B.H., S.-Y.C.); Key Laboratory of Pediatric Hematology and Oncology Ministry of Health, Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (Y.L.); Department of Neurological Surgery (Y.Y., B.X.); Department of Radiotherapy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China (Y.H.); Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota (J.N.S.); Department of Neurological Surgery, Northwestern Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois (C.D.J., A.T.P.)
| |
Collapse
|
110
|
Kang KS, Lee HC, Kim HJ, Lee HG, Kim YM, Lee HJ, Park YH, Yang SY, Rengaraj D, Park TS, Han JY. Spatial and temporal action of chicken primordial germ cells during initial migration. Reproduction 2014; 149:179-87. [PMID: 25550524 DOI: 10.1530/rep-14-0433] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In most animals, primordial germ cells (PGCs) originate from an extragonadal region and migrate across the embryo to the gonads, where they differentiate and function. During their migration, PGCs move passively by morphogenetic movement of the embryo or move actively through signaling molecules. To uncover the underlying mechanism of first-phase PGC migration toward the germinal crescent in chickens, we investigated the spatial and temporal action of PGCs during primitive streak formation. Exogenously transplanted PGCs migrated toward the anterior region of the embryo and the embryonic gonads when they were transplanted into the subgerminal cavity, but not into the posterior marginal zone, in Eyal-Giladi and Kochav stage X embryos. These results indicate that for passive migration toward the anterior region the initial location of PGCs should be the central region. Notably, although PGCs and DF-1 cells migrated passively toward the anterior region, only PGCs migrated to the germinal crescent, where endogenous PGCs mainly reside, by active movement. In a live-imaging experiment with green fluorescence protein-expressing transgenic embryos, exogenous PGCs demonstrated markedly faster migration when they reached the anterior one-third of the embryo, while somatic cells showed epiblast movement with constant speed. Also, migrating PGCs exhibited successive contraction and expansion indicating their active migration. Our results suggest that chicken PGCs use sequential passive and active forces to migrate toward the germinal crescent.
Collapse
Affiliation(s)
- Kyung Soo Kang
- Department of Agricultural BiotechnologyCollege of Agriculture and Life Sciences, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, KoreaDepartment of Animal Science and TechnologyChung-Ang University, Anseong 456-756, KoreaGraduate School of International Agricultural Technology and Institute of Green-Bio Science and TechnologySeoul National University, Pyeongchang-gun, Gangwon-do, Seoul 232-916, Korea
| | - Hyung Chul Lee
- Department of Agricultural BiotechnologyCollege of Agriculture and Life Sciences, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, KoreaDepartment of Animal Science and TechnologyChung-Ang University, Anseong 456-756, KoreaGraduate School of International Agricultural Technology and Institute of Green-Bio Science and TechnologySeoul National University, Pyeongchang-gun, Gangwon-do, Seoul 232-916, Korea
| | - Hyun Jeong Kim
- Department of Agricultural BiotechnologyCollege of Agriculture and Life Sciences, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, KoreaDepartment of Animal Science and TechnologyChung-Ang University, Anseong 456-756, KoreaGraduate School of International Agricultural Technology and Institute of Green-Bio Science and TechnologySeoul National University, Pyeongchang-gun, Gangwon-do, Seoul 232-916, Korea
| | - Hyo Gun Lee
- Department of Agricultural BiotechnologyCollege of Agriculture and Life Sciences, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, KoreaDepartment of Animal Science and TechnologyChung-Ang University, Anseong 456-756, KoreaGraduate School of International Agricultural Technology and Institute of Green-Bio Science and TechnologySeoul National University, Pyeongchang-gun, Gangwon-do, Seoul 232-916, Korea
| | - Young Min Kim
- Department of Agricultural BiotechnologyCollege of Agriculture and Life Sciences, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, KoreaDepartment of Animal Science and TechnologyChung-Ang University, Anseong 456-756, KoreaGraduate School of International Agricultural Technology and Institute of Green-Bio Science and TechnologySeoul National University, Pyeongchang-gun, Gangwon-do, Seoul 232-916, Korea
| | - Hong Jo Lee
- Department of Agricultural BiotechnologyCollege of Agriculture and Life Sciences, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, KoreaDepartment of Animal Science and TechnologyChung-Ang University, Anseong 456-756, KoreaGraduate School of International Agricultural Technology and Institute of Green-Bio Science and TechnologySeoul National University, Pyeongchang-gun, Gangwon-do, Seoul 232-916, Korea
| | - Young Hyun Park
- Department of Agricultural BiotechnologyCollege of Agriculture and Life Sciences, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, KoreaDepartment of Animal Science and TechnologyChung-Ang University, Anseong 456-756, KoreaGraduate School of International Agricultural Technology and Institute of Green-Bio Science and TechnologySeoul National University, Pyeongchang-gun, Gangwon-do, Seoul 232-916, Korea
| | - Seo Yeong Yang
- Department of Agricultural BiotechnologyCollege of Agriculture and Life Sciences, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, KoreaDepartment of Animal Science and TechnologyChung-Ang University, Anseong 456-756, KoreaGraduate School of International Agricultural Technology and Institute of Green-Bio Science and TechnologySeoul National University, Pyeongchang-gun, Gangwon-do, Seoul 232-916, Korea
| | - Deivendran Rengaraj
- Department of Agricultural BiotechnologyCollege of Agriculture and Life Sciences, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, KoreaDepartment of Animal Science and TechnologyChung-Ang University, Anseong 456-756, KoreaGraduate School of International Agricultural Technology and Institute of Green-Bio Science and TechnologySeoul National University, Pyeongchang-gun, Gangwon-do, Seoul 232-916, Korea
| | - Tae Sub Park
- Department of Agricultural BiotechnologyCollege of Agriculture and Life Sciences, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, KoreaDepartment of Animal Science and TechnologyChung-Ang University, Anseong 456-756, KoreaGraduate School of International Agricultural Technology and Institute of Green-Bio Science and TechnologySeoul National University, Pyeongchang-gun, Gangwon-do, Seoul 232-916, Korea
| | - Jae Yong Han
- Department of Agricultural BiotechnologyCollege of Agriculture and Life Sciences, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, KoreaDepartment of Animal Science and TechnologyChung-Ang University, Anseong 456-756, KoreaGraduate School of International Agricultural Technology and Institute of Green-Bio Science and TechnologySeoul National University, Pyeongchang-gun, Gangwon-do, Seoul 232-916, Korea
| |
Collapse
|
111
|
Kato M, Chou TF, Yu CZ, DeModena J, Sternberg PW. LINKIN, a new transmembrane protein necessary for cell adhesion. eLife 2014; 3:e04449. [PMID: 25437307 PMCID: PMC4275582 DOI: 10.7554/elife.04449] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 11/28/2014] [Indexed: 12/15/2022] Open
Abstract
In epithelial collective migration, leader and follower cells migrate while maintaining cell–cell adhesion and tissue polarity. We have identified a conserved protein and interactors required for maintaining cell adhesion during a simple collective migration in the developing C. elegans male gonad. LINKIN is a previously uncharacterized, transmembrane protein conserved throughout Metazoa. We identified seven atypical FG–GAP domains in the extracellular domain, which potentially folds into a β-propeller structure resembling the α-integrin ligand-binding domain. C. elegans LNKN-1 localizes to the plasma membrane of all gonadal cells, with apical and lateral bias. We identified the LINKIN interactors RUVBL1, RUVBL2, and α-tubulin by using SILAC mass spectrometry on human HEK 293T cells and testing candidates for lnkn-1-like function in C. elegans male gonad. We propose that LINKIN promotes adhesion between neighboring cells through its extracellular domain and regulates microtubule dynamics through RUVBL proteins at its intracellular domain. DOI:http://dx.doi.org/10.7554/eLife.04449.001 In animals, cells can move from one place to another to shape tissues, heal wounds, or defend against invading microbes. A cell may move alone or it may be attached to others and move as part of a group. One member of the group leads this ‘collective migration’, but it is not known how the cells are able to stick to each other and move together. Collective migration takes place in the male gonad—the organ that makes sperm cells—in larvae of the nematode worm C. elegans. As the gonad matures, a group of cells form a simple chain that can move together. Kato et al. found that a protein called LINKIN must be present for this to happen. LINKIN is found in the membrane that surrounds animal cells. One section of the protein—called the β-propeller—sits on the outside surface of the membrane. The structure of the β-propeller is similar to a section of another protein—called α-integrin—that also allows cells to attach, suggesting LINKIN may work in a similar way. LINKIN is found in many animals, so Kato et al. searched for proteins that can interact with it in human cells. This search revealed three proteins that can interact with LINKIN and are required for the cells to move together. Two of the proteins control elements of the internal scaffolding of the cell: this scaffolding, which is known as the cytoskeleton, is involved in moving the cells. The experiments suggest that LINKIN coordinates the process of binding together with the changes in the cytoskeleton that are needed to allow the cells to move as one. The next challenge is to understand how LINKIN changes the internal program of the cells to achieve this. DOI:http://dx.doi.org/10.7554/eLife.04449.002
Collapse
Affiliation(s)
- Mihoko Kato
- Division of Biology and Biological Engineering, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, United States
| | - Tsui-Fen Chou
- Division of Biology and Biological Engineering, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, United States
| | - Collin Z Yu
- Division of Biology and Biological Engineering, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, United States
| | - John DeModena
- Division of Biology and Biological Engineering, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, United States
| | - Paul W Sternberg
- Division of Biology and Biological Engineering, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, United States
| |
Collapse
|
112
|
Signaling by the engulfment receptor draper: a screen in Drosophila melanogaster implicates cytoskeletal regulators, Jun N-terminal Kinase, and Yorkie. Genetics 2014; 199:117-34. [PMID: 25395664 DOI: 10.1534/genetics.114.172544] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Draper, the Drosophila melanogaster homolog of the Ced-1 protein of Caenorhabditis elegans, is a cell-surface receptor required for the recognition and engulfment of apoptotic cells, glial clearance of axon fragments and dendritic pruning, and salivary gland autophagy. To further elucidate mechanisms of Draper signaling, we screened chromosomal deficiencies to identify loci that dominantly modify the phenotype of overexpression of Draper isoform II (suppressed differentiation of the posterior crossvein in the wing). We found evidence for 43 genetic modifiers of Draper II. Twenty-four of the 37 suppressor loci and 3 of the 6 enhancer loci were identified. An additional 5 suppressors and 2 enhancers were identified among mutations in functionally related genes. These studies reveal positive contributions to Drpr signaling for the Jun N-terminal Kinase pathway, supported by genetic interactions with hemipterous, basket, jun, and puckered, and for cytoskeleton regulation as indicated by genetic interactions with rac1, rac2, RhoA, myoblast city, Wiskcott-Aldrich syndrome protein, and the formin CG32138, and for yorkie and expanded. These findings indicate that Jun N-terminal Kinase activation and cytoskeletal remodeling collaborate in Draper signaling. Relationships between Draper signaling and Decapentaplegic signaling, insulin signaling, Salvador/Warts/Hippo signaling, apical-basal cell polarity, and cellular responses to mechanical forces are also discussed.
Collapse
|
113
|
Mulinari S, Häcker U. Rho-guanine nucleotide exchange factors during development: Force is nothing without control. Small GTPases 2014; 1:28-43. [PMID: 21686118 DOI: 10.4161/sgtp.1.1.12672] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2010] [Revised: 05/31/2010] [Accepted: 06/14/2010] [Indexed: 01/04/2023] Open
Abstract
The development of multicellular organisms is associated with extensive rearrangements of tissues and cell sheets. The driving force for these rearrangements is generated mostly by the actin cytoskeleton. In order to permit the reproducible development of a specific body plan, dynamic reorganization of the actin cytoskeleton must be precisely coordinated in space and time. GTP-exchange factors that activate small GTPases of the Rho family play an important role in this process. Here we review the role of this class of cytoskeletal regulators during important developmental processes such as epithelial morphogenesis, cytokinesis, cell migration, cell polarity, neuronal growth cone extension and phagocytosis in different model systems.
Collapse
Affiliation(s)
- Shai Mulinari
- Department of Experimental Medical Science; Lund Strategic Research Center for Stem Cell Biology and Cell Therapy; Lund University; Lund, Sweden
| | | |
Collapse
|
114
|
Ricketts PGA, Minimair M, Yates RW, Klaus AV. The effects of glutathione, insulin and oxidative stress on cultured spermatogenic cysts. SPERMATOGENESIS 2014; 1:159-171. [PMID: 22319665 DOI: 10.4161/spmg.1.2.17031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 06/23/2011] [Accepted: 06/24/2011] [Indexed: 01/13/2023]
Abstract
Spermatogenesis is a series of cellular processes that leads to the development of motile, elongate sperm cells. Mitotic expansion of spermatogenic stem cells is followed by two meiotic cell divisions that yield haploid round spermatids which then transform from a spherical form into an elongate, highly polarized form. In Drosophila, spermatogenesis takes place within encapsulating cysts that contain spermatogenic cells. Spermatogenic cysts were isolated and grown in culture over the course of 96 hours. Cultures were treated with buthionine sulfoximine (BSO), glutathione (GSH), insulin and GSH+insulin in order to test the effects of these agents on cyst viability. The addition of glutathione and exogenous insulin to cultured spermatogenic cysts each appeared to have a positive effect on early spermatogenic cyst survival in vitro at some timepoints. The addition of GSH+insulin together had no significant effect on early spermatogenic cyst survival in vitro. Oxidative stress induced by BSO resulted in a significant decrease and/or complete loss of specific early spermatogenic cyst types and the abnormal development of elongating cysts in culture. This culture system offers the opportunity for high-resolution analysis of spermatogenic processes not previously possible.
Collapse
Affiliation(s)
- Peta-Gay A Ricketts
- Department of Biological Sciences; Seton Hall University; South Orange, NJ USA
| | | | | | | |
Collapse
|
115
|
Poukkula M, Hakala M, Pentinmikko N, Sweeney MO, Jansen S, Mattila J, Hietakangas V, Goode BL, Lappalainen P. GMF promotes leading-edge dynamics and collective cell migration in vivo. Curr Biol 2014; 24:2533-40. [PMID: 25308079 DOI: 10.1016/j.cub.2014.08.066] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 08/01/2014] [Accepted: 08/29/2014] [Indexed: 01/22/2023]
Abstract
Lamellipodia are dynamic actin-rich cellular extensions that drive advancement of the leading edge during cell migration. Lamellipodia undergo periodic extension and retraction cycles, but the molecular mechanisms underlying these dynamics and their role in cell migration have remained obscure. We show that glia-maturation factor (GMF), which is an Arp2/3 complex inhibitor and actin filament debranching factor, regulates lamellipodial protrusion dynamics in living cells. In cultured S2R(+) cells, GMF silencing resulted in an increase in the width of lamellipodial actin filament arrays. Importantly, live-cell imaging of mutant Drosophila egg chambers revealed that the dynamics of actin-rich protrusions in migrating border cells is diminished in the absence of GMF. Consequently, velocity of border cell clusters undergoing guided migration was reduced in GMF mutant flies. Furthermore, genetic studies demonstrated that GMF cooperates with the Drosophila homolog of Aip1 (flare) in promoting disassembly of Arp2/3-nucleated actin filament networks and driving border cell migration. These data suggest that GMF functions in vivo to promote the disassembly of Arp2/3-nucleated actin filament arrays, making an important contribution to cell migration within a 3D tissue environment.
Collapse
Affiliation(s)
- Minna Poukkula
- Institute of Biotechnology, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Markku Hakala
- Institute of Biotechnology, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Nalle Pentinmikko
- Institute of Biotechnology, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Meredith O Sweeney
- Rosenstiel Center for Basic Biomedical Research, Brandeis University, Waltham, MA 02453, USA
| | - Silvia Jansen
- Rosenstiel Center for Basic Biomedical Research, Brandeis University, Waltham, MA 02453, USA
| | - Jaakko Mattila
- Institute of Biotechnology, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland; Department of Biosciences, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Ville Hietakangas
- Institute of Biotechnology, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland; Department of Biosciences, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland
| | - Bruce L Goode
- Rosenstiel Center for Basic Biomedical Research, Brandeis University, Waltham, MA 02453, USA
| | - Pekka Lappalainen
- Institute of Biotechnology, University of Helsinki, P.O. Box 56, 00014 Helsinki, Finland.
| |
Collapse
|
116
|
Leong FY. Physical explanation of coupled cell-cell rotational behavior and interfacial morphology: a particle dynamics model. Biophys J 2014; 105:2301-11. [PMID: 24268142 DOI: 10.1016/j.bpj.2013.09.051] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 09/11/2013] [Accepted: 09/30/2013] [Indexed: 12/29/2022] Open
Abstract
Previous studies have reported persistent rotational behavior between adherent cell-cell pairs cultured on micropatterned substrates, and this rotation is often accompanied by a sigmoidal deflection of the cell-cell interface. Interestingly, the cell-cell rotation runs in the opposite reference frame from what could be expected of single cell locomotion. Specifically, the rotation of the cell pair consists of each individual cell protruding from the inwardly regressive arm of the cell-cell interface, and retracting from the other outwardly protrusive arm. To this author's knowledge, the cause of this elusive behavior has not yet been clarified. Here, we propose a physical model based on particle dynamics, accounting for actomyosin forcing, viscous dissipation, and cortical tension. The results show that a correlation in actomyosin force vectors leads to both persistent rotational behavior and interfacial deflection in a simulated cell cluster. Significantly, the model, without any artificial cues, spontaneously and consistently reproduces the same rotational reference frame as experimentally observed. Further analyses show that the interfacial deflection depends predominantly on cortical tension, whereas the cluster rotation depends predominantly on actomyosin forcing. Together, these results corroborate the hypothesis that both rotational and morphological phenomena are, in fact, physically coupled by an intracellular torque of a common origin.
Collapse
Affiliation(s)
- Fong Yew Leong
- Department of Fluid Dynamics, A(∗)STAR Institute of High Performance Computing, Singapore.
| |
Collapse
|
117
|
Abstract
Cell migration is a fundamental process that occurs during embryo development. Classic studies using in vitro culture systems have been instrumental in dissecting the principles of cell motility and highlighting how cells make use of topographical features of the substrate, cell-cell contacts, and chemical and physical environmental signals to direct their locomotion. Here, we review the guidance principles of in vitro cell locomotion and examine how they control directed cell migration in vivo during development. We focus on developmental examples in which individual guidance mechanisms have been clearly dissected, and for which the interactions among guidance cues have been explored. We also discuss how the migratory behaviours elicited by guidance mechanisms generate the stereotypical patterns of migration that shape tissues in the developing embryo.
Collapse
Affiliation(s)
- Germán Reig
- Anatomy and Developmental Biology Program, Institute of Biomedical Sciences
- Biomedical Neuroscience Institute, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago 8380453, Chile
| | - Eduardo Pulgar
- Anatomy and Developmental Biology Program, Institute of Biomedical Sciences
- Biomedical Neuroscience Institute, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago 8380453, Chile
| | - Miguel L. Concha
- Anatomy and Developmental Biology Program, Institute of Biomedical Sciences
- Biomedical Neuroscience Institute, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago 8380453, Chile
| |
Collapse
|
118
|
Scintigraphic detection of dual ectopic thyroid tissue: experience of a Chinese tertiary hospital. PLoS One 2014; 9:e95686. [PMID: 24748408 PMCID: PMC3991721 DOI: 10.1371/journal.pone.0095686] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 03/31/2014] [Indexed: 12/14/2022] Open
Abstract
Purpose To assess scintigraphic pattern, clinical indication and relevance of dual ectopic thyroid tissue (ETT). Literature is reviewed for such cases. Methods In this 5-year retrospective study, we reviewed all thyroid scintigraphies in our data base. Patients diagnosed with suspected ETT were identified. Literature is reviewed. Statistics were done by one-way analysis of variance and least significant difference test. Results From 11905 thyroid scintigraphies during the 5-year period, we retrieved 121 patients eligible for analysis. The top two indications were assessing a palpable front neck mass to determine whether it was an ETT, and primary hypothyroidism. Patients were divided into 3 groups. Group 1 with single ETT (83 cases); group 2 with dual ETT (6 cases) and group 3 with athyroid (32 cases). Age and thyroid hormones were highest in group 2, and lowest in group 3. Thyrotropin was highest in group 3, and lowest in group 2. Thyroxine was given to hypothyroid patients, while no surgery was performed. There were 42 published cases with dual ETT, most of whom were under 30 years old. 38.10% of them were euthyroid, 33.33% hypothyroid, and 21.43% subclinical hypothyroid. Most frequent ectopic positions included lingual (33.73%), sublingual (27.71%) and subhyoid (22.89%). Conclusions In our cohort, incidence of dual ETT was 0.05% if the denominator was total number of thyroid scintigraphies. The incidence was 4.96% if the denominator was the number of patients with suspected ETT. Important clinical indication is a front neck palpable mass suggestive of an ETT. Important clinical relevance of recognizing the dual ETT pattern is to avoid inappropriate surgery. After reviewing all published cases, we find dual ETT is often seen in young patients. Most of such patients are euthyroid or mildly hypothyroid. Thyroid ectopia often resides in lingual, sublingual and subhyoid areas.
Collapse
|
119
|
Cohen DJ, Nelson WJ, Maharbiz MM. Galvanotactic control of collective cell migration in epithelial monolayers. NATURE MATERIALS 2014; 13:409-417. [PMID: 24608142 DOI: 10.1038/nmat3891] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 01/23/2014] [Indexed: 06/03/2023]
Abstract
Many normal and pathological biological processes involve the migration of epithelial cell sheets. This arises from complex emergent behaviour resulting from the interplay between cellular signalling networks and the forces that physically couple the cells. Here, we demonstrate that collective migration of an epithelium can be interactively guided by applying electric fields that bias the underlying signalling networks. We show that complex, spatiotemporal cues are locally interpreted by the epithelium, resulting in rapid, coordinated responses such as a collective U-turn, divergent migration, and unchecked migration against an obstacle. We observed that the degree of external control depends on the size and shape of the cell population, and on the existence of physical coupling between cells. Together, our results offer design and engineering principles for the rational manipulation of the collective behaviour and material properties of a tissue.
Collapse
Affiliation(s)
- Daniel J Cohen
- Joint Graduate Program in Bioengineering, University of California at Berkeley, Berkeley, California 94720, USA
| | - W James Nelson
- Department of Biology and Molelcular and Cellular Physiology, Stanford University, Stanford, California 94305, USA
| | - Michel M Maharbiz
- Department of Electrical Engineering and Computer Science, University of California at Berkeley, Berkeley, California 94720, USA
| |
Collapse
|
120
|
Bell GP, Thompson BJ. Colorectal cancer progression: lessons from Drosophila? Semin Cell Dev Biol 2014; 28:70-7. [PMID: 24583474 DOI: 10.1016/j.semcdb.2014.02.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 02/13/2014] [Indexed: 12/31/2022]
Abstract
Human colorectal cancers arise as benign adenomas, tumours that retain their epithelial character, and then progress to malignant adenocarcinomas and carcinomas in which the epithelium becomes disrupted. Carcinomas often exhibit transcriptional downregulation of E-cadherin and other epithelial genes in an epithelial-to-mesenchymal transition (EMT), a mechanism first discovered in Drosophila to be mediated by the transcription factors Twist and Snail. In contrast, adenocarcinomas retain expression of E-cadherin and disruption of the epithelium occurs through formation of progressively smaller epithelial cysts with apical Crumbs/CRB3, Stardust/PALS1, and Bazooka/PAR3 localised to the inner lumen. Results from Drosophila show that morphologically similar cysts form upon induction of clonal heterogeneity in Wnt, Smad, or Ras signalling levels, which causes extrusion of epithelial cells at clonal boundaries. Thus, intratumour heterogeneity might also promote formation of adenocarcinomas in humans. Finally, epithelial cysts can collectively migrate, as in the case of Drosophila border cells, a potential model system for the invasive migration of adenocarcinoma cells.
Collapse
Affiliation(s)
- Graham P Bell
- Cancer Research UK, London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, United Kingdom
| | - Barry J Thompson
- Cancer Research UK, London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, United Kingdom.
| |
Collapse
|
121
|
Gardner A, Borthwick LA, Fisher AJ. Lung epithelial wound healing in health and disease. Expert Rev Respir Med 2014; 4:647-60. [DOI: 10.1586/ers.10.62] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
122
|
Spracklen AJ, Tootle TL. The utility of stage-specific mid-to-late Drosophila follicle isolation. J Vis Exp 2013:50493. [PMID: 24326735 DOI: 10.3791/50493] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Drosophila oogenesis or follicle development has been widely used to advance the understanding of complex developmental and cell biologic processes. This methods paper describes how to isolate mid-to-late stage follicles (Stage 10B-14) and utilize them to provide new insights into the molecular and morphologic events occurring during tight windows of developmental time. Isolated follicles can be used for a variety of experimental techniques, including in vitro development assays, live imaging, mRNA expression analysis and western blot analysis of proteins. Follicles at Stage 10B (S10B) or later will complete development in culture; this allows one to combine genetic or pharmacologic perturbations with in vitro development to define the effects of such manipulations on the processes occurring during specific periods of development. Additionally, because these follicles develop in culture, they are ideally suited for live imaging studies, which often reveal new mechanisms that mediate morphological events. Isolated follicles can also be used for molecular analyses. For example, changes in gene expression that result from genetic perturbations can be defined for specific developmental windows. Additionally, protein level, stability, and/or posttranslational modification state during a particular stage of follicle development can be examined through western blot analyses. Thus, stage-specific isolation of Drosophila follicles provides a rich source of information into widely conserved processes of development and morphogenesis.
Collapse
Affiliation(s)
- Andrew J Spracklen
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine
| | | |
Collapse
|
123
|
Wan P, Wang D, Luo J, Chu D, Wang H, Zhang L, Chen J. Guidance receptor promotes the asymmetric distribution of exocyst and recycling endosome during collective cell migration. Development 2013; 140:4797-806. [DOI: 10.1242/dev.094979] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
During collective migration, guidance receptors signal downstream to result in a polarized distribution of molecules, including cytoskeletal regulators and guidance receptors themselves, in response to an extracellular gradient of chemotactic factors. However, the underlying mechanism of asymmetry generation in the context of the migration of a group of cells is not well understood. Using border cells in the Drosophila ovary as a model system for collective migration, we found that the receptor tyrosine kinase (RTK) PDGF/VEGF receptor (PVR) is required for a polarized distribution of recycling endosome and exocyst in the leading cells of the border cell cluster. Interestingly, PVR signaled through the small GTPase Rac to positively affect the levels of Rab11-labeled recycling endosomes, probably in an F-actin-dependent manner. Conversely, the exocyst complex component Sec3 was required for the asymmetric localization of RTK activity and F-actin, similar to that previously reported for the function of Rab11. Together, these results suggested a positive-feedback loop in border cells, in which RTKs such as PVR act to induce a higher level of vesicle recycling and tethering activity in the leading cells, which in turn enables RTK activity to be distributed in a more polarized fashion at the front. We also provided evidence that E-cadherin, the major adhesion molecule for border cell migration, is a specific cargo in the Rab11-labeled recycling endosomes and that Sec3 is required for the delivery of the E-cadherin-containing vesicles to the membrane.
Collapse
Affiliation(s)
- Ping Wan
- Model Animal Research Center, and MOE Key Laboratory of Model Animals for Disease Study, Nanjing University, Nanjing, China 210061
| | - Dou Wang
- Model Animal Research Center, and MOE Key Laboratory of Model Animals for Disease Study, Nanjing University, Nanjing, China 210061
| | - Jun Luo
- Model Animal Research Center, and MOE Key Laboratory of Model Animals for Disease Study, Nanjing University, Nanjing, China 210061
| | - Dandan Chu
- Model Animal Research Center, and MOE Key Laboratory of Model Animals for Disease Study, Nanjing University, Nanjing, China 210061
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, China 226001
| | - Heng Wang
- Model Animal Research Center, and MOE Key Laboratory of Model Animals for Disease Study, Nanjing University, Nanjing, China 210061
| | - Lijun Zhang
- Model Animal Research Center, and MOE Key Laboratory of Model Animals for Disease Study, Nanjing University, Nanjing, China 210061
| | - Jiong Chen
- Model Animal Research Center, and MOE Key Laboratory of Model Animals for Disease Study, Nanjing University, Nanjing, China 210061
- Zhejiang Key Laboratory for Technology and Application of Model Organisms, School of Life Sciences, Wenzhou Medical College, Wenzhou, China 325035
| |
Collapse
|
124
|
Law AL, Vehlow A, Kotini M, Dodgson L, Soong D, Theveneau E, Bodo C, Taylor E, Navarro C, Perera U, Michael M, Dunn GA, Bennett D, Mayor R, Krause M. Lamellipodin and the Scar/WAVE complex cooperate to promote cell migration in vivo. J Cell Biol 2013; 203:673-89. [PMID: 24247431 PMCID: PMC3840943 DOI: 10.1083/jcb.201304051] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 10/21/2013] [Indexed: 12/12/2022] Open
Abstract
Cell migration is essential for development, but its deregulation causes metastasis. The Scar/WAVE complex is absolutely required for lamellipodia and is a key effector in cell migration, but its regulation in vivo is enigmatic. Lamellipodin (Lpd) controls lamellipodium formation through an unknown mechanism. Here, we report that Lpd directly binds active Rac, which regulates a direct interaction between Lpd and the Scar/WAVE complex via Abi. Consequently, Lpd controls lamellipodium size, cell migration speed, and persistence via Scar/WAVE in vitro. Moreover, Lpd knockout mice display defective pigmentation because fewer migrating neural crest-derived melanoblasts reach their target during development. Consistently, Lpd regulates mesenchymal neural crest cell migration cell autonomously in Xenopus laevis via the Scar/WAVE complex. Further, Lpd's Drosophila melanogaster orthologue Pico binds Scar, and both regulate collective epithelial border cell migration. Pico also controls directed cell protrusions of border cell clusters in a Scar-dependent manner. Taken together, Lpd is an essential, evolutionary conserved regulator of the Scar/WAVE complex during cell migration in vivo.
Collapse
Affiliation(s)
- Ah-Lai Law
- Randall Division of Cell and Molecular Biophysics, and British Heart Foundation Centre of Excellence, James Black Centre, Cardiovascular Division, King’s College London, London SE1 1UL, England, UK
| | - Anne Vehlow
- Randall Division of Cell and Molecular Biophysics, and British Heart Foundation Centre of Excellence, James Black Centre, Cardiovascular Division, King’s College London, London SE1 1UL, England, UK
| | - Maria Kotini
- Department of Cell and Developmental Biology, University College London, London WC1 6BT, England, UK
| | - Lauren Dodgson
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, England, UK
| | - Daniel Soong
- Randall Division of Cell and Molecular Biophysics, and British Heart Foundation Centre of Excellence, James Black Centre, Cardiovascular Division, King’s College London, London SE1 1UL, England, UK
| | - Eric Theveneau
- Department of Cell and Developmental Biology, University College London, London WC1 6BT, England, UK
| | - Cristian Bodo
- Randall Division of Cell and Molecular Biophysics, and British Heart Foundation Centre of Excellence, James Black Centre, Cardiovascular Division, King’s College London, London SE1 1UL, England, UK
| | - Eleanor Taylor
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, England, UK
| | - Christel Navarro
- Randall Division of Cell and Molecular Biophysics, and British Heart Foundation Centre of Excellence, James Black Centre, Cardiovascular Division, King’s College London, London SE1 1UL, England, UK
| | - Upamali Perera
- Randall Division of Cell and Molecular Biophysics, and British Heart Foundation Centre of Excellence, James Black Centre, Cardiovascular Division, King’s College London, London SE1 1UL, England, UK
| | - Magdalene Michael
- Randall Division of Cell and Molecular Biophysics, and British Heart Foundation Centre of Excellence, James Black Centre, Cardiovascular Division, King’s College London, London SE1 1UL, England, UK
| | - Graham A. Dunn
- Randall Division of Cell and Molecular Biophysics, and British Heart Foundation Centre of Excellence, James Black Centre, Cardiovascular Division, King’s College London, London SE1 1UL, England, UK
| | - Daimark Bennett
- Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, England, UK
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, London WC1 6BT, England, UK
| | - Matthias Krause
- Randall Division of Cell and Molecular Biophysics, and British Heart Foundation Centre of Excellence, James Black Centre, Cardiovascular Division, King’s College London, London SE1 1UL, England, UK
| |
Collapse
|
125
|
Abstract
Cell migration is fundamental to establishing and maintaining the proper organization of multicellular organisms. Morphogenesis can be viewed as a consequence, in part, of cell locomotion, from large-scale migrations of epithelial sheets during gastrulation, to the movement of individual cells during development of the nervous system. In an adult organism, cell migration is essential for proper immune response, wound repair, and tissue homeostasis, while aberrant cell migration is found in various pathologies. Indeed, as our knowledge of migration increases, we can look forward to, for example, abating the spread of highly malignant cancer cells, retarding the invasion of white cells in the inflammatory process, or enhancing the healing of wounds. This article is organized in two main sections. The first section is devoted to the single-cell migrating in isolation such as occurs when leukocytes migrate during the immune response or when fibroblasts squeeze through connective tissue. The second section is devoted to cells collectively migrating as part of multicellular clusters or sheets. This second type of migration is prevalent in development, wound healing, and in some forms of cancer metastasis.
Collapse
Affiliation(s)
- Xavier Trepat
- Institute for Bioengineering of Catalonia, Barcelona, Spain.
| | | | | |
Collapse
|
126
|
Lebreton G, Casanova J. Specification of leading and trailing cell features during collective migration in the Drosophila trachea. J Cell Sci 2013; 127:465-74. [PMID: 24213534 DOI: 10.1242/jcs.142737] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The role of tip and rear cells in collective migration is still a matter of debate and their differences at the cytoskeletal level are poorly understood. Here, we analysed these issues in the Drosophila trachea, an organ that develops from the collective migration of clusters of cells that respond to Branchless (Bnl), a fibroblast growth factor (FGF) homologue expressed in surrounding tissues. We track individual cells in the migratory cluster and characterise their features and unveil two prototypical types of cytoskeletal organisation that account for tip and rear cells respectively. Indeed, once the former are specified, they remain as such throughout migration. Furthermore, we show that FGF signalling in a single tip cell can trigger the migration of the cells in the branch. Finally, we found specific Rac activation at the tip cells and analysed how FGF-independent cell features, such as adhesion and motility, act on coupling the behaviour of trailing and tip cells. Thus, the combined effect of FGF promoting leading cell behaviour and the modulation of cell properties in a cluster can account for the wide range of migratory events driven by FGF.
Collapse
Affiliation(s)
- Gaëlle Lebreton
- Institut de Biologia Molecular de Barcelona (CSIC), C/Baldiri Reixac 4-8, 08028 Barcelona, Spain
| | | |
Collapse
|
127
|
Vedula SRK, Ravasio A, Lim CT, Ladoux B. Collective Cell Migration: A Mechanistic Perspective. Physiology (Bethesda) 2013; 28:370-9. [DOI: 10.1152/physiol.00033.2013] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Collective cell migration is fundamental to gaining insights into various important biological processes such as wound healing and cancer metastasis. In particular, recent in vitro studies and in silico simulations suggest that mechanics can explain the social behavior of multicellular clusters to a large extent with minimal knowledge of various cellular signaling pathways. These results suggest that a mechanistic perspective is necessary for a comprehensive and holistic understanding of collective cell migration, and this review aims to provide a broad overview of such a perspective.
Collapse
Affiliation(s)
| | - Andrea Ravasio
- Mechanobiology Institute, National University of Singapore, Singapore
| | - Chwee Teck Lim
- Mechanobiology Institute, National University of Singapore, Singapore
- Department of Bioengineering and Department of Mechanical Engineering, National University of Singapore, Singapore; and
| | - Benoit Ladoux
- Mechanobiology Institute, National University of Singapore, Singapore
- Institut Jacques Monod, Université Paris Diderot, Paris, France
| |
Collapse
|
128
|
Liu ZC, Odell N, Geisbrecht ER. Drosophila importin-7 functions upstream of the Elmo signaling module to mediate the formation and stability of muscle attachments. J Cell Sci 2013; 126:5210-23. [PMID: 24046451 DOI: 10.1242/jcs.132241] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Establishment and maintenance of stable muscle attachments is essential for coordinated body movement. Studies in Drosophila have pioneered a molecular understanding of the morphological events in the conserved process of muscle attachment formation, including myofiber migration, muscle-tendon signaling, and stable junctional adhesion between muscle cells and their corresponding target insertion sites. In both Drosophila and vertebrate models, integrin complexes play a key role in the biogenesis and stability of muscle attachments through the interactions of integrins with extracellular matrix (ECM) ligands. We show that Drosophila importin-7 (Dim7) is an upstream regulator of the conserved Elmo-Mbc→Rac signaling pathway in the formation of embryonic muscle attachment sites (MASs). Dim7 is encoded by the moleskin (msk) locus and was identified as an Elmo-interacting protein. Both Dim7 and Elmo localize to the ends of myofibers coincident with the timing of muscle-tendon attachment in late myogenesis. Phenotypic analysis of elmo mutants reveal muscle attachment defects similar to those previously described for integrin mutants. Furthermore, Elmo and Dim7 interact both biochemically and genetically in the developing musculature. The muscle detachment phenotype resulting from mutations in the msk locus can be rescued by components in the Elmo signaling pathway, including the Elmo-Mbc complex, an activated Elmo variant, or a constitutively active form of Rac. In larval muscles, the localization of Dim7 and activated Elmo to the sites of muscle attachment is attenuated upon RNAi knockdown of integrin heterodimer complex components. Our results show that integrins function as upstream signals to mediate Dim7-Elmo enrichment to the MASs.
Collapse
Affiliation(s)
- Ze Cindy Liu
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri, Kansas City, MO 64110, USA
| | | | | |
Collapse
|
129
|
Lucas EP, Khanal I, Gaspar P, Fletcher GC, Polesello C, Tapon N, Thompson BJ. The Hippo pathway polarizes the actin cytoskeleton during collective migration of Drosophila border cells. J Cell Biol 2013; 201:875-85. [PMID: 23733343 PMCID: PMC3678158 DOI: 10.1083/jcb.201210073] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 05/03/2013] [Indexed: 02/06/2023] Open
Abstract
Collective migration of Drosophila border cells depends on a dynamic actin cytoskeleton that is highly polarized such that it concentrates around the outer rim of the migrating cluster of cells. How the actin cytoskeleton becomes polarized in these cells to enable collective movement remains unknown. Here we show that the Hippo signaling pathway links determinants of cell polarity to polarization of the actin cytoskeleton in border cells. Upstream Hippo pathway components localize to contacts between border cells inside the cluster and signal through the Hippo and Warts kinases to polarize actin and promote border cell migration. Phosphorylation of the transcriptional coactivator Yorkie (Yki)/YAP by Warts does not mediate the function of this pathway in promoting border cell migration, but rather provides negative feedback to limit the speed of migration. Instead, Warts phosphorylates and inhibits the actin regulator Ena to activate F-actin Capping protein activity on inner membranes and thereby restricts F-actin polymerization mainly to the outer rim of the migrating cluster.
Collapse
Affiliation(s)
- Eliana P. Lucas
- Epithelial Biology Laboratory, and Apoptosis and Cell Proliferation Laboratory, Cancer Research UK, London Research Institute, London WC2A 3LY, England, UK
| | - Ichha Khanal
- Epithelial Biology Laboratory, and Apoptosis and Cell Proliferation Laboratory, Cancer Research UK, London Research Institute, London WC2A 3LY, England, UK
| | - Pedro Gaspar
- Epithelial Biology Laboratory, and Apoptosis and Cell Proliferation Laboratory, Cancer Research UK, London Research Institute, London WC2A 3LY, England, UK
| | - Georgina C. Fletcher
- Epithelial Biology Laboratory, and Apoptosis and Cell Proliferation Laboratory, Cancer Research UK, London Research Institute, London WC2A 3LY, England, UK
| | - Cedric Polesello
- Epithelial Biology Laboratory, and Apoptosis and Cell Proliferation Laboratory, Cancer Research UK, London Research Institute, London WC2A 3LY, England, UK
| | - Nicolas Tapon
- Epithelial Biology Laboratory, and Apoptosis and Cell Proliferation Laboratory, Cancer Research UK, London Research Institute, London WC2A 3LY, England, UK
| | - Barry J. Thompson
- Epithelial Biology Laboratory, and Apoptosis and Cell Proliferation Laboratory, Cancer Research UK, London Research Institute, London WC2A 3LY, England, UK
| |
Collapse
|
130
|
Abstract
Tyrosine phosphorylation plays a significant role in a wide range of cellular processes. The Drosophila genome encodes more than 20 receptor tyrosine kinases and extensive studies in the past 20 years have illustrated their diverse roles and complex signaling mechanisms. Although some receptor tyrosine kinases have highly specific functions, others strikingly are used in rather ubiquitous manners. Receptor tyrosine kinases regulate a broad expanse of processes, ranging from cell survival and proliferation to differentiation and patterning. Remarkably, different receptor tyrosine kinases share many of the same effectors and their hierarchical organization is retained in disparate biological contexts. In this comprehensive review, we summarize what is known regarding each receptor tyrosine kinase during Drosophila development. Astonishingly, very little is known for approximately half of all Drosophila receptor tyrosine kinases.
Collapse
Affiliation(s)
- Richelle Sopko
- Department of Genetics, Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
131
|
Schnatwinkel C, Niswander L. Multiparametric image analysis of lung-branching morphogenesis. Dev Dyn 2013; 242:622-37. [PMID: 23483685 DOI: 10.1002/dvdy.23961] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 02/13/2013] [Accepted: 02/28/2013] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Lung-branching morphogenesis is a fundamental developmental process, yet the cellular dynamics that occur during lung development and the molecular mechanisms underlying recent postulated branching modes are poorly understood. RESULTS Here, we implemented a time-lapse video microscopy method to study the cellular behavior and molecular mechanisms of planar bifurcation and domain branching in lung explant- and organotypic cultures. Our analysis revealed morphologically distinct stages that are shaped at least in part by a combination of localized and orientated cell divisions and by local mechanical forces. We also identified myosin light-chain kinase as an important regulator of bud bifurcation, but not domain branching in lung explants. CONCLUSIONS This live imaging approach provides a method to study cellular behavior during lung-branching morphogenesis and suggests the importance of a mechanism primarily based on oriented cell proliferation and mechanical forces in forming and shaping the developing lung airways.
Collapse
Affiliation(s)
- Carsten Schnatwinkel
- Howard Hughes Medical Institute, Department of Pediatrics, University of Colorado School of Medicine and Childrens's Hospital Colorado, Aurora, Colorado, USA
| | | |
Collapse
|
132
|
Socs36E attenuates STAT signaling to optimize motile cell specification in the Drosophila ovary. Dev Biol 2013; 379:152-66. [PMID: 23583584 DOI: 10.1016/j.ydbio.2013.03.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 03/22/2013] [Accepted: 03/23/2013] [Indexed: 01/05/2023]
Abstract
The Janus kinase/Signal transducers and activators of transcription (JAK/STAT) pathway determines cell fates by regulating gene expression. One example is the specification of the motile cells called border cells during Drosophila oogenesis. It has been established that too much or too little STAT activity disrupts follicle cell identity and cell motility, which suggests the signaling must be precisely regulated. Here, we find that Suppressor of cytokine signaling at 36E (Socs36E) is a necessary negative regulator of JAK/STAT signaling during border cell specification. We find when STAT signaling is too low to induce migration in the presumptive border cell population, nearby follicle cells uncharacteristically become invasive to enable efficient migration of the cluster. We generated a genetic null allele that reveals Socs36E is required in the anterior follicle cells to limit invasive behavior to an optimal number of cells. We further show Socs36E genetically interacts with the required STAT feedback inhibitor apontic (apt) and APT's downstream target, mir-279, and provide evidence that suggests APT directly regulates Socs36E transcriptionally. Our work shows Socs36E plays a critical role in a genetic circuit that establishes a boundary between the motile border cell cluster and its non-invasive epithelial neighbors through STAT attenuation.
Collapse
|
133
|
Ashby WJ, Zijlstra A. Established and novel methods of interrogating two-dimensional cell migration. Integr Biol (Camb) 2013; 4:1338-50. [PMID: 23038152 DOI: 10.1039/c2ib20154b] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The regulation of cell motility is central to living systems. Consequently, cell migration assays are some of the most frequently used in vitro assays. This article provides a comprehensive, detailed review of in vitro cell migration assays both currently in use and possible with existing technology. Emphasis is given to two-dimensional migration assays using densely organized cells such as the scratch assay. Assays are compared and categorized in an outline format according to their primary biological readout and physical parameters. The individual benefits of the various methods and quantification strategies are also discussed. This review provides an in-depth, structured overview of in vitro cell migration assays as a means of enabling the reader to make informed decisions among the growing number of options available for their specific cell migration application.
Collapse
Affiliation(s)
- William J Ashby
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | |
Collapse
|
134
|
Sepúlveda N, Petitjean L, Cochet O, Grasland-Mongrain E, Silberzan P, Hakim V. Collective cell motion in an epithelial sheet can be quantitatively described by a stochastic interacting particle model. PLoS Comput Biol 2013; 9:e1002944. [PMID: 23505356 PMCID: PMC3591275 DOI: 10.1371/journal.pcbi.1002944] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 01/10/2013] [Indexed: 12/11/2022] Open
Abstract
Modelling the displacement of thousands of cells that move in a collective way is required for the simulation and the theoretical analysis of various biological processes. Here, we tackle this question in the controlled setting where the motion of Madin-Darby Canine Kidney (MDCK) cells in a confluent epithelium is triggered by the unmasking of free surface. We develop a simple model in which cells are described as point particles with a dynamic based on the two premises that, first, cells move in a stochastic manner and, second, tend to adapt their motion to that of their neighbors. Detailed comparison to experimental data show that the model provides a quantitatively accurate description of cell motion in the epithelium bulk at early times. In addition, inclusion of model "leader" cells with modified characteristics, accounts for the digitated shape of the interface which develops over the subsequent hours, providing that leader cells invade free surface more easily than other cells and coordinate their motion with their followers. The previously-described progression of the epithelium border is reproduced by the model and quantitatively explained.
Collapse
Affiliation(s)
- Néstor Sepúlveda
- Laboratoire de Physique Statistique, CNRS, Université P et M Curie, Université Paris Diderot, Ecole Normale Supérieure, Paris, France
- Institut Jean Le Rond D'Alembert, UMR 7190 CNRS-UPMC, Paris, France
- Fondation Pierre Gilles de Gennes pour la Recherche, Paris, France
| | - Laurence Petitjean
- Laboratoire Physico-chimie Curie, Institut Curie, CNRS, Université Pierre et Marie Curie, Paris, France
| | - Olivier Cochet
- Laboratoire Physico-chimie Curie, Institut Curie, CNRS, Université Pierre et Marie Curie, Paris, France
| | - Erwan Grasland-Mongrain
- Laboratoire Physico-chimie Curie, Institut Curie, CNRS, Université Pierre et Marie Curie, Paris, France
| | - Pascal Silberzan
- Laboratoire Physico-chimie Curie, Institut Curie, CNRS, Université Pierre et Marie Curie, Paris, France
| | - Vincent Hakim
- Laboratoire de Physique Statistique, CNRS, Université P et M Curie, Université Paris Diderot, Ecole Normale Supérieure, Paris, France
| |
Collapse
|
135
|
Geisbrecht ER, Sawant K, Su Y, Liu ZC, Silver DL, Burtscher A, Wang X, Zhu AJ, McDonald JA. Genetic interaction screens identify a role for hedgehog signaling in Drosophila border cell migration. Dev Dyn 2013; 242:414-31. [PMID: 23335293 DOI: 10.1002/dvdy.23926] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 12/22/2012] [Accepted: 12/28/2012] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Cell motility is essential for embryonic development and physiological processes such as the immune response, but also contributes to pathological conditions such as tumor progression and inflammation. However, our understanding of the mechanisms underlying migratory processes is incomplete. Drosophila border cells provide a powerful genetic model to identify the roles of genes that contribute to cell migration. RESULTS Members of the Hedgehog signaling pathway were uncovered in two independent screens for interactions with the small GTPase Rac and the polarity protein Par-1 in border cell migration. Consistent with a role in migration, multiple Hh signaling components were enriched in the migratory border cells. Interference with Hh signaling by several different methods resulted in incomplete cell migration. Moreover, the polarized distribution of E-Cadherin and a marker of tyrosine kinase activity were altered when Hh signaling was disrupted. Conservation of Hh-Rac and Hh-Par-1 signaling was illustrated in the wing, in which Hh-dependent phenotypes were enhanced by loss of Rac or par-1. CONCLUSIONS We identified a pathway by which Hh signaling connects to Rac and Par-1 in cell migration. These results further highlight the importance of modifier screens in the identification of new genes that function in developmental pathways.
Collapse
Affiliation(s)
- Erika R Geisbrecht
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri 64110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
136
|
Fernández-Espartero CH, Ramel D, Farago M, Malartre M, Luque CM, Limanovich S, Katzav S, Emery G, Martín-Bermudo MD. The GEF Vav regulates guided cell migration by coupling guidance receptor signalling to local Rac activation. J Cell Sci 2013; 126:2285-93. [DOI: 10.1242/jcs.124438] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Guided cell migration is a key mechanism for cell positioning in morphogenesis. The current model suggests that the spatially controlled activation of receptor tyrosine kinases (RTKs) by guidance cues would limit Rac activity at the leading edge, which is critical for establishing and maintaining polarized cell protrusions at the front. However, little is known about the mechanisms by which RTKs control the local activation of Rac. Here, using a multidisciplinary approach, we identify the GTP exchange factor (GEF) vav as a key regulator of Rac activity downstream of RTKs in a developmentally regulated cell migration event, that of the Drosophila border cells (BCs). We show that elimination of vav impairs BC migration. Live imaging analysis reveals that vav is required for the stabilization and maintenance of protrusions at the front of the BC cluster. In addition, activation of the PDGF/VEGF-related receptor (PVR) by its ligand the PDGF/PVF1 factor brings about Vav activation by direct interaction with the intracellular domain of PVR. Finally, FRET analyses demonstrate that Vav is required in BCs for the asymmetric distribution of Rac activity at the front. Our results unravel an important role for the Vav proteins as signal transducers that couple signalling downstream of RTKs with local Rac activation during morphogenetic movements.
Collapse
|
137
|
Group choreography: mechanisms orchestrating the collective movement of border cells. Nat Rev Mol Cell Biol 2012; 13:631-45. [PMID: 23000794 DOI: 10.1038/nrm3433] [Citation(s) in RCA: 174] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cell movements are essential for animal development and homeostasis but also contribute to disease. Moving cells typically extend protrusions towards a chemoattractant, adhere to the substrate, contract and detach at the rear. It is less clear how cells that migrate in interconnected groups in vivo coordinate their behaviour and navigate through natural environments. The border cells of the Drosophila melanogaster ovary have emerged as an excellent model for the study of collective cell movement, aided by innovative genetic, live imaging, and photomanipulation techniques. Here we provide an overview of the molecular choreography of border cells and its more general implications.
Collapse
|
138
|
Margaron Y, Fradet N, Côté JF. ELMO recruits actin cross-linking family 7 (ACF7) at the cell membrane for microtubule capture and stabilization of cellular protrusions. J Biol Chem 2012. [PMID: 23184944 DOI: 10.1074/jbc.m112.431825] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
ELMO and DOCK180 proteins form an evolutionarily conserved module controlling Rac GTPase signaling during cell migration, phagocytosis, and myoblast fusion. Here, we identified the microtubule and actin-binding spectraplakin ACF7 as a novel ELMO-interacting partner. A C-terminal polyproline segment in ELMO and the last spectrin repeat of ACF7 mediate a direct interaction between these proteins. Co-expression of ELMO1 with ACF7 promoted the formation of long membrane protrusions during integrin-mediated cell spreading. Quantification of membrane dynamics established that coupling of ELMO and ACF7 increases the persistence of the protruding activity. Mechanistically, we uncovered a role for ELMO in the recruitment of ACF7 to the membrane to promote microtubule capture and stability. Functionally, these effects of ELMO and ACF7 on cytoskeletal dynamics required the Rac GEF DOCK180. In conclusion, our findings support a role for ELMO in protrusion stability by acting at the interface between the actin cytoskeleton and the microtubule network.
Collapse
Affiliation(s)
- Yoran Margaron
- Institut de Recherches Cliniques de Montréal, Montréal, Québec H2W 1R7, Canada
| | | | | |
Collapse
|
139
|
On the role of PDZ domain-encoding genes in Drosophila border cell migration. G3-GENES GENOMES GENETICS 2012; 2:1379-91. [PMID: 23173089 PMCID: PMC3484668 DOI: 10.1534/g3.112.004093] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 09/10/2012] [Indexed: 12/31/2022]
Abstract
Cells often move as collective groups during normal embryonic development and wound healing, although the mechanisms governing this type of migration are poorly understood. The Drosophila melanogaster border cells migrate as a cluster during late oogenesis and serve as a powerful in vivo genetic model for collective cell migration. To discover new genes that participate in border cell migration, 64 out of 66 genes that encode PDZ domain-containing proteins were systematically targeted by in vivo RNAi knockdown. The PDZ domain is one of the largest families of protein-protein interaction domains found in eukaryotes. Proteins that contain PDZ domains participate in a variety of biological processes, including signal transduction and establishment of epithelial apical-basal polarity. Targeting PDZ proteins effectively assesses a larger number of genes via the protein complexes and pathways through which these proteins function. par-6, a known regulator of border cell migration, was a positive hit and thus validated the approach. Knockdown of 14 PDZ domain genes disrupted migration with multiple RNAi lines. The candidate genes have diverse predicted cellular functions and are anticipated to provide new insights into the mechanisms that control border cell movement. As a test of this concept, two genes that disrupted migration were characterized in more detail: big bang and the Dlg5 homolog CG6509. We present evidence that Big bang regulates JAK/STAT signaling, whereas Dlg5/CG6509 maintains cluster cohesion. Moreover, these results demonstrate that targeting a selected class of genes by RNAi can uncover novel regulators of collective cell migration.
Collapse
|
140
|
Rørth P. Fellow travellers: emergent properties of collective cell migration. EMBO Rep 2012; 13:984-91. [PMID: 23059978 DOI: 10.1038/embor.2012.149] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 09/20/2012] [Indexed: 11/09/2022] Open
Abstract
Cells can migrate individually or collectively. Collective movement is common during normal development and is also a characteristic of some cancers. This review discusses recent insights into features that are unique to collective cell migration, as well as properties that emerge from these features. The first feature is that cells of the collective affect each other through adhesion, force-dependent and signalling interactions. The second feature is that cells of the collective differ from one another: leaders from followers, tip from stalk and front from back. These are dynamic differences that are important for directional movement. Last, an unexpected property is discussed: epithelial cells can rotate persistently in constrained spaces.
Collapse
Affiliation(s)
- Pernille Rørth
- Institute of Molecular & Cell Biology, 61 Biopolis Drive, Singapore 138673, and Department of Biological Sciences, The National University of Singapore, Singapore 117604.
| |
Collapse
|
141
|
Abstract
Cell migration is fundamental to establishing and maintaining the proper organization of multicellular organisms. Morphogenesis can be viewed as a consequence, in part, of cell locomotion, from large-scale migrations of epithelial sheets during gastrulation, to the movement of individual cells during development of the nervous system. In an adult organism, cell migration is essential for proper immune response, wound repair, and tissue homeostasis, while aberrant cell migration is found in various pathologies. Indeed, as our knowledge of migration increases, we can look forward to, for example, abating the spread of highly malignant cancer cells, retarding the invasion of white cells in the inflammatory process, or enhancing the healing of wounds. This article is organized in two main sections. The first section is devoted to the single-cell migrating in isolation such as occurs when leukocytes migrate during the immune response or when fibroblasts squeeze through connective tissue. The second section is devoted to cells collectively migrating as part of multicellular clusters or sheets. This second type of migration is prevalent in development, wound healing, and in some forms of cancer metastasis.
Collapse
Affiliation(s)
- Xavier Trepat
- Institute for Bioengineering of Catalonia, Barcelona, Spain.
| | | | | |
Collapse
|
142
|
Karagiannis GS, Poutahidis T, Erdman SE, Kirsch R, Riddell RH, Diamandis EP. Cancer-associated fibroblasts drive the progression of metastasis through both paracrine and mechanical pressure on cancer tissue. Mol Cancer Res 2012; 10:1403-18. [PMID: 23024188 DOI: 10.1158/1541-7786.mcr-12-0307] [Citation(s) in RCA: 401] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neoplastic cells recruit fibroblasts through various growth factors and cytokines. These "cancer-associated fibroblasts" (CAF) actively interact with neoplastic cells and form a myofibroblastic microenvironment that promotes cancer growth and survival and supports malignancy. Several products of their paracrine signaling repertoire have been recognized as tumor growth and metastasis regulators. However, tumor-promoting cell signaling is not the only reason that makes CAFs key components of the "tumor microenvironment," as CAFs affect both the architecture and growth mechanics of the developing tumor. CAFs participate in the remodeling of peritumoral stroma, which is a prerequisite of neoplastic cell invasion, expansion, and metastasis. CAFs are not present peritumorally as individual cells but they act orchestrated to fully deploy a desmoplastic program, characterized by "syncytial" (or collective) configuration and altered cell adhesion properties. Such myofibroblastic cohorts are reminiscent of those encountered in wound-healing processes. The view of "cancer as a wound that does not heal" led to useful comparisons between wound healing and tumorigenesis and expanded our knowledge of the role of CAF cohorts in cancer. In this integrative model of cancer invasion and metastasis, we propose that the CAF-supported microenvironment has a dual tumor-promoting role. Not only does it provide essential signals for cancer cell dedifferentiation, proliferation, and survival but it also facilitates cancer cell local invasion and metastatic phenomena.
Collapse
Affiliation(s)
- George S Karagiannis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Canada
| | | | | | | | | | | |
Collapse
|
143
|
Yang N, Inaki M, Cliffe A, Rørth P. Microtubules and Lis-1/NudE/dynein regulate invasive cell-on-cell migration in Drosophila. PLoS One 2012; 7:e40632. [PMID: 22808215 PMCID: PMC3396602 DOI: 10.1371/journal.pone.0040632] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Accepted: 06/11/2012] [Indexed: 11/24/2022] Open
Abstract
The environment through which cells migrate in vivo differs considerably from the in vitro environment where cell migration is often studied. In vivo many cells migrate in crowded and complex 3-dimensional tissues and may use other cells as the substratum on which they move. This includes neurons, glia and their progenitors in the brain. Here we use a Drosophila model of invasive, collective migration in a cellular environment to investigate the roles of microtubules and microtubule regulators in this type of cell movement. Border cells are of epithelial origin and have no visible microtubule organizing center (MTOC). Interestingly, microtubule plus-end growth was biased away from the leading edge. General perturbation of the microtubule cytoskeleton and analysis by live imaging showed that microtubules in both the migrating cells and the substrate cells affect movement. Also, whole-tissue and cell autonomous deletion of the microtubule regulator Stathmin had distinct effects. A screen of 67 genes encoding microtubule interacting proteins uncovered cell autonomous requirements for Lis-1, NudE and Dynein in border cell migration. Net cluster migration was decreased, with initiation of migration and formation of dominant front cell protrusion being most dramatically affected. Organization of cells within the cluster and localization of cell-cell adhesion molecules were also abnormal. Given the established role of Lis-1 in migrating neurons, this could indicate a general role of Lis-1/NudE, Dynein and microtubules, in cell-on-cell migration. Spatial regulation of cell-cell adhesion may be a common theme, consistent with observing both cell autonomous and non-autonomous requirements in both systems.
Collapse
Affiliation(s)
- Nachen Yang
- Institute of Molecular and Cell Biology, Singapore, Singapore
- Department of Biological Sciences, The National University of Singapore, Singapore, Singapore
| | - Mikiko Inaki
- Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Adam Cliffe
- Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Pernille Rørth
- Institute of Molecular and Cell Biology, Singapore, Singapore
- Department of Biological Sciences, The National University of Singapore, Singapore, Singapore
- * E-mail:
| |
Collapse
|
144
|
Jayo A, Parsons M. Imaging of cell adhesion events in 3D matrix environments. Eur J Cell Biol 2012; 91:824-33. [PMID: 22705211 DOI: 10.1016/j.ejcb.2012.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2012] [Revised: 05/08/2012] [Accepted: 05/08/2012] [Indexed: 01/28/2023] Open
Abstract
Cell adhesion plays an essential role in development and homeostasis, but is also a key regulator of many diseases such as cancer and immune dysfunction. Numerous studies over the past three decades have revealed a wealth of information detailing signalling molecules required for cell adhesion to two-dimensional surfaces. However, in vivo many cells are completely surrounded by matrix and this will very likely influence the size, composition and dynamics of adhesive structures. The study of adhesion in cells within three-dimensional environments is still in its infancy, thus the role and regulation of adhesions in these complex environments remains unclear. The recent development of new experimental models coupled with significant advances in cell imaging approaches have provided platforms for researchers to begin to dissect adhesion signalling in cells in 3D matrices. Here we summarise the recent insights in cell adhesion formation and regulation in 3D model systems and the imaging approaches used to analyse these events.
Collapse
Affiliation(s)
- Asier Jayo
- Randall Division of Cell and Molecular Biophysics, King's College London, Guys Campus, UK
| | | |
Collapse
|
145
|
Wildi-Runge S, Stoppa-Vaucher S, Lambert R, Turpin S, Van Vliet G, Deladoëy J. A high prevalence of dual thyroid ectopy in congenital hypothyroidism: evidence for insufficient signaling gradients during embryonic thyroid migration or for the polyclonal nature of the thyroid gland? J Clin Endocrinol Metab 2012; 97:E978-81. [PMID: 22456623 DOI: 10.1210/jc.2011-3156] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Thyroid ectopy results from the failure of the thyroid precursor cells to migrate from the primordial pharynx to the anterior part of the neck. Most ectopic thyroids are revealed by congenital hypothyroidism and present as a single round mass at the base of the tongue, with no other thyroid tissue. However, some cases have dual ectopy, with part of the tissue having partially migrated. We hypothesized that this occurs more frequently than previously reported. METHODS To determine the prevalence of dual ectopy, we reviewed the pertechnetate scintigraphies of 81 patients with congenital hypothyroidism from thyroid ectopy diagnosed between 2002 and 2011 at our institution. RESULTS We report a series of seven cases (9%) of dual ectopy, representing an incidence ranging from 1:50,000 to 1:70,000. CONCLUSIONS Almost one in 10 cases with congenital hypothyroidism due to thyroid ectopy has dual ectopy. This suggests that two populations of cells diverged at an early stage of development, which may arise from insufficient signaling gradients in surrounding tissues during early organogenesis or may indirectly support the polyclonal nature of the thyroid.
Collapse
Affiliation(s)
- Stefanie Wildi-Runge
- Centre Hospitalier Universitaire Sainte-Justine, 3175 Côte Sainte-Catherine, Montréal Québec, Canada
| | | | | | | | | | | |
Collapse
|
146
|
Zhao T, Graham OS, Raposo A, St Johnston D. Growing microtubules push the oocyte nucleus to polarize the Drosophila dorsal-ventral axis. Science 2012; 336:999-1003. [PMID: 22499806 PMCID: PMC3459055 DOI: 10.1126/science.1219147] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The Drosophila dorsal-ventral (DV) axis is polarized when the oocyte nucleus migrates from the posterior to the anterior margin of the oocyte. Prior work suggested that dynein pulls the nucleus to the anterior side along a polarized microtubule cytoskeleton, but this mechanism has not been tested. By imaging live oocytes, we find that the nucleus migrates with a posterior indentation that correlates with its direction of movement. Furthermore, both nuclear movement and the indentation depend on microtubule polymerization from centrosomes behind the nucleus. Thus, the nucleus is not pulled to the anterior but is pushed by the force exerted by growing microtubules. Nuclear migration and DV axis formation therefore depend on centrosome positioning early in oogenesis and are independent of anterior-posterior axis formation.
Collapse
Affiliation(s)
- Tongtong Zhao
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Tennis Court Rd, Cambridge CB2 1QN, United Kingdom
| | - Owen S. Graham
- The Department of Engineering, University of Cambridge, Trumpington St, Cambridge, CB2 1PZ, United Kingdom
| | - Alexandre Raposo
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Tennis Court Rd, Cambridge CB2 1QN, United Kingdom
| | - Daniel St Johnston
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Tennis Court Rd, Cambridge CB2 1QN, United Kingdom
| |
Collapse
|
147
|
Shiratsuchi A, Mori T, Sakurai K, Nagaosa K, Sekimizu K, Lee BL, Nakanishi Y. Independent recognition of Staphylococcus aureus by two receptors for phagocytosis in Drosophila. J Biol Chem 2012; 287:21663-72. [PMID: 22547074 DOI: 10.1074/jbc.m111.333807] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Integrin βν, one of two β subunits of Drosophila integrin, acts as a receptor in the phagocytosis of apoptotic cells. We here examined the involvement of this receptor in defense against infection by Staphylococcus aureus. Flies lacking integrin βν died earlier than control flies upon a septic but not oral infection with this bacterium. A loss of integrin βν reduced the phagocytosis of S. aureus and increased bacterial growth in flies. In contrast, the level of mRNA of an antimicrobial peptide produced upon infection was unchanged in integrin βν-lacking flies. The simultaneous loss of integrin βν and Draper, another receptor involved in the phagocytosis of S. aureus, brought about a further decrease in the level of phagocytosis and accelerated death of flies compared with the loss of either receptor alone. A strain of S. aureus lacking lipoteichoic acid, a cell wall component serving as a ligand for Draper, was susceptible to integrin βν-mediated phagocytosis. In contrast, a S. aureus mutant strain that produces small amounts of peptidoglycan was less efficiently phagocytosed by larval hemocytes, and a loss of integrin βν in hemocytes reduced a difference in the susceptibility to phagocytosis between parental and mutant strains. Furthermore, a series of experiments revealed the binding of integrin βν to peptidoglycan of S. aureus. Taken together, these results suggested that Draper and integrin βν cooperate in the phagocytic elimination of S. aureus by recognizing distinct cell wall components, and that this dual recognition system is necessary for the host organism to survive infection.
Collapse
Affiliation(s)
- Akiko Shiratsuchi
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa 920-1192, Japan.
| | | | | | | | | | | | | |
Collapse
|
148
|
Majumder P, Aranjuez G, Amick J, McDonald JA. Par-1 controls myosin-II activity through myosin phosphatase to regulate border cell migration. Curr Biol 2012; 22:363-72. [PMID: 22326025 DOI: 10.1016/j.cub.2012.01.037] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 12/23/2011] [Accepted: 01/19/2012] [Indexed: 02/06/2023]
Abstract
BACKGROUND Localized actomyosin contraction couples with actin polymerization and cell-matrix adhesion to regulate cell protrusions and retract trailing edges of migrating cells. Although many cells migrate in collective groups during tissue morphogenesis, mechanisms that coordinate actomyosin dynamics in collective cell migration are poorly understood. Migration of Drosophila border cells, a genetically tractable model for collective cell migration, requires nonmuscle myosin-II (Myo-II). How Myo-II specifically controls border cell migration and how Myo-II is itself regulated is largely unknown. RESULTS We show that Myo-II regulates two essential features of border cell migration: (1) initial detachment of the border cell cluster from the follicular epithelium and (2) the dynamics of cellular protrusions. We further demonstrate that the cell polarity protein Par-1 (MARK), a serine-threonine kinase, regulates the localization and activation of Myo-II in border cells. Par-1 binds to myosin phosphatase and phosphorylates it at a known inactivating site. Par-1 thus promotes phosphorylated myosin regulatory light chain, thereby increasing Myo-II activity. Furthermore, Par-1 localizes to and increases active Myo-II at the cluster rear to promote detachment; in the absence of Par-1, spatially distinct active Myo-II is lost. CONCLUSIONS We identify a critical new role for Par-1 kinase: spatiotemporal regulation of Myo-II activity within the border cell cluster through localized inhibition of myosin phosphatase. Polarity proteins such as Par-1, which intrinsically localize, can thus directly modulate the actomyosin dynamics required for border cell detachment and migration. Such a link between polarity proteins and cytoskeletal dynamics may also occur in other collective cell migrations.
Collapse
Affiliation(s)
- Pralay Majumder
- Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | | | | | | |
Collapse
|
149
|
Van Goethem E, Silva EA, Xiao H, Franc NC. The Drosophila TRPP cation channel, PKD2 and Dmel/Ced-12 act in genetically distinct pathways during apoptotic cell clearance. PLoS One 2012; 7:e31488. [PMID: 22347485 PMCID: PMC3275576 DOI: 10.1371/journal.pone.0031488] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 01/09/2012] [Indexed: 11/18/2022] Open
Abstract
Apoptosis, a genetically programmed cell death, allows for homeostasis and tissue remodelling during development of all multi-cellular organisms. Phagocytes swiftly recognize, engulf and digest apoptotic cells. Yet, to date the molecular mechanisms underlying this phagocytic process are still poorly understood. To delineate the molecular mechanisms of apoptotic cell clearance in Drosophila, we have carried out a deficiency screen and have identified three overlapping phagocytosis-defective mutants, which all delete the fly homologue of the ced-12 gene, known as Dmel\ced12. As anticipated, we have found that Dmel\ced-12 is required for apoptotic cell clearance, as for its C. elegans and mammalian homologues, ced-12 and elmo, respectively. However, the loss of Dmel\ced-12 did not solely account for the phenotypes of all three deficiencies, as zygotic mutations and germ line clones of Dmel\ced-12 exhibited weaker phenotypes. Using a nearby genetically interacting deficiency, we have found that the polycystic kidney disease 2 gene, pkd2, which encodes a member of the TRPP channel family, is also required for phagocytosis of apoptotic cells, thereby demonstrating a novel role for PKD2 in this process. We have also observed genetic interactions between pkd2, simu, drpr, rya-r44F, and retinophilin (rtp), also known as undertaker (uta), a gene encoding a MORN-repeat containing molecule, which we have recently found to be implicated in calcium homeostasis during phagocytosis. However, we have not found any genetic interaction between Dmel\ced-12 and simu. Based on these genetic interactions and recent reports demonstrating a role for the mammalian pkd-2 gene product in ER calcium release during store-operated calcium entry, we propose that PKD2 functions in the DRPR/RTP pathway to regulate calcium homeostasis during this process. Similarly to its C. elegans homologue, Dmel\Ced-12 appears to function in a genetically distinct pathway.
Collapse
Affiliation(s)
- Emeline Van Goethem
- Medical Research Council Cell Biology Unit, MRC Laboratory for Molecular Cell Biology and Anatomy and Developmental Biology Department, University College London, London, United Kingdom
| | - Elizabeth A. Silva
- Medical Research Council Cell Biology Unit, MRC Laboratory for Molecular Cell Biology and Anatomy and Developmental Biology Department, University College London, London, United Kingdom
| | - Hui Xiao
- The Department of Genetics, Affiliated to the Department of Immunology and Microbial Sciences, The Scripps Research Institute, La Jolla, California, United States of America
| | - Nathalie C. Franc
- The Department of Genetics, Affiliated to the Department of Immunology and Microbial Sciences, The Scripps Research Institute, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
150
|
Tissue architecture in the Caenorhabditis elegans gonad depends on interactions among fibulin-1, type IV collagen and the ADAMTS extracellular protease. Genetics 2012; 190:1379-88. [PMID: 22298704 DOI: 10.1534/genetics.111.133173] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Molecules in the extracellular matrix (ECM) regulate cellular behavior in both development and pathology. Fibulin-1 is a conserved ECM protein. The Caenorhabditis elegans ortholog, FBL-1, regulates gonad-arm elongation and expansion by acting antagonistically to GON-1, an ADAMTS (a disintegrin and metalloprotease with thrombospondin motifs) family protease. The elongation of gonad arms is directed by gonadal distal tip cells (DTCs). Here we report that a dominant mutation in the EMB-9/type IV collagen α1 subunit can compensate for loss of FBL-1 activity in gonadogenesis. A specific amino acid substitution in the noncollagenous 1 (NC1) domain of EMB-9 suppressed the fbl-1 null mutant. FBL-1 was required to maintain wild-type EMB-9 in the basement membrane (BM), whereas mutant EMB-9 was retained in the absence of FBL-1. EMB-9 (either wild type or mutant) localization in the BM enhanced PAT-3/β-integrin expression in DTCs. In addition, overexpression of PAT-3 partially rescued the DTC migration defects in fbl-1 mutants, suggesting that EMB-9 acts in part through PAT-3 to control DTC migration. In contrast to the suppression of fbl-1(tk45), mutant EMB-9 enhanced the gonadal defects of gon-1(e1254), suggesting that it gained a function similar to that of wild-type FBL-1, which promotes DTC migration by inhibiting GON-1. We propose that FBL-1 and GON-1 control EMB-9 accumulation in the BM and promote PAT-3 expression to control DTC migration.
Collapse
|