101
|
Schmitt LI, Halassa MM. Interrogating the mouse thalamus to correct human neurodevelopmental disorders. Mol Psychiatry 2017; 22:183-191. [PMID: 27725660 PMCID: PMC5258688 DOI: 10.1038/mp.2016.183] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 08/03/2016] [Accepted: 08/25/2016] [Indexed: 11/09/2022]
Abstract
While localizing sensory and motor deficits is one of the cornerstones of clinical neurology, behavioral and cognitive deficits in psychiatry remain impervious to this approach. In psychiatry, major challenges include the relative subtlety by which neural circuits are perturbed, and the limited understanding of how basic circuit functions relate to thought and behavior. Neurodevelopmental disorders offer a window to addressing the first challenge given their strong genetic underpinnings, which can be linked to biological mechanisms. Such links have benefited from genetic modeling in the mouse, and in this review we highlight how this small mammal is now allowing us to crack neural circuits as well. We review recent studies of mouse thalamus, discussing how they revealed general principles that may underlie human perception and attention. Controlling the magnitude (gain) of thalamic sensory responses is a mechanism of attention, and the mouse has enabled its functional dissection at an unprecedented resolution. Further, modeling human genetic neurodevelopmental disease in the mouse has shown how diminished thalamic gain control can lead to attention deficits. This breaks new ground in how we untangle the complexity of psychiatric diseases; by making thalamic circuits accessible to mechanistic dissection; the mouse has not only taught us how they fundamentally work, but also how their dysfunction can be precisely mapped onto behavioral and cognitive deficits. Future studies promise even more progress, with the hope that principled targeting of identified thalamic circuits can be uniquely therapeutic.
Collapse
Affiliation(s)
- L. Ian Schmitt
- The Neuroscience Institute, New York University School of Medicine, New York, NY
| | - Michael M. Halassa
- The Neuroscience Institute, New York University School of Medicine, New York, NY,Center for Neural Science, New York University, New York, NY,Department of Psychiatry, NYU Langone Medical Center, New York, NY
| |
Collapse
|
102
|
Chen CY, Hafed ZM. A neural locus for spatial-frequency specific saccadic suppression in visual-motor neurons of the primate superior colliculus. J Neurophysiol 2017; 117:1657-1673. [PMID: 28100659 DOI: 10.1152/jn.00911.2016] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/17/2017] [Accepted: 01/17/2017] [Indexed: 11/22/2022] Open
Abstract
Saccades cause rapid retinal-image shifts that go perceptually unnoticed several times per second. The mechanisms for saccadic suppression have been controversial, in part because of sparse understanding of neural substrates. In this study we uncovered an unexpectedly specific neural locus for spatial frequency-specific saccadic suppression in the superior colliculus (SC). We first developed a sensitive behavioral measure of suppression in two macaque monkeys, demonstrating selectivity to low spatial frequencies similar to that observed in earlier behavioral studies. We then investigated visual responses in either purely visual SC neurons or anatomically deeper visual motor neurons, which are also involved in saccade generation commands. Surprisingly, visual motor neurons showed the strongest visual suppression, and the suppression was dependent on spatial frequency, as in behavior. Most importantly, suppression selectivity for spatial frequency in visual motor neurons was highly predictive of behavioral suppression effects in each individual animal, with our recorded population explaining up to ~74% of behavioral variance even on completely different experimental sessions. Visual SC neurons had mild suppression, which was unselective for spatial frequency and thus only explained up to ~48% of behavioral variance. In terms of spatial frequency-specific saccadic suppression, our results run contrary to predictions that may be associated with a hypothesized SC saccadic suppression mechanism, in which a motor command in the visual motor and motor neurons is first relayed to the more superficial purely visual neurons, to suppress them and to then potentially be fed back to cortex. Instead, an extraretinal modulatory signal mediating spatial-frequency-specific suppression may already be established in visual motor neurons.NEW & NOTEWORTHY Saccades, which repeatedly realign the line of sight, introduce spurious signals in retinal images that normally go unnoticed. In part, this happens because of perisaccadic suppression of visual sensitivity, which is known to depend on spatial frequency. We discovered that a specific subtype of superior colliculus (SC) neurons demonstrates spatial-frequency-dependent suppression. Curiously, it is the neurons that help mediate the saccadic command itself that exhibit such suppression, and not the purely visual ones.
Collapse
Affiliation(s)
- Chih-Yang Chen
- Werner Reichardt Centre for Integrative Neuroscience, Tuebingen University, Tuebingen, Germany.,Graduate School of Neural and Behavioural Sciences, International Max Planck Research School, Tuebingen University, Tuebingen, Germany; and.,Hertie Institute for Clinical Brain Research, Tuebingen, Germany
| | - Ziad M Hafed
- Werner Reichardt Centre for Integrative Neuroscience, Tuebingen University, Tuebingen, Germany; .,Hertie Institute for Clinical Brain Research, Tuebingen, Germany
| |
Collapse
|
103
|
Abstract
Selective visual attention describes the tendency of visual processing to be confined largely to stimuli that are relevant to behavior. It is among the most fundamental of cognitive functions, particularly in humans and other primates for whom vision is the dominant sense. We review recent progress in identifying the neural mechanisms of selective visual attention. We discuss evidence from studies of different varieties of selective attention and examine how these varieties alter the processing of stimuli by neurons within the visual system, current knowledge of their causal basis, and methods for assessing attentional dysfunctions. In addition, we identify some key questions that remain in identifying the neural mechanisms that give rise to the selective processing of visual information.
Collapse
Affiliation(s)
- Tirin Moore
- Department of Neurobiology, Stanford University School of Medicine, Stanford, California 94305; , .,Howard Hughes Medical Institute, Stanford, California 94305
| | - Marc Zirnsak
- Department of Neurobiology, Stanford University School of Medicine, Stanford, California 94305; , .,Howard Hughes Medical Institute, Stanford, California 94305
| |
Collapse
|
104
|
Schwedhelm P, Krishna BS, Treue S. An Extended Normalization Model of Attention Accounts for Feature-Based Attentional Enhancement of Both Response and Coherence Gain. PLoS Comput Biol 2016; 12:e1005225. [PMID: 27977679 PMCID: PMC5157945 DOI: 10.1371/journal.pcbi.1005225] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 10/31/2016] [Indexed: 11/19/2022] Open
Abstract
Paying attention to a sensory feature improves its perception and impairs that of others. Recent work has shown that a Normalization Model of Attention (NMoA) can account for a wide range of physiological findings and the influence of different attentional manipulations on visual performance. A key prediction of the NMoA is that attention to a visual feature like an orientation or a motion direction will increase the response of neurons preferring the attended feature (response gain) rather than increase the sensory input strength of the attended stimulus (input gain). This effect of feature-based attention on neuronal responses should translate to similar patterns of improvement in behavioral performance, with psychometric functions showing response gain rather than input gain when attention is directed to the task-relevant feature. In contrast, we report here that when human subjects are cued to attend to one of two motion directions in a transparent motion display, attentional effects manifest as a combination of input and response gain. Further, the impact on input gain is greater when attention is directed towards a narrow range of motion directions than when it is directed towards a broad range. These results are captured by an extended NMoA, which either includes a stimulus-independent attentional contribution to normalization or utilizes direction-tuned normalization. The proposed extensions are consistent with the feature-similarity gain model of attention and the attentional modulation in extrastriate area MT, where neuronal responses are enhanced and suppressed by attention to preferred and non-preferred motion directions respectively. We report a pattern of feature-based attentional effects on human psychophysical performance, which cannot be accounted for by the Normalization Model of Attention using biologically plausible parameters. Specifically, this prominent model of attentional modulation predicts that attention to a visual feature like a specific motion direction will lead to a response gain in the input-response function, rather than the input gain that we actually observe. In our data, the input gain is greater when attention is directed towards a narrow range of motion directions, again contrary to the model’s prediction. We therefore propose two physiologically testable extensions of the model that include direction-tuned normalization mechanisms of attention. Both extensions account for our data without affecting the previously demonstrated successful performance of the NMoA.
Collapse
Affiliation(s)
- Philipp Schwedhelm
- Cognitive Neuroscience Laboratory, German Primate Center - Leibniz Institute for Primate Research, Goettingen, Germany
- Bernstein Center for Computational Neuroscience, Goettingen, Germany
- * E-mail: (PS); (ST)
| | - B. Suresh Krishna
- Cognitive Neuroscience Laboratory, German Primate Center - Leibniz Institute for Primate Research, Goettingen, Germany
| | - Stefan Treue
- Cognitive Neuroscience Laboratory, German Primate Center - Leibniz Institute for Primate Research, Goettingen, Germany
- Bernstein Center for Computational Neuroscience, Goettingen, Germany
- Faculty of Biology and Psychology, Goettingen University, Goettingen, Germany
- Leibniz-ScienceCampus Primate Cognition, Goettingen, Germany
- * E-mail: (PS); (ST)
| |
Collapse
|
105
|
Bullock T, Elliott JC, Serences JT, Giesbrecht B. Acute Exercise Modulates Feature-selective Responses in Human Cortex. J Cogn Neurosci 2016; 29:605-618. [PMID: 27897672 DOI: 10.1162/jocn_a_01082] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
An organism's current behavioral state influences ongoing brain activity. Nonhuman mammalian and invertebrate brains exhibit large increases in the gain of feature-selective neural responses in sensory cortex during locomotion, suggesting that the visual system becomes more sensitive when actively exploring the environment. This raises the possibility that human vision is also more sensitive during active movement. To investigate this possibility, we used an inverted encoding model technique to estimate feature-selective neural response profiles from EEG data acquired from participants performing an orientation discrimination task. Participants (n = 18) fixated at the center of a flickering (15 Hz) circular grating presented at one of nine different orientations and monitored for a brief shift in orientation that occurred on every trial. Participants completed the task while seated on a stationary exercise bike at rest and during low- and high-intensity cycling. We found evidence for inverted-U effects; such that the peak of the reconstructed feature-selective tuning profiles was highest during low-intensity exercise compared with those estimated during rest and high-intensity exercise. When modeled, these effects were driven by changes in the gain of the tuning curve and in the profile bandwidth during low-intensity exercise relative to rest. Thus, despite profound differences in visual pathways across species, these data show that sensitivity in human visual cortex is also enhanced during locomotive behavior. Our results reveal the nature of exercise-induced gain on feature-selective coding in human sensory cortex and provide valuable evidence linking the neural mechanisms of behavior state across species.
Collapse
|
106
|
Organization of long-range inputs and outputs of frontal cortex for top-down control. Nat Neurosci 2016; 19:1733-1742. [PMID: 27749828 PMCID: PMC5127741 DOI: 10.1038/nn.4417] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 09/15/2016] [Indexed: 12/12/2022]
Abstract
Long-range projections from the frontal cortex are known to modulate sensory processing in multiple modalities. Although the mouse has become an increasingly important animal model for studying the circuit basis of behavior, the functional organization of its frontal cortical long-range connectivity remains poorly characterized. Here we used virus-assisted circuit mapping to identify the brain networks for top-down modulation of visual, somatosensory and auditory processing. The visual cortex is reciprocally connected to the anterior cingulate area, whereas the somatosensory and auditory cortices are connected to the primary and secondary motor cortices. Anterograde and retrograde tracing identified the cortical and subcortical structures belonging to each network. Furthermore, using new viral techniques to target subpopulations of frontal neurons projecting to the visual cortex versus the superior colliculus, we identified two distinct subnetworks within the visual network. These findings provide an anatomical foundation for understanding the brain mechanisms underlying top-down control of behavior.
Collapse
|
107
|
Womelsdorf T, Everling S. Long-Range Attention Networks: Circuit Motifs Underlying Endogenously Controlled Stimulus Selection. Trends Neurosci 2016; 38:682-700. [PMID: 26549883 DOI: 10.1016/j.tins.2015.08.009] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/24/2015] [Accepted: 08/27/2015] [Indexed: 11/19/2022]
Abstract
Attention networks comprise brain areas whose coordinated activity implements stimulus selection. This selection is reflected in spatially referenced priority maps across frontal-parietal-collicular areas and is controlled through interactions with circuits representing behavioral goals, including prefrontal, cingulate, and striatal circuits, among others. We review how these goal-providing structures control stimulus selection through long-range dynamic projection motifs. These motifs (i) combine feature-tuned subnetworks to a distributed priority map, (ii) establish endogenously controlled, long-range coherent activity at 4-10 Hz theta and 12-30 Hz beta-band frequencies, and (iii) are composed of unique cell types implementing long-range networks through disynaptic disinhibition, dendritic gating, and feedforward inhibitory gain control. This evidence reveals common circuit motifs used to coordinate attentionally selected information across multi-node brain networks during goal-directed behavior.
Collapse
Affiliation(s)
- Thilo Womelsdorf
- Department of Biology, Centre for Vision Research, York University, 4700 Keele Street, Toronto, Ontario M6J 1P3, Canada.
| | - Stefan Everling
- Department of Physiology and Pharmacology, Centre for Functional and Metabolic Mapping, University of Western Ontario, 1151 Richmond Street North, Ontario N6A 5B7, Canada
| |
Collapse
|
108
|
Verhoef BE, Maunsell JH. Attention operates uniformly throughout the classical receptive field and the surround. eLife 2016; 5. [PMID: 27547989 PMCID: PMC5021523 DOI: 10.7554/elife.17256] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 08/20/2016] [Indexed: 11/13/2022] Open
Abstract
Shifting attention among visual stimuli at different locations modulates neuronal responses in heterogeneous ways, depending on where those stimuli lie within the receptive fields of neurons. Yet how attention interacts with the receptive-field structure of cortical neurons remains unclear. We measured neuronal responses in area V4 while monkeys shifted their attention among stimuli placed in different locations within and around neuronal receptive fields. We found that attention interacts uniformly with the spatially-varying excitation and suppression associated with the receptive field. This interaction explained the large variability in attention modulation across neurons, and a non-additive relationship among stimulus selectivity, stimulus-induced suppression and attention modulation that has not been previously described. A spatially-tuned normalization model precisely accounted for all observed attention modulations and for the spatial summation properties of neurons. These results provide a unified account of spatial summation and attention-related modulation across both the classical receptive field and the surround. DOI:http://dx.doi.org/10.7554/eLife.17256.001 At any moment, our brain receives an enormous amount of information from our senses. However, we are not aware of all of this information; only the information we decide to focus on is perceived in detail. This ability to focus our attention is important for survival. The neurons involved in vision respond best to information that comes from a small ‘window’ in what is being seen. When something appears in this window (known as the neuron’s receptive field), the activity of the neuron either increases or decreases. How does focusing attention on an object change the neuron’s response? Verhoef and Maunsell investigated this question by recording electrical activity in an area of the brain called V4 in monkeys as they focused their attention on objects in different locations of the neuron’s receptive field. The recordings show that a single rule determines when attention influences a neuron’s activity. If an object inside the neuron’s receptive field decreases the activity of the neuron, then attention can change that neuron’s activity. Attention then changes the activity of the neuron by either removing or further boosting the influence of these objects. Verhoef and Maunsell then developed a mathematical model based on these results, and found that the model could explain why the activity of a neuron changes when attention is focused on objects at different locations in its receptive field. The next step is to understand exactly how the brain works to either remove or boost the influence of an object that causes a neuron’s activity to decrease. DOI:http://dx.doi.org/10.7554/eLife.17256.002
Collapse
Affiliation(s)
- Bram-Ernst Verhoef
- Department of Neurobiology, The University of Chicago, Chicago, United States.,Department of Neurobiology, Harvard Medical School, Boston, United States.,Laboratorium voor Neuro- en Psychofysiologie, Katholieke Universiteit Leuven, Leuven, Belgium
| | - John Hr Maunsell
- Department of Neurobiology, The University of Chicago, Chicago, United States.,Department of Neurobiology, Harvard Medical School, Boston, United States
| |
Collapse
|
109
|
Gómez-Laberge C, Smolyanskaya A, Nassi JJ, Kreiman G, Born RT. Bottom-Up and Top-Down Input Augment the Variability of Cortical Neurons. Neuron 2016; 91:540-547. [PMID: 27427459 DOI: 10.1016/j.neuron.2016.06.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 04/28/2016] [Accepted: 06/14/2016] [Indexed: 11/17/2022]
Abstract
Neurons in the cerebral cortex respond inconsistently to a repeated sensory stimulus, yet they underlie our stable sensory experiences. Although the nature of this variability is unknown, its ubiquity has encouraged the general view that each cell produces random spike patterns that noisily represent its response rate. In contrast, here we show that reversibly inactivating distant sources of either bottom-up or top-down input to cortical visual areas in the alert primate reduces both the spike train irregularity and the trial-to-trial variability of single neurons. A simple model in which a fraction of the pre-synaptic input is silenced can reproduce this reduction in variability, provided that there exist temporal correlations primarily within, but not between, excitatory and inhibitory input pools. A large component of the variability of cortical neurons may therefore arise from synchronous input produced by signals arriving from multiple sources.
Collapse
Affiliation(s)
- Camille Gómez-Laberge
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, Massachusetts 02115, USA.,Department of Ophthalmology, Boston Children's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, Massachusetts 02115, USA
| | - Alexandra Smolyanskaya
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, Massachusetts 02115, USA
| | - Jonathan J Nassi
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, Massachusetts 02115, USA
| | - Gabriel Kreiman
- Department of Ophthalmology, Boston Children's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, Massachusetts 02115, USA
| | - Richard T Born
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, Massachusetts 02115, USA.,Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
110
|
Ruff DA, Alberts JJ, Cohen MR. Relating normalization to neuronal populations across cortical areas. J Neurophysiol 2016; 116:1375-86. [PMID: 27358313 DOI: 10.1152/jn.00017.2016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 06/22/2016] [Indexed: 11/22/2022] Open
Abstract
Normalization, which divisively scales neuronal responses to multiple stimuli, is thought to underlie many sensory, motor, and cognitive processes. In every study where it has been investigated, neurons measured in the same brain area under identical conditions exhibit a range of normalization, ranging from suppression by nonpreferred stimuli (strong normalization) to additive responses to combinations of stimuli (no normalization). Normalization has been hypothesized to arise from interactions between neuronal populations, either in the same or different brain areas, but current models of normalization are not mechanistic and focus on trial-averaged responses. To gain insight into the mechanisms underlying normalization, we examined interactions between neurons that exhibit different degrees of normalization. We recorded from multiple neurons in three cortical areas while rhesus monkeys viewed superimposed drifting gratings. We found that neurons showing strong normalization shared less trial-to-trial variability with other neurons in the same cortical area and more variability with neurons in other cortical areas than did units with weak normalization. Furthermore, the cortical organization of normalization was not random: neurons recorded on nearby electrodes tended to exhibit similar amounts of normalization. Together, our results suggest that normalization reflects a neuron's role in its local network and that modulatory factors like normalization share the topographic organization typical of sensory tuning properties.
Collapse
Affiliation(s)
- Douglas A Ruff
- Department of Neuroscience and Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Joshua J Alberts
- Department of Neuroscience and Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Marlene R Cohen
- Department of Neuroscience and Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
111
|
Gomez-Ramirez M, Hysaj K, Niebur E. Neural mechanisms of selective attention in the somatosensory system. J Neurophysiol 2016; 116:1218-31. [PMID: 27334956 DOI: 10.1152/jn.00637.2015] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 06/09/2016] [Indexed: 11/22/2022] Open
Abstract
Selective attention allows organisms to extract behaviorally relevant information while ignoring distracting stimuli that compete for the limited resources of their central nervous systems. Attention is highly flexible, and it can be harnessed to select information based on sensory modality, within-modality feature(s), spatial location, object identity, and/or temporal properties. In this review, we discuss the body of work devoted to understanding mechanisms of selective attention in the somatosensory system. In particular, we describe the effects of attention on tactile behavior and corresponding neural activity in somatosensory cortex. Our focus is on neural mechanisms that select tactile stimuli based on their location on the body (somatotopic-based attention) or their sensory feature (feature-based attention). We highlight parallels between selection mechanisms in touch and other sensory systems and discuss several putative neural coding schemes employed by cortical populations to signal the behavioral relevance of sensory inputs. Specifically, we contrast the advantages and disadvantages of using a gain vs. spike-spike correlation code for representing attended sensory stimuli. We favor a neural network model of tactile attention that is composed of frontal, parietal, and subcortical areas that controls somatosensory cells encoding the relevant stimulus features to enable preferential processing throughout the somatosensory hierarchy. Our review is based on data from noninvasive electrophysiological and imaging data in humans as well as single-unit recordings in nonhuman primates.
Collapse
Affiliation(s)
- Manuel Gomez-Ramirez
- Department of Neuroscience, Brown University, Providence, Rhode Island; The Zanvyl Krieger Mind/Brain Institute, The Johns Hopkins University, Baltimore, Maryland; and The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Kristjana Hysaj
- The Zanvyl Krieger Mind/Brain Institute, The Johns Hopkins University, Baltimore, Maryland; and
| | - Ernst Niebur
- The Zanvyl Krieger Mind/Brain Institute, The Johns Hopkins University, Baltimore, Maryland; and The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins School of Medicine, Baltimore, Maryland
| |
Collapse
|
112
|
Abstract
How, why, and when consciousness evolved remain hotly debated topics. Addressing these issues requires considering the distribution of consciousness across the animal phylogenetic tree. Here we propose that at least one invertebrate clade, the insects, has a capacity for the most basic aspect of consciousness: subjective experience. In vertebrates the capacity for subjective experience is supported by integrated structures in the midbrain that create a neural simulation of the state of the mobile animal in space. This integrated and egocentric representation of the world from the animal's perspective is sufficient for subjective experience. Structures in the insect brain perform analogous functions. Therefore, we argue the insect brain also supports a capacity for subjective experience. In both vertebrates and insects this form of behavioral control system evolved as an efficient solution to basic problems of sensory reafference and true navigation. The brain structures that support subjective experience in vertebrates and insects are very different from each other, but in both cases they are basal to each clade. Hence we propose the origins of subjective experience can be traced to the Cambrian.
Collapse
|
113
|
Tian X, Yoshida M, Hafed ZM. A Microsaccadic Account of Attentional Capture and Inhibition of Return in Posner Cueing. Front Syst Neurosci 2016; 10:23. [PMID: 27013991 PMCID: PMC4779940 DOI: 10.3389/fnsys.2016.00023] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 02/22/2016] [Indexed: 11/13/2022] Open
Abstract
Microsaccades exhibit systematic oscillations in direction after spatial cueing, and these oscillations correlate with facilitatory and inhibitory changes in behavioral performance in the same tasks. However, independent of cueing, facilitatory and inhibitory changes in visual sensitivity also arise pre-microsaccadically. Given such pre-microsaccadic modulation, an imperative question to ask becomes: how much of task performance in spatial cueing may be attributable to these peri-movement changes in visual sensitivity? To investigate this question, we adopted a theoretical approach. We developed a minimalist model in which: (1) microsaccades are repetitively generated using a rise-to-threshold mechanism, and (2) pre-microsaccadic target onset is associated with direction-dependent modulation of visual sensitivity, as found experimentally. We asked whether such a model alone is sufficient to account for performance dynamics in spatial cueing. Our model not only explained fine-scale microsaccade frequency and direction modulations after spatial cueing, but it also generated classic facilitatory (i.e., attentional capture) and inhibitory [i.e., inhibition of return (IOR)] effects of the cue on behavioral performance. According to the model, cues reflexively reset the oculomotor system, which unmasks oscillatory processes underlying microsaccade generation; once these oscillatory processes are unmasked, "attentional capture" and "IOR" become direct outcomes of pre-microsaccadic enhancement or suppression, respectively. Interestingly, our model predicted that facilitatory and inhibitory effects on behavior should appear as a function of target onset relative to microsaccades even without prior cues. We experimentally validated this prediction for both saccadic and manual responses. We also established a potential causal mechanism for the microsaccadic oscillatory processes hypothesized by our model. We used retinal-image stabilization to experimentally control instantaneous foveal motor error during the presentation of peripheral cues, and we found that post-cue microsaccadic oscillations were severely disrupted. This suggests that microsaccades in spatial cueing tasks reflect active oculomotor correction of foveal motor error, rather than presumed oscillatory covert attentional processes. Taken together, our results demonstrate that peri-microsaccadic changes in vision can go a long way in accounting for some classic behavioral phenomena.
Collapse
Affiliation(s)
- Xiaoguang Tian
- Physiology of Active Vision Laboratory, Werner Reichardt Centre for Integrative Neuroscience, University of TuebingenTuebingen, Germany; Graduate School of Neural and Behavioural Sciences, International Max-Planck Research School, University of TuebingenTuebingen, Germany
| | - Masatoshi Yoshida
- Department of Developmental Physiology, National Institute for Physiological Sciences Okazaki, Japan
| | - Ziad M Hafed
- Physiology of Active Vision Laboratory, Werner Reichardt Centre for Integrative Neuroscience, University of Tuebingen Tuebingen, Germany
| |
Collapse
|
114
|
Abstract
The brain has a limited capacity and therefore needs mechanisms to selectively enhance the information most relevant to one's current behavior. We refer to these mechanisms as "attention." Attention acts by increasing the strength of selected neural representations and preferentially routing them through the brain's large-scale network. This is a critical component of cognition and therefore has been a central topic in cognitive neuroscience. Here we review a diverse literature that has studied attention at the level of behavior, networks, circuits, and neurons. We then integrate these disparate results into a unified theory of attention.
Collapse
Affiliation(s)
- Timothy J Buschman
- Department of Psychology, Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA.
| | - Sabine Kastner
- Department of Psychology, Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
115
|
Hafed ZM, Chen CY, Tian X. Vision, Perception, and Attention through the Lens of Microsaccades: Mechanisms and Implications. Front Syst Neurosci 2015; 9:167. [PMID: 26696842 PMCID: PMC4667031 DOI: 10.3389/fnsys.2015.00167] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 11/17/2015] [Indexed: 11/13/2022] Open
Abstract
Microsaccades are small saccades. Neurophysiologically, microsaccades are generated using similar brainstem mechanisms as larger saccades. This suggests that peri-saccadic changes in vision that accompany large saccades might also be expected to accompany microsaccades. In this review, we highlight recent evidence demonstrating this. Microsaccades are not only associated with suppressed visual sensitivity and perception, as in the phenomenon of saccadic suppression, but they are also associated with distorted spatial representations, as in the phenomenon of saccadic compression, and pre-movement response gain enhancement, as in the phenomenon of pre-saccadic attention. Surprisingly, the impacts of peri-microsaccadic changes in vision are far reaching, both in time relative to movement onset as well as spatial extent relative to movement size. Periods of ~100 ms before and ~100 ms after microsaccades exhibit significant changes in neuronal activity and behavior, and this happens at eccentricities much larger than the eccentricities targeted by the microsaccades themselves. Because microsaccades occur during experiments enforcing fixation, these effects create a need to consider the impacts of microsaccades when interpreting a variety of experiments on vision, perception, and cognition using awake, behaving subjects. The clearest example of this idea to date has been on the links between microsaccades and covert visual attention. Recent results have demonstrated that peri-microsaccadic changes in vision play a significant role in both neuronal and behavioral signatures of covert visual attention, so much so that in at least some attentional cueing paradigms, there is very tight synchrony between microsaccades and the emergence of attentional effects. Just like large saccades, microsaccades are genuine motor outputs, and their impacts can be substantial even during perceptual and cognitive experiments not concerned with overt motor generation per se.
Collapse
Affiliation(s)
- Ziad M Hafed
- Physiology of Active Vision Laboratory, Werner Reichardt Centre for Integrative Neuroscience, University of Tuebingen Tuebingen, Germany
| | - Chih-Yang Chen
- Physiology of Active Vision Laboratory, Werner Reichardt Centre for Integrative Neuroscience, University of Tuebingen Tuebingen, Germany ; Graduate School of Neural and Behavioural Sciences, International Max-Planck Research School, University of Tuebingen Tuebingen, Germany
| | - Xiaoguang Tian
- Physiology of Active Vision Laboratory, Werner Reichardt Centre for Integrative Neuroscience, University of Tuebingen Tuebingen, Germany ; Graduate School of Neural and Behavioural Sciences, International Max-Planck Research School, University of Tuebingen Tuebingen, Germany
| |
Collapse
|
116
|
Abstract
Advances on several fronts have refined our understanding of the neuronal mechanisms of attention. This review focuses on recent progress in understanding visual attention through single-neuron recordings made in behaving subjects. Simultaneous recordings from populations of individual cells have shown that attention is associated with changes in the correlated firing of neurons that can enhance the quality of sensory representations. Other work has shown that sensory normalization mechanisms are important for explaining many aspects of how visual representations change with attention, and these mechanisms must be taken into account when evaluating attention-related neuronal modulations. Studies comparing different brain structures suggest that attention is composed of several cognitive processes, which might be controlled by different brain regions. Collectively, these and other recent findings provide a clearer picture of how representations in the visual system change when attention shifts from one target to another.
Collapse
Affiliation(s)
- John H R Maunsell
- Department of Neurobiology, University of Chicago, Chicago, Illinois 60637;
| |
Collapse
|
117
|
Baruni JK, Lau B, Salzman CD. Reward expectation differentially modulates attentional behavior and activity in visual area V4. Nat Neurosci 2015; 18:1656-63. [PMID: 26479590 PMCID: PMC4624579 DOI: 10.1038/nn.4141] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 09/17/2015] [Indexed: 11/09/2022]
Abstract
Neural activity in visual area V4 is enhanced when attention is directed into neuronal receptive fields. However, the source of this enhancement is unclear, as most physiological studies have manipulated attention by changing the absolute reward associated with a particular location as well as its value relative to other locations. We trained monkeys to discriminate the orientation of two stimuli presented simultaneously in different hemifields while we independently varied the reward magnitude associated with correct discrimination at each location. Behavioral measures of attention were controlled by the relative value of each location. By contrast, neurons in V4 were consistently modulated by absolute reward value, exhibiting increased activity, increased gamma-band power and decreased trial-to-trial variability whenever receptive field locations were associated with large rewards. These data challenge the notion that the perceptual benefits of spatial attention rely on increased signal-to-noise in V4. Instead, these benefits likely derive from downstream selection mechanisms.
Collapse
Affiliation(s)
- Jalal K Baruni
- Department of Neuroscience, Columbia University, New York, New York, USA
| | - Brian Lau
- Department of Neuroscience, Columbia University, New York, New York, USA
| | - C Daniel Salzman
- Department of Neuroscience, Columbia University, New York, New York, USA.,Kavli Institute for Brain Sciences, Columbia University, New York, New York, USA.,Department of Psychiatry, Columbia University, New York, New York, USA.,New York State Psychiatric Institute, New York, New York, USA
| |
Collapse
|
118
|
Taouali W, Goffart L, Alexandre F, Rougier NP. A parsimonious computational model of visual target position encoding in the superior colliculus. BIOLOGICAL CYBERNETICS 2015; 109:549-559. [PMID: 26342605 DOI: 10.1007/s00422-015-0660-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 08/20/2015] [Indexed: 06/05/2023]
Abstract
The superior colliculus (SC) is a brainstem structure at the crossroad of multiple functional pathways. Several neurophysiological studies suggest that the population of active neurons in the SC encodes the location of a visual target to foveate, pursue or attend to. Although extensive research has been carried out on computational modeling, most of the reported models are often based on complex mechanisms and explain a limited number of experimental results. This suggests that a key aspect may have been overlooked in the design of previous computational models. After a careful study of the literature, we hypothesized that the representation of the whole retinal stimulus (not only its center) might play an important role in the dynamics of SC activity. To test this hypothesis, we designed a model of the SC which is built upon three well-accepted principles: the log-polar representation of the visual field onto the SC, the interplay between a center excitation and a surround inhibition and a simple neuronal dynamics, like the one proposed by the dynamic neural field theory. Results show that the retinotopic organization of the collicular activity conveys an implicit computation that deeply impacts the target selection process.
Collapse
Affiliation(s)
- Wahiba Taouali
- Institut de Neurobiologie de la Méditerrantée, INSERM, UMR 901, Aix-Marseille University, Marseille, France.
| | - Laurent Goffart
- Institut de Neurosciences de la Timone, CNRS, UMR 7289, Aix-Marseille University, Marseille, France
| | - Frédéric Alexandre
- INRIA Bordeaux Sud-West, Talence, France
- LaBRI, Université de Bordeaux, Bordeaux INP, UMR 5800, Centre National de la Recherche Scientifique, Talence, France
- Institut des Maladies Neurodégénératives, Université de Bordeaux, UMR 5293, Centre National de la Recherche Scientifique, Bordeaux, France
| | - Nicolas P Rougier
- INRIA Bordeaux Sud-West, Talence, France
- LaBRI, Université de Bordeaux, Bordeaux INP, UMR 5800, Centre National de la Recherche Scientifique, Talence, France
- Institut des Maladies Neurodégénératives, Université de Bordeaux, UMR 5293, Centre National de la Recherche Scientifique, Bordeaux, France
| |
Collapse
|
119
|
Kopec CD, Erlich JC, Brunton BW, Deisseroth K, Brody CD. Cortical and Subcortical Contributions to Short-Term Memory for Orienting Movements. Neuron 2015; 88:367-77. [PMID: 26439529 DOI: 10.1016/j.neuron.2015.08.033] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 05/08/2015] [Accepted: 08/19/2015] [Indexed: 12/28/2022]
Abstract
Neural activity in frontal cortical areas has been causally linked to short-term memory (STM), but whether this activity is necessary for forming, maintaining, or reading out STM remains unclear. In rats performing a memory-guided orienting task, the frontal orienting fields in cortex (FOF) are considered critical for STM maintenance, and during each trial display a monotonically increasing neural encoding for STM. Here, we transiently inactivated either the FOF or the superior colliculus and found that the resulting impairments in memory-guided orienting performance followed a monotonically decreasing time course, surprisingly opposite to the neural encoding. A dynamical attractor model in which STM relies equally on cortical and subcortical regions reconciled the encoding and inactivation data. We confirmed key predictions of the model, including a time-dependent relationship between trial difficulty and perturbability, and substantial, supralinear, impairment following simultaneous inactivation of the FOF and superior colliculus during memory maintenance.
Collapse
Affiliation(s)
- Charles D Kopec
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Jeffrey C Erlich
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Howard Hughes Medical Institute; NYU-ECNU Institute of Brain and Cognitive Science, New York University Shanghai, Shanghai 200122, China
| | - Bingni W Brunton
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Department of Biology, Institute for Neuroengineering, eScience Institute, University of Washington, Seattle, WA 98195, USA
| | - Karl Deisseroth
- Howard Hughes Medical Institute; Department of Bioengineering, Neuroscience Program, Department of Psychiatry and Behavioral Sciences, CNC Program, Stanford University, Stanford CA 94305, USA
| | - Carlos D Brody
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Howard Hughes Medical Institute.
| |
Collapse
|
120
|
Luo TZ, Maunsell JHR. Neuronal Modulations in Visual Cortex Are Associated with Only One of Multiple Components of Attention. Neuron 2015; 86:1182-8. [PMID: 26050038 DOI: 10.1016/j.neuron.2015.05.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 03/24/2015] [Accepted: 04/20/2015] [Indexed: 11/30/2022]
Abstract
Neuronal signals related to visual attention are found in widespread brain regions, and these signals are generally assumed to participate in a common mechanism of attention. However, the behavioral effects of attention in detection can be separated into two distinct components: spatially selective shifts in either the criterion or sensitivity of the subject. Here we show that a paradigm used by many single-neuron studies of attention conflates behavioral changes in the subject's criterion and sensitivity. Then, using a task designed to dissociate these two components, we found that multiple aspects of attention-related neuronal modulations in area V4 of monkey visual cortex corresponded to behavioral shifts in sensitivity, but not criterion. This result suggests that separate components of attention are associated with signals in different brain regions and that attention is not a unitary process in the brain, but instead consists of distinct neurobiological mechanisms.
Collapse
Affiliation(s)
- Thomas Zhihao Luo
- Department of Neurobiology, The University of Chicago, Chicago, IL 60637, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA.
| | - John H R Maunsell
- Department of Neurobiology, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
121
|
Abstract
Alfred L. Yarbus was among the first to demonstrate that eye movements actively serve our perceptual and cognitive goals, a crucial recognition that is at the heart of today's research on active vision. He realized that not the changes in fixation stick in memory but the changes in shifts of attention. Indeed, oculomotor control is tightly coupled to functions as fundamental as attention and memory. This tight relationship offers an intriguing perspective on transsaccadic perceptual continuity, which we experience despite the fact that saccades cause rapid shifts of the image across the retina. Here, I elaborate this perspective based on a series of psychophysical findings. First, saccade preparation shapes the visual system's priorities; it enhances visual performance and perceived stimulus intensity at the targets of the eye movement. Second, before saccades, the deployment of visual attention is updated, predictively facilitating perception at those retinal locations that will be relevant once the eyes land. Third, saccadic eye movements strongly affect the contents of visual memory, highlighting their crucial role for which parts of a scene we remember or forget. Together, these results provide insights on how attentional processes enable the visual system to cope with the retinal consequences of saccades.
Collapse
Affiliation(s)
- Martin Rolfs
- Department of Psychology, Humboldt Universität zu Berlin, GermanyBernstein Center for Computational Neuroscience, Humboldt Universität zu Berlin, Germany
| |
Collapse
|
122
|
Habchi O, Rey E, Mathieu R, Urquizar C, Farnè A, Pélisson D. Deployment of spatial attention without moving the eyes is boosted by oculomotor adaptation. Front Hum Neurosci 2015; 9:426. [PMID: 26300755 PMCID: PMC4523790 DOI: 10.3389/fnhum.2015.00426] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 07/13/2015] [Indexed: 01/01/2023] Open
Abstract
Vertebrates developed sophisticated solutions to select environmental visual information, being capable of moving attention without moving the eyes. A large body of behavioral and neuroimaging studies indicate a tight coupling between eye movements and spatial attention. The nature of this link, however, remains highly debated. Here, we demonstrate that deployment of human covert attention, measured in stationary eye conditions, can be boosted across space by changing the size of ocular saccades to a single position via a specific adaptation paradigm. These findings indicate that spatial attention is more widely affected by oculomotor plasticity than previously thought.
Collapse
Affiliation(s)
- Ouazna Habchi
- Integrative, Multisensory, Perception, Action and Cognition Team, Lyon Neuroscience Research Center, INSERM, Unit 1028, CNRS Unit 5292, Bron, France and Lyon I University Lyon, France
| | - Elodie Rey
- Integrative, Multisensory, Perception, Action and Cognition Team, Lyon Neuroscience Research Center, INSERM, Unit 1028, CNRS Unit 5292, Bron, France and Lyon I University Lyon, France
| | - Romain Mathieu
- Integrative, Multisensory, Perception, Action and Cognition Team, Lyon Neuroscience Research Center, INSERM, Unit 1028, CNRS Unit 5292, Bron, France and Lyon I University Lyon, France
| | - Christian Urquizar
- Integrative, Multisensory, Perception, Action and Cognition Team, Lyon Neuroscience Research Center, INSERM, Unit 1028, CNRS Unit 5292, Bron, France and Lyon I University Lyon, France
| | - Alessandro Farnè
- Integrative, Multisensory, Perception, Action and Cognition Team, Lyon Neuroscience Research Center, INSERM, Unit 1028, CNRS Unit 5292, Bron, France and Lyon I University Lyon, France
| | - Denis Pélisson
- Integrative, Multisensory, Perception, Action and Cognition Team, Lyon Neuroscience Research Center, INSERM, Unit 1028, CNRS Unit 5292, Bron, France and Lyon I University Lyon, France
| |
Collapse
|
123
|
Wang CA, Munoz DP. A circuit for pupil orienting responses: implications for cognitive modulation of pupil size. Curr Opin Neurobiol 2015; 33:134-40. [DOI: 10.1016/j.conb.2015.03.018] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 03/19/2015] [Accepted: 03/26/2015] [Indexed: 10/23/2022]
|
124
|
Courjon JH, Zénon A, Clément G, Urquizar C, Olivier E, Pélisson D. Electrical stimulation of the superior colliculus induces non-topographically organized perturbation of reaching movements in cats. Front Syst Neurosci 2015; 9:109. [PMID: 26283933 PMCID: PMC4516875 DOI: 10.3389/fnsys.2015.00109] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 07/13/2015] [Indexed: 11/13/2022] Open
Abstract
Besides its well-known contribution to orienting behaviors, the superior colliculus (SC) might also play a role in controlling visually guided reaching movements. This view has been inferred from studies in monkeys showing that some tectal cells located in the deep layers are active prior to reaching movements; it was corroborated by functional imaging studies performed in humans. Likewise, our group has already demonstrated that, in cats, SC electrical stimulation can modify the trajectory of goal-directed forelimb movements without necessarily affecting the gaze position. However, as in monkeys, we could not establish any congruence between the usual retinotopic SC map and direction of evoked forelimb movements, albeit only a small portion of the collicular map was investigated. Therefore, the aim of the current study was to further ascertain the causal contribution of SC to reaching movement by exploring the whole collicular map. Our results confirmed that SC electrical stimulation deflected the trajectory of reaching movements, but this deviation was always directed downward and backward, irrespective of the location of the stimulation site. The lack of a complete map of reach directions in the SC and the absence of congruence between the direction of evoked forelimb movements and the collicular oculomotor map challenge the view that, in the cat, the SC causally contributes to coding forelimb movements. Interestingly, the very short latencies of the effect argue also against the interruption of reaching movements being driven by a disruption of the early visual processing. Our results rather suggest that the SC might contribute to the reach target selection process. Alternatively, SC stimulation might have triggered a postural adjustment anticipating an upcoming orienting reaction, leading to an interruption of the on-going reaching movement.
Collapse
Affiliation(s)
- Jean-Hubert Courjon
- Integrative, Multisensory, Perception Action and Cognition Team, Centre de Recherches en Neurosciences de Lyon, INSERM U1028 and CNRS UMR5292, Bron France
| | - Alexandre Zénon
- Institute of Neuroscience, Université Catholique de Louvain, Brussels Belgium
| | - Gilles Clément
- Integrative, Multisensory, Perception Action and Cognition Team, Centre de Recherches en Neurosciences de Lyon, INSERM U1028 and CNRS UMR5292, Bron France
| | - Christian Urquizar
- Integrative, Multisensory, Perception Action and Cognition Team, Centre de Recherches en Neurosciences de Lyon, INSERM U1028 and CNRS UMR5292, Bron France
| | - Etienne Olivier
- Institute of Neuroscience, Université Catholique de Louvain, Brussels Belgium
| | - Denis Pélisson
- Integrative, Multisensory, Perception Action and Cognition Team, Centre de Recherches en Neurosciences de Lyon, INSERM U1028 and CNRS UMR5292, Bron France
| |
Collapse
|
125
|
Clark K, Squire RF, Merrikhi Y, Noudoost B. Visual attention: Linking prefrontal sources to neuronal and behavioral correlates. Prog Neurobiol 2015; 132:59-80. [PMID: 26159708 DOI: 10.1016/j.pneurobio.2015.06.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 06/25/2015] [Accepted: 06/28/2015] [Indexed: 11/26/2022]
Abstract
Attention is a means of flexibly selecting and enhancing a subset of sensory input based on the current behavioral goals. Numerous signatures of attention have been identified throughout the brain, and now experimenters are seeking to determine which of these signatures are causally related to the behavioral benefits of attention, and the source of these modulations within the brain. Here, we review the neural signatures of attention throughout the brain, their theoretical benefits for visual processing, and their experimental correlations with behavioral performance. We discuss the importance of measuring cue benefits as a way to distinguish between impairments on an attention task, which may instead be visual or motor impairments, and true attentional deficits. We examine evidence for various areas proposed as sources of attentional modulation within the brain, with a focus on the prefrontal cortex. Lastly, we look at studies that aim to link sources of attention to its neuronal signatures elsewhere in the brain.
Collapse
Affiliation(s)
- Kelsey Clark
- Montana State University, Bozeman, MT, United States
| | - Ryan Fox Squire
- Stanford University, Stanford, CA, United States; Lumos Labs, San Francisco, CA, United States
| | - Yaser Merrikhi
- School of Cognitive Sciences (SCS), Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | | |
Collapse
|
126
|
Gardner JL. A case for human systems neuroscience. Neuroscience 2015; 296:130-7. [PMID: 24997268 DOI: 10.1016/j.neuroscience.2014.06.052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 06/20/2014] [Accepted: 06/24/2014] [Indexed: 11/15/2022]
Abstract
Can the human brain itself serve as a model for a systems neuroscience approach to understanding the human brain? After all, how the brain is able to create the richness and complexity of human behavior is still largely mysterious. What better choice to study that complexity than to study it in humans? However, measurements of brain activity typically need to be made non-invasively which puts severe constraints on what can be learned about the internal workings of the brain. Our approach has been to use a combination of psychophysics in which we can use human behavioral flexibility to make quantitative measurements of behavior and link those through computational models to measurements of cortical activity through magnetic resonance imaging. In particular, we have tested various computational hypotheses about what neural mechanisms could account for behavioral enhancement with spatial attention (Pestilli et al., 2011). Resting both on quantitative measurements and considerations of what is known through animal models, we concluded that weighting of sensory signals by the magnitude of their response is a neural mechanism for efficient selection of sensory signals and consequent improvements in behavioral performance with attention. While animal models have many technical advantages over studying the brain in humans, we believe that human systems neuroscience should endeavor to validate, replicate and extend basic knowledge learned from animal model systems and thus form a bridge to understanding how the brain creates the complex and rich cognitive capacities of humans.
Collapse
Affiliation(s)
- J L Gardner
- Laboratory for Human Systems Neuroscience, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
127
|
Duan C, Erlich J, Brody C. Requirement of Prefrontal and Midbrain Regions for Rapid Executive Control of Behavior in the Rat. Neuron 2015; 86:1491-503. [DOI: 10.1016/j.neuron.2015.05.042] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 04/06/2015] [Accepted: 05/17/2015] [Indexed: 10/23/2022]
|
128
|
Action and perception are temporally coupled by a common mechanism that leads to a timing misperception. J Neurosci 2015; 35:1493-504. [PMID: 25632126 DOI: 10.1523/jneurosci.2054-14.2015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We move our eyes to explore the world, but visual areas determining where to look next (action) are different from those determining what we are seeing (perception). Whether, or how, action and perception are temporally coordinated is not known. The preparation time course of an action (e.g., a saccade) has been widely studied with the gap/overlap paradigm with temporal asynchronies (TA) between peripheral target onset and fixation point offset (gap, synchronous, or overlap). However, whether the subjects perceive the gap or overlap, and when they perceive it, has not been studied. We adapted the gap/overlap paradigm to study the temporal coupling of action and perception. Human subjects made saccades to targets with different TAs with respect to fixation point offset and reported whether they perceived the stimuli as separated by a gap or overlapped in time. Both saccadic and perceptual report reaction times changed in the same way as a function of TA. The TA dependencies of the time change for action and perception were very similar, suggesting a common neural substrate. Unexpectedly, in the perceptual task, subjects misperceived lights overlapping by less than ∼100 ms as separated in time (overlap seen as gap). We present an attention-perception model with a map of prominence in the superior colliculus that modulates the stimulus signal's effectiveness in the action and perception pathways. This common source of modulation determines how competition between stimuli is resolved, causes the TA dependence of action and perception to be the same, and causes the misperception.
Collapse
|
129
|
Ahmadlou M, Heimel JA. Preference for concentric orientations in the mouse superior colliculus. Nat Commun 2015; 6:6773. [PMID: 25832803 PMCID: PMC4396361 DOI: 10.1038/ncomms7773] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 02/25/2015] [Indexed: 01/23/2023] Open
Abstract
The superior colliculus is a layered structure important for body- and gaze-orienting responses. Its superficial layer is, next to the lateral geniculate nucleus, the second major target of retinal ganglion axons and is retinotopically organized. Here we show that in the mouse there is also a precise organization of orientation preference. In columns perpendicular to the tectal surface, neurons respond to the same visual location and prefer gratings of the same orientation. Calcium imaging and extracellular recording revealed that the preferred grating varies with retinotopic location, and is oriented parallel to the concentric circle around the centre of vision through the receptive field. This implies that not all orientations are equally represented across the visual field. This makes the superior colliculus different from visual cortex and unsuitable for translation-invariant object recognition and suggests that visual stimuli might have different behavioural consequences depending on their retinotopic location. The mammalian superior colliculus (SC) processes visual stimuli but little is known about the spatial organization of the response preferences for specific visual features. Here the authors show that the mouse SC contains a map for orientation preference such that preferred grating orientation is aligned to concentric circles around the centre of the visual field.
Collapse
Affiliation(s)
- Mehran Ahmadlou
- Netherlands Institute for Neuroscience, an institute of the Royal Academy of Arts and Sciences, Cortical Structure &Function group, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
| | - J Alexander Heimel
- Netherlands Institute for Neuroscience, an institute of the Royal Academy of Arts and Sciences, Cortical Structure &Function group, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
| |
Collapse
|
130
|
Sprague TC, Saproo S, Serences JT. Visual attention mitigates information loss in small- and large-scale neural codes. Trends Cogn Sci 2015; 19:215-26. [PMID: 25769502 PMCID: PMC4532299 DOI: 10.1016/j.tics.2015.02.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 01/31/2015] [Accepted: 02/06/2015] [Indexed: 01/28/2023]
Abstract
The visual system transforms complex inputs into robust and parsimonious neural codes that efficiently guide behavior. Because neural communication is stochastic, the amount of encoded visual information necessarily decreases with each synapse. This constraint requires that sensory signals are processed in a manner that protects information about relevant stimuli from degradation. Such selective processing--or selective attention--is implemented via several mechanisms, including neural gain and changes in tuning properties. However, examining each of these effects in isolation obscures their joint impact on the fidelity of stimulus feature representations by large-scale population codes. Instead, large-scale activity patterns can be used to reconstruct representations of relevant and irrelevant stimuli, thereby providing a holistic understanding about how neuron-level modulations collectively impact stimulus encoding.
Collapse
Affiliation(s)
- Thomas C Sprague
- Neurosciences Graduate Program, University of California San Diego, La Jolla, CA 92093-0109, USA.
| | - Sameer Saproo
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - John T Serences
- Neurosciences Graduate Program, University of California San Diego, La Jolla, CA 92093-0109, USA; Department of Psychology, University of California San Diego, La Jolla, CA 92093-0109, USA.
| |
Collapse
|
131
|
Wang CA, Brien DC, Munoz DP. Pupil size reveals preparatory processes in the generation of pro-saccades and anti-saccades. Eur J Neurosci 2015; 41:1102-10. [DOI: 10.1111/ejn.12883] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 02/23/2015] [Accepted: 02/26/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Chin-An Wang
- Centre for Neuroscience Studies; Queen's University; Botterell Hall, 18 Stuart Street Kingston ON K7L 3N6 Canada
| | - Donald C. Brien
- Centre for Neuroscience Studies; Queen's University; Botterell Hall, 18 Stuart Street Kingston ON K7L 3N6 Canada
| | - Douglas P. Munoz
- Centre for Neuroscience Studies; Queen's University; Botterell Hall, 18 Stuart Street Kingston ON K7L 3N6 Canada
| |
Collapse
|
132
|
Abstract
Recent studies have shown that cognitive factors such as spatial and feature-based attention, learning, and task-switching can change the extent to which the trial-to-trial variability in the responses of neurons in sensory cortex is shared between pairs of neurons (for review, see Cohen and Kohn, 2011). Global cognitive factors related to concentration, motivation, effort, arousal, or alertness also affect performance on perceptual tasks and the responses of individual neurons in many cortical areas (Spitzer et al., 1988; Spitzer and Richmond, 1991; Motter, 1993; Bichot et al., 2001; Hasegawa et al., 2004; Boudreau et al., 2006; Niwa et al., 2012). The question of how global cognitive factors affect correlated response variability is important because these factors likely vary both across and within all psychophysical and physiological studies. Furthermore, global cognitive factors might provide a convenient platform for studying the neuronal mechanisms underlying how cognitive factors affect correlated variability because they can be manipulated easily without training complex perceptual tasks. We recorded simultaneously from groups of neurons in visual area V4 while rhesus monkeys performed a contrast discrimination task whose difficulty changed in blocks of trials. We found that correlated variability decreased when the task was more difficult, even when the visual stimuli were far outside the receptive fields of the recorded neurons. Our results suggest that studying global cognitive factors might provide a general framework for studying how cognitive factors affect the responses of neurons throughout sensory cortex.
Collapse
|
133
|
Ngan NH, Matsumoto J, Takamura Y, Tran AH, Ono T, Nishijo H. Neuronal correlates of attention and its disengagement in the superior colliculus of rat. Front Integr Neurosci 2015; 9:9. [PMID: 25741252 PMCID: PMC4332380 DOI: 10.3389/fnint.2015.00009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 01/27/2015] [Indexed: 01/07/2023] Open
Abstract
Orienting attention to a new target requires prior disengagement of attention from the current focus. Previous studies indicate that the superior colliculus (SC) plays an important role in attention. However, recordings of responses of SC neurons during attentional disengagement have not yet been reported. Here, we analyzed rat SC neuronal activity during performance of an attention-shift task with and without disengagement. In this task, conditioned stimuli (CSs; right and/or left light-flash or sound) were sequentially presented. To obtain an intracranial self-stimulation reward, rats were required to lick a spout when an infrequent conditioned stimulus appeared (reward trials). In the disengagement reward trials, configural stimuli consisting of an infrequent stimulus and frequent stimulus in the former trials were presented; in the non-disengagement reward trials, only an infrequent stimulus was presented. Of the 186 SC neurons responding to the CSs, 41 showed stronger responses to the CSs in the disengagement reward trials than in the non-disengagement reward trials (disengagement-related neurons). Furthermore, lick latencies in the disengagement reward trials were negatively correlated with response magnitudes to the CSs in half of the disengagement-related neurons. These disengagement-related neurons were located mainly in the deep layers of the SC. Another 70 SC neurons responded to the CSs in both disengagement and non-disengagement reward trials, suggesting that these neurons were involved in attention engagement. Our results suggest complementary mechanisms of attentional shift based on two subpopulations of neurons in the SC.
Collapse
Affiliation(s)
- Nguyen H Ngan
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama Toyama, Japan
| | - Jumpei Matsumoto
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama Toyama, Japan
| | - Yusaku Takamura
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama Toyama, Japan
| | - Anh H Tran
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama Toyama, Japan
| | - Taketoshi Ono
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama Toyama, Japan
| | - Hisao Nishijo
- System Emotional Science, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama Toyama, Japan
| |
Collapse
|
134
|
Selective disinhibition: A unified neural mechanism for predictive and post hoc attentional selection. Vision Res 2014; 116:194-209. [PMID: 25542276 DOI: 10.1016/j.visres.2014.12.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 12/04/2014] [Accepted: 12/11/2014] [Indexed: 11/23/2022]
Abstract
The natural world presents us with a rich and ever-changing sensory landscape containing diverse stimuli that constantly compete for representation in the brain. When the brain selects a stimulus as the highest priority for attention, it differentially enhances the representation of the selected, "target" stimulus and suppresses the processing of other, distracting stimuli. A stimulus may be selected for attention while it is still present in the visual scene (predictive selection) or after it has vanished (post hoc selection). We present a biologically inspired computational model that accounts for the prioritized processing of information about targets that are selected for attention either predictively or post hoc. Central to the model is the neurobiological mechanism of "selective disinhibition" - the selective suppression of inhibition of the representation of the target stimulus. We demonstrate that this mechanism explains major neurophysiological hallmarks of selective attention, including multiplicative neural gain, increased inter-trial reliability (decreased variability), and reduced noise correlations. The same mechanism also reproduces key behavioral hallmarks associated with target-distracter interactions. Selective disinhibition exhibits several distinguishing and advantageous features over alternative mechanisms for implementing target selection, and is capable of explaining the effects of selective attention over a broad range of real-world conditions, involving both predictive and post hoc biasing of sensory competition and decisions.
Collapse
|
135
|
Sridharan D, Knudsen EI. Gamma oscillations in the midbrain spatial attention network: linking circuits to function. Curr Opin Neurobiol 2014; 31:189-98. [PMID: 25485519 DOI: 10.1016/j.conb.2014.11.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 11/18/2014] [Accepted: 11/18/2014] [Indexed: 11/15/2022]
Abstract
Gamma-band (25-140Hz) oscillations are ubiquitous in mammalian forebrain structures involved in sensory processing, attention, learning and memory. The optic tectum (OT) is the central structure in a midbrain network that participates critically in controlling spatial attention. In this review, we summarize recent advances in characterizing a neural circuit in this midbrain network that generates large amplitude, space-specific, gamma oscillations in the avian OT, both in vivo and in vitro. We describe key physiological and pharmacological mechanisms that produce and regulate the structure of these oscillations. The extensive similarities between midbrain gamma oscillations in birds and those in the neocortex and hippocampus of mammals, offer important insights into the functional significance of a midbrain gamma oscillatory code.
Collapse
Affiliation(s)
- Devarajan Sridharan
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, United States.
| | - Eric I Knudsen
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, United States
| |
Collapse
|
136
|
Ruff DA, Cohen MR. Attention can either increase or decrease spike count correlations in visual cortex. Nat Neurosci 2014; 17:1591-7. [PMID: 25306550 PMCID: PMC4446056 DOI: 10.1038/nn.3835] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 09/12/2014] [Indexed: 12/11/2022]
Abstract
Visual attention enhances the responses of visual neurons that encode the attended location. Several recent studies have shown that attention also decreases correlations between fluctuations in the responses of pairs of neurons (termed spike count correlation or r(SC)). These results are consistent with two hypotheses. First, attention-related changes in rate and r(SC) might be linked (perhaps through a common mechanism), with attention always decreasing r(SC). Second, attention might either increase or decrease r(SC), possibly depending on the role of the neurons in the behavioral task. We recorded simultaneously from dozens of neurons in area V4 while monkeys performed a discrimination task. We found strong evidence in favor of the second hypothesis, showing that attention can flexibly increase or decrease correlations depending on whether the neurons provide evidence for the same or opposite choices. These results place important constraints on models of the neuronal mechanisms underlying cognitive factors.
Collapse
Affiliation(s)
- Douglas A. Ruff
- Department of Neuroscience and Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA
| | - Marlene R. Cohen
- Department of Neuroscience and Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
137
|
Steinmetz NA, Moore T. Eye movement preparation modulates neuronal responses in area V4 when dissociated from attentional demands. Neuron 2014; 83:496-506. [PMID: 25033188 DOI: 10.1016/j.neuron.2014.06.014] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2014] [Indexed: 11/26/2022]
Abstract
We examined whether the preparation of saccadic eye movements, when behaviorally dissociated from covert attention, modulates activity within visual cortex. We measured single-neuron and local field potential (LFP) responses to visual stimuli in area V4 while monkeys covertly attended a stimulus at one location and prepared saccades to a potential target at another. In spite of the irrelevance of visual information at the saccade target, visual activity at that location was modulated at least as much as, and often more than, activity at the covertly attended location. Modulations of activity at the attended and saccade target locations were qualitatively similar and included increased response magnitude, stimulus selectivity, and spiking reliability, as well as increased gamma and decreased low-frequency power of LFPs. These results demonstrate that saccade preparation is sufficient to modulate visual cortical representations and suggest that the interrelationship of oculomotor and attention-related mechanisms extends to posterior visual cortex.
Collapse
Affiliation(s)
- Nicholas A Steinmetz
- Department of Neurobiology and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tirin Moore
- Department of Neurobiology and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
138
|
Mysore SP, Knudsen EI. Descending control of neural bias and selectivity in a spatial attention network: rules and mechanisms. Neuron 2014; 84:214-226. [PMID: 25220813 DOI: 10.1016/j.neuron.2014.08.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2014] [Indexed: 12/22/2022]
Abstract
The brain integrates stimulus-driven (exogenous) activity with internally generated (endogenous) activity to compute the highest priority stimulus for gaze and attention. Little is known about how this computation is accomplished neurally. We explored the underlying functional logic in a critical component of the spatial attention network, the optic tectum (OT, superior colliculus in mammals), in awake barn owls. We found that space-specific endogenous influences, evoked by activating descending forebrain pathways, bias competition among exogenous influences, and substantially enhance the quality of the categorical neural pointer to the highest priority stimulus. These endogenous influences operate across sensory modalities. Biologically grounded modeling revealed that the observed effects on network bias and selectivity require a simple circuit mechanism: endogenously driven gain modulation of feedback inhibition among competing channels. Our findings reveal fundamental principles by which internal and external information combine to guide selection of the next target for gaze and attention.
Collapse
Affiliation(s)
- Shreesh P Mysore
- Department of Neurobiology, Stanford University, 299 West Campus Drive, Stanford, CA 94305, USA.
| | - Eric I Knudsen
- Department of Neurobiology, Stanford University, 299 West Campus Drive, Stanford, CA 94305, USA
| |
Collapse
|
139
|
Krauzlis RJ, Bollimunta A, Arcizet F, Wang L. Attention as an effect not a cause. Trends Cogn Sci 2014; 18:457-64. [PMID: 24953964 PMCID: PMC4186707 DOI: 10.1016/j.tics.2014.05.008] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 05/13/2014] [Accepted: 05/15/2014] [Indexed: 12/22/2022]
Abstract
Attention is commonly thought to be important for managing the limited resources available in sensory areas of the neocortex. Here we present an alternative view that attention arises as a byproduct of circuits centered on the basal ganglia involved in value-based decision making. The central idea is that decision making depends on properly estimating the current state of the animal and its environment and that the weighted inputs to the currently prevailing estimate give rise to the filter-like properties of attention. After outlining this new framework, we describe findings from physiological, anatomical, computational, and clinical work that support this point of view. We conclude that the brain mechanisms responsible for attention employ a conserved circuit motif that predates the emergence of the neocortex.
Collapse
Affiliation(s)
- Richard J Krauzlis
- Laboratory of Sensorimotor Research, National Eye Institute, Bethesda, MD 20892, USA.
| | - Anil Bollimunta
- Laboratory of Sensorimotor Research, National Eye Institute, Bethesda, MD 20892, USA
| | - Fabrice Arcizet
- Laboratory of Sensorimotor Research, National Eye Institute, Bethesda, MD 20892, USA
| | - Lupeng Wang
- Laboratory of Sensorimotor Research, National Eye Institute, Bethesda, MD 20892, USA
| |
Collapse
|
140
|
Sridharan D, Steinmetz NA, Moore T, Knudsen EI. Distinguishing bias from sensitivity effects in multialternative detection tasks. J Vis 2014; 14:16. [PMID: 25146574 PMCID: PMC4141865 DOI: 10.1167/14.9.16] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 06/05/2014] [Indexed: 11/24/2022] Open
Abstract
Studies investigating the neural bases of cognitive phenomena increasingly employ multialternative detection tasks that seek to measure the ability to detect a target stimulus or changes in some target feature (e.g., orientation or direction of motion) that could occur at one of many locations. In such tasks, it is essential to distinguish the behavioral and neural correlates of enhanced perceptual sensitivity from those of increased bias for a particular location or choice (choice bias). However, making such a distinction is not possible with established approaches. We present a new signal detection model that decouples the behavioral effects of choice bias from those of perceptual sensitivity in multialternative (change) detection tasks. By formulating the perceptual decision in a multidimensional decision space, our model quantifies the respective contributions of bias and sensitivity to multialternative behavioral choices. With a combination of analytical and numerical approaches, we demonstrate an optimal, one-to-one mapping between model parameters and choice probabilities even for tasks involving arbitrarily large numbers of alternatives. We validated the model with published data from two ternary choice experiments: a target-detection experiment and a length-discrimination experiment. The results of this validation provided novel insights into perceptual processes (sensory noise and competitive interactions) that can accurately and parsimoniously account for observers' behavior in each task. The model will find important application in identifying and interpreting the effects of behavioral manipulations (e.g., cueing attention) or neural perturbations (e.g., stimulation or inactivation) in a variety of multialternative tasks of perception, attention, and decision-making.
Collapse
Affiliation(s)
- Devarajan Sridharan
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Nicholas A. Steinmetz
- Department of Neurobiology and Program in Neurosciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Tirin Moore
- Department of Neurobiology and Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Eric I. Knudsen
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
141
|
Zénon A, Krauzlis R. [Superior colliculus as a subcortical center for visual selection]. Med Sci (Paris) 2014; 30:637-43. [PMID: 25014454 DOI: 10.1051/medsci/20143006013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Our visual system has limited resources, which need to be allocated in priority to the most relevant elements of the environment. The brain centers of this allocation mechanism, called visual attention, have been studied primarily in cortex. In this review, we describe the role of the superior colliculus, a structure of the brainstem, in attention control. This nucleus exerts its influence on visual selection independently of cortical attentional mechanisms. The exact nature of the subcortical circuits involved remains unknown but it can be hypothesized that the loop connecting the superior colliculus to the basal ganglia are a central actor of this subcortical selection process.
Collapse
Affiliation(s)
- Alexandre Zénon
- Institut de neurosciences, Université Catholique de Louvain, 1200 Bruxelles, Belgique - Systems neurobiology laboratory, Salk institute for biological studies, 10010 North Torrey Pines road, La Jolla, California 92037, États-Unis
| | - Rich Krauzlis
- Systems neurobiology laboratory, Salk institute for biological studies, 10010 North Torrey Pines road, La Jolla, California 92037, États-Unis - Laboratory of sensorimotor research, National eye institute, Bethesda, Maryland 20892, États-Unis
| |
Collapse
|
142
|
Excitatory synaptic feedback from the motor layer to the sensory layers of the superior colliculus. J Neurosci 2014; 34:6822-33. [PMID: 24828636 DOI: 10.1523/jneurosci.3137-13.2014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neural circuits that translate sensory information into motor commands are organized in a feedforward manner converting sensory information into motor output. The superior colliculus (SC) follows this pattern as it plays a role in converting visual information from the retina and visual cortex into motor commands for rapid eye movements (saccades). Feedback from movement to sensory regions is hypothesized to play critical roles in attention, visual image stability, and saccadic suppression, but in contrast to feedforward pathways, motor feedback to sensory regions has received much less attention. The present study used voltage imaging and patch-clamp recording in slices of rat SC to test the hypothesis of an excitatory synaptic pathway from the motor layers of the SC back to the sensory superficial layers. Voltage imaging revealed an extensive depolarization of the superficial layers evoked by electrical stimulation of the motor layers. A pharmacologically isolated excitatory synaptic potential in the superficial layers depended on stimulus strength in the motor layers in a manner consistent with orthodromic excitation. Patch-clamp recording from neurons in the sensory layers revealed excitatory synaptic potentials in response to glutamate application in the motor layers. The location, size, and morphology of responsive neurons indicated they were likely to be narrow-field vertical cells. This excitatory projection from motor to sensory layers adds an important element to the circuitry of the SC and reveals a novel feedback pathway that could play a role in enhancing sensory responses to attended targets as well as visual image stabilization.
Collapse
|
143
|
Lesions of prefrontal cortex reduce attentional modulation of neuronal responses and synchrony in V4. Nat Neurosci 2014; 17:1003-11. [PMID: 24929661 PMCID: PMC4122755 DOI: 10.1038/nn.3742] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 05/16/2014] [Indexed: 11/08/2022]
Abstract
It is widely held that the frontal eye field (FEF) in prefrontal cortex (PFC) modulates processing in visual cortex with attention, although the evidence for a necessary role is equivocal. To help identify critical sources of attentional feedback to area V4, we surgically removed the entire lateral PFC, including the FEF, in one hemisphere and transected the corpus callosum and anterior commisure in two macaques. This deprived V4 of PFC input in one hemisphere while keeping the other hemisphere intact. In the absence of PFC, attentional effects on neuronal responses and synchrony in V4 were significantly reduced and the remaining effects of attention were delayed in time indicating a critical role of PFC. Conversely, distracters captured attention and influenced V4 responses. However, because the effects of attention in V4 were not eliminated by PFC lesions, other sources of top-down attentional control signals to visual cortex must exist outside of PFC.
Collapse
|
144
|
Wang CA, Munoz DP. Modulation of stimulus contrast on the human pupil orienting response. Eur J Neurosci 2014; 40:2822-32. [DOI: 10.1111/ejn.12641] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Revised: 04/27/2014] [Accepted: 04/28/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Chin-An Wang
- Centre for Neuroscience Studies; Queen's University; Kingston ON Canada
| | - Douglas P. Munoz
- Centre for Neuroscience Studies; Queen's University; Kingston ON Canada
| |
Collapse
|
145
|
Gattass R, Galkin TW, Desimone R, Ungerleider LG. Subcortical connections of area V4 in the macaque. J Comp Neurol 2014; 522:1941-65. [PMID: 24288173 PMCID: PMC3984622 DOI: 10.1002/cne.23513] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 11/26/2013] [Accepted: 11/26/2013] [Indexed: 11/30/2022]
Abstract
Area V4 has numerous, topographically organized connections with multiple cortical areas, some of which are important for spatially organized visual processing, and others which seem important for spatial attention. Although the topographic organization of V4's connections with other cortical areas has been established, the detailed topography of its connections with subcortical areas is unclear. We therefore injected retrograde and anterograde tracers in different topographical regions of V4 in nine macaques to determine the organization of its subcortical connections. The injection sites included representations ranging from the fovea to far peripheral eccentricities in both the upper and lower visual fields. The topographically organized connections of V4 included bidirectional connections with four subdivisions of the pulvinar, two subdivisions of the claustrum, and the interlaminar portions of the lateral geniculate nucleus, and efferent projections to the superficial and intermediate layers of the superior colliculus, the thalamic reticular nucleus, and the caudate nucleus. All of these structures have a possible role in spatial attention. The nontopographic, or converging, connections included bidirectional connections with the lateral nucleus of the amygdala, afferent inputs from the dorsal raphe, median raphe, locus coeruleus, ventral tegmentum and nucleus basalis of Meynert, and efferent projections to the putamen. Any role of these structures in attention may be less spatially specific.
Collapse
Affiliation(s)
- Ricardo Gattass
- Laboratory of Cognitive Physiology, Instituto de Biofísica Carlos Chagas Filho, UFRJ,Rio de Janeiro, RJ, 21941-900, Brazil
| | - Thelma W Galkin
- Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health,Bethesda, Maryland, 20892, USA
| | - Robert Desimone
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health,Bethesda, Maryland, 20892, USA
- McGovern Institute, MIT,Cambridge, Massachusetts, 02139-4307, USA
| | - Leslie G Ungerleider
- Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health,Bethesda, Maryland, 20892, USA
| |
Collapse
|
146
|
Joshua M, Lisberger SG. A tale of two species: Neural integration in zebrafish and monkeys. Neuroscience 2014; 296:80-91. [PMID: 24797331 DOI: 10.1016/j.neuroscience.2014.04.048] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 04/18/2014] [Accepted: 04/21/2014] [Indexed: 11/30/2022]
Abstract
Selection of a model organism creates tension between competing constraints. The recent explosion of modern molecular techniques has revolutionized the analysis of neural systems in organisms that are amenable to genetic techniques. Yet, the non-human primate remains the gold-standard for the analysis of the neural basis of behavior, and as a bridge to the operation of the human brain. The challenge is to generalize across species in a way that exposes the operation of circuits as well as the relationship of circuits to behavior. Eye movements provide an opportunity to cross the bridge from mechanism to behavior through research on diverse species. Here, we review experiments and computational studies on a circuit function called "neural integration" that occurs in the brainstems of larval zebrafish, primates, and species "in between". We show that analysis of circuit structure using modern molecular and imaging approaches in zebrafish has remarkable explanatory power for details of the responses of integrator neurons in the monkey. The combination of research from the two species has led to a much stronger hypothesis for the implementation of the neural integrator than could have been achieved using either species alone.
Collapse
Affiliation(s)
- M Joshua
- Department of Neurobiology and Howard Hughes Medical Institute, Duke University, Durham, NC, USA.
| | - S G Lisberger
- Department of Neurobiology and Howard Hughes Medical Institute, Duke University, Durham, NC, USA
| |
Collapse
|
147
|
Abstract
Selective attention modulates activity within individual visual areas; however, the role of attention in mediating the transfer of information between areas is not well understood. Here, we used fMRI to assess attention-related changes in coupled BOLD activation in two key areas of human visual cortex that are involved in motion processing: V1 and MT. To examine attention-related changes in cross-area coupling, multivoxel patterns in each visual area were decomposed to estimate the trial-by-trial response amplitude in a set of direction-selective "channels." In both V1 and MT, BOLD responses increase in direction-selective channels tuned to the attended direction of motion and decrease in channels tuned away from the attended direction. Furthermore, the modulation of cross-area correlations between similarly tuned populations is inversely related to the modulation of their mean responses, an observation that can be explained via a feedforward motion computation in MT and a modulation of local noise correlations in V1. More importantly, these modulations accompany an increase in the cross-area mutual information between direction-selective response patterns in V1 and MT, suggesting that attention improves the transfer of sensory information between cortical areas that cooperate to support perception. Finally, our model suggests that divisive normalization of neural activity in V1 before its integration by MT is critical to cross-area information coupling, both in terms of cross-area correlation as well as cross-area mutual information.
Collapse
|
148
|
A distinct contribution of the frontal eye field to the visual representation of saccadic targets. J Neurosci 2014; 34:3687-98. [PMID: 24599467 DOI: 10.1523/jneurosci.3824-13.2014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The responses of neurons within posterior visual cortex are enhanced when response field (RF) stimuli are targeted with saccadic eye movements. Although the motor-related activity within oculomotor structures seems a likely source of the enhancement, the origin of the modulation is unknown. We tested the role of the frontal eye field (FEF) in driving presaccadic modulation in area V4 by inactivating FEF neurons at retinotopically corresponding sites within the macaque monkey (Macaca mulatta) brain. As previously observed, FEF inactivation produced profound, and spatially specific, deficits in memory-guided saccades, and increased the latency, scatter, and duration of visually guided saccades. Despite the clear behavioral deficits, we found that rather than being eliminated or reduced by FEF inactivation, presaccadic enhancement of V4 activity was increased. FEF inactivation nonetheless diminished the stimulus discriminability of V4 visual responses both during fixation and in the presaccadic period. Thus, without input from the FEF, V4 neurons signaled more about the direction of saccades and less about the features of the saccadic target. In addition, FEF inactivation significantly increased the suppressive effects of non-RF stimuli on V4 activity. These results reveal multiple sources of presaccadic modulation in V4 and suggest that the FEF contributes uniquely to the presaccadic specification of visual target features.
Collapse
|
149
|
Hutchinson M, Isa T, Molloy A, Kimmich O, Williams L, Molloy F, Moore H, Healy DG, Lynch T, Walsh C, Butler J, Reilly RB, Walsh R, O'Riordan S. Cervical dystonia: a disorder of the midbrain network for covert attentional orienting. Front Neurol 2014; 5:54. [PMID: 24803911 PMCID: PMC4009446 DOI: 10.3389/fneur.2014.00054] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 04/03/2014] [Indexed: 01/30/2023] Open
Abstract
While the pathogenesis of cervical dystonia remains unknown, recent animal and clinical experimental studies have indicated its probable mechanisms. Abnormal temporal discrimination is a mediational endophenotype of cervical dystonia and informs new concepts of disease pathogenesis. Our hypothesis is that both abnormal temporal discrimination and cervical dystonia are due to a disorder of the midbrain network for covert attentional orienting caused by reduced gamma-aminobutyric acid (GABA) inhibition, resulting, in turn, from as yet undetermined, genetic mutations. Such disinhibition is (a) subclinically manifested by abnormal temporal discrimination due to prolonged duration firing of the visual sensory neurons in the superficial laminae of the superior colliculus and (b) clinically manifested by cervical dystonia due to disinhibited burst activity of the cephalomotor neurons of the intermediate and deep laminae of the superior colliculus. Abnormal temporal discrimination in unaffected first-degree relatives of patients with cervical dystonia represents a subclinical manifestation of defective GABA activity both within the superior colliculus and from the substantia nigra pars reticulata. A number of experiments are required to prove or disprove this hypothesis.
Collapse
Affiliation(s)
- Michael Hutchinson
- Department of Neurology, St. Vincent's University Hospital , Dublin , Ireland ; School of Medicine and Medical Science, University College Dublin , Dublin , Ireland
| | - Tadashi Isa
- Department of Developmental Physiology, National Institute for Physiological Sciences , Okazaki , Japan
| | - Anna Molloy
- Department of Neurology, St. Vincent's University Hospital , Dublin , Ireland ; School of Medicine and Medical Science, University College Dublin , Dublin , Ireland
| | - Okka Kimmich
- Department of Neurology, St. Vincent's University Hospital , Dublin , Ireland ; School of Medicine and Medical Science, University College Dublin , Dublin , Ireland
| | - Laura Williams
- Department of Neurology, St. Vincent's University Hospital , Dublin , Ireland ; School of Medicine and Medical Science, University College Dublin , Dublin , Ireland
| | - Fiona Molloy
- Department of Neurophysiology, Beaumont Hospital , Dublin , Ireland
| | | | - Daniel G Healy
- Department of Neurology, Beaumont Hospital , Dublin , Ireland
| | - Tim Lynch
- Dublin Neurological Institute, Mater Misericordiae Hospital , Dublin , Ireland
| | - Cathal Walsh
- Department of Statistics, Trinity College Dublin , Dublin , Ireland
| | - John Butler
- Trinity Centre for Bioengineering, Trinity College Dublin , Dublin , Ireland
| | - Richard B Reilly
- Trinity Centre for Bioengineering, Trinity College Dublin , Dublin , Ireland
| | - Richard Walsh
- Department of Neurology, The Adelaide and Meath Hospital , Dublin , Ireland
| | - Sean O'Riordan
- Department of Neurology, St. Vincent's University Hospital , Dublin , Ireland ; School of Medicine and Medical Science, University College Dublin , Dublin , Ireland
| |
Collapse
|
150
|
Abstract
Voluntary control of attention promotes intelligent, adaptive behaviors by enabling the selective processing of information that is most relevant for making decisions. Despite extensive research on attention in primates, the capacity for selective attention in nonprimate species has never been quantified. Here we demonstrate selective attention in chickens by applying protocols that have been used to characterize visual spatial attention in primates. Chickens were trained to localize and report the vertical position of a target in the presence of task-relevant distracters. A spatial cue, the location of which varied across individual trials, indicated the horizontal, but not vertical, position of the upcoming target. Spatial cueing improved localization performance: accuracy (d') increased and reaction times decreased in a space-specific manner. Distracters severely impaired perceptual performance, and this impairment was greatly reduced by spatial cueing. Signal detection analysis with an "indecision" model demonstrated that spatial cueing significantly increased choice certainty in localizing targets. By contrast, error-aversion certainty (certainty of not making an error) remained essentially constant across cueing protocols, target contrasts, and individuals. The results show that chickens shift spatial attention rapidly and dynamically, following principles of stimulus selection that closely parallel those documented in primates. The findings suggest that the mechanisms that control attention have been conserved through evolution, and establish chickens--a highly visual species that is easily trained and amenable to cutting-edge experimental technologies--as an attractive model for linking behavior to neural mechanisms of selective attention.
Collapse
|