101
|
Bhaduri D, Sihi D, Bhowmik A, Verma BC, Munda S, Dari B. A review on effective soil health bio-indicators for ecosystem restoration and sustainability. Front Microbiol 2022; 13:938481. [PMID: 36060788 PMCID: PMC9428492 DOI: 10.3389/fmicb.2022.938481] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/29/2022] [Indexed: 11/30/2022] Open
Abstract
Preventing degradation, facilitating restoration, and maintaining soil health is fundamental for achieving ecosystem stability and resilience. A healthy soil ecosystem is supported by favorable components in the soil that promote biological productivity and provide ecosystem services. Bio-indicators of soil health are measurable properties that define the biotic components in soil and could potentially be used as a metric in determining soil functionality over a wide range of ecological conditions. However, it has been a challenge to determine effective bio-indicators of soil health due to its temporal and spatial resolutions at ecosystem levels. The objective of this review is to compile a set of effective bio-indicators for developing a better understanding of ecosystem restoration capabilities. It addresses a set of potential bio-indicators including microbial biomass, respiration, enzymatic activity, molecular gene markers, microbial metabolic substances, and microbial community analysis that have been responsive to a wide range of ecosystem functions in agricultural soils, mine deposited soil, heavy metal contaminated soil, desert soil, radioactive polluted soil, pesticide polluted soil, and wetland soils. The importance of ecosystem restoration in the United Nations Sustainable Development Goals was also discussed. This review identifies key management strategies that can help in ecosystem restoration and maintain ecosystem stability.
Collapse
Affiliation(s)
- Debarati Bhaduri
- ICAR-National Rice Research Institute, Cuttack, India
- *Correspondence: Debarati Bhaduri
| | - Debjani Sihi
- Department of Environmental Sciences, Emory University, Atlanta, GA, United States
| | - Arnab Bhowmik
- Department of Natural Resources and Environmental Design, North Carolina Agricultural and Technical State University, Greensboro, NC, United States
- Arnab Bhowmik
| | - Bibhash C. Verma
- Central Rainfed Upland Rice Research Station (ICAR-NRRI), Hazaribagh, India
| | | | - Biswanath Dari
- Agriculture and Natural Resources, Cooperative Extension at North Carolina Agricultural and Technical State University, Greensboro, NC, United States
| |
Collapse
|
102
|
Urakawa H, Andrews GA, Lopez JV, Martens-Habbena W, Klotz MG, Stahl DA. Nitrosomonas supralitoralis sp. nov., an ammonia-oxidizing bacterium from beach sand in a supralittoral zone. Arch Microbiol 2022; 204:560. [PMID: 35978059 DOI: 10.1007/s00203-022-03173-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 11/24/2022]
Abstract
A betaproteobacterial chemolithotrophic ammonia-oxidizing bacterium designated APG5T was isolated from supralittoral sand of the Edmonds City Beach, WA, USA. Growth was observed at 10-35 °C (optimum, 30 °C), pH 5-9 (optimum, pH 8) and ammonia concentrations as high as 100 mM (optimum, 1-30 mM NH4Cl). The strain grows optimally in a freshwater medium but tolerates up to 400 mM NaCl. It is most closely related to 'Nitrosomonas ureae' (96.7% 16S rRNA and 92.4% amoA sequence identity). The 3.75-Mbp of AGP5T draft genome contained a single rRNA operon and all necessary tRNA genes and has the lowest G+C content (43.5%) when compared to the previously reported genomes of reference strains in cluster 6 Nitrosomonas. Based on an average nucleotide identity of 82% with its closest relative ('N. ureae' Nm10T) and the suggested species boundary of 95-96%, a new species Nitrosomonas supralitoralis sp. nov. is proposed. The type strain of Nitrosomonas supralitoralis is APG5T (= NCIMB 14870T = ATCC TSD-116T).
Collapse
Affiliation(s)
- Hidetoshi Urakawa
- Department of Ecology and Environmental Studies, Florida Gulf Coast University, Fort Myers, FL, USA. .,Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA.
| | - Gabrianna A Andrews
- Department of Ecology and Environmental Studies, Florida Gulf Coast University, Fort Myers, FL, USA
| | - Jose V Lopez
- Department of Biological Sciences, Halmos College of Arts and Sciences, Nova Southeastern University, Dania Beach, FL, USA
| | - Willm Martens-Habbena
- Fort Lauderdale Research and Education Center, Institute for Food and Agricultural Sciences, University of Florida, Davie, FL, USA.,Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA
| | - Martin G Klotz
- School of Molecular Biosciences, Washington State University, Pullman, WA, USA
| | - David A Stahl
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA, USA
| |
Collapse
|
103
|
He S, Zhao Z, Tian Z, Xu C, Liu Y, He D, Zhang Y, Zheng M. Comammox bacteria predominate among ammonia-oxidizing microorganisms in municipal but not in refinery wastewater treatment plants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 316:115271. [PMID: 35594823 DOI: 10.1016/j.jenvman.2022.115271] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 05/03/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
Comammox bacteria have proved to be one dominant and significant ammonia-oxidizing microorganisms (AOMs) in municipal wastewater treatment plants (WWTPs), however, it still remains unknown about their abundance and diversity in industrial WWTPs. In this study, activated sludge samples from 8 municipal WWTPs and 6 industrial WWTPs treating refinery wastewater were taken and analyzed using qPCR and amoA gene sequencing. Intriguingly, quantitative real-time PCR (qPCR) results suggested that comammox bacteria had a higher numerical abundance compared with ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) in municipal WWTPs but did not in refinery WWTPs. Moreover, comammox amoA sequences obtained from high-throughput sequencing were retrieved from all the 8 municipal samples but only 1 industrial sample. Further phylogenetic analysis revealed that N. nitrosa cluster accounted for as high as 79.56% of the total comammox affiliated sequences, which was the most numerically abundant comammox species in municipal WWTPs. This study provided new insights into the abundance and diversity of comammox bacteria in the biological nitrification process in municipal and refinery wastewater treatment systems.
Collapse
Affiliation(s)
- Shishi He
- The Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, Main Building G619, North China Electric Power University, Beijing, 102206, China
| | - Zhirong Zhao
- The Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, Main Building G619, North China Electric Power University, Beijing, 102206, China
| | - Zhichao Tian
- The Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, Main Building G619, North China Electric Power University, Beijing, 102206, China
| | - Chi Xu
- The Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, Main Building G619, North China Electric Power University, Beijing, 102206, China
| | - Yuan Liu
- The Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, Main Building G619, North China Electric Power University, Beijing, 102206, China
| | - Da He
- Key Laboratory of Ecological Impacts of Hydraulic Projects and Restoration of Aquatic Ecosystem of Ministry of Water Resources, Institute of Hydroecology, Ministry of Water Resources & Chinese Academy of Sciences, Wuhan, China
| | - Yinghui Zhang
- Guangxi Huantou Water Group Co. LTD, Nanning, 530015, China
| | - Maosheng Zheng
- The Key Laboratory of Resources and Environmental Systems Optimization, Ministry of Education, College of Environmental Science and Engineering, Main Building G619, North China Electric Power University, Beijing, 102206, China.
| |
Collapse
|
104
|
Abstract
Wetlands are the major natural source of methane, an important greenhouse gas. The sulfur and methane cycles in wetlands are linked—e.g., a strong sulfur cycle can inhibit methanogenesis. Although there has historically been a clear distinction drawn between methane and sulfur oxidizers, here, we isolated a methanotroph that also performed respiratory oxidization of sulfur compounds. We experimentally demonstrated that thiotrophy and methanotrophy are metabolically compatible, and both metabolisms could be expressed simultaneously in a single microorganism. These findings suggest that mixotrophic methane/sulfur-oxidizing bacteria are a previously overlooked component of environmental methane and sulfur cycles. This creates a framework for a better understanding of these redox cycles in natural and engineered wetlands. Natural and anthropogenic wetlands are major sources of the atmospheric greenhouse gas methane. Methane emissions from wetlands are mitigated by methanotrophic bacteria at the oxic–anoxic interface, a zone of intense redox cycling of carbon, sulfur, and nitrogen compounds. Here, we report on the isolation of an aerobic methanotrophic bacterium, ‘Methylovirgula thiovorans' strain HY1, which possesses metabolic capabilities never before found in any methanotroph. Most notably, strain HY1 is the first bacterium shown to aerobically oxidize both methane and reduced sulfur compounds for growth. Genomic and proteomic analyses showed that soluble methane monooxygenase and XoxF-type alcohol dehydrogenases are responsible for methane and methanol oxidation, respectively. Various pathways for respiratory sulfur oxidation were present, including the Sox–rDsr pathway and the S4I system. Strain HY1 employed the Calvin–Benson–Bassham cycle for CO2 fixation during chemolithoautotrophic growth on reduced sulfur compounds. Proteomic and microrespirometry analyses showed that the metabolic pathways for methane and thiosulfate oxidation were induced in the presence of the respective substrates. Methane and thiosulfate could therefore be independently or simultaneously oxidized. The discovery of this versatile bacterium demonstrates that methanotrophy and thiotrophy are compatible in a single microorganism and underpins the intimate interactions of methane and sulfur cycles in oxic–anoxic interface environments.
Collapse
|
105
|
Mosley OE, Gios E, Close M, Weaver L, Daughney C, Handley KM. Nitrogen cycling and microbial cooperation in the terrestrial subsurface. THE ISME JOURNAL 2022; 16:2561-2573. [PMID: 35941171 PMCID: PMC9562985 DOI: 10.1038/s41396-022-01300-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 11/25/2022]
Abstract
The nitrogen cycle plays a major role in aquatic nitrogen transformations, including in the terrestrial subsurface. However, the variety of transformations remains understudied. To determine how nitrogen cycling microorganisms respond to different aquifer chemistries, we sampled groundwater with varying nutrient and oxygen contents. Genes and transcripts involved in major nitrogen-cycling pathways were quantified from 55 and 26 sites, respectively, and metagenomes and metatranscriptomes were analyzed from a subset of oxic and dysoxic sites (0.3-1.1 mg/L bulk dissolved oxygen). Nitrogen-cycling mechanisms (e.g. ammonia oxidation, denitrification, dissimilatory nitrate reduction to ammonium) were prevalent and highly redundant, regardless of site-specific physicochemistry or nitrate availability, and present in 40% of reconstructed genomes, suggesting that nitrogen cycling is a core function of aquifer communities. Transcriptional activity for nitrification, denitrification, nitrite-dependent anaerobic methane oxidation and anaerobic ammonia oxidation (anammox) occurred simultaneously in oxic and dysoxic groundwater, indicating the availability of oxic-anoxic interfaces. Concurrent activity by these microorganisms indicates potential synergisms through metabolite exchange across these interfaces (e.g. nitrite and oxygen). Fragmented denitrification pathway encoding and transcription was widespread among groundwater bacteria, although a considerable proportion of associated transcriptional activity was driven by complete denitrifiers, especially under dysoxic conditions. Despite large differences in transcription, the capacity for the final steps of denitrification was largely invariant to aquifer conditions, and most genes and transcripts encoding N2O reductases were the atypical Sec-dependant type, suggesting energy-efficiency prioritization. Results provide insights into the capacity for cooperative relationships in groundwater communities, and the richness and complexity of metabolic mechanisms leading to the loss of fixed nitrogen.
Collapse
|
106
|
Monteiro GGTN, Barros DJ, Gabriel GVM, Venturini AM, Veloso TGR, Vazquez GH, Oliveira LC, Neu V, Bodelier PLE, Mansano CFM, Tsai SM, Navarrete AA. Molecular evidence for stimulation of methane oxidation in Amazonian floodplains by ammonia-oxidizing communities. Front Microbiol 2022; 13:913453. [PMID: 35979497 PMCID: PMC9376453 DOI: 10.3389/fmicb.2022.913453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/08/2022] [Indexed: 12/03/2022] Open
Abstract
Ammonia oxidation is the rate-limiting first step of nitrification and a key process in the nitrogen cycle that results in the formation of nitrite (NO2 -), which can be further oxidized to nitrate (NO3 -). In the Amazonian floodplains, soils are subjected to extended seasons of flooding during the rainy season, in which they can become anoxic and produce a significant amount of methane (CH4). Various microorganisms in this anoxic environment can couple the reduction of different ions, such as NO2 - and NO3 -, with the oxidation of CH4 for energy production and effectively link the carbon and nitrogen cycle. Here, we addressed the composition of ammonium (NH4 +) and NO3 --and NO2 --dependent CH4-oxidizing microbial communities in an Amazonian floodplain. In addition, we analyzed the influence of environmental and geochemical factors on these microbial communities. Soil samples were collected from different layers of forest and agroforest land-use systems during the flood and non-flood seasons in the floodplain of the Tocantins River, and next-generation sequencing of archaeal and bacterial 16S rRNA amplicons was performed, coupled with chemical characterization of the soils. We found that ammonia-oxidizing archaea (AOA) were more abundant than ammonia-oxidizing bacteria (AOB) during both flood and non-flood seasons. Nitrogen-dependent anaerobic methane oxidizers (N-DAMO) from both the archaeal and bacterial domains were also found in both seasons, with higher abundance in the flood season. The different seasons, land uses, and depths analyzed had a significant influence on the soil chemical factors and also affected the abundance and composition of AOA, AOB, and N-DAMO. During the flood season, there was a significant correlation between ammonia oxidizers and N-DAMO, indicating the possible role of these oxidizers in providing oxidized nitrogen species for methanotrophy under anaerobic conditions, which is essential for nitrogen removal in these soils.
Collapse
Affiliation(s)
| | - Dayane J. Barros
- Graduate Program in Biodiversity and Biotechnology (BIONORTE), Federal University of Tocantins (UFT), Palmas, Brazil
| | - Gabriele V. M. Gabriel
- Graduate Program in Biotechnology and Environmental Monitoring, Federal University of São Carlos (UFSCar), Sorocaba, Brazil
| | - Andressa M. Venturini
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo (USP), Piracicaba, Brazil
- Princeton Institute for International and Regional Studies, Princeton University, Princeton, NJ, United States
| | - Tomás G. R. Veloso
- Graduate Program in Agricultural Microbiology, Federal University of Viçosa, Viçosa, Brazil
| | - Gisele H. Vazquez
- Graduate Program in Environmental Sciences, University Brazil, Fernandópolis, Brazil
| | - Luciana C. Oliveira
- Department of Physics, Chemistry, and Mathematics, Federal University of São Carlos (UFSCar), Sorocaba, Brazil
| | - Vania Neu
- Federal Rural University of Amazonia (UFRA), Belém, Brazil
| | - Paul L. E. Bodelier
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
| | | | - Siu M. Tsai
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo (USP), Piracicaba, Brazil
| | - Acacio A. Navarrete
- Cell and Molecular Biology Laboratory, Center for Nuclear Energy in Agriculture, University of São Paulo (USP), Piracicaba, Brazil
- Graduate Program in Environmental Sciences, University Brazil, Fernandópolis, Brazil
| |
Collapse
|
107
|
Deterministic Factors Determine the Comammox Community Composition in the Pearl River Estuary Ecosystem. Microbiol Spectr 2022; 10:e0101622. [PMID: 35913204 PMCID: PMC9431512 DOI: 10.1128/spectrum.01016-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Complete ammonia oxidizers (comammox) have been widely detected in riverine and estuarine ecosystems. However, knowledge about the process of comammox community assembly from freshwater to marine environments is still limited. Here, based on deep sequencing, we investigated the community composition of comammox along a salinity gradient in the Pearl River Estuary (PRE), South China. Our results showed that comammox microorganisms in the PRE sediments were extremely diverse and displayed distinct distributional patterns between upstream and downstream habitats. Quantitative PCR demonstrated that comammox was the dominant ammonia-oxidizing microorganism (AOM) in the PRE upstream sediments, and ammonia-oxidizing archaea (AOA) dominated the PRE downstream sediments, while ammonia-oxidizing bacteria (AOB) were not dominant in any section of the PRE. Neutral modeling revealed that stochastic processes explained a limited part of the variation in the comammox community. The majority of beta nearest-taxon index values were higher than 2, indicating that comammox community assembly in the PRE sediments was better explained through a deterministic process than through a stochastic process. Salinity and total nitrogen were the most important contributing factors that shaped the comammox community. This study expanded the current knowledge of the diversity and niche preference of comammox in the estuarine ecosystem, and further enhances our understanding of the assembly of comammox community from freshwater to marine environments. IMPORTANCE Microbial communities are shaped by stochastic (emigration, immigration, birth, death, and genetic drift of species) and deterministic (e.g., environmental factors) processes. However, it remains unknown as to which type of process is more important in influencing the comammox community assembly from freshwater to marine environments. In this study, we compared the relative importance of stochastic and deterministic processes in shaping the assembly of the comammox community, which demonstrated that the deterministic process was more important in determining the community assembly patterns in the PRE ecosystem.
Collapse
|
108
|
Xue Y, Zheng M, Wu S, Liu Y, Huang X. Changes in the Species and Functional Composition of Activated Sludge Communities Revealed Mechanisms of Partial Nitrification Established by Ultrasonication. Front Microbiol 2022; 13:960608. [PMID: 35928152 PMCID: PMC9344063 DOI: 10.3389/fmicb.2022.960608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 06/22/2022] [Indexed: 11/20/2022] Open
Abstract
To achieve energy-efficient shortcut nitrogen removal of wastewater in the future, selective elimination of nitrite-oxidizing bacteria (NOB) while enriching ammonia-oxidizing microorganisms is a crucial step. However, the underlying mechanisms of partial nitrification are still not well understood, especially the newly discovered ultrasound-based partial nitrification. To elucidate this issue, in this study two bioreactors were set up, with one established partial nitrification by ultrasonication while the other didn't. During the operation of both reactors, the taxonomic and functional composition of the microbial community were investigated through metagenomics analysis. The result showed that during ultrasonic partial nitrification, ammonia-oxidizing archaea (AOA), Nitrososphaerales, was enriched more than ammonia-oxidizing bacteria (AOB), Nitrosomonas. The enrichment of microorganisms in the community increased the abundance of genes involved in microbial energy generation from lipid and carbohydrates. On the other hand, the abundance of NOB, Nitrospira and Nitrolancea, and Comammox Nitrospira decreased. Selective inhibition of NOB was highly correlated with genes involved in signal transduction enzymes, such as encoding histidine kinase and serine/threonine kinase. These findings provided deep insight into partial nitrification and contributed to the development of shortcut nitrification in wastewater treatment plants.
Collapse
Affiliation(s)
- Yu Xue
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Min Zheng
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St. Lucia, QLD, Australia
| | - Shuang Wu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| | - Yanchen Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
- *Correspondence: Yanchen Liu
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
| |
Collapse
|
109
|
Xing G, Lu J, Xuan L, Chen J, Xiong J. Sediment prokaryotic assembly, methane cycling, and ammonia oxidation potentials in response to increasing antibiotic pollution at shrimp aquafarm. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128885. [PMID: 35421673 DOI: 10.1016/j.jhazmat.2022.128885] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/30/2022] [Accepted: 04/07/2022] [Indexed: 05/28/2023]
Abstract
Antibiotic pollution poses serious threats to public health and ecological processes. However, systematic research regarding the interactive effects of increasing nutrient and antibiotic pollutions on the prokaryotic community, particularly taxa that contribute to greenhouse gas emissions, is lacking. By exploring the complex interactions that occur between interkingdom bacteria and archaea, biotic and abiotic factors, the responses of sediment prokaryotic assembly were determined along a significant antibiotic pollution gradient. Bacterial and archaeal communities were primarily governed by sediment antibiotic pollution, ammonia, phosphate, and redox potential, which further affected enzyme activities. The two communities nonlinearly responded to increasing antibiotic pollution, with significant tipping points of 3.906 and 0.979 mg/kg antibiotics, respectively. The combined antibiotic concentration-discriminatory taxa of bacteria and archaea accurately (98.0% accuracy) diagnosed in situ antibiotic concentrations. Co-abundance analysis revealed that the methanogens, methanotrophs, sulfate-reducing bacteria, and novel players synergistically contributed to methane cycling. Antibiotic pollution caused the dominant role of ammonia-oxidizing archaea in ammonia oxidation at these alkaline sediments. Collectively, the significant tipping points and bio-indicators afford indexes for regime shift and quantitative diagnosis of antibiotic pollution, respectively. Antibiotic pollution could expedite methane cycling and mitigate nitrous oxide yield, which are previously unrecognized ecological effects. These findings provide new insights into the interactive biological and ecological consequences of increasing nutrient and antibiotic pollutions.
Collapse
Affiliation(s)
- Guorui Xing
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jiaqi Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Lixia Xuan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; School of Marine Sciences, Ningbo University, Ningbo 315211, China.
| | - Jinbo Xiong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, China; School of Marine Sciences, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
110
|
Leberecht KM, Ritter SM, Lapp CJ, Klose L, Eschenröder J, Scholz C, Kühnel S, Stinnesbeck W, Kletzin A, Isenbeck-Schröter M, Gescher J. Microbially promoted calcite precipitation in the pelagic redoxcline: Elucidating the formation of the turbid layer. GEOBIOLOGY 2022; 20:498-517. [PMID: 35514106 DOI: 10.1111/gbi.12492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 02/24/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Large bell-shaped calcite formations called "Hells Bells" were discovered underwater in the stratified cenote El Zapote on the Yucatán Peninsula, Mexico. Together with these extraordinary speleothems, divers found a white, cloudy turbid layer into which some Hells Bells partially extend. Here, we address the central question if the formation of the turbid layer could be based on microbial activity, more specifically, on microbially induced calcite precipitation. Metagenomic and metatranscriptomic profiling of the microbial community in the turbid layer, which overlaps with the pelagic redoxcline in the cenote, revealed chemolithoautotrophic Hydrogenophilales and unclassified β-Proteobacteria as the metabolic key players. Bioinformatic and hydrogeochemical data suggest chemolithoautotrophic oxidation of sulfide to zero-valent sulfur catalyzed by denitrifying organisms due to oxygen deficiency. Incomplete sulfide oxidation via nitrate reduction and chemolithoautotrophy are both proton-consuming processes, which increase the pH in the redoxcline favoring authigenic calcite precipitation and may contribute to Hells Bells growth. The observed mechanism of microbially induced calcite precipitation is potentially applicable to many other stagnant sulfate-rich water bodies.
Collapse
Affiliation(s)
- Kerstin M Leberecht
- Institute of Technical Microbiology, Hamburg University of Technology, Hamburg, Germany
| | - Simon M Ritter
- Institute of Earth Sciences, Heidelberg University, Heidelberg, Germany
| | - Christian J Lapp
- Institute of Technical Microbiology, Hamburg University of Technology, Hamburg, Germany
| | - Lukas Klose
- Department of Physics & Earth Sciences, Jacobs University Bremen, Bremen, Germany
| | | | - Christian Scholz
- Institute of Earth Sciences, Heidelberg University, Heidelberg, Germany
| | - Sebastian Kühnel
- Institute of Earth Sciences, Heidelberg University, Heidelberg, Germany
| | - Wolfgang Stinnesbeck
- Institute of Earth Sciences, Heidelberg University, Heidelberg, Germany
- Heidelberg Center for the Environment (HCE), Heidelberg University, Heidelberg, Germany
| | - Arnulf Kletzin
- Department of Biology, Microbiology; Sulfur Biochemistry and Microbial Bioenergetics, Technical University of Darmstadt, Darmstadt, Germany
| | - Margot Isenbeck-Schröter
- Institute of Earth Sciences, Heidelberg University, Heidelberg, Germany
- Heidelberg Center for the Environment (HCE), Heidelberg University, Heidelberg, Germany
| | - Johannes Gescher
- Institute of Technical Microbiology, Hamburg University of Technology, Hamburg, Germany
| |
Collapse
|
111
|
Kellom M, Pagliara S, Richards TA, Santoro AE. Exaggerated trans-membrane charge of ammonium transporters in nutrient-poor marine environments. Open Biol 2022; 12:220041. [PMID: 35857930 PMCID: PMC9277239 DOI: 10.1098/rsob.220041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Transporter proteins are a vital interface between cells and their environment. In nutrient-limited environments, microbes with transporters that are effective at bringing substrates into their cells will gain a competitive advantage over variants with reduced transport function. Microbial ammonium transporters (Amt) bring ammonium into the cytoplasm from the surrounding periplasm space, but diagnosing Amt adaptations to low nutrient environments solely from sequence data has been elusive. Here, we report altered Amt sequence amino acid distribution from deep marine samples compared to variants sampled from shallow water in two important microbial lineages of the marine water column community-Marine Group I Archaea (Thermoproteota) and the uncultivated gammaproteobacterial lineage SAR86. This pattern indicates an evolutionary pressure towards an increasing dipole in Amt for these clades in deep ocean environments and is predicted to generate stronger electric fields facilitating ammonium acquisition. This pattern of increasing dipole charge with depth was not observed in lineages capable of accessing alternative nitrogen sources, including the abundant alphaproteobacterial clade SAR11. We speculate that competition for ammonium in the deep ocean drives transporter sequence evolution. The low concentration of ammonium in the deep ocean is therefore likely due to rapid uptake by Amts concurrent with decreasing nutrient flux.
Collapse
Affiliation(s)
- Matthew Kellom
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA, USA
| | - Stefano Pagliara
- Living Systems Institute and Biosciences, University of Exeter, Exeter, Devon EX4 4QD, UK
| | - Thomas A. Richards
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK
| | - Alyson E. Santoro
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA, USA
| |
Collapse
|
112
|
Kraft B, Canfield DE. Microbe Profile: Nitrosopumilus maritimus. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35852832 DOI: 10.1099/mic.0.001207] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Nitrosopumilus maritimus is a marine ammonia-oxidizing archaeon with a high affinity for ammonia. It fixes carbon via a modified hydroxypropionate/hydroxybutyrate cycle and shows weak utilization of cyanate as a supplementary energy and nitrogen source. When oxygen is depleted, N. maritimus produces its own oxygen, which may explain its regular occurrence in anoxic waters. Several enzymes of the ammonia oxidation and oxygen production pathways remain to be identified.
Collapse
Affiliation(s)
- Beate Kraft
- Nordcee, Department of Biology, University of Southern Denmark, Odense, Denmark
| | - Donald E Canfield
- Nordcee, Department of Biology, University of Southern Denmark, Odense, Denmark.,Key Laboratory of Petroleum Geochemistry, Research Institute of Petroleum Exploration and Development, China National Petroleum Corporation, Beijing 100083, PR China.,Danish Institute of Advanced Study, 5230 Odense, Denmark
| |
Collapse
|
113
|
Møller TE, Le Moine Bauer S, Hannisdal B, Zhao R, Baumberger T, Roerdink DL, Dupuis A, Thorseth IH, Pedersen RB, Jørgensen SL. Mapping Microbial Abundance and Prevalence to Changing Oxygen Concentration in Deep-Sea Sediments Using Machine Learning and Differential Abundance. Front Microbiol 2022; 13:804575. [PMID: 35663876 PMCID: PMC9158483 DOI: 10.3389/fmicb.2022.804575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/09/2022] [Indexed: 12/28/2022] Open
Abstract
Oxygen constitutes one of the strongest factors explaining microbial taxonomic variability in deep-sea sediments. However, deep-sea microbiome studies often lack the spatial resolution to study the oxygen gradient and transition zone beyond the oxic-anoxic dichotomy, thus leaving important questions regarding the microbial response to changing conditions unanswered. Here, we use machine learning and differential abundance analysis on 184 samples from 11 sediment cores retrieved along the Arctic Mid-Ocean Ridge to study how changing oxygen concentrations (1) are predicted by the relative abundance of higher taxa and (2) influence the distribution of individual Operational Taxonomic Units. We find that some of the most abundant classes of microorganisms can be used to classify samples according to oxygen concentration. At the level of Operational Taxonomic Units, however, representatives of common classes are not differentially abundant from high-oxic to low-oxic conditions. This weakened response to changing oxygen concentration suggests that the abundance and prevalence of highly abundant OTUs may be better explained by other variables than oxygen. Our results suggest that a relatively homogeneous microbiome is recruited to the benthos, and that the microbiome then becomes more heterogeneous as oxygen drops below 25 μM. Our analytical approach takes into account the oft-ignored compositional nature of relative abundance data, and provides a framework for extracting biologically meaningful associations from datasets spanning multiple sedimentary cores.
Collapse
Affiliation(s)
- Tor Einar Møller
- Department of Earth Science, University of Bergen, Bergen, Norway.,Centre for Deep Sea Research, University of Bergen, Bergen, Norway
| | - Sven Le Moine Bauer
- Department of Earth Science, University of Bergen, Bergen, Norway.,Centre for Deep Sea Research, University of Bergen, Bergen, Norway
| | - Bjarte Hannisdal
- Department of Earth Science, University of Bergen, Bergen, Norway.,Centre for Deep Sea Research, University of Bergen, Bergen, Norway.,Bjerknes Centre for Climate Research, University of Bergen, Bergen, Norway
| | - Rui Zhao
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Tamara Baumberger
- Cooperative Institute for Marine Ecosystem and Resources Studies, Oregon State University, Newport, OR, United States
| | - Desiree L Roerdink
- Department of Earth Science, University of Bergen, Bergen, Norway.,Centre for Deep Sea Research, University of Bergen, Bergen, Norway
| | | | - Ingunn H Thorseth
- Department of Earth Science, University of Bergen, Bergen, Norway.,Centre for Deep Sea Research, University of Bergen, Bergen, Norway
| | - Rolf Birger Pedersen
- Department of Earth Science, University of Bergen, Bergen, Norway.,Centre for Deep Sea Research, University of Bergen, Bergen, Norway
| | - Steffen Leth Jørgensen
- Department of Earth Science, University of Bergen, Bergen, Norway.,Centre for Deep Sea Research, University of Bergen, Bergen, Norway
| |
Collapse
|
114
|
Zhou Y, Toyoda R, Suenaga T, Aoyagi T, Hori T, Terada A. Low nitrous oxide concentration and spatial microbial community transition across an urban river affected by treated sewage. WATER RESEARCH 2022; 216:118276. [PMID: 35339050 DOI: 10.1016/j.watres.2022.118276] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/26/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Urban rivers receive used water derived from anthropogenic activities and are a crucial source of the potent greenhouse gas nitrous oxide (N2O). However, considerable uncertainties still exist regarding the variation and mechanisms of N2O production in response to the discharge of treated sewage from municipal wastewater treatment plants (WWTPs). This study investigated N2O concentrations and microbial processes responsible for nitrogen conversion upstream and downstream of WWTPs along the Tama River flowing through Tokyo, Japan. We evaluated the effect of treated sewage on dissolved N2O concentrations and inherent N2O consumption activities in the river sediments. In summer and winter, the mean dissolved N2O concentrations were 0.67 µg-N L-1 and 0.82 µg-N L-1, respectively. Although the dissolved N2O was supersaturated (mean 288.7% in summer, mean 240.7% in winter) in the river, the N2O emission factors (EF5r, 0.013%-0.025%) were significantly lower than those in other urban rivers and the Intergovernmental Panel on Climate Change default value (0.25%). The nitrate (NO3-) concentration in the Tama River increased downstream of the WWTPs discharge sites, and it was the main nitrogen constituent. An increasing trend of NO3- concentration was observed from upstream to downstream, along with an increase in the N2O consumption potential of the river sediment. A multiple regression model showed that NO3- is the crucial factor influencing N2O saturation. The diversity in the upstream microbial communities was greater than that in the downstream ones, indicating the involvement of treated sewage discharge in shaping the microbial communities. Functional gene quantification for N2O production and consumption suggested that nirK-type denitrifiers likely contributed to N2O production. Structural equation models (SEMs) revealed that treated sewage discharged from WWTPs increased the NO3- loading from upstream to downstream in the river, inducing changes in the microbial communities and enhancing the N2O consumption activities. Collectively, aerobic conditions limited denitrification and in turn facilitated nitrification, leading to low N2O emissions even despite high NO3- loadings in the Tama River. Our findings unravel an overestimation of the N2O emission potential in an urban oxygen-rich river affected by treated sewage discharge.
Collapse
Affiliation(s)
- Yiwen Zhou
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan.
| | - Risako Toyoda
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| | - Toshikazu Suenaga
- Global Innovation Research Institute, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan; Department of Chemical Engineering, Hiroshima University, Hiroshima 739-8527, Japan
| | - Tomo Aoyagi
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology, 16-1 Onogawa, Tsukuba, Ibaraki, Japan
| | - Tomoyuki Hori
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology, 16-1 Onogawa, Tsukuba, Ibaraki, Japan
| | - Akihiko Terada
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan; Global Innovation Research Institute, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan.
| |
Collapse
|
115
|
Chen Z, Xie Y, Qiu S, Li M, Yuan W, Ge S. Granular indigenous microalgal-bacterial consortium for wastewater treatment: Establishment strategy, functional microorganism, nutrient removal, and influencing factor. BIORESOURCE TECHNOLOGY 2022; 353:127130. [PMID: 35398536 DOI: 10.1016/j.biortech.2022.127130] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/02/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
Granular indigenous microalgal-bacterial consortium (G-IMBC) system integrates the advantages of the MBC and granular activated sludge technologies, also with superior microalgal wastewater adaptation capacity. In this review, the concept of IMBC was firstly described, followed by its establishment and acclimation strategies. Characteristics and advantages of G-IMBC system compared to other IMBC systems (i.e., attached and floc IMBC systems) were then introduced. Moreover, the involved functional microorganisms and their interactions, as well as nutrient removal mechanisms were systematically and critically reviewed. Finally, the influencing factors including wastewater characteristics and operation factors were discussed. This study aims to provide a comprehensive up-to-date summary of the G-IMBC system for sustainable wastewater treatment.
Collapse
Affiliation(s)
- Zhipeng Chen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Yue Xie
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Shuang Qiu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Mengting Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Wenqi Yuan
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China
| | - Shijian Ge
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing 210094, Jiangsu, China.
| |
Collapse
|
116
|
Ren M, Wang J. Phylogenetic divergence and adaptation of Nitrososphaeria across lake depths and freshwater ecosystems. THE ISME JOURNAL 2022; 16:1491-1501. [PMID: 35091647 PMCID: PMC9123079 DOI: 10.1038/s41396-022-01199-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 01/05/2022] [Accepted: 01/17/2022] [Indexed: 04/29/2023]
Abstract
Thaumarchaeota (now the class Nitrososphaeria in the phylum Thermoproteota in GTDB taxonomy) are abundant across marine and soil habitats; however, their genomic diversity and evolutionary history in freshwater environments remain elusive. Here, we reconstructed 17 high-quality metagenome-assembled genomes of Nitrososphaeria from a deep lake and two great rivers, and compared all available genomes between freshwater and marine habitats regarding their phylogenetic positions, relative abundance, and genomic content. We found that freshwater Nitrososphaeria were dominated by the family Nitrosopumilaceae and could be grouped into three distinct clades closely related to the genera Nitrosopumilus, Nitrosoarchaeum, and Nitrosotenuis. The Nitrosopumilus-like clade was exclusively from deep lakes, while the Nitrosoarchaeum-like clade was dominated by species from deep lakes and rivers, and the Nitrosotenuis-like clade was mainly from rivers, deep lakes, and estuaries. Interestingly, there was vertical niche separation between two clades in deep lakes, showing that the Nitrosopumilus-like species dominated shallow layers, whereas the relative abundance of the Nitrosoarchaeum-like clade increased toward deep waters. Phylogenetic clustering patterns in the Nitrosopumilaceae supported at least one freshwater-to-marine and two marine-to-freshwater transitions, the former of which refined the potential terrestrial-to-marine evolutionary path as previously proposed. The occurrence of the two marine-to-freshwater transitions were accompanied by horizontal transfer of the genes involved in nutrition regulation, osmoregulation, and cell motility during their colonization to freshwater habitats. Specifically, the Nitrosopumilus-like clade showed losses of genes encoding flagella assembly and ion transport, whereas the Nitrosoarchaeum-like clade had losses of intact genes involved in urea uptake and utilization and gains of genes encoding osmolarity-mediated mechanosensitive channels. Collectively, our results reveal for the first time the high genomic diversity of the class Nitrososphaeria across freshwater ecosystems and provide novel insights into their adaptive mechanisms and evolutionary histories.
Collapse
Affiliation(s)
- Minglei Ren
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Jianjun Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
117
|
Zheng J, Tao L, Dini-Andreote F, Luan L, Kong P, Xue J, Zhu G, Xu Q, Jiang Y. Dynamic Responses of Ammonia-Oxidizing Archaea and Bacteria Populations to Organic Material Amendments Affect Soil Nitrification and Nitrogen Use Efficiency. Front Microbiol 2022; 13:911799. [PMID: 35633707 PMCID: PMC9135446 DOI: 10.3389/fmicb.2022.911799] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 04/22/2022] [Indexed: 11/25/2022] Open
Abstract
Organic material amendments have been proposed as an effective strategy to promote soil health by enhancing soil fertility and promoting nitrogen (N) cycling and N use efficiency (NUE). Thus, it is important to investigate the extent to which the structure and function of ammonia-oxidizing archaea (AOA) and bacteria (AOB) differentially respond to the organic material amendments in field settings. Here, we conducted a 9-year field experiment to track the responses of AOA and AOB populations to the organic material amendments and measured the potential nitrification activity (PNA), plant productivity, and NUE in the plant rhizosphere interface. Our results revealed that the organic material amendments significantly enhanced the abundance and diversity of AOA and AOB populations. Further, significant differences were observed in the composition and co-occurrence network of AOA and AOB. A higher occurrence of potential competitive interactions between taxa and enumerated potential keystone taxa was observed in the AOA-AOB network. Moreover, we found that AOA was more important than AOB for PNA under the organic material amendments. Structural equation modeling suggested that the diversity of AOA and AOB populations induced by the potential competitive interactions with keystone taxa dynamically accelerated the rate of PNA, and positively affected plant productivity and NUE under the organic material amendments. Collectively, our study offers new insights into the ecology and functioning of ammonia oxidizers and highlights the positive effects of organic material amendments on nitrogen cycling dynamics.
Collapse
Affiliation(s)
- Jie Zheng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Liang Tao
- Guangdong Key Laboratory of Integrated Agroenvironmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, China
| | - Francisco Dini-Andreote
- Department of Plant Science and Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, United States
| | - Lu Luan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Peijun Kong
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jingrong Xue
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Guofan Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Qinsong Xu
- College of Life Science, Nanjing Normal University, Nanjing, China
| | - Yuji Jiang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
- *Correspondence: Yuji Jiang,
| |
Collapse
|
118
|
Taylor AE, Mellbye BL. Differential Responses of the Catalytic Efficiency of Ammonia and Nitrite Oxidation to Changes in Temperature. Front Microbiol 2022; 13:817986. [PMID: 35620102 PMCID: PMC9127996 DOI: 10.3389/fmicb.2022.817986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/08/2022] [Indexed: 11/13/2022] Open
Abstract
Microbially mediated nitrification plays an important role in the nitrogen (N) cycle, and rates of activity have been shown to change significantly with temperature. Despite this, the substrate affinities of nitrifying bacteria and archaea have not been comprehensively measured and are often assumed to be static in mathematical models of environmental systems. In this study, we measured the oxidation kinetics of ammonia- (NH3) oxidizing archaea (AOA), NH3-oxidizing bacteria (AOB), and two distinct groups of nitrite (NO2 -)-oxidizing bacteria (NOB), of the genera Nitrobacter and Nitrospira, by measuring the maximum rates of apparent activity (V max(app)), the apparent half-saturation constant (K m(app)), and the overall catalytic efficiency (V max(app) /K m(app)) over a range of temperatures. Changes in V max(app) and K m(app) with temperature were different between groups, with V max(app) and catalytic efficiency increasing with temperature in AOA, while V max(app) , K m(app), and catalytic efficiency increased in AOB. In Nitrobacter NOB, V max(app) and K m(app) increased, but catalytic efficiency decreased significantly with temperature. Nitrospira NOB were variable, but V max(app) increased while catalytic efficiency and K m(app) remained relatively unchanged. Michaelis-Menten (MM) and Haldane (H) kinetic models of NH3 oxidation and NO2 - oxidation based on the collected data correctly predict nitrification potential in some soil incubation experiments, but not others. Despite previous observations of coupled nitrification in many natural systems, our results demonstrate significant differences in response to temperature strategies between the different groups of nitrifiers; and indicate the need to further investigate the response of nitrifiers to environmental changes.
Collapse
Affiliation(s)
- Anne E. Taylor
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR, United States
| | - Brett L. Mellbye
- Department of Microbiology, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
119
|
Al-Ajeel S, Spasov E, Sauder LA, McKnight MM, Neufeld JD. Ammonia-oxidizing archaea and complete ammonia-oxidizing Nitrospira in water treatment systems. WATER RESEARCH X 2022; 15:100131. [PMID: 35402889 PMCID: PMC8990171 DOI: 10.1016/j.wroa.2022.100131] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 05/27/2023]
Abstract
Nitrification, the oxidation of ammonia to nitrate via nitrite, is important for many engineered water treatment systems. The sequential steps of this respiratory process are carried out by distinct microbial guilds, including ammonia-oxidizing bacteria (AOB) and archaea (AOA), nitrite-oxidizing bacteria (NOB), and newly discovered members of the genus Nitrospira that conduct complete ammonia oxidation (comammox). Even though all of these nitrifiers have been identified within water treatment systems, their relative contributions to nitrogen cycling are poorly understood. Although AOA contribute to nitrification in many wastewater treatment plants, they are generally outnumbered by AOB. In contrast, AOA and comammox Nitrospira typically dominate relatively low ammonia environments such as drinking water treatment, tertiary wastewater treatment systems, and aquaculture/aquarium filtration. Studies that focus on the abundance of ammonia oxidizers may misconstrue the actual role that distinct nitrifying guilds play in a system. Understanding which ammonia oxidizers are active is useful for further optimization of engineered systems that rely on nitrifiers for ammonia removal. This review highlights known distributions of AOA and comammox Nitrospira in engineered water treatment systems and suggests future research directions that will help assess their contributions to nitrification and identify factors that influence their distributions and activity.
Collapse
|
120
|
Distribution and Oxidation Rates of Ammonia-Oxidizing Archaea Influenced by the Coastal Upwelling off Eastern Hainan Island. Microorganisms 2022; 10:microorganisms10050952. [PMID: 35630397 PMCID: PMC9143208 DOI: 10.3390/microorganisms10050952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/20/2022] [Accepted: 04/27/2022] [Indexed: 02/05/2023] Open
Abstract
Coastal upwelling causes variations in temperature, salinity and inorganic nutrients in the water column, consequently leading to the shift of microbial populations and their metabolic activities. Impacts of the eastern Hainan upwelling (EHU) on the ammonia-oxidizing archaea (AOA) were investigated based on the amoA gene using pyrosequencing and quantitative PCR at both DNA and cDNA levels, together with the determination of the ammonia oxidation (AO) rate measured with 15N-labelled ammonium. By comparing stations with and without upwelling influence, we found that coastal upwelling correlated with an increase in amoA gene abundance, the dominance of distinct clades for AOA communities at the respective gene and transcript levels, and a large increase in the proportion of the SCM1-like (Nitrosopumilus maritimus-like) cluster as well. The AO rates were generally higher in the deeper water (~25 m), which was in significant positive correlation with the proportion of cluster Water Column A (WCA) at the transcript level, indicating the potential contribution of this cluster to in situ ammonia oxidization. Our study demonstrated that coastal upwelling had a significant impact on the AOA community and ammonia oxidization rate; therefore, this physical forcing should be considered in the future assessment of the global nitrogen budgets and biogeochemical nitrogen cycles.
Collapse
|
121
|
Song W, Liu J, Qin W, Huang J, Yu X, Xu M, Stahl D, Jiao N, Zhou J, Tu Q. Functional Traits Resolve Mechanisms Governing the Assembly and Distribution of Nitrogen-Cycling Microbial Communities in the Global Ocean. mBio 2022; 13:e0383221. [PMID: 35285696 PMCID: PMC9040759 DOI: 10.1128/mbio.03832-21] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/02/2022] [Indexed: 12/22/2022] Open
Abstract
Microorganisms drive much of the marine nitrogen (N) cycle, which jointly controls the primary production in the global ocean. However, our understanding of the microbial communities driving the global ocean N cycle remains fragmented. Focusing on "who is doing what, where, and how?", this study draws a clear picture describing the global biogeography of marine N-cycling microbial communities by utilizing the Tara Oceans shotgun metagenomes. The marine N-cycling communities are highly variable taxonomically but relatively even at the functional trait level, showing clear functional redundancy properties. The functional traits and taxonomic groups are shaped by the same set of geo-environmental factors, among which, depth is the major factor impacting marine N-cycling communities, differentiating mesopelagic from epipelagic communities. Latitudinal diversity gradients and distance-decay relationships are observed for taxonomic groups, but rarely or weakly for functional traits. The composition of functional traits is strongly deterministic as revealed by null model analysis, while a higher degree of stochasticity is observed for taxonomic composition. Integrating multiple lines of evidence, in addition to drawing a biogeographic picture of marine N-cycling communities, this study also demonstrated an essential microbial ecological theory-determinism governs the assembly of microbial communities performing essential biogeochemical processes; the environment selects functional traits rather than taxonomic groups; functional redundancy underlies stochastic taxonomic community assembly. IMPORTANCE A critical question in microbial ecology is how the complex microbial communities are formed in natural ecosystems with the existence of thousands different species, thereby performing essential ecosystem functions and maintaining ecosystem stability. Previous studies disentangling the community assembly mechanisms mainly focus on microbial taxa, ignoring the functional traits they carry. By anchoring microbial functional traits and their carrying taxonomic groups involved in nitrogen cycling processes, this study demonstrated an important mechanism associated with the complex microbial community assembly. Evidence shows that the environment selects functional traits rather than taxonomic groups, and functional redundancy underlies stochastic taxonomic community assembly. This study is expected to provide valuable mechanistic insights into the complex microbial community assembly in both natural and artificial ecosystems.
Collapse
Affiliation(s)
- Wen Song
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
- Joint Lab for Ocean Research and Education at Dalhousie University, Shandong University and Xiamen University, Qingdao, China
| | - Jihua Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
- Joint Lab for Ocean Research and Education at Dalhousie University, Shandong University and Xiamen University, Qingdao, China
| | - Wei Qin
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, USA
| | - Jun Huang
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
- Joint Lab for Ocean Research and Education at Dalhousie University, Shandong University and Xiamen University, Qingdao, China
| | - Xiaoli Yu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Mengzhao Xu
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
- Joint Lab for Ocean Research and Education at Dalhousie University, Shandong University and Xiamen University, Qingdao, China
| | - David Stahl
- Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington, USA
| | - Nianzhi Jiao
- Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, China
| | - Jizhong Zhou
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, USA
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Qichao Tu
- Institute of Marine Science and Technology, Shandong University, Qingdao, China
- Joint Lab for Ocean Research and Education at Dalhousie University, Shandong University and Xiamen University, Qingdao, China
| |
Collapse
|
122
|
Li Y, Ma J, Yu Y, Li Y, Shen X, Huo S, Xia X. Effects of multiple global change factors on soil microbial richness, diversity and functional gene abundances: A meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152737. [PMID: 34998753 DOI: 10.1016/j.scitotenv.2021.152737] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Soil microbial richness, diversity, and functional gene abundance are crucial factors affecting belowground ecosystem functions; however, there is still a lack of systematic understanding of their responses to global change. Here, we conducted a worldwide meta-analysis using 1071 observation data concerning the effects of global change factors (GCFs), including warming (W), increased precipitation (PPT+), decreased precipitation (PPT-), elevated CO2 concentration (eCO2), and nitrogen deposition (N), to evaluate their individual, combined, and interactive effects on soil microbial properties across different groups and ecosystems. Across the dataset, eCO2 increased microbial richness and diversity by 40.5% and 4.6%, respectively; warming and N addition decreased the abundance of denitrification functional genes (nirS, nirK, and nozS); N addition had a greater impact on soil C-cycling functional genes than on N-cycling ones. Long-term precipitation change was conducive to the increase in soil microbial richness, and fungal richness change was more sensitive than bacterial richness, but the sensitivity of bacteria richness to N addition was positively correlated with experimental duration. Soil microbial richness, diversity, and functional gene abundances could be significantly affected by individual or multiple GCF changes, and their interactions are mainly additive. W×eCO2 on microbial diversity, and N×PPT+ and W×N on N-cycling functional gene abundance showed synergistic interactions. Based on the limitations of the collected data and the findings, we suggest designing experiments with multiple GCFs and long experimental durations and incorporating the effects and interactions of multiple drivers into ecosystem models to accurately predict future soil microbial properties and functions under future global changes.
Collapse
Affiliation(s)
- Yuqian Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing 100875, PR China.
| | - Junwei Ma
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing 100875, PR China.
| | - Yi Yu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing 100875, PR China
| | - Yijia Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing 100875, PR China.
| | - Xinyi Shen
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing 100875, PR China
| | - Shouliang Huo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Xinghui Xia
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing 100875, PR China.
| |
Collapse
|
123
|
Hossain S, Chow CWK, Cook D, Sawade E, Hewa GA. Review of Nitrification Monitoring and Control Strategies in Drinking Water System. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19074003. [PMID: 35409686 PMCID: PMC8997939 DOI: 10.3390/ijerph19074003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/17/2022] [Accepted: 03/23/2022] [Indexed: 12/29/2022]
Abstract
Nitrification is a major challenge in chloraminated drinking water systems, resulting in undesirable loss of disinfectant residual. Consequently, heterotrophic bacteria growth is increased, which adversely affects the water quality, causing taste, odour, and health issues. Regular monitoring of various water quality parameters at susceptible areas of the water distribution system (WDS) helps to detect nitrification at an earlier stage and allows sufficient time to take corrective actions to control it. Strategies to monitor nitrification in a WDS require conducting various microbiological tests or assessing surrogate parameters that are affected by microbiological activities. Additionally, microbial decay factor (Fm) is used by water utilities to monitor the status of nitrification. In contrast, approaches to manage nitrification in a WDS include controlling various factors that affect monochloramine decay rate and ammonium substrate availability, and that can inhibit nitrification. However, some of these control strategies may increase the regulated disinfection-by-products level, which may be a potential health concern. In this paper, various strategies to monitor and control nitrification in a WDS are critically examined. The key findings are: (i) the applicability of some methods require further validation using real WDS, as the original studies were conducted on laboratory or pilot systems; (ii) there is no linkage/formula found to relate the surrogate parameters to the concentration of nitrifying bacteria, which possibly improve nitrification monitoring performance; (iii) improved methods/monitoring tools are required to detect nitrification at an earlier stage; (iv) further studies are required to understand the effect of soluble microbial products on the change of surrogate parameters. Based on the current review, we recommend that the successful outcome using many of these methods is often site-specific, hence, water utilities should decide based on their regular experiences when considering economic and sustainability aspects.
Collapse
Affiliation(s)
- Sharif Hossain
- Scarce Resources and Circular Economy (ScaRCE), UniSA STEM, University of South Australia, Mawson Lakes, SA 5095, Australia; (C.W.K.C.); (G.A.H.)
- Correspondence:
| | - Christopher W. K. Chow
- Scarce Resources and Circular Economy (ScaRCE), UniSA STEM, University of South Australia, Mawson Lakes, SA 5095, Australia; (C.W.K.C.); (G.A.H.)
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - David Cook
- South Australian Water Corporation, Adelaide, SA 5000, Australia; (D.C.); (E.S.)
| | - Emma Sawade
- South Australian Water Corporation, Adelaide, SA 5000, Australia; (D.C.); (E.S.)
| | - Guna A. Hewa
- Scarce Resources and Circular Economy (ScaRCE), UniSA STEM, University of South Australia, Mawson Lakes, SA 5095, Australia; (C.W.K.C.); (G.A.H.)
| |
Collapse
|
124
|
Vilardi KJ, Cotto I, Rivera MS, Dai Z, Anderson CL, Pinto A. Comammox Nitrospira bacteria outnumber canonical nitrifiers irrespective of electron donor mode and availability in biofiltration systems. FEMS Microbiol Ecol 2022; 98:6553816. [PMID: 35325104 DOI: 10.1093/femsec/fiac032] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/20/2022] [Accepted: 03/21/2022] [Indexed: 11/14/2022] Open
Abstract
Complete ammonia oxidizing bacteria coexist with canonical ammonia and nitrite oxidizing bacteria in a wide range of environments. Whether this is due to competitive or cooperative interactions, or a result of niche separation is not yet clear. Understanding the factors driving coexistence of nitrifiers is critical to manage nitrification processes occurring in engineered and natural ecosystems. In this study, microcosm-based experiments were used to investigate the impact of nitrogen source and loading on the population dynamics of nitrifiers in drinking water biofilter media. Shotgun sequencing of DNA followed by co-assembly and reconstruction of metagenome assembled genomes revealed clade A2 comammox bacteria were likely the primary nitrifiers within microcosms and increased in abundance over Nitrsomonas-like ammonia and Nitrospira-like nitrite oxidizing bacteria irrespective of nitrogen source type or loading. Changes in comammox bacterial abundance did not correlate with either ammonia or nitrite oxidizing bacterial abundance in urea amended systems where metabolic reconstruction indicated potential for cross feeding between ammonia and nitrite oxidizing bacteria. In contrast, comammox bacterial abundance demonstrated a negative correlation with nitrite oxidizers in ammonia amended systems. This suggests potentially weaker synergistic relationships between ammonia and nitrite oxidizers might enable comammox bacteria to displace nitrite oxidizers from complex nitrifying communities.
Collapse
Affiliation(s)
- Katherine J Vilardi
- Department of Civil and Environmental Engineering, Northeastern University, MA, MA, USA
| | - Irmarie Cotto
- Department of Civil and Environmental Engineering, Northeastern University, MA, MA, USA
| | | | - Zihan Dai
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | | | - Ameet Pinto
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
125
|
Zou W, Lang M, Zhang L, Liu B, Chen X. Ammonia-oxidizing bacteria rather than ammonia-oxidizing archaea dominate nitrification in a nitrogen-fertilized calcareous soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 811:151402. [PMID: 34740642 DOI: 10.1016/j.scitotenv.2021.151402] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 10/29/2021] [Accepted: 10/30/2021] [Indexed: 06/13/2023]
Abstract
Microbe-driven nitrification is a key process that affects nitrogen (N) utilization by plants and N loss to the environment in agro-ecosystems. Ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) are important microorganisms that dominate the ammonia oxidation process (the first and rate-limiting step of nitrification). Calcareous soils are widely distributed, accounting for more than 30% of the Earth's land. However, the effects of long-term N fertilization on the potential nitrification rate (PNR) and on AOA and AOB in calcareous soils are poorly understood. In this study, we comprehensively assessed the effects of N application (applied at five rates as urea with 0, 73.5, 105, 136.5 and 250 kg N ha-1 for 12 years) on soil chemical characteristics, PNR, N use efficiency (NUE) and the community characteristics of AOB and AOA in a calcareous soil. N application rate affected AOB beta diversity more than that of AOA. Compared to no N control, N application significantly decreased the relative abundance of Group I.1b clade A of AOA and Nitrosospira cluster 3a.2 of AOB, but increased Nitrosomonas cluster 7 of AOB. The relative abundance of Nitrosospira cluster 3a.2 of AOB was negatively correlated with PNR. A structural equation model showed a direct effect of N application rate on the content of soil organic matter and nitrate, the alpha and beta diversity of AOA and AOB. Nitrate and AOB beta diversity were the key factors affecting PNR. Overall, the alpha, beta diversity and community composition of AOB contribute more to PNR than AOA in calcareous soils with high organic matter content. Understanding the relationship between the characteristics of AOA and AOB in calcareous soils and PNR will help to improve NUE.
Collapse
Affiliation(s)
- Wenxin Zou
- College of Resources and Environment, Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China; Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing 400716, China
| | - Ming Lang
- College of Resources and Environment, Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China; Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing 400716, China
| | - Ling Zhang
- Center for Resources, Environment and Food Security, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Bin Liu
- College of Resources and Environment, Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China; Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing 400716, China
| | - Xinping Chen
- College of Resources and Environment, Academy of Agricultural Sciences, Southwest University, Chongqing 400716, China; Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing 400716, China.
| |
Collapse
|
126
|
Bendia AG, Callefo F, Araújo MN, Sanchez E, Teixeira VC, Vasconcelos A, Battilani G, Pellizari VH, Rodrigues F, Galante D. Metagenome-Assembled Genomes from Monte Cristo Cave (Diamantina, Brazil) Reveal Prokaryotic Lineages As Functional Models for Life on Mars. ASTROBIOLOGY 2022; 22:293-312. [PMID: 34694925 DOI: 10.1089/ast.2021.0016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Microbial communities have been explored in various terrestrial subsurface ecosystems, showing metabolic potentials that could generate noteworthy morphological and molecular biosignatures. Recent advancements in bioinformatic tools have allowed for descriptions of novel and yet-to-be cultivated microbial lineages in different ecosystems due to the genome reconstruction approach from metagenomic data. Using shotgun metagenomic data, we obtained metagenome-assembled genomes related to cultivated and yet-to-be cultivated prokaryotic lineages from a silica and iron-rich cave (Monte Cristo) in Minas Gerais State, Brazil. The Monte Cristo Cave has been shown to possess a high diversity of genes involved with different biogeochemical cycles, including reductive and oxidative pathways related to carbon, sulfur, nitrogen, and iron. Three genomes were selected for pangenomic analysis, assigned as Truepera sp., Ca. Methylomirabilis sp., and Ca. Koribacter sp. based on their lifestyles (radiation resistance, anaerobic methane oxidation, and potential iron oxidation). These bacteria exhibit genes involved with multiple DNA repair strategies, starvation, and stress response. Because these groups have few reference genomes deposited in databases, our study adds important genomic information about these lineages. The combination of techniques applied in this study allowed us to unveil the potential relationships between microbial genomes and their ecological processes with the cave mineralogy and highlight the lineages involved with anaerobic methane oxidation, iron oxidation, and radiation resistance as functional models for the search for extant life-forms outside our planet in silica- and iron-rich environments and potentially on Mars.
Collapse
Affiliation(s)
- Amanda G Bendia
- Biological Oceanography Department, Oceanographic Institute, Universidade de São Paulo, São Paulo, Brazil
| | - Flavia Callefo
- Brazilian Synchrotron Light Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Maicon N Araújo
- Fundamental Chemistry Department, Institute of Chemistry, Universidade de São Paulo, São Paulo, Brazil
| | - Evelyn Sanchez
- Institute of Science and Technology, Federal University of the Jequitinhonha and Mucuri, Diamantina, Brazil
| | - Verônica C Teixeira
- Brazilian Synchrotron Light Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Alessandra Vasconcelos
- Institute of Science and Technology, Federal University of the Jequitinhonha and Mucuri, Diamantina, Brazil
| | - Gislaine Battilani
- Institute of Science and Technology, Federal University of the Jequitinhonha and Mucuri, Diamantina, Brazil
| | - Vivian H Pellizari
- Biological Oceanography Department, Oceanographic Institute, Universidade de São Paulo, São Paulo, Brazil
| | - Fabio Rodrigues
- Fundamental Chemistry Department, Institute of Chemistry, Universidade de São Paulo, São Paulo, Brazil
| | - Douglas Galante
- Brazilian Synchrotron Light Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| |
Collapse
|
127
|
Li S, Peng L, Yang C, Song S, Xu Y. Cometabolic biodegradation of antibiotics by ammonia oxidizing microorganisms during wastewater treatment processes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 305:114336. [PMID: 34953231 DOI: 10.1016/j.jenvman.2021.114336] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/27/2021] [Accepted: 12/16/2021] [Indexed: 05/04/2023]
Abstract
Studies on antibiotic removal during wastewater treatment processes are crucial since their release into the environment could bring potential threats to human health and ecosystem. Cometabolic biodegradation of antibiotics by ammonia oxidizing microorganisms (AOMs) has received special attentions due to the enhanced removal of antibiotics during nitrification processes. However, the interactions between antibiotics and AOMs are less well-elucidated. In this review, the recent research proceedings on cometabolic biodegradation of antibiotics by AOMs were summarized. Ammonia oxidizing bacteria (AOB), ammonia oxidizing archaea (AOA) and complete ammonia oxidizers (comammox) played significant roles in both nitrification and cometabolic biodegradation of antibiotics. Antibiotics at varying concentrations might pose inhibiting or stimulating effect on AOMs, influencing the microbial activity, community abundance and ammonia monooxygenase subunit A gene expression level. AOMs-induced cometabolic biodegradation products were analyzed as well as the corresponding pathways for each type of antibiotics. The effects of ammonium availability, initial antibiotic concentration, sludge retention time and temperature were assessed on the cometabolic biodegradation efficiencies of antibiotics. This work might provide further insights into the fate and removal of antibiotics during nitrification processes.
Collapse
Affiliation(s)
- Shengjun Li
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China
| | - Lai Peng
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China.
| | - Chenguang Yang
- Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya Hainan, 572000, China
| | - Shaoxian Song
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China
| | - Yifeng Xu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei, 430070, China.
| |
Collapse
|
128
|
Frey B, Varliero G, Qi W, Stierli B, Walthert L, Brunner I. Shotgun Metagenomics of Deep Forest Soil Layers Show Evidence of Altered Microbial Genetic Potential for Biogeochemical Cycling. Front Microbiol 2022; 13:828977. [PMID: 35300488 PMCID: PMC8921678 DOI: 10.3389/fmicb.2022.828977] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 02/11/2022] [Indexed: 11/29/2022] Open
Abstract
Soil microorganisms such as Bacteria and Archaea play important roles in the biogeochemical cycling of soil nutrients, because they act as decomposers or are mutualistic or antagonistic symbionts, thereby influencing plant growth and health. In the present study, we investigated the vertical distribution of soil metagenomes to a depth of 1.5 m in Swiss forests of European beech and oak species on calcareous bedrock. We explored the functional genetic potential of soil microorganisms with the aim to disentangle the effects of tree genus and soil depth on the genetic repertoire, and to gain insight into the microbial C and N cycling. The relative abundance of reads assigned to taxa at the domain level indicated a 5-10 times greater abundance of Archaea in the deep soil, while Bacteria showed no change with soil depth. In the deep soil there was an overrepresentation of genes for carbohydrate-active enzymes, which are involved in the catalyzation of the transfer of oligosaccharides, as well as in the binding of carbohydrates such as chitin or cellulose. In addition, N-cycling genes (NCyc) involved in the degradation and synthesis of N compounds, in nitrification and denitrification, and in nitrate reduction were overrepresented in the deep soil. Consequently, our results indicate that N-transformation in the deep soil is affected by soil depth and that N is used not only for assimilation but also for energy conservation, thus indicating conditions of low oxygen in the deep soil. Using shotgun metagenomics, our study provides initial findings on soil microorganisms and their functional genetic potential, and how this may change depending on soil properties, which shift with increasing soil depth. Thus, our data provide novel, deeper insight into the "dark matter" of the soil.
Collapse
Affiliation(s)
- Beat Frey
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
| | - Gilda Varliero
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
- Centre for Microbial Ecology and Genomics, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Weihong Qi
- Functional Genomics Center Zurich (FGCZ), ETH Zürich/University of Zurich, Zurich, Switzerland
| | - Beat Stierli
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
| | - Lorenz Walthert
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
| | - Ivano Brunner
- Forest Soils and Biogeochemistry, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), Birmensdorf, Switzerland
| |
Collapse
|
129
|
Ye H, Tang C, Cao Y, Li X, Huang P. Contribution of ammonia-oxidizing archaea and bacteria to nitrification under different biogeochemical factors in acidic soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:17209-17222. [PMID: 34661841 DOI: 10.1007/s11356-021-16887-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/30/2021] [Indexed: 06/13/2023]
Abstract
Nitrification in soils is an essential process that involves archaeal and bacterial ammonia-oxidizers. Despite its importance, the relative contributions of soil factors to the abundance of ammonia-oxidizing archaea (AOA) and bacteria (AOB) and their nitrification performances are seldom discussed. The aim of this study was to determine the effects of AOA and AOB abundance and different environmental conditions (pH, TC, TN, moisture, and temperature) on nitrification performance. The soils of the long-term fertilized tea orchards and forests were sampled in the field, and nitrification experiments were conducted in the laboratory. The acid soils were collected from the field and used in laboratory incubation experiments to calculate the nitrification rate, including the net nitrification rate (NN rate), nitrification potential (NP), and nitrification kinetics. The basic parameters, different forms of nitrogen content, and AOA and AOB amoA gene copies were also analyzed. Compared with the forest soil, the tea orchard soil had a lower pH and higher nitrogen content (p < 0.05). The AOA and AOB abundance in the soils of the forests and tea orchards were pH-dependent. The NN rate and NP had good relationships with AOA or AOB in the forest soil; however, poor relationships were observed in the tea orchard soil. When pH < 4, the performances of AOA and AOB were restricted by pH and the environment, especially in long-term fertilized farmlands. Long-term fertilization can cause soil acidification, which regulates the abundance of AOA and AOB and their nitrifying ability. The soil environment rather than AOA or AOB could control nitrification in long-term fertilized farmlands with a pH below 4. These findings could improve fertilization efficiency and control nutrient runoff in hilly agricultural ecosystems.
Collapse
Affiliation(s)
- Huijun Ye
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510006, China
| | - Changyuan Tang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510006, China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510006, China
- School of Geography and Planning, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yingjie Cao
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou, 510006, China.
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510006, China.
- Southern Laboratory of Ocean Science and Engineering, Guangdong, Zhuhai, 519000, China.
| | - Xing Li
- Wuhan Institute of Technology, Wuhan, 430000, China
| | - Pinyi Huang
- School of Geography and Planning, Sun Yat-Sen University, Guangzhou, 510006, China
| |
Collapse
|
130
|
Effects of aquatic nitrogen pollution on particle-attached ammonia-oxidizing bacteria in urban freshwater mesocosms. World J Microbiol Biotechnol 2022; 38:64. [DOI: 10.1007/s11274-022-03251-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 02/16/2022] [Indexed: 11/27/2022]
|
131
|
Huang L, Luo J, Li L, Jiang H, Sun X, Yang J, She W, Liu W, Li L, Davis AP. Unconventional microbial mechanisms for the key factors influencing inorganic nitrogen removal in stormwater bioretention columns. WATER RESEARCH 2022; 209:117895. [PMID: 34864344 DOI: 10.1016/j.watres.2021.117895] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 11/15/2021] [Accepted: 11/22/2021] [Indexed: 06/13/2023]
Abstract
Bioretention systems are environmentally friendly measures to control the amount of water and pollutants in urban stormwater runoff, and their treatment performance for inorganic N strongly depends on various microbial processes. However, microbial responses to variations of N mass reduction in bioretention systems are complex and poorly understood, which is not conducive to management designs. In the present study, a series of bioretention columns were established to monitor their fate performance for inorganic N (NH4+and NO3-) by using different configurations and by dosing with simulated stormwater events. The results showed that NH4+ was efficiently oxidized to NO3-, mainly by ammonia- and nitrite-oxidizing bacteria in the oxic media, regardless of the configurations of the bioretention systems or stormwater conditions. In contrast, NO3- removal pathways varied greatly in different columns. The presence of vegetation efficiently improved NO3-mass reduction through root assimilation and enhancement of microbial NO3- reduction in the rhizosphere. The construction of an organic-rich saturation zone can make the redox potential too low for heterotrophic denitrification to occur, so as to ensure high NO3- mass reduction mainly via stimulating chemolithotrophic NO3- reduction coupled with oxidation of reductive sulfur compounds derived from the bio-reduction of sulfate. In contrast, in the organic-poor saturation zone, multiple oligotrophic NO3- reduction pathways may be responsible for the high NO3- mass reduction. These findings highlight the necessity of considering the variation of N bio-transformation pathways for inorganic N removal in the configuration of bioretention systems.
Collapse
Affiliation(s)
- Liuqin Huang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China University of Geosciences, Wuhan 430074, China
| | - Junyue Luo
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Linxin Li
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Hongchen Jiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; State Environmental Protection Key Laboratory of Source Apportionment and Control of Aquatic Pollution, Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China University of Geosciences, Wuhan 430074, China.
| | - Xiaoxi Sun
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Jian Yang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Weiyu She
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Wen Liu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Liqing Li
- School of Environmental Science, China University of Geosciences, Wuhan 430074, China.
| | - Allen P Davis
- Department of Civil and Environmental Engineering, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
132
|
Qi C, Zhou Y, Suenaga T, Oba K, Lu J, Wang G, Zhang L, Yoon S, Terada A. Organic carbon determines nitrous oxide consumption activity of clade I and II nosZ bacteria: Genomic and biokinetic insights. WATER RESEARCH 2022; 209:117910. [PMID: 34920314 DOI: 10.1016/j.watres.2021.117910] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 11/20/2021] [Accepted: 11/27/2021] [Indexed: 05/21/2023]
Abstract
Harnessing nitrous oxide (N2O)-reducing bacteria is a promising strategy to reduce the N2O footprint of engineered systems. Applying a preferred organic carbon source as an electron donor accelerates N2O consumption by these bacteria. However, their N2O consumption potential and activity when fed different organic carbon species remain unclear. Here, we systematically compared the effects of various organic carbon sources on the activity of N2O-reducing bacteria via investigation of their biokinetic properties and genomic potentials. Five organic carbon sources-acetate, succinate, glycerol, ethanol, and methanol-were fed to four N2O-reducing bacteria harboring either clade I or clade II nosZ gene. Respirometric analyses were performed with four N2O-reducing bacterial strains, identifying distinct shifts in DO- and N2O-consumption biokinetics in response to the different feeding schemes. Regardless of the N2O-reducing bacteria, higher N2O consumption rates, accompanied by higher biomass yields, were obtained with acetate and succinate. The biomass yield (15.45 ± 1.07 mg-biomass mmol-N2O-1) of Azospira sp. strain I13 (clade II nosZ) observed under acetate-fed condition was significantly higher than those of Paracoccus denitrificans and Pseudomonas stutzeri, exhibiting greater metabolic efficiency. However, the spectrum of the organic carbon species utilizable to Azospira sp. strain I13 was limited, as demonstrated by the highly variable N2O consumption rates observed with different substrates. The potential to metabolize the supplemented carbon sources was investigated by genomic analysis, the results of which corroborated the N2O consumption biokinetics results. Moreover, electron donor selection had a substantial impact on how N2O consumption activities were recovered after oxygen exposure. Collectively, our findings highlight the importance of choosing appropriate electron donor additives for increasing the N2O sink capability of biological nitrogen removal systems.
Collapse
Affiliation(s)
- Chuang Qi
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China; Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka Koganei, Tokyo 184-8588, Japan
| | - Yiwen Zhou
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka Koganei, Tokyo 184-8588, Japan
| | - Toshikazu Suenaga
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka Koganei, Tokyo 184-8588, Japan; Department of Chemical Engineering, Hiroshima University, Hiroshima 739-8527, Japan; Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-8-1 Harumi-cho, Fuchu, Tokyo, 185-8538, Japan
| | - Kohei Oba
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka Koganei, Tokyo 184-8588, Japan
| | - Jilai Lu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Guoxiang Wang
- School of Environment, Nanjing Normal University, Nanjing 210023, China; Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing 210023, China
| | - Limin Zhang
- Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing 210023, China; Green Economy Development Institute, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Sukhwan Yoon
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Akihiko Terada
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka Koganei, Tokyo 184-8588, Japan; Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-8-1 Harumi-cho, Fuchu, Tokyo, 185-8538, Japan.
| |
Collapse
|
133
|
Pan J, Liu Y, Yang Y, Cheng Z, Lan X, Hu W, Shi G, Zhang Q, Feng H. Slope aspect determines the abundance and composition of nitrogen-cycling microbial communities in an alpine ecosystem. Environ Microbiol 2022; 24:3598-3611. [PMID: 35048487 DOI: 10.1111/1462-2920.15900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 01/11/2022] [Indexed: 11/28/2022]
Abstract
Slope aspect is an important topographic feature that can influence local environmental conditions. While strong effects of slope aspect on aboveground and belowground communities have been frequently elucidated, how slope aspect affects soil nitrogen (N) cycling microbes remains unclear. Here, we characterized the communities of soil N-cycling microbes on south- and north-facing slopes in an alpine ecosystem, by quantifying (qPCR) and high-throughput sequencing six genes involved in N-fixation (nifH), nitrification (archaeal and bacterial amoA) and denitrification (nirK, nirS and nosZ). We found that the abundance, diversity and community composition of major N-cycling microbes differed dramatically between the two slope aspects, and these variances could be well explained by the aspect-driven differences in environmental conditions, especially soil temperature and moisture. The response patterns of different N-cycling groups to slope aspect were much inconsistent, especially for those with similar functions (i.e. ammonia-oxidizing archaea vs. bacteria, nirK- vs. nirS-reducers), indicating strong niche differentiation between these counterparts. We also observed strong preferences and distinct co-occurrence patterns of N-cycling microbial taxa for the two slope aspects. These findings highlight the importance of slope aspect in determining the abundance, species distribution and community structure of N-cycling microbes, and consequently influencing N-cycling processes and ecosystem functioning. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jianbin Pan
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yongjun Liu
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.,Center for Grassland Microbiome, Lanzhou University, Lanzhou, 730000, China.,State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou, 730000, China
| | - Yue Yang
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Zhongxia Cheng
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Xiaomei Lan
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Weigang Hu
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Guoxi Shi
- College of Bioengineering and Biotechnology, Tianshui Normal University, Tianshui, 741000, China
| | - Qi Zhang
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Huyuan Feng
- School of Life Sciences, Lanzhou University, Lanzhou, 730000, China.,Center for Grassland Microbiome, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
134
|
Abstract
The single-cell organism can self-produce oxygen for ammonia oxidation.
Collapse
Affiliation(s)
- Willm Martens-Habbena
- Department of Microbiology and Cell Science, University of Florida, Institute for Food and Agricultural Sciences, Fort Lauderdale Research and Education Center, Davie, FL 33314, USA
| | - Wei Qin
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, USA
| |
Collapse
|
135
|
Kraft B, Jehmlich N, Larsen M, Bristow LA, Könneke M, Thamdrup B, Canfield DE. Oxygen and nitrogen production by an ammonia-oxidizing archaeon. Science 2022; 375:97-100. [PMID: 34990242 DOI: 10.1126/science.abe6733] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Ammonia-oxidizing archaea (AOA) are one of the most abundant groups of microbes in the world’s oceans and are key players in the nitrogen cycle. Their energy metabolism—the oxidation of ammonia to nitrite—requires oxygen. Nevertheless, AOA are abundant in environments where oxygen is undetectable. By carrying out incubations for which oxygen concentrations were resolved to the nanomolar range, we show that after oxygen depletion, Nitrosopumilus maritimus produces dinitrogen and oxygen, which is used for ammonia oxidation. The pathway is not completely resolved but likely has nitric oxide and nitrous oxide as key intermediates. N. maritimus joins a handful of organisms known to produce oxygen in the dark. On the basis of this ability, we reevaluate the role of N. maritimus in oxygen-depleted marine environments.
Collapse
Affiliation(s)
- Beate Kraft
- Nordcee, Department of Biology, University of Southern Denmark, Odense, Denmark
| | - Nico Jehmlich
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental Research UFZ GmbH, Leipzig, Germany
| | - Morten Larsen
- Nordcee, Department of Biology, University of Southern Denmark, Odense, Denmark
| | - Laura A Bristow
- Nordcee, Department of Biology, University of Southern Denmark, Odense, Denmark
| | - Martin Könneke
- Marine Archaea Group, Center for Marine Environmental Sciences (MARUM), and Department of Geosciences, University of Bremen, Bremen, Germany.,Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, Oldenburg, Germany
| | - Bo Thamdrup
- Nordcee, Department of Biology, University of Southern Denmark, Odense, Denmark
| | - Donald E Canfield
- Nordcee, Department of Biology, University of Southern Denmark, Odense, Denmark.,Key Laboratory of Petroleum Geochemistry, Research Institute of Petroleum Exploration and Development, China National Petroleum Corporation, Beijing 100083, China.,Danish Institute of Advanced Study, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
136
|
Abstract
Analysis of nitrogen isotope fractionation effects is useful for tracing biogeochemical nitrogen cycle processes. Nitrification can cause large nitrogen isotope effects through the enzymatic oxidation of ammonia (NH3) via nitrite (NO2−) to nitrate (NO3−) (15εNH4+→NO2- and 15εNO2-→NO3-). The isotope effects of ammonia-oxidizing bacteria (AOB) and archaea (AOA) and of nitrite-oxidizing bacteria (NOB) have been analyzed previously. Here, we studied the nitrogen isotope effects of the complete ammonia oxidizer (comammox) Nitrospira inopinata that oxidizes NH3 to NO3−. At high ammonium (NH4+) availability (1 mM) and pH between 6.5 and 8.5, its 15εNH4+→NO2- ranged from −33.1 to −27.1‰ based on substrate consumption (residual substrate isotopic composition) and −35.5 to −31.2‰ based on product formation (cumulative product isotopic composition), while the 15εNO2-→NO3- ranged from 6.5 to 11.1‰ based on substrate consumption. These values resemble isotope effects of AOB and AOA and of NOB in the genus Nitrospira, suggesting the absence of fundamental mechanistic differences between key enzymes for ammonia and nitrite oxidation in comammox and canonical nitrifiers. However, ambient pH and initial NH4+ concentrations influenced the isotope effects in N. inopinata. The 15εNH4+→NO2- based on product formation was smaller at pH 6.5 (−31.2‰) compared to pH 7.5 (−35.5‰) and pH 8.5 (−34.9‰), while 15εNO2-→NO3- was smaller at pH 8.5 (6.5‰) compared to pH 7.5 (8.8‰) and pH 6.5 (11.1‰). Isotopic fractionation via 15εNH4+→NO2- and 15εNO2-→NO3- was smaller at 0.1 mM NH4+ compared to 0.5 to 1.0 mM NH4+. Environmental factors, such as pH and NH4+ availability, therefore need to be considered when using isotope effects in 15N isotope fractionation models of nitrification. IMPORTANCE Nitrification is an important nitrogen cycle process in terrestrial and aquatic environments. The discovery of comammox has changed the view that canonical AOA, AOB, and NOB are the only chemolithoautotrophic organisms catalyzing nitrification. However, the contribution of comammox to nitrification in environmental and technical systems is far from being completely understood. This study revealed that, despite a phylogenetically distinct enzymatic repertoire for ammonia oxidation, nitrogen isotope effects of 15εNH4+→NO2- and 15εNO2-→NO3- in comammox do not differ significantly from those of canonical nitrifiers. Thus, nitrogen isotope effects are not suitable indicators to decipher the contribution of comammox to nitrification in environmental samples. Moreover, this is the first systematic study showing that the ambient pH and NH4+ concentration influence the isotope effects of nitrifiers. Hence, these key parameters should be considered in comparative analyses of isotope effects of nitrifiers across different growth conditions and environmental samples.
Collapse
|
137
|
Taxon-Specific Shifts in Bacterial and Archaeal Transcription of Dissolved Organic Matter Cycling Genes in a Stratified Fjord. mSystems 2021; 6:e0057521. [PMID: 34904860 PMCID: PMC8670421 DOI: 10.1128/msystems.00575-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A considerable fraction of organic matter derived from photosynthesis in the euphotic zone settles into the ocean’s interior and, as it progresses, is degraded by diverse microbial consortia that utilize a suite of extracellular enzymes and membrane transporters. Still, the molecular details that regulate carbon cycling across depths remain little explored. As stratification in fjords has made them attractive models to explore patterns in biological oceanography, we here analyzed bacterial and archaeal transcription in samples from five depth layers in the Gullmar Fjord, Sweden. Transcriptional variation over depth correlated with gradients in chlorophyll a and nutrient concentrations. Differences in transcription between sampling dates (summer and early autumn) were strongly correlated with ammonium concentrations, which potentially was linked with a stronger influence of (micro-)zooplankton grazing in summer. Transcriptional investment in carbohydrate-active enzymes (CAZymes) decreased with depth and shifted toward peptidases, partly a result of elevated CAZyme transcription by Flavobacteriales, Cellvibrionales, and Synechococcales at 2 to 25 m and a dominance of peptidase transcription by Alteromonadales and Rhodobacterales from 50 m down. In particular, CAZymes for chitin, laminarin, and glycogen were important. High levels of transcription of ammonium transporter genes by Thaumarchaeota at depth (up to 18% of total transcription), along with the genes for ammonia oxidation and CO2 fixation, indicated that chemolithoautotrophy contributed to the carbon flux in the fjord. The taxon-specific expression of functional genes for processing of the marine pool of dissolved organic matter and inorganic nutrients across depths emphasizes the importance of different microbial foraging mechanisms over spatiotemporal scales for shaping biogeochemical cycles. IMPORTANCE It is generally recognized that stratification in the ocean strongly influences both the community composition and the distribution of ecological functions of microbial communities, which in turn are expected to shape the biogeochemical cycling of essential elements over depth. Here, we used metatranscriptomics analysis to infer molecular detail on the distribution of gene systems central to the utilization of organic matter in a stratified marine system. We thereby uncovered that pronounced shifts in the transcription of genes encoding CAZymes, peptidases, and membrane transporters occurred over depth among key prokaryotic orders. This implies that sequential utilization and transformation of organic matter through the water column is a key feature that ultimately influences the efficiency of the biological carbon pump.
Collapse
|
138
|
Law KP, He W, Tao J, Zhang C. A Novel Approach to Characterize the Lipidome of Marine Archaeon Nitrosopumilus maritimus by Ion Mobility Mass Spectrometry. Front Microbiol 2021; 12:735878. [PMID: 34925256 PMCID: PMC8674956 DOI: 10.3389/fmicb.2021.735878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 10/18/2021] [Indexed: 11/13/2022] Open
Abstract
Archaea are differentiated from the other two domains of life by their biomolecular characteristics. One such characteristic is the unique structure and composition of their lipids. Characterization of the whole set of lipids in a biological system (the lipidome) remains technologically challenging. This is because the lipidome is innately complex, and not all lipid species are extractable, separable, or ionizable by a single analytical method. Furthermore, lipids are structurally and chemically diverse. Many lipids are isobaric or isomeric and often indistinguishable by the measurement of mass or even their fragmentation spectra. Here we developed a novel analytical protocol based on liquid chromatography ion mobility mass spectrometry to enhance the coverage of the lipidome and characterize the conformations of archaeal lipids by their collision cross-sections (CCSs). The measurements of ion mobility revealed the gas-phase ion chemistry of representative archaeal lipids and provided further insights into their attributions to the adaptability of archaea to environmental stresses. A comprehensive characterization of the lipidome of mesophilic marine thaumarchaeon, Nitrosopumilus maritimus (strain SCM1) revealed potentially an unreported phosphate- and sulfate-containing lipid candidate by negative ionization analysis. It was the first time that experimentally derived CCS values of archaeal lipids were reported. Discrimination of crenarchaeol and its proposed stereoisomer was, however, not achieved with the resolving power of the SYNAPT G2 ion mobility system, and a high-resolution ion mobility system may be required for future work. Structural and spectral libraries of archaeal lipids were constructed in non-vendor-specific formats and are being made available to the community to promote research of Archaea by lipidomics.
Collapse
Affiliation(s)
- Kai P Law
- Southern University of Science and Technology, SUSTech Academy for Advanced Interdisciplinary Studies, Shenzhen, China.,Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Southern University of Science and Technology, Shenzhen, China.,Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Wei He
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Southern University of Science and Technology, Shenzhen, China.,Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Jianchang Tao
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Southern University of Science and Technology, Shenzhen, China.,Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Chuanlun Zhang
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Southern University of Science and Technology, Shenzhen, China.,Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| |
Collapse
|
139
|
Destan E, Yuksel B, Tolar BB, Ayan E, Deutsch S, Yoshikuni Y, Wakatsuki S, Francis CA, DeMirci H. Structural insights into bifunctional thaumarchaeal crotonyl-CoA hydratase and 3-hydroxypropionyl-CoA dehydratase from Nitrosopumilus maritimus. Sci Rep 2021; 11:22849. [PMID: 34819551 PMCID: PMC8613188 DOI: 10.1038/s41598-021-02180-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/08/2021] [Indexed: 11/08/2022] Open
Abstract
The ammonia-oxidizing thaumarchaeal 3-hydroxypropionate/4-hydroxybutyrate (3HP/4HB) cycle is one of the most energy-efficient CO2 fixation cycles discovered thus far. The protein encoded by Nmar_1308 (from Nitrosopumilus maritimus SCM1) is a promiscuous enzyme that catalyzes two essential reactions within the thaumarchaeal 3HP/4HB cycle, functioning as both a crotonyl-CoA hydratase (CCAH) and 3-hydroxypropionyl-CoA dehydratase (3HPD). In performing both hydratase and dehydratase activities, Nmar_1308 reduces the total number of enzymes necessary for CO2 fixation in Thaumarchaeota, reducing the overall cost for biosynthesis. Here, we present the first high-resolution crystal structure of this bifunctional enzyme with key catalytic residues in the thaumarchaeal 3HP/4HB pathway.
Collapse
Affiliation(s)
- Ebru Destan
- Department of Molecular Biology and Genetics, Koc University, 34450, Istanbul, Turkey
| | - Busra Yuksel
- Department of Molecular Biology and Genetics, Koc University, 34450, Istanbul, Turkey
| | - Bradley B Tolar
- Department of Earth System Science, Stanford University, Stanford, CA, 94305, USA
| | - Esra Ayan
- Department of Molecular Biology and Genetics, Koc University, 34450, Istanbul, Turkey
| | - Sam Deutsch
- Nutcracker Therapeutics, Inc 5858 Horton Street, Suite 540, Emeryville, CA, 94608, USA
| | - Yasuo Yoshikuni
- The US Department of Energy, Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Soichi Wakatsuki
- Department of Structural Biology, Stanford University, Palo Alto, CA, 94305, USA.
- Biosciences Division, SLAC National Laboratory, Menlo Park, CA, 94025, USA.
| | | | - Hasan DeMirci
- Department of Molecular Biology and Genetics, Koc University, 34450, Istanbul, Turkey.
- Stanford PULSE Institute, SLAC National Laboratory, Menlo Park, CA, 94025, USA.
| |
Collapse
|
140
|
Deng L, Zhao M, Bi R, Bello A, Uzoamaka Egbeagu U, Zhang J, Li S, Chen Y, Han Y, Sun Y, Xu X. Insight into the influence of biochar on nitrification based on multi-level and multi-aspect analyses of ammonia-oxidizing microorganisms during cattle manure composting. BIORESOURCE TECHNOLOGY 2021; 339:125515. [PMID: 34332859 DOI: 10.1016/j.biortech.2021.125515] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
In this study, influence of biochar on nitrification was explored using multi-level (DNA, RNA, protein) and multi-aspect (diversity, structure, key community, co-occurrence pattern and functional modules) analyses (M-LAA) of ammonia-oxidizing microorganisms (AOMs) during cattle manure composting. Biochar addition increased the copy numbers and diversity of AOMs, restricted (36.02%) the amoA gene transcripts of archaea but increased (24.53%) those of bacteria, and reduced (75.86%) ammonooxygenase (AMO) activity. Crenarchaeota and Thaumarcheota mediated NH4+-N, Unclassified_k_norank_d_Archaea and Crenarchaeota regulated AMO activity and potential ammonia oxidation (PAO) rates. Nitrosomonas and Nitrosospira were the predominant microbial taxa influencing NH4+-N variation and PAO rates, respectively. Additionally, both Crenarchaeota and Nitrosospira played crucial roles in mediating NO3--N and NO2--N. Furthermore, biochar altered the network patterns of AOMs community by changing the keystone species and the interactivity among communities. These findings indicated that influence of biochar on nitrification could be better explained using M-LAA of AOMs.
Collapse
Affiliation(s)
- Liting Deng
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Mingming Zhao
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Ruixin Bi
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Ayodeji Bello
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Ugochi Uzoamaka Egbeagu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Jizhou Zhang
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China; Institute of Natural Resources and Ecology Heilongjiang Academy of Sciences, Harbin 150040, China
| | - Shanshan Li
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yanhui Chen
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yue Han
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yu Sun
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Xiuhong Xu
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
141
|
Zhao D, Gao P, Xu L, Qu L, Han Y, Zheng L, Gong X. Disproportionate responses between free-living and particle-attached bacteria during the transition to oxygen-deficient zones in the Bohai Seawater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:148097. [PMID: 34412405 DOI: 10.1016/j.scitotenv.2021.148097] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/19/2021] [Accepted: 05/24/2021] [Indexed: 06/13/2023]
Abstract
The Bohai Sea has recently suffered several seasonal oxygen-deficiency, even hypoxia events during the summer. To better understand effects of dissolved oxygen (DO) concentration on the bacterial composition in particle attached (PA) and free living (FL) fractions during the transition from oxic water to low oxygen conditions, the bacterial communities under three different oxygen levels, i.e., high oxygen (HO, close to 100% O2 saturation), medium oxygen (MO, close to 75% O2 saturation), and low oxygen (LO, close to 50% O2 saturation) in the Bohai Sea were investigated using 16S rRNA amplicon sequencing. Fourteen water samples from 5 stations were collected during a cruise from August to September in 2018. The results showed that the sequences of Proteobacteria and Actinobacteriota jointly accounted for up to 74% across all 14 samples. The Shannon index in HO samples were significantly higher than in LO samples (P < 0.05), especially in PA communities. The composition of bacterial communities varied by oxygen concentration in all samples, and the effect was more pronounced in the PA fraction, which indicates that the PA fraction was more sensitive to the change in oxygen concentration, possibly due to the tighter interactions in this community than in the FL fraction. This study provides novel insights into the distribution of bacterial communities, and clues for understanding the responses of bacterial communities in the Bohai Sea during the transition from the oxic to oxygen-deficient zones.
Collapse
Affiliation(s)
- Duo Zhao
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Ping Gao
- MNR Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Le Xu
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Lingyun Qu
- MNR Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Yajing Han
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Liwen Zheng
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Xianzhe Gong
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong 266237, China.
| |
Collapse
|
142
|
Wang YF, Gu JD, Dick RP, Han W, Yang HX, Liao HQ, Zhou Y, Meng H. Distribution of ammonia-oxidizing archaea and bacteria along an engineered coastal ecosystem in subtropical China. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:1769-1779. [PMID: 33432457 DOI: 10.1007/s10646-020-02327-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/25/2020] [Indexed: 06/12/2023]
Abstract
Ammonia-oxidizing archaea (AOA) and bacteria (AOB) are the crucial players in nitrogen cycle. Both AOA and AOB were examined along a gradient of human activity in a coastal ecosystem from intertidal zone, grassland, and Casuarina equisetifolia forest to farmland. Results showed that the farmland soils had noticeably higher nitrate-N, available P than soils in the other three sites. Generally, AOA and AOB community structures varied across sites. The farmland mainly had Nitrosotalea-like AOA, intertidal zone was dominated by Nitrosopumilus AOA, while grassland and C. equisetifolia forest primarily harbored Nitrososphaera-like AOA. The farmland and C. equisetifolia forest owned Nitrosospira-like AOB, intertidal zone possessed Nitrosomonas-like AOB, and no AOB was detected in the grassland. AOA abundance was significantly greater than AOB in this coastal ecosystem (p < 0.05, n = 8). AOB diversity and abundance in the farmland were significantly higher than those in the other three sites (p < 0.05, n = 2). The biodiversity and abundance of AOA were not significantly correlated with any soil property (p < 0.05, n = 8). However, the diversity of AOB was significantly correlated with pH, available P and total P (p < 0.05, n = 6). The abundance of AOB was significantly correlated with pH, nitrite, available N, available P and total P (p < 0.05, n = 6). This study suggested that the community structures of AOA and AOB vary in the different parts in the bio-engineered coastal ecosystem and agricultural activity appears to influence these nitrifiers.
Collapse
Affiliation(s)
- Yong-Feng Wang
- Institute of Environment and Ecology, Institute of Environmental Health and Ecological Security, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, PR China.
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, 233 Guangshan 1st Road, Guangzhou, PR China.
| | - Ji-Dong Gu
- Environmental Engineering, Guangdong Technion Israel Institute of Technology, 241 Daxue Road, Shantou, 515063, PR China
| | - Richard P Dick
- School of Environment and Natural Resources, The Ohio State University, 2021 Coffey Road, Columbus, OH, 43210-1085, USA
| | - Wei Han
- Agro-Technical Station of Shandong Province, Jinan, PR China
| | - Hui-Xiao Yang
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, 233 Guangshan 1st Road, Guangzhou, PR China
| | - Huan-Qin Liao
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, 233 Guangshan 1st Road, Guangzhou, PR China
| | - Yi Zhou
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, 233 Guangshan 1st Road, Guangzhou, PR China.
| | - Han Meng
- School of Environment, Nanjing Normal University, Nanjing, 210023, PR China
| |
Collapse
|
143
|
Shen LD, Yang YL, Liu JQ, Hu ZH, Liu X, Tian MH, Yang WT, Jin JH, Wang HY, Wang YY, Wu HS. Different responses of ammonia-oxidizing archaea and bacteria in paddy soils to elevated CO 2 concentration. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117558. [PMID: 34119867 DOI: 10.1016/j.envpol.2021.117558] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 04/30/2021] [Accepted: 06/06/2021] [Indexed: 06/12/2023]
Abstract
The elevated atmospheric CO2 concentration is well known to have an important effect on soil nutrient cycling. Ammonia oxidation, mediated by ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB), is the rate-limiting step in soil nitrification, which controls the availability of two key soil nutrients (ammonium and nitrate) for crops. Until now, how the AOA and AOB communities in paddy soils respond to elevated CO2 remains largely unknown. Here, we examined the communities of AOA and AOB and nitrification potential at both surface (0-5 cm) and subsurface (5-10 cm) soil layers of paddy fields under three different CO2 treatments, including CK (ambient CO2 concentration), LT (CK + 160 ppm of CO2) and HT (CK + 200 ppm of CO2). The elevated CO2 was found to have a greater impact on the community structure of AOB than that of AOA in surface soils as revealed by high-throughput sequencing of their amoA genes. However, no obvious variation of AOA or AOB communities was observed in subsurface soils among different CO2 treatments. The abundance of AOA and AOB, and nitrification potential were significantly increased in surface soils under elevated CO2. The variation of AOB abundance correlated well with the variation of nitrification potential. The soil water content and dissolved organic carbon content had important impacts on the dynamic of AOB communities and nitrification potential. Overall, our results showed different responses of AOA and AOB communities to elevated CO2 in paddy ecosystems, and AOB were more sensitive to the rising CO2 concentration.
Collapse
Affiliation(s)
- Li-Dong Shen
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
| | - Yu-Ling Yang
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Jia-Qi Liu
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Zheng-Hua Hu
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Xin Liu
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Mao-Hui Tian
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Wang-Ting Yang
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Jing-Hao Jin
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Hao-Yu Wang
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Yuan-Yuan Wang
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Hong-Sheng Wu
- Department of Agricultural Resources and Environment, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| |
Collapse
|
144
|
Tee HS, Waite D, Lear G, Handley KM. Microbial river-to-sea continuum: gradients in benthic and planktonic diversity, osmoregulation and nutrient cycling. MICROBIOME 2021; 9:190. [PMID: 34544488 PMCID: PMC8454136 DOI: 10.1186/s40168-021-01145-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/02/2021] [Indexed: 05/08/2023]
Abstract
BACKGROUND Coastal aquatic ecosystems include chemically distinct, but highly interconnected environments. Across a freshwater-to-marine transect, aquatic communities are exposed to large variations in salinity and nutrient availability as tidal cycles create periodic fluctuations in local conditions. These factors are predicted to strongly influence the resident microbial community structure and functioning, and alter the structure of aquatic food webs and biogeochemical cycles. Nevertheless, little is known about the spatial distribution of metabolic properties across salinity gradients, and no study has simultaneously surveyed the sediment and water environments. Here, we determined patterns and drivers of benthic and planktonic prokaryotic and microeukaryotic community assembly across a river and tidal lagoon system by collecting sediments and planktonic biomass at nine shallow subtidal sites in the summer. Genomic and transcriptomic analyses, alongside a suite of complementary geochemical data, were used to determine patterns in the distribution of taxa, mechanisms of salt tolerance, and nutrient cycling. RESULTS Taxonomic and metabolic profiles related to salt tolerance and nutrient cycling of the aquatic microbiome were found to decrease in similarity with increasing salinity, and distinct trends in diversity were observed between the water column and sediment. Non-saline and saline communities adopted divergent strategies for osmoregulation, with an increase in osmoregulation-related transcript expression as salinity increased in the water column due to lineage-specific adaptations to salt tolerance. Results indicated a transition from phosphate limitation in freshwater habitats to nutrient-rich conditions in the brackish zone, where distinct carbon, nitrogen and sulfur cycling processes dominated. Phosphorus acquisition-related activity was highest in the freshwater zone, along with dissimilatory nitrate reduction to ammonium in freshwater sediment. Activity associated with denitrification, sulfur metabolism and photosynthesis were instead highest in the brackish zone, where photosynthesis was dominated by distinct microeukaryotes in water (Cryptophyta) and sediment (diatoms). Despite microeukaryotes and archaea being rare relative to bacteria, results indicate that they contributed more to photosynthesis and ammonia oxidation, respectively. CONCLUSIONS Our study demonstrates clear freshwater-saline and sediment-water ecosystem boundaries in an interconnected coastal aquatic system and provides a framework for understanding the relative importance of salinity, planktonic-versus-benthic habitats and nutrient availability in shaping aquatic microbial metabolic processes, particularly in tidal lagoon systems. Video abstract.
Collapse
Affiliation(s)
- Hwee Sze Tee
- School of Biological Sciences, University of Auckland, Auckland, 1010 New Zealand
| | - David Waite
- School of Biological Sciences, University of Auckland, Auckland, 1010 New Zealand
- Current address: Ministry for Primary Industries, Auckland, New Zealand
| | - Gavin Lear
- School of Biological Sciences, University of Auckland, Auckland, 1010 New Zealand
| | - Kim Marie Handley
- School of Biological Sciences, University of Auckland, Auckland, 1010 New Zealand
| |
Collapse
|
145
|
Gottshall EY, Bryson SJ, Cogert KI, Landreau M, Sedlacek CJ, Stahl DA, Daims H, Winkler M. Sustained nitrogen loss in a symbiotic association of Comammox Nitrospira and Anammox bacteria. WATER RESEARCH 2021; 202:117426. [PMID: 34274897 DOI: 10.1016/j.watres.2021.117426] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
The discovery of anaerobic ammonia-oxidizing bacteria (Anammox) and, more recently, aerobic bacteria common in many natural and engineered systems that oxidize ammonia completely to nitrate (Comammox) have significantly altered our understanding of the global nitrogen cycle. A high affinity for ammonia (Km(app),NH3 ≈ 63nM) and oxygen place Comammox Nitrospira inopinata, the first described isolate, in the same trophic category as organisms such as some ammonia-oxidizing archaea. However, N. inopinata has a relatively low affinity for nitrite (Km,NO2 ≈ 449.2μM) suggesting it would be less competitive for nitrite than other nitrite-consuming aerobes and anaerobes. We examined the ecological relevance of the disparate substrate affinities by coupling it with the Anammox bacterium Candidatus Brocadia anammoxidans. Synthetic communities of the two were established in hydrogel granules in which Comammox grew in the aerobic outer layer to provide Anammox with nitrite in the inner anoxic core to form dinitrogen gas. This spatial organization was confirmed with FISH imaging, supporting a mutualistic or commensal relationship. The functional significance of interspecies spatial organization was informed by the hydrogel encapsulation format, broadening our limited understanding of the interplay between these two species. The resulting low nitrate formation and the competitiveness of Comammox over other aerobic ammonia- and nitrite-oxidizers sets this ecological cooperation apart and points to potential biotechnological applications. Since nitrate is an undesirable product of wastewater treatment effluents, the Comammox-Anammox symbiosis may be of economic and ecological importance to reduce nitrogen contamination of receiving waters.
Collapse
Affiliation(s)
- Ekaterina Y Gottshall
- Civil and Environmental Engineering, University of Washington, Seattle, WA 98165, United States.
| | - Sam J Bryson
- Civil and Environmental Engineering, University of Washington, Seattle, WA 98165, United States
| | - Kathryn I Cogert
- Civil and Environmental Engineering, University of Washington, Seattle, WA 98165, United States
| | - Matthieu Landreau
- Civil and Environmental Engineering, University of Washington, Seattle, WA 98165, United States
| | - Christopher J Sedlacek
- Centre for Microbiology and Environmental Systems Science, University of Vienna, 1010, Austria
| | - David A Stahl
- Civil and Environmental Engineering, University of Washington, Seattle, WA 98165, United States
| | - Holger Daims
- Centre for Microbiology and Environmental Systems Science, University of Vienna, 1010, Austria; The Comammox Research Platform. University of Vienna, 1010, Austria
| | - Mari Winkler
- Civil and Environmental Engineering, University of Washington, Seattle, WA 98165, United States
| |
Collapse
|
146
|
Cryptic Constituents: The Paradox of High Flux–Low Concentration Components of Aquatic Ecosystems. WATER 2021. [DOI: 10.3390/w13162301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The interface between terrestrial ecosystems and inland waters is an important link in the global carbon cycle. However, the extent to which allochthonous organic matter entering freshwater systems plays a major role in microbial and higher-trophic-level processes is under debate. Human perturbations can alter fluxes of terrestrial carbon to aquatic environments in complex ways. The biomass and production of aquatic microbes are traditionally thought to be resource limited via stoichiometric constraints such as nutrient ratios or the carbon standing stock at a given timepoint. Low concentrations of a particular constituent, however, can be strong evidence of its importance in food webs. High fluxes of a constituent are often associated with low concentrations due to high uptake rates, particularly in aquatic food webs. A focus on biomass rather than turnover can lead investigators to misconstrue dissolved organic carbon use by bacteria. By combining tracer methods with mass balance calculations, we reveal hidden patterns in aquatic ecosystems that emphasize fluxes, turnover rates, and molecular interactions. We suggest that this approach will improve forecasts of aquatic ecosystem responses to warming or altered nitrogen usage.
Collapse
|
147
|
Nakagawa T, Koji M, Hosoyama A, Yamazoe A, Tsuchiya Y, Ueda S, Takahashi R, Stahl DA. Nitrosopumilus zosterae sp. nov., an autotrophic ammonia-oxidizing archaeon of phylum Thaumarchaeota isolated from coastal eelgrass sediments of Japan. Int J Syst Evol Microbiol 2021; 71. [PMID: 34406920 DOI: 10.1099/ijsem.0.004961] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel mesophilic and aerobic ammonia-oxidizing archaeon of the phylum Thaumarchaeota, strain NM25T, was isolated from coastal eelgrass zone sediment sampled in Shimoda (Japan). The cells were rod-shaped with an S-layer cell wall. The temperature range for growth was 20-37 °C, with an optimum at 30 °C. The pH range for growth was pH 6.1-7.7, with an optimum at pH 7.1. The salinity range for growth was 5-40 %, with an optimum range of 15-32 %. Cells obtained energy from ammonia oxidation and used bicarbonate as a carbon source. Utilization of urea was not observed for energy generation and growth. Strain NM25T required a hydrogen peroxide scavenger, such as α-ketoglutarate, pyruvate or catalase, for sustained growth on ammonia. Growth of strain NM25T was inhibited by addition of low concentrations of some organic compounds and organic mixtures, including complete inhibition by glycerol, peptone and yeast extract. Phylogenetic analysis of four concatenated housekeeping genes (16S rRNA, rpoB, rpsI and atpD) and concatenated AmoA, AmoB, AmoC amino acid sequences indicated that the isolate is similar to members of the genus Nitrosopumilus. The closest relative is Nitrosopumilus ureiphilus PS0T with sequence similarities of 99.5 % for the 16S rRNA gene and 97.2 % for the amoA gene. Genome relatedness between strain NM25T and N. ureiphilus PS0T was assessed by average nucleotide identity and digital DNA-DNA hybridization, giving results of 85.4 and 40.2 %, respectively. On the basis of phenotypic, genotypic and phylogenetic data, strain NM25T represents a novel species of the genus Nitrosopumilus, for which the name sp. nov, is proposed. The type strain is NM25T (=NBRC 111181T=ATCC TSD-147T).
Collapse
Affiliation(s)
- Tatsunori Nakagawa
- College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa 252-0880, Japan.,Department of Civil and Environmental Engineering, University of Washington, WA 98195, USA
| | - Mori Koji
- Department of Civil and Environmental Engineering, University of Washington, WA 98195, USA
| | - Akira Hosoyama
- NITE Biological Resource Center (NBRC), National Institute of Technology and Evaluation (NITE), 2-5-8 Kazusakamatari, Kisarazu 292-0818, Japan
| | - Atsushi Yamazoe
- NITE Biological Resource Center (NBRC), National Institute of Technology and Evaluation (NITE), 2-5-8 Kazusakamatari, Kisarazu 292-0818, Japan
| | - Yuki Tsuchiya
- NITE Biological Resource Center (NBRC), National Institute of Technology and Evaluation (NITE), 2-5-8 Kazusakamatari, Kisarazu 292-0818, Japan
| | - Shingo Ueda
- College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa 252-0880, Japan
| | - Reiji Takahashi
- College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa 252-0880, Japan
| | - David A Stahl
- Department of Civil and Environmental Engineering, University of Washington, WA 98195, USA
| |
Collapse
|
148
|
Fan C, Zhang W, Chen X, Li N, Li W, Wang Q, Duan P, Chen M. Residual effects of four-year amendments of organic material on N 2O production driven by ammonia-oxidizing archaea and bacteria in a tropical vegetable soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 781:146746. [PMID: 33798878 DOI: 10.1016/j.scitotenv.2021.146746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/15/2021] [Accepted: 03/21/2021] [Indexed: 06/12/2023]
Abstract
Organic material (OM) applied to cropland not only enhances soil fertility but also profoundly affects soil nitrogen cycling. However, little is known about the relative contributions of soil ammonia-oxidizing archaea (AOA) and bacteria (AOB) to nitrous oxide (N2O) production during ammonia oxidation in response to the additions of diverse types of OMs in the tropical soil for vegetable production. Herein, the soils were sampled from a tropical vegetable field subjected to 4-year consecutive amendments of straw or manure. All the soils were amended with ammonium sulfate ((NH4)2SO4, applied at a dose of 150 mg N kg-1) and incubated aerobically for four weeks under 50% water holding capacity. 1-octyne or acetylene inhibition technique was used to differentiate the relative contributions of AOA and AOB to N2O production. Results showed that AOA dominated N2O production in soil managements of unfertilized control (CK), chemical fertilization (NPK), and NPK with straw (NPKS), whereas AOB contributed more in soil under NPK with manure (NPKM). Straw addition stimulated AOA-dependent N2O production by 94.8% despite the decreased AOA-amoA abundance. Moreover, manure incorporation triggered both AOA- and AOB-dependent N2O production by 147.2% and 233.7%, respectively, accompanied with increased AOA and AOB abundances. Those stimulating effects were stronger for AOB, owing to its sensitivity to the alleviated soil acidification and decreased soil C/N ratio. Our findings highlight the stimulated N2O emissions during ammonia oxidation by historical OM amendments in tropical vegetable soil, with the magnitude of those priming effects dependent on the types of OM, and appropriate measures need to be taken to counter this challenge in tropical agriculture ecosystems.
Collapse
Affiliation(s)
- Changhua Fan
- Hainan Key Laboratory of Tropical Eco-Circular Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571737, China; National Agricultural Experimental Station for Agricultural Environment, Danzhou 571737, China
| | - Wen Zhang
- Hainan Key Laboratory of Tropical Eco-Circular Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571737, China; National Agricultural Experimental Station for Agricultural Environment, Danzhou 571737, China
| | - Xin Chen
- Hainan Key Laboratory of Tropical Eco-Circular Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571737, China; National Agricultural Experimental Station for Agricultural Environment, Danzhou 571737, China
| | - Ning Li
- Hainan Key Laboratory of Tropical Eco-Circular Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571737, China; National Agricultural Experimental Station for Agricultural Environment, Danzhou 571737, China
| | - Wei Li
- Hainan Key Laboratory of Tropical Eco-Circular Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571737, China; National Agricultural Experimental Station for Agricultural Environment, Danzhou 571737, China
| | - Qing Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bio-resources, College of Tropical Crops, Hainan University, Haikou 570228, China
| | - Pengpeng Duan
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, PR China.
| | - Miao Chen
- Hainan Key Laboratory of Tropical Eco-Circular Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571737, China; National Agricultural Experimental Station for Agricultural Environment, Danzhou 571737, China; College of Ecology and Environment, Hainan University, Haikou 570228, China.
| |
Collapse
|
149
|
Xie Z, Du S, Ma T, Hou J, Zeng X, Li Y. High time-resolved characterization of airborne microbial community during a typical haze pollution process. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125722. [PMID: 34088212 DOI: 10.1016/j.jhazmat.2021.125722] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/04/2021] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
Variations of bioaerosol characteristics during the process of haze pollution have rarely been explored. In this study, high time-resolved variations of the community structures of bacteria, fungi, and ammonia-oxidizing microorganisms (AOMs) were assessed during a typical haze pollution process. The impacts of meteorological factors, water-soluble inorganic ions (WSII), and organic dicarboxylic acids (DCA) on the airborne microbial community were systematically evaluated. The results showed that the bacterial community varied greatly during the formation stages of haze pollution, and tended to stabilize with the further development of haze pollution. Nevertheless, variations of the fungal community lasted throughout the whole haze pollution process. Furthermore, Nitrososphaera absolutely dominated the ammonia-oxidizing archaea (AOA) and declined as PM2.5 burst. Network analysis identified relatively weak interactions and co-occurrence patterns between dominant fungal genera. Importantly, dust source ions and PM2.5 acidity exerted the most significant impacts on bacterial and fungal communities. These results identify the high time-resolved variations of airborne microbial communities during the formation and development of haze pollution process, and provide valuable data to better understand the interaction between bioaerosols and haze pollution.
Collapse
Affiliation(s)
- Zhengsheng Xie
- School of Water and Environment, Chang'an University, Xi'an 710054, China.
| | - Shengli Du
- School of Water and Environment, Chang'an University, Xi'an 710054, China
| | - Tianfeng Ma
- School of Water and Environment, Chang'an University, Xi'an 710054, China
| | - Junli Hou
- School of Water and Environment, Chang'an University, Xi'an 710054, China
| | - Xuelin Zeng
- School of Water and Environment, Chang'an University, Xi'an 710054, China
| | - Yanpeng Li
- School of Water and Environment, Chang'an University, Xi'an 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region (Chang'an University), Ministry of Education, Xi'an 710054, China.
| |
Collapse
|
150
|
Competition of Ammonia-Oxidizing Archaea and Bacteria from Freshwater Environments. Appl Environ Microbiol 2021; 87:e0103821. [PMID: 34347515 DOI: 10.1128/aem.01038-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the environment, nutrients are rarely available in constant supply. Therefore, microorganisms require strategies to compete for limiting nutrients. In freshwater systems, ammonia-oxidizing archaea (AOA) and bacteria (AOB) compete with heterotrophic bacteria, photosynthetic microorganisms, and each other for ammonium, which AOA and AOB utilize as their sole source of energy and nitrogen. We investigated the competition between highly enriched cultures of an AOA (AOA-AC1) and an AOB (AOB-G5-7) for ammonium. Based on the amoA gene, the newly enriched archaeal ammonia oxidizer in AOA-AC1 was closely related to Nitrosotenuis spp. and the bacterial ammonia oxidizer in AOB-G5-7, Nitrosomonas sp. Is79, belonged to the Nitrosomonas oligotropha group (Nitrosomonas cluster 6a). Growth experiments in batch cultures showed that AOB-G5-7 had higher growth rates than AOA-AC1 at higher ammonium concentrations. During chemostat competition experiments under ammonium-limiting conditions, AOA-AC1 dominated the cultures, while AOB-G5-7 decreased in abundance. In batch cultures, the outcome of the competition between AOA and AOB was determined by the initial ammonium concentrations. AOA-AC1 was the dominant ammonia oxidizer at an initial ammonium concentration of 50 μM and AOB-G5-7 at 500 μM. These findings indicate that, during direct competition, AOA-AC1 was able to use ammonium that was unavailable to AOB-G5-7, while AOB-G5-7 dominated at higher ammonium concentrations. The results are in strong accordance with environmental survey data suggesting that AOA are mainly responsible for ammonia oxidation under more oligotrophic conditions, whereas AOB dominate under eutrophic conditions. Importance Nitrification is an important process in the global nitrogen cycle. The first step - ammonia oxidation to nitrite - can be carried out by Ammonia-oxidizing Archaea (AOA) and Ammonia-oxidizing Bacteria (AOB). In many natural environments, these ammonia oxidizers coexist. Therefore, it is important to understand the population dynamics in response to increasing ammonium concentrations. Here, we study the competition between AOA and AOB enriched from freshwater systems. The results demonstrate that AOA are more abundant in systems with low ammonium availabilities and AOB when the ammonium availability increases. These results will help to predict potential shifts in community composition of ammonia oxidizers in the environment due to changes in ammonium availability.
Collapse
|