101
|
Kal S, Que L. Activation of a Non‐Heme Fe
III
‐OOH by a Second Fe
III
to Hydroxylate Strong C−H Bonds: Possible Implications for Soluble Methane Monooxygenase. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201903465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Subhasree Kal
- Department of ChemistryUniversity of Minnesota, Twin Cities 207 Pleasant Street SE Minneapolis MN 55455 USA
| | - Lawrence Que
- Department of ChemistryUniversity of Minnesota, Twin Cities 207 Pleasant Street SE Minneapolis MN 55455 USA
| |
Collapse
|
102
|
Abstract
Aerobic life is possible because the molecular structure of oxygen (O2) makes direct reaction with most organic materials at ambient temperatures an exceptionally slow process. Of course, these reactions are inherently very favorable, and they occur rapidly with the release of a great deal of energy at high temperature. Nature has been able to tap this sequestered reservoir of energy with great spatial and temporal selectivity at ambient temperatures through the evolution of oxidase and oxygenase enzymes. One mechanism used by these enzymes for O2 activation has been studied in detail for the soluble form of the enzyme methane monooxygenase. These studies have revealed the step-by-step process of O2 activation and insertion into the ultimately stable C-H bond of methane. Additionally, an elegant regulatory mechanism has been defined that enlists size selection and quantum tunneling to allow methane oxidation to occur specifically in the presence of more easily oxidized substrates.
Collapse
Affiliation(s)
- Rahul Banerjee
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA; , ,
| | - Jason C Jones
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA; , ,
| | - John D Lipscomb
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA; , ,
| |
Collapse
|
103
|
Oda A, Ohkubo T, Yumura T, Kobayashi H, Kuroda Y. Room-Temperature Activation of the C-H Bond in Methane over Terminal Zn II-Oxyl Species in an MFI Zeolite: A Combined Spectroscopic and Computational Study of the Reactive Frontier Molecular Orbitals and Their Origins. Inorg Chem 2019; 58:327-338. [PMID: 30495931 DOI: 10.1021/acs.inorgchem.8b02425] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Oxygenase reactivity toward selective partial oxidation of CH4 to CH3OH requires an atomic oxygen-radical bound to metal (M-O•: oxyl intermediate) that is capable of abstracting an H atom from the significantly strong C-H bond in CH4. Because such a reaction is frequently observed in metal-doped zeolites, it has been recognized that the zeolite provides an environment that stabilizes the M-O• intermediate. However, no experimental data of M-O• have so far been discovered in the zeolite; thus, little is known about the correlation among the state of M-O•, its reactivity for CH4, and the nature of the zeolite environment. Here, we report a combined spectroscopic and computational study of the room-temperature activation of CH4 over ZnII-O• in the MFI zeolite. One ZnII-O• species does perform H-abstraction from CH4 at room temperature. The resultant CH3• species reacts with the other ZnII-O• site to form the ZnII-OCH3 species. The H2O-assisted extraction of surface methoxide yields 29 μmol g-1 of CH3OH with a 94% selectivity. The quantum mechanics (QM)/molecular mechanics (MM) calculation determined the central step as the oxyl-mediated hydrogen atom transfer which requires an activation energy of only 10 kJ mol-1. On the basis of the findings in gas-phase experiments regarding the CH4 activation by the free [M-O•]+ species, the remarkable H-abstraction reactivity of the ZnII-O• species in zeolites was totally rationalized. Additionally, the experimentally validated QM/MM calculation revealed that the zeolite lattice has potential as the ligand to enhance the polarization of the M-O• bond and thereby enables to create effectively the highly reactive M-O• bond required for low-temperature activation of CH4. The present study proposes that tuning of the polarization effect of the anchoring site over heterogeneous catalysts is the valuable way to create the oxyl-based functionality on the heterogeneous catalyst.
Collapse
Affiliation(s)
- Akira Oda
- Precursory Research for Embryonic Science and Technology , Japan Science and Technology Agency , 4-1-8 Honcho , Kawaguchi , Saitama 332-0012 , Japan.,Department of Chemistry, Graduate School of Natural Science and Technology , Okayama University , 3-1-1 Tsushima , Kita-ku, Okayama 700-8530 , Japan
| | - Takahiro Ohkubo
- Department of Chemistry, Graduate School of Natural Science and Technology , Okayama University , 3-1-1 Tsushima , Kita-ku, Okayama 700-8530 , Japan
| | - Takashi Yumura
- Department of Chemistry and Materials Technology , Kyoto Institute of Technology , Matsugasaki , Sakyo-ku, Kyoto 606-8585 , Japan
| | - Hisayoshi Kobayashi
- Department of Chemistry and Materials Technology , Kyoto Institute of Technology , Matsugasaki , Sakyo-ku, Kyoto 606-8585 , Japan
| | - Yasushige Kuroda
- Department of Chemistry, Graduate School of Natural Science and Technology , Okayama University , 3-1-1 Tsushima , Kita-ku, Okayama 700-8530 , Japan
| |
Collapse
|
104
|
|
105
|
Karimpour T, Safaei E, Karimi B. A supported manganese complex with amine-bis(phenol) ligand for catalytic benzylic C(sp3)–H bond oxidation. RSC Adv 2019; 9:14343-14351. [PMID: 35519312 PMCID: PMC9064044 DOI: 10.1039/c9ra02284h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 04/25/2019] [Indexed: 12/14/2022] Open
Abstract
With regards to the importance of direct and selective activation of C–H bonds in oxidation processes, we develop a supported manganese amine bis(phenol) ligand complex as a novel catalyst with the aim of obtaining valuable products such as carboxylic acids and ketones that have an important role in life, industry and academic laboratories. We further analyzed and characterized the catalyst using the HRTEM, SEM, FTIR, TGA, VSM, XPS, XRD, AAS, and elemental analysis (CHN) techniques. Also, the catalytic evaluation of our system for direct oxidation of benzylic C–H bonds under solvent-free condition demonstrated that the heterogeneous form of our catalyst has high efficiency in comparison with homogeneous ones due to more stability of the supported complex. Furthermore, the structural and morphological stability of our efficient recyclable catalytic system has been investigated and all of the data proved that the complex was firmly anchored to the magnetite nanoparticles. An environmentally friendly and efficient catalyst containing three interesting parts, Mn, the amine bis(phenolate) ligand (H3LGDC) and the magnetic nanoparticles for benzylic C–H bond oxidation.![]()
Collapse
Affiliation(s)
- Touraj Karimpour
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan
- Iran
| | - Elham Safaei
- Department of Chemistry
- College of Sciences
- Shiraz University Shiraz
- Iran
| | - Babak Karimi
- Department of Chemistry
- Institute for Advanced Studies in Basic Sciences (IASBS)
- Zanjan
- Iran
| |
Collapse
|
106
|
He Z, Wang J, Hu J, Yu H, Jetten MSM, Liu H, Cai C, Liu Y, Ren H, Zhang X, Hua M, Xu X, Zheng P, Hu B. Regulation of coastal methane sinks by a structured gradient of microbial methane oxidizers. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 244:228-237. [PMID: 30342364 DOI: 10.1016/j.envpol.2018.10.057] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/29/2018] [Accepted: 10/11/2018] [Indexed: 06/08/2023]
Abstract
Coastal wetlands are widely recognized as atmospheric methane sources. However, recent field studies suggest that some coastal wetlands could also act as methane sinks, but the mechanism is not yet clear. Here, we investigated methane oxidation with different electron acceptors (i.e., oxygen, nitrate/nitrite, sulfate, Fe(III) and Mn(IV)) in four coastal wetlands in China using a combination of molecular biology methods and isotopic tracing technologies. The geochemical profiles and in situ Gibbs free energies suggest that there was significant nitrite-dependent anaerobic oxidation of methane (nitrite-AOM) in the sub-surface sediments; this was subsequently experimentally verified by both the microbial abundance and activity. Remarkably, the methanotrophic communities seemed to exist in the sediments as layered structures, and the surface aerobic methane-oxidizing bacteria were able to take up atmospheric methane at a rate of 0.10-0.18 nmol CH4 day-1 cm-2, while most, if not all, sedimentary methane was being completely consumed by anaerobic methanotrophs (23-58% by methane oxidizers in phylum NC10). These results suggest that coastal methane sinks might be governed by diverse microbial communities where NC10 methane oxidizers contributed significantly. This finding helps to better understand and predict the coastal methane cycle and reduce uncertainties in the estimations of the global methane flux.
Collapse
Affiliation(s)
- Zhanfei He
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China; College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Jiaqi Wang
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Jiajie Hu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Hanqing Yu
- Department of Chemistry, University of Science & Technology of China, Hefei, China
| | - Mike S M Jetten
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Huan Liu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Chaoyang Cai
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Yan Liu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Hongxing Ren
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Xu Zhang
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Miaolian Hua
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Xinhua Xu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Ping Zheng
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Baolan Hu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China; Key Laboratory of Water Pollution Control and Environmental Safety of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
107
|
Biocatalytic Oxidations of Substrates through Soluble Methane Monooxygenase from Methylosinus sporium 5. Catalysts 2018. [DOI: 10.3390/catal8120582] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Methane, an important greenhouse gas, has a 20-fold higher heat capacity than carbon dioxide. Earlier, through advanced spectroscopy and structural studies, the mechanisms underlying the extremely stable C–H activation of soluble methane monooxygenase (sMMO) have been elucidated in Methylosinus trichosporium OB3b and Methylococcus capsulatus Bath. Here, sMMO components—including hydroxylase (MMOH), regulatory (MMOB), and reductase (MMOR)—were expressed and purified from a type II methanotroph, Methylosinus sporium strain 5 (M. sporium 5), to characterize its hydroxylation mechanism. Two molar equivalents of MMOB are necessary to achieve catalytic activities and oxidized a broad range of substrates including alkanes, alkenes, halogens, and aromatics. Optimal activities were observed at pH 7.5 for most substrates possibly because of the electron transfer environment in MMOR. Substitution of MMOB or MMOR from another type II methanotroph, Methylocystis species M, retained specific enzyme activities, demonstrating the successful cross-reactivity of M. sporium 5. These results will provide fundamental information for further enzymatic studies to elucidate sMMO mechanisms.
Collapse
|
108
|
Ayad M, Klein Gebbink RJM, Le Mest Y, Schollhammer P, Le Poul N, Pétillon FY, Mandon D. Mononuclear iron(ii) complexes containing a tripodal and macrocyclic nitrogen ligand: synthesis, reactivity and application in cyclohexane oxidation catalysis. Dalton Trans 2018; 47:15596-15612. [PMID: 30346459 DOI: 10.1039/c8dt02952k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Two novel tripodal ligands L1 and L2 based on a tris(methylpyridyl)amine (TPA) motif have been prepared and reacted with two different iron(ii) salts. The ligand L1 contains a bis(amino-phenyl)-TPA group whereas the macrocyclic ligand L2 displays two different coordinating cores, namely TPA and pyridine-dicarboxamide. The resulting mononuclear complexes 1-4 have been characterized in the solid state and in solution by spectroscopic and electrochemical methods. All complexes are high spin and mainly pentacoordinated. X-ray diffraction analyses of the crystals of complexes 2 and 3 demonstrate that the coordination sphere of the iron(ii) centre adopts either a distorted bipyramidal-trigonal or square pyramidal geometry. In the absence of an exogenous substrate, oxidation of complex 2 by H2O2 induces an intramolecular aromatic hydroxylation, as shown by the X-ray structure of the resulting dinuclear complex 2'. Catalytic studies in the presence of a substrate (cyclohexane) show that the reaction process is strongly impacted by the macrocyclic topology of the ligand and the nature of the counter-ion.
Collapse
Affiliation(s)
- Massinisa Ayad
- UMR CNRS 6521, Laboratoire de Chimie, Electrochimie Moléculaires et Chimie Analytique, Université de Bretagne Occidentale, 6 Avenue Victor Le Gorgeu, CS 93837, 29238 Brest Cedex 3, France.
| | | | | | | | | | | | | |
Collapse
|
109
|
Cutsail GE, Banerjee R, Zhou A, Que L, Lipscomb JD, DeBeer S. High-Resolution Extended X-ray Absorption Fine Structure Analysis Provides Evidence for a Longer Fe···Fe Distance in the Q Intermediate of Methane Monooxygenase. J Am Chem Soc 2018; 140:16807-16820. [PMID: 30398343 DOI: 10.1021/jacs.8b10313] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Despite decades of intense research, the core structure of the methane C-H bond breaking diiron(IV) intermediate, Q, of soluble methane monooxygenase remains controversial, with conflicting reports supporting either a "diamond" diiron core structure or an open core structure. Early extended X-ray absorption fine structure (EXAFS) data assigned a short 2.46 Å Fe-Fe distance to Q (Shu et al. Science 1997, 275, 515 ) that is inconsistent with several theoretical studies and in conflict with our recent high-resolution Fe K-edge X-ray absorption spectroscopy (XAS) studies (Castillo et al. J. Am. Chem. Soc. 2017, 139, 18024 ). Herein, we revisit the EXAFS of Q using high-energy resolution fluorescence-detected extended X-ray absorption fine structure (HERFD-EXAFS) studies. The present data show no evidence for a short Fe-Fe distance, but rather a long 3.4 Å diiron distance, as observed in open core synthetic model complexes. The previously reported 2.46 Å feature plausibly arises from a background metallic iron contribution from the experimental setup, which is eliminated in HERFD-EXAFS due to the increased selectivity. Herein, we explore the origin of the short diiron feature in partial-fluorescent yield EXAFS measurements and discuss the diagnostic features of background metallic scattering contribution to the EXAFS of dilute biological samples. Lastly, differences in sample preparation and resultant sample inhomogeneity in rapid-freeze quenched samples for EXAFS analysis are discussed. The presented approaches have broad implications for EXAFS studies of all dilute iron-containing samples.
Collapse
Affiliation(s)
- George E Cutsail
- Max Planck Institute for Chemical Energy Conversion , Stiftstraße 34-36 , D-45470 Mülheim an der Ruhr , Germany
| | - Rahul Banerjee
- Department of Biochemistry, Molecular Biology and Biophysics , University of Minnesota , 321 Church Street SE , Minneapolis , Minnesota 55455 , United States.,Center for Metals in Biocatalysis , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Ang Zhou
- Center for Metals in Biocatalysis , University of Minnesota , Minneapolis , Minnesota 55455 , United States.,Department of Chemistry , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455 , United States
| | - Lawrence Que
- Center for Metals in Biocatalysis , University of Minnesota , Minneapolis , Minnesota 55455 , United States.,Department of Chemistry , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455 , United States
| | - John D Lipscomb
- Department of Biochemistry, Molecular Biology and Biophysics , University of Minnesota , 321 Church Street SE , Minneapolis , Minnesota 55455 , United States.,Center for Metals in Biocatalysis , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion , Stiftstraße 34-36 , D-45470 Mülheim an der Ruhr , Germany
| |
Collapse
|
110
|
Martinie RJ, Blaesi EJ, Bollinger JM, Krebs C, Finkelstein KD, Pollock CJ. Two-Color Valence-to-Core X-ray Emission Spectroscopy Tracks Cofactor Protonation State in a Class I Ribonucleotide Reductase. Angew Chem Int Ed Engl 2018; 57:12754-12758. [PMID: 30075052 PMCID: PMC6579043 DOI: 10.1002/anie.201807366] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 07/20/2018] [Indexed: 12/20/2022]
Abstract
Proton transfer reactions are of central importance to a wide variety of biochemical processes, though determining proton location and monitoring proton transfers in biological systems is often extremely challenging. Herein, we use two-color valence-to-core X-ray emission spectroscopy (VtC XES) to identify protonation events across three oxidation states of the O2 -activating, radical-initiating manganese-iron heterodinuclear cofactor in a class I-c ribonucleotide reductase. This is the first application of VtC XES to an enzyme intermediate and the first simultaneous measurement of two-color VtC spectra. In contrast to more conventional methods of assessing protonation state, VtC XES is a more direct probe applicable to a wide range of metalloenzyme systems. These data, coupled to insight provided by DFT calculations, allow the inorganic cores of the MnIV FeIV and MnIV FeIII states of the enzyme to be assigned as MnIV (μ-O)2 FeIV and MnIV (μ-O)(μ-OH)FeIII , respectively.
Collapse
Affiliation(s)
- Ryan J Martinie
- Department of Chemistry, The Pennsylvania State University, 318 Chemistry Building, University Park, PA, 16802, USA
| | - Elizabeth J Blaesi
- Department of Chemistry, The Pennsylvania State University, 318 Chemistry Building, University Park, PA, 16802, USA
| | - J Martin Bollinger
- Department of Chemistry and Department of Biochemistry and Molecular Biology, The Pennsylvania State University, 318 Chemistry Building, University Park, PA, 16802, USA
| | - Carsten Krebs
- Department of Chemistry and Department of Biochemistry and Molecular Biology, The Pennsylvania State University, 318 Chemistry Building, University Park, PA, 16802, USA
| | - Kenneth D Finkelstein
- Cornell High Energy Synchrotron Source, Wilson Laboratory, Cornell University, Ithaca, NY, 14853, USA
| | - Christopher J Pollock
- Department of Chemistry, The Pennsylvania State University, 318 Chemistry Building, University Park, PA, 16802, USA
- Present address: Cornell High Energy Synchrotron Source, Wilson Laboratory, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
111
|
Martinie RJ, Blaesi EJ, Bollinger JM, Krebs C, Finkelstein KD, Pollock CJ. Two‐Color Valence‐to‐Core X‐ray Emission Spectroscopy Tracks Cofactor Protonation State in a Class I Ribonucleotide Reductase. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201807366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ryan J. Martinie
- Department of Chemistry The Pennsylvania State University 318 Chemistry Building University Park PA 16802 USA
| | - Elizabeth J. Blaesi
- Department of Chemistry The Pennsylvania State University 318 Chemistry Building University Park PA 16802 USA
| | - J. Martin Bollinger
- Department of Chemistry and Department of Biochemistry and Molecular Biology The Pennsylvania State University 318 Chemistry Building University Park PA 16802 USA
| | - Carsten Krebs
- Department of Chemistry and Department of Biochemistry and Molecular Biology The Pennsylvania State University 318 Chemistry Building University Park PA 16802 USA
| | - Kenneth D. Finkelstein
- Cornell High Energy Synchrotron Source, Wilson Laboratory Cornell University Ithaca NY 14853 USA
| | - Christopher J. Pollock
- Department of Chemistry The Pennsylvania State University 318 Chemistry Building University Park PA 16802 USA
- Present address: Cornell High Energy Synchrotron Source Wilson Laboratory Cornell University Ithaca NY 14853 USA
| |
Collapse
|
112
|
Saito T, Takano Y. Transition State Search Using rPM6: Iron- and Manganese-Catalyzed Oxidation Reactions as a Test Case. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2018. [DOI: 10.1246/bcsj.20180119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Toru Saito
- Graduate School of Information Sciences, Hiroshima City University, 3-4-1 Ozuka-Higashi, Asa-Minami-ku, Hiroshima 731-3194, Japan
| | - Yu Takano
- Graduate School of Information Sciences, Hiroshima City University, 3-4-1 Ozuka-Higashi, Asa-Minami-ku, Hiroshima 731-3194, Japan
| |
Collapse
|
113
|
Bols ML, Hallaert SD, Snyder BER, Devos J, Plessers D, Rhoda HM, Dusselier M, Schoonheydt RA, Pierloot K, Solomon EI, Sels BF. Spectroscopic Identification of the α-Fe/α-O Active Site in Fe-CHA Zeolite for the Low-Temperature Activation of the Methane C-H Bond. J Am Chem Soc 2018; 140:12021-12032. [PMID: 30169036 DOI: 10.1021/jacs.8b05877] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The formation of single-site α-Fe in the CHA zeolite topology is demonstrated. The site is shown to be active in oxygen atom abstraction from N2O to form a highly reactive α-O, capable of methane activation at room temperature to form methanol. The methanol product can subsequently be desorbed by online steaming at 200 °C. For the intermediate steps of the reaction cycle, the evolution of the Fe active site is monitored by UV-vis-NIR and Mössbauer spectroscopy. A B3LYP-DFT model of the α-Fe site in CHA is constructed, and the ligand field transitions are calculated by CASPT2. The model is experimentally substantiated by the preferential formation of α-Fe over other Fe species, the requirement of paired framework aluminum and a MeOH/Fe ratio indicating a mononuclear active site. The simple CHA topology is shown to mitigate the heterogeneity of iron speciation found on other Fe-zeolites, with Fe2O3 being the only identifiable phase other than α-Fe formed in Fe-CHA. The α-Fe site is formed in the d6r composite building unit, which occurs frequently across synthetic and natural zeolites. Finally, through a comparison between α-Fe in Fe-CHA and Fe-*BEA, the topology's 6MR geometry is found to influence the structure, the ligand field, and consequently the spectroscopy of the α-Fe site in a predictable manner. Variations in zeolite topology can thus be used to rationally tune the active site properties.
Collapse
Affiliation(s)
- Max L Bols
- Department of Microbial and Molecular Systems, Centre for Surface Chemistry and Catalysis , KU Leuven , Celestijnenlaan 200F , B-3001 Leuven , Belgium
| | - Simon D Hallaert
- Department of Chemistry , KU Leuven , Celestijnenlaan 200F , B-3001 Leuven , Belgium
| | - Benjamin E R Snyder
- Department of Chemistry , Stanford University , Stanford , California 94305 , United States
| | - Julien Devos
- Department of Microbial and Molecular Systems, Centre for Surface Chemistry and Catalysis , KU Leuven , Celestijnenlaan 200F , B-3001 Leuven , Belgium
| | - Dieter Plessers
- Department of Microbial and Molecular Systems, Centre for Surface Chemistry and Catalysis , KU Leuven , Celestijnenlaan 200F , B-3001 Leuven , Belgium
| | - Hannah M Rhoda
- Department of Chemistry , Stanford University , Stanford , California 94305 , United States
| | - Michiel Dusselier
- Department of Microbial and Molecular Systems, Centre for Surface Chemistry and Catalysis , KU Leuven , Celestijnenlaan 200F , B-3001 Leuven , Belgium
| | - Robert A Schoonheydt
- Department of Microbial and Molecular Systems, Centre for Surface Chemistry and Catalysis , KU Leuven , Celestijnenlaan 200F , B-3001 Leuven , Belgium
| | - Kristine Pierloot
- Department of Chemistry , KU Leuven , Celestijnenlaan 200F , B-3001 Leuven , Belgium
| | - Edward I Solomon
- Department of Chemistry , Stanford University , Stanford , California 94305 , United States.,Photon Science, SLAC National Accelerator Laboratory , 2575 Sand Hill Road , Menlo Park , California 94025 , United States
| | - Bert F Sels
- Department of Microbial and Molecular Systems, Centre for Surface Chemistry and Catalysis , KU Leuven , Celestijnenlaan 200F , B-3001 Leuven , Belgium
| |
Collapse
|
114
|
Dinh KT, Sullivan MM, Serna P, Meyer RJ, Dincă M, Román-Leshkov Y. Viewpoint on the Partial Oxidation of Methane to Methanol Using Cu- and Fe-Exchanged Zeolites. ACS Catal 2018. [DOI: 10.1021/acscatal.8b01180] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Kimberly T. Dinh
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Mark M. Sullivan
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Pedro Serna
- ExxonMobil Research and Engineering, Annandale, New Jersey 08801, United States
| | - Randall J. Meyer
- ExxonMobil Research and Engineering, Annandale, New Jersey 08801, United States
| | - Mircea Dincă
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Yuriy Román-Leshkov
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
115
|
Pellizzeri S, Barona M, Bernales V, Miró P, Liao P, Gagliardi L, Snurr RQ, Getman RB. Catalytic descriptors and electronic properties of single-site catalysts for ethene dimerization to 1-butene. Catal Today 2018. [DOI: 10.1016/j.cattod.2018.02.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
116
|
Le HV, Parishan S, Sagaltchik A, Ahi H, Trunschke A, Schomäcker R, Thomas A. Stepwise Methane-to-Methanol Conversion on CuO/SBA-15. Chemistry 2018; 24:12592-12599. [DOI: 10.1002/chem.201801135] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/21/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Ha V. Le
- Institute of Chemistry-Functional Materials; BA2; Technische Universität Berlin; Hardenbergstrasse 40 10623 Berlin Germany
| | - Samira Parishan
- Institute of Chemistry-Technical Chemistry; TC8; Technische Universität Berlin; Strasse des 17. Juni 124 10623 Berlin Germany
| | - Anton Sagaltchik
- BasCat-UniCat BASF Joint Lab; Technische Universität Berlin; EW K 01; Hardenbergstrasse 36 10623 Berlin Germany
| | - Hamideh Ahi
- BasCat-UniCat BASF Joint Lab; Technische Universität Berlin; EW K 01; Hardenbergstrasse 36 10623 Berlin Germany
- Department of Inorganic Chemistry; Fritz Haber Institute of the Max Planck Society; Faradayweg 4-6 14195 Berlin Germany
| | - Annette Trunschke
- Department of Inorganic Chemistry; Fritz Haber Institute of the Max Planck Society; Faradayweg 4-6 14195 Berlin Germany
| | - Reinhard Schomäcker
- Institute of Chemistry-Technical Chemistry; TC8; Technische Universität Berlin; Strasse des 17. Juni 124 10623 Berlin Germany
| | - Arne Thomas
- Institute of Chemistry-Functional Materials; BA2; Technische Universität Berlin; Hardenbergstrasse 40 10623 Berlin Germany
| |
Collapse
|
117
|
Komor AJ, Jasniewski AJ, Que L, Lipscomb JD. Diiron monooxygenases in natural product biosynthesis. Nat Prod Rep 2018; 35:646-659. [PMID: 29552683 PMCID: PMC6051903 DOI: 10.1039/c7np00061h] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: up to 2017 The participation of non-heme dinuclear iron cluster-containing monooxygenases in natural product biosynthetic pathways has been recognized only recently. At present, two families have been discovered. The archetypal member of the first family, CmlA, catalyzes β-hydroxylation of l-p-aminophenylalanine (l-PAPA) covalently linked to the nonribosomal peptide synthetase (NRPS) CmlP, thereby effecting the first step in the biosynthesis of chloramphenicol by Streptomyces venezuelae. CmlA houses the diiron cluster in a metallo-β-lactamase protein fold instead of the 4-helix bundle fold of nearly every other diiron monooxygenase. CmlA couples O2 activation and substrate hydroxylation via a structural change caused by formation of the l-PAPA-loaded CmlP:CmlA complex. The other new diiron family is typified by two enzymes, AurF and CmlI, which catalyze conversion of aryl-amine substrates to aryl-nitro products with incorporation of oxygen from O2. AurF from Streptomyces thioluteus catalyzes the formation of p-nitrobenzoate from p-aminobenzoate as a precursor to the biostatic compound aureothin, whereas CmlI from S. venezuelae catalyzes the ultimate aryl-amine to aryl-nitro step in chloramphenicol biosynthesis. Both enzymes stabilize a novel type of peroxo-intermediate as the reactive species. The rare 6-electron N-oxygenation reactions of CmlI and AurF involve two progressively oxidized pathway intermediates. The enzymes optimize efficiency by utilizing one of the reaction pathway intermediates as an in situ reductant for the diiron cluster, while simultaneously generating the next pathway intermediate. For CmlI, this reduction allows mid-pathway regeneration of the peroxo intermediate required to complete the biosynthesis. CmlI ensures specificity by carrying out the multistep aryl-amine oxygenation without dissociating intermediate products.
Collapse
Affiliation(s)
- Anna J Komor
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | - Andrew J Jasniewski
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | - Lawrence Que
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | - John D Lipscomb
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| |
Collapse
|
118
|
|
119
|
Sizing up a supercharged ferryl. Proc Natl Acad Sci U S A 2018; 115:4532-4534. [PMID: 29666275 DOI: 10.1073/pnas.1804490115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
120
|
Pankhurst JR, Curcio M, Sproules S, Lloyd-Jones GC, Love JB. Earth-Abundant Mixed-Metal Catalysts for Hydrocarbon Oxygenation. Inorg Chem 2018; 57:5915-5928. [DOI: 10.1021/acs.inorgchem.8b00420] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- James R. Pankhurst
- EaStCHEM School of Chemistry, The University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, U.K
| | - Massimiliano Curcio
- EaStCHEM School of Chemistry, The University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, U.K
| | - Stephen Sproules
- WestCHEM School of Chemistry, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Guy C. Lloyd-Jones
- EaStCHEM School of Chemistry, The University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, U.K
| | - Jason B. Love
- EaStCHEM School of Chemistry, The University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, U.K
| |
Collapse
|
121
|
Kal S, Draksharapu A, Que L. Sc 3+ (or HClO 4) Activation of a Nonheme Fe III-OOH Intermediate for the Rapid Hydroxylation of Cyclohexane and Benzene. J Am Chem Soc 2018; 140:5798-5804. [PMID: 29618199 DOI: 10.1021/jacs.8b01435] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
[Fe(β-BPMCN)(CH3CN)2]2+ (1, BPMCN = N,N' -bis(pyridyl-2-methyl)- N,N' -dimethyl- trans-1,2-diaminocyclo-hexane) is a relatively poor catalyst for cyclohexane oxidation by H2O2 and cannot perform benzene hydroxylation. However, addition of Sc3+ activates the 1/H2O2 reaction mixture to be able to hydroxylate cyclohexane and benzene within seconds at -40 °C. A metastable S = 1/2 FeIII-(η1-OOH) intermediate 2 is trapped at -40 °C, which undergoes rapid decay upon addition of Sc3+ at rates independent of [substrate] but linearly dependent on [Sc3+]. HClO4 elicits comparable reactivity as Sc3+ at the same concentration. We thus postulate that these additives both facilitate O-O bond heterolysis of 2 to form a common highly electrophilic FeV═O oxidant that is comparably reactive to the fastest nonheme high-valent iron-oxo oxidants found to date.
Collapse
Affiliation(s)
- Subhasree Kal
- Department of Chemistry and Center for Metals in Biocatalysis , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455 , United States
| | - Apparao Draksharapu
- Department of Chemistry and Center for Metals in Biocatalysis , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455 , United States
| | - Lawrence Que
- Department of Chemistry and Center for Metals in Biocatalysis , University of Minnesota , 207 Pleasant Street SE , Minneapolis , Minnesota 55455 , United States
| |
Collapse
|
122
|
Jasniewski AJ, Que L. Dioxygen Activation by Nonheme Diiron Enzymes: Diverse Dioxygen Adducts, High-Valent Intermediates, and Related Model Complexes. Chem Rev 2018; 118:2554-2592. [PMID: 29400961 PMCID: PMC5920527 DOI: 10.1021/acs.chemrev.7b00457] [Citation(s) in RCA: 325] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A growing subset of metalloenzymes activates dioxygen with nonheme diiron active sites to effect substrate oxidations that range from the hydroxylation of methane and the desaturation of fatty acids to the deformylation of fatty aldehydes to produce alkanes and the six-electron oxidation of aminoarenes to nitroarenes in the biosynthesis of antibiotics. A common feature of their reaction mechanisms is the formation of O2 adducts that evolve into more reactive derivatives such as diiron(II,III)-superoxo, diiron(III)-peroxo, diiron(III,IV)-oxo, and diiron(IV)-oxo species, which carry out particular substrate oxidation tasks. In this review, we survey the various enzymes belonging to this unique subset and the mechanisms by which substrate oxidation is carried out. We examine the nature of the reactive intermediates, as revealed by X-ray crystallography and the application of various spectroscopic methods and their associated reactivity. We also discuss the structural and electronic properties of the model complexes that have been found to mimic salient aspects of these enzyme active sites. Much has been learned in the past 25 years, but key questions remain to be answered.
Collapse
Affiliation(s)
- Andrew J. Jasniewski
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Lawrence Que
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
123
|
Sekino M, Furutachi H, Tojo R, Hishi A, Kajikawa H, Suzuki T, Suzuki K, Fujinami S, Akine S, Sakata Y, Ohta T, Hayami S, Suzuki M. New mechanistic insights into intramolecular aromatic ligand hydroxylation and benzyl alcohol oxidation initiated by the well-defined (μ-peroxo)diiron(iii) complex. Chem Commun (Camb) 2018; 53:8838-8841. [PMID: 28726874 DOI: 10.1039/c7cc04382a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A (μ-peroxo)diiron(iii) complex [Fe2(LPh4)(O2)(Ph3CCO2)]2+ (1-O2) with a dinucleating ligand (LPh4), generated from the reaction of a carboxylate bridged diiron(ii) complex [Fe2(LPh4)(Ph3CCO2)]2+ (1) with dioxygen in CH2Cl2, provides a diiron(iv)-oxo species as an active oxidant which is involved in either aromatic ligand hydroxylation or benzyl alcohol oxidation.
Collapse
Affiliation(s)
- Mio Sekino
- Department of Chemistry, Division of Material Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Wang CH, Das A, Gao WY, Powers DC. Probing Substrate Diffusion in Interstitial MOF Chemistry with Kinetic Isotope Effects. Angew Chem Int Ed Engl 2018; 57:3676-3681. [DOI: 10.1002/anie.201713244] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 02/08/2018] [Indexed: 11/12/2022]
Affiliation(s)
- Chen-Hao Wang
- Department of Chemistry; Texas A&M University; 3255 TAMU College Station TX USA
| | - Anuvab Das
- Department of Chemistry; Texas A&M University; 3255 TAMU College Station TX USA
| | - Wen-Yang Gao
- Department of Chemistry; Texas A&M University; 3255 TAMU College Station TX USA
| | - David C. Powers
- Department of Chemistry; Texas A&M University; 3255 TAMU College Station TX USA
| |
Collapse
|
125
|
Wang CH, Das A, Gao WY, Powers DC. Probing Substrate Diffusion in Interstitial MOF Chemistry with Kinetic Isotope Effects. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201713244] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Chen-Hao Wang
- Department of Chemistry; Texas A&M University; 3255 TAMU College Station TX USA
| | - Anuvab Das
- Department of Chemistry; Texas A&M University; 3255 TAMU College Station TX USA
| | - Wen-Yang Gao
- Department of Chemistry; Texas A&M University; 3255 TAMU College Station TX USA
| | - David C. Powers
- Department of Chemistry; Texas A&M University; 3255 TAMU College Station TX USA
| |
Collapse
|
126
|
Lindsay S, Mader SL, Kaila VRI, Hess CR. C-H Oxidation by a Diiron Complex with Facially Opposing Active Sites. ChemistrySelect 2018. [DOI: 10.1002/slct.201800192] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Stacey Lindsay
- Department of Chemistry; Durham University; South Rd Durham DH1 3LE UK
| | - Sophie L. Mader
- Department of Chemistry; Technische Universität München; Lichtenbergstrasse 4 85747 Garching Germany
| | - Ville R. I. Kaila
- Department of Chemistry; Technische Universität München; Lichtenbergstrasse 4 85747 Garching Germany
| | - Corinna R. Hess
- Department of Chemistry; Technische Universität München; Lichtenbergstrasse 4 85747 Garching Germany
- Catalysis Research Center; Technische Universität München; Ernst-Otto-Fischer-Straße 1 85748 Garching Germany
| |
Collapse
|
127
|
Khenkin AM, Vedichi M, Shimon LJW, Cranswick MA, Klein JEMN, Que L, Neumann R. Hydrogen-Atom Transfer Oxidation with H 2O 2 Catalyzed by [FeII(1,2-bis(2,2'-bipyridyl-6-yl)ethane(H 2O) 2] 2+: Likely Involvement of a (μ-Hydroxo)(μ-1,2-peroxo)diiron(III) Intermediate. Isr J Chem 2018; 57:990-998. [PMID: 29335656 DOI: 10.1002/ijch.201700059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The iron(II) triflate complex (1) of 1,2-bis(2,2'-bipyridyl-6-yl)ethane, with two bipyridine moieties connected by an ethane bridge, was prepared. Addition of aqueous 30% H2O2 to an acetonitrile solution of 1 yielded 2, a green compound with λmax=710 nm. Moessbauer measurements on 2 showed a doublet with an isomer shift (δ) of 0.35 mm/s and a quadrupole splitting (ΔEQ) of 0.86 mm/s, indicative of an antiferromagnetically coupled diferric complex. Resonance Raman spectra showed peaks at 883, 556 and 451 cm-1 that downshifted to 832, 540 and 441 cm-1 when 1 was treated with H218O2. All the spectroscopic data support the initial formation of a (μ-hydroxo)(μ-1,2-peroxo)diiron(III) complex that oxidizes carbon-hydrogen bonds. At 0°C 2 reacted with cyclohexene to yield allylic oxidation products but not epoxide. Weak benzylic C-H bonds of alkylarenes were also oxidized. A plot of the logarithms of the second order rate constants versus the bond dissociation energies of the cleaved C-H bond showed an excellent linear correlation. Along with the observation that oxidation of the probe substrate 2,2-dimethyl-1-phenylpropan-1-ol yielded the corresponding ketone but no benzaldehyde, and the kinetic isotope effect, kH/kD , of 2.8 found for the oxidation of xanthene, the results support the hypothesis for a metal-based H-atom abstraction mechanism. Complex 2 is a rare example of a (μ-hydroxo)(μ-1,2-peroxo)diiron(III) complex that can elicit the oxidation of carbon-hydrogen bonds.
Collapse
Affiliation(s)
- Alexander M Khenkin
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, Israel 76100, phone: +972-8-9343354
| | - Madhu Vedichi
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, Israel 76100, phone: +972-8-9343354
| | - Linda J W Shimon
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel 76100
| | - Matthew A Cranswick
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, USA
| | - Johannes E M N Klein
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, USA
| | - Lawrence Que
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, USA
| | - Ronny Neumann
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, Israel 76100, phone: +972-8-9343354
| |
Collapse
|
128
|
Yu J, Chen X, Jiang M, Wang A, Yang L, Pei X, Zhang P, Wu SG. Efficient promiscuous Knoevenagel condensation catalyzed by papain confined in Cu3(PO4)2 nanoflowers. RSC Adv 2018; 8:2357-2364. [PMID: 35541490 PMCID: PMC9077389 DOI: 10.1039/c7ra12940h] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 12/29/2017] [Indexed: 11/21/2022] Open
Abstract
To develop an efficient and green immobilized biocatalyst for promiscuous catalysis which has a broad scope of applications, hybrid nanoflower (hNF) confined papain as a biocatalyst has been proposed and characterized in this study. hNFs were firstly prepared through mixing CuSO4 aqueous solution with papain in phosphate saline (PBS) at room temperature. The resulting hNFs were characterized by SEM and verified through a hydrolysis reaction with N-benzoyl-dl-arginine amide as substrate. Under optimal conditions, this nano-biocatalyst demonstrated a 15-fold hydrolytic activity compared with papain of free form, along with better thermal stability. A series of reaction factors (reaction temperature, time, and solvent) have been investigated for Knoevenagel condensation reactions with hNFs as catalyst. At optimal conditions, product yield of the hNFs catalyzed reaction was 1.3 fold higher than that of the free enzyme with benzaldehyde and acetylacetone as substrates. A few aldehydes and methylene compounds have also been used to test the generality and scope of this new enzymatic promiscuity. To sum up, the obtained hNFs demonstrate better catalytic properties than free papain and the inorganic metal-salt crystal can function as both support and promotor in biocatalysis. Knoevenagel condensation was catalyzed and enhanced by Cu2+ and papain on hybrid nanoflowers (hNFs) in the promiscuous catalysis.![]()
Collapse
Affiliation(s)
- Jianyun Yu
- College of Materials, Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310014
- P. R. China
| | - Xinxin Chen
- College of Materials, Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310014
- P. R. China
| | - Min Jiang
- College of Materials, Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310014
- P. R. China
| | - Anming Wang
- College of Materials, Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310014
- P. R. China
| | - Linlin Yang
- College of Materials, Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310014
- P. R. China
| | - Xiaolin Pei
- College of Materials, Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310014
- P. R. China
| | - Pengfei Zhang
- College of Materials, Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310014
- P. R. China
| | - Stephen Gang Wu
- Department of Energy, Environmental and Chemical Engineering
- Washington University
- St. Louis
- USA
| |
Collapse
|
129
|
Nesterov DS, Nesterova OV, Pombeiro AJ. Homo- and heterometallic polynuclear transition metal catalysts for alkane C H bonds oxidative functionalization: Recent advances. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2017.08.009] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
130
|
Snyder BER, Bols ML, Schoonheydt RA, Sels BF, Solomon EI. Iron and Copper Active Sites in Zeolites and Their Correlation to Metalloenzymes. Chem Rev 2017; 118:2718-2768. [DOI: 10.1021/acs.chemrev.7b00344] [Citation(s) in RCA: 193] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Benjamin E. R. Snyder
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Max L. Bols
- Department of Microbial and Molecular Systems, Centre for Surface Chemistry and Catalysis, KU Leuven—University of Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Robert A. Schoonheydt
- Department of Microbial and Molecular Systems, Centre for Surface Chemistry and Catalysis, KU Leuven—University of Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Bert F. Sels
- Department of Microbial and Molecular Systems, Centre for Surface Chemistry and Catalysis, KU Leuven—University of Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Edward I. Solomon
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Photon Science, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| |
Collapse
|
131
|
Castillo RG, Banerjee R, Allpress CJ, Rohde GT, Bill E, Que L, Lipscomb JD, DeBeer S. High-Energy-Resolution Fluorescence-Detected X-ray Absorption of the Q Intermediate of Soluble Methane Monooxygenase. J Am Chem Soc 2017; 139:18024-18033. [PMID: 29136468 PMCID: PMC5729100 DOI: 10.1021/jacs.7b09560] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Kα high-energy-resolution fluorescence detected X-ray absorption spectroscopy (HERFD XAS) provides a powerful tool for overcoming the limitations of conventional XAS to identify the electronic structure and coordination environment of metalloprotein active sites. Herein, Fe Kα HERFD XAS is applied to the diiron active site of soluble methane monooxygenase (sMMO) and to a series of high-valent diiron model complexes, including diamond-core [FeIV2(μ-O)2(L)2](ClO4)4] (3) and open-core [(O═FeIV-O-FeIV(OH)(L)2](ClO4)3 (4) models (where, L = tris(3,5-dimethyl-4-methoxypyridyl-2-methyl)amine) (TPA*)). Pronounced differences in the HERFD XAS pre-edge energies and intensities are observed for the open versus closed Fe2O2 cores in the model compounds. These differences are reproduced by time-dependent density functional theory (TDDFT) calculations and allow for the pre-edge energies and intensity to be directly correlated with the local active site geometric and electronic structure. A comparison of the model complex HERFD XAS data to that of MMOHQ (the key intermediate in methane oxidation) is supportive of an open-core structure. Specifically, the large pre-edge area observed for MMOHQ may be rationalized by invoking an open-core structure with a terminal FeIV═O motif, though further modulations of the core structure due to the protein environment cannot be ruled out. The present study thus motivates the need for additional experimental and theoretical studies to unambiguously assess the active site conformation of MMOHQ.
Collapse
Affiliation(s)
- Rebeca G. Castillo
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34, D-45470 Mülheim an der Ruhr, Germany
| | - Rahul Banerjee
- Department of Biochemistry, Molecular Biology and Biophysics, 321 Church St. SE, Minneapolis, MN 55455
| | - Caleb J. Allpress
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455
| | - Gregory T. Rohde
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455
| | - Eckhard Bill
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34, D-45470 Mülheim an der Ruhr, Germany
| | - Lawrence Que
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455
| | - John D. Lipscomb
- Department of Biochemistry, Molecular Biology and Biophysics, 321 Church St. SE, Minneapolis, MN 55455
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
132
|
Ravi M, Ranocchiari M, van Bokhoven JA. The Direct Catalytic Oxidation of Methane to Methanol-A Critical Assessment. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/anie.201702550] [Citation(s) in RCA: 372] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Manoj Ravi
- Institute for Chemical and Bioengineering; ETH Zurich; Vladimir-Prelog-Weg 1 8093 Zurich Switzerland
| | - Marco Ranocchiari
- Laboratory for Catalysis and Sustainable Chemistry; Paul Scherrer Institute; 5232 Villigen Switzerland
| | - Jeroen A. van Bokhoven
- Institute for Chemical and Bioengineering; ETH Zurich; Vladimir-Prelog-Weg 1 8093 Zurich Switzerland
- Laboratory for Catalysis and Sustainable Chemistry; Paul Scherrer Institute; 5232 Villigen Switzerland
| |
Collapse
|
133
|
Ravi M, Ranocchiari M, van Bokhoven JA. Die direkte katalytische Oxidation von Methan zu Methanol - eine kritische Beurteilung. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201702550] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Manoj Ravi
- Institut für Chemie- und Bioingenieurwissenschaften; ETH Zürich; Vladimir-Prelog-Weg 1 8093 Zürich Schweiz
| | - Marco Ranocchiari
- Labor für Katalyse und nachhaltige Chemie; Paul Scherrer Institut; 5232 Villigen Schweiz
| | - Jeroen A. van Bokhoven
- Institut für Chemie- und Bioingenieurwissenschaften; ETH Zürich; Vladimir-Prelog-Weg 1 8093 Zürich Schweiz
- Labor für Katalyse und nachhaltige Chemie; Paul Scherrer Institut; 5232 Villigen Schweiz
| |
Collapse
|
134
|
Potential for cometabolic biodegradation of 1,4-dioxane in aquifers with methane or ethane as primary substrates. Biodegradation 2017; 28:453-468. [PMID: 29022194 DOI: 10.1007/s10532-017-9808-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 09/28/2017] [Indexed: 10/18/2022]
Abstract
The objective of this research was to evaluate the potential for two gases, methane and ethane, to stimulate the biological degradation of 1,4-dioxane (1,4-D) in groundwater aquifers via aerobic cometabolism. Experiments with aquifer microcosms, enrichment cultures from aquifers, mesophilic pure cultures, and purified enzyme (soluble methane monooxygenase; sMMO) were conducted. During an aquifer microcosm study, ethane was observed to stimulate the aerobic biodegradation of 1,4-D. An ethane-oxidizing enrichment culture from these samples, and a pure culture capable of growing on ethane (Mycobacterium sphagni ENV482) that was isolated from a different aquifer also biodegraded 1,4-D. Unlike ethane, methane was not observed to appreciably stimulate the biodegradation of 1,4-D in aquifer microcosms or in methane-oxidizing mixed cultures enriched from two different aquifers. Three different pure cultures of mesophilic methanotrophs also did not degrade 1,4-D, although each rapidly oxidized 1,1,2-trichloroethene (TCE). Subsequent studies showed that 1,4-D is not a substrate for purified sMMO enzyme from Methylosinus trichosporium OB3b, at least not at the concentrations evaluated, which significantly exceeded those typically observed at contaminated sites. Thus, our data indicate that ethane, which is a common daughter product of the biotic or abiotic reductive dechlorination of chlorinated ethanes and ethenes, may serve as a substrate to enhance 1,4-D degradation in aquifers, particularly in zones where these products mix with aerobic groundwater. It may also be possible to stimulate 1,4-D biodegradation in an aerobic aquifer through addition of ethane gas. Conversely, our results suggest that methane may have limited importance in natural attenuation or for enhancing biodegradation of 1,4-D in groundwater environments.
Collapse
|
135
|
Russell MJ, Nitschke W. Methane: Fuel or Exhaust at the Emergence of Life? ASTROBIOLOGY 2017; 17:1053-1066. [PMID: 28949766 PMCID: PMC5655419 DOI: 10.1089/ast.2016.1599] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 03/20/2017] [Indexed: 05/28/2023]
Abstract
As many of the methanogens first encountered at hydrothermal vents were thermophilic to hyperthermophilic and comprised one of the lower roots of the evolutionary tree, it has been assumed that methanogenesis was one of the earliest, if not the earliest, pathway to life. It being well known that hydrothermal springs associated with serpentinization also bore abiotic methane, it had been further assumed that emergent biochemistry merely adopted and quickened this supposed serpentinization reaction. Yet, recent hydrothermal experiments simulating serpentinization have failed to generate methane so far, thus casting doubt on this assumption. The idea that the inverse view is worthy of debate, that is, that methanotrophy was the earlier, is stymied by the "fact" that methanotrophy itself has been termed "reverse methanogenesis," so allotting the methanogens the founding pedigree. Thus, attempting to suggest instead that methanogenesis might be termed reverse methanotrophy would require "unlearning"-a challenge to the subconscious! Here we re-examine the "impossibility" of methanotrophy predating methanogenesis as in what we have termed the "denitrifying methanotrophic acetogenic pathway." Advantages offered by such thinking are that methane would not only be a fuel but also a ready source of reduced carbon to combine with formate or carbon monoxide-available in hydrothermal fluids-to generate acetate, a target molecule of the first autotrophs. And the nitrate/nitrite required for the putative oxidation of methane with activated NO would also be a ready source of fixed nitrogen for amination reactions. Theoretical conditions for such a putative pathway would be met in a hydrothermal green rust-bearing exhalative pile and associated chimneys subject to proton and electron counter gradients. This hypothesis could be put to test in a high-pressure hydrothermal reaction chamber in which a cool carbonate/nitrate/nitrite-bearing early acidulous ocean simulant is juxtaposed across a precipitate membrane to an alkaline solution of hydrogen and methane. Key Words: Green rust-Methanotrophy-Nitrate reduction-Emergence of life. Astrobiology 17, 1053-1066.
Collapse
Affiliation(s)
- Michael J. Russell
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California
| | - Wolfgang Nitschke
- CNRS/Aix-Marseille University, BIP UMR 7281, IMM FR 3479, Marseille, France
| |
Collapse
|
136
|
Garrone E, Delgado MR, Bonelli B, Arean CO. Probing Gas Adsorption in Zeolites by Variable-Temperature IR Spectroscopy: An Overview of Current Research. Molecules 2017; 22:molecules22091557. [PMID: 28914812 PMCID: PMC6151591 DOI: 10.3390/molecules22091557] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 09/06/2017] [Accepted: 09/11/2017] [Indexed: 11/24/2022] Open
Abstract
The current state of the art in the application of variable-temperature IR (VTIR) spectroscopy to the study of (i) adsorption sites in zeolites, including dual cation sites; (ii) the structure of adsorption complexes and (iii) gas-solid interaction energy is reviewed. The main focus is placed on the potential use of zeolites for gas separation, purification and transport, but possible extension to the field of heterogeneous catalysis is also envisaged. A critical comparison with classical IR spectroscopy and adsorption calorimetry shows that the main merits of VTIR spectroscopy are (i) its ability to provide simultaneously the spectroscopic signature of the adsorption complex and the standard enthalpy change involved in the adsorption process; and (ii) the enhanced potential of VTIR to be site specific in favorable cases.
Collapse
Affiliation(s)
- Edoardo Garrone
- Politecnico di Torino, The Department of Applied Science And Technology and INSTM Unit of Torino-Politecnico, Corso Duca degli Abruzzi 24, 10129 Turin, Italy.
| | - Montserrat R Delgado
- Department of Chemistry, University of the Balearic Islands, E-07122 Palma, Spain.
| | - Barbara Bonelli
- Politecnico di Torino, The Department of Applied Science And Technology and INSTM Unit of Torino-Politecnico, Corso Duca degli Abruzzi 24, 10129 Turin, Italy.
| | - Carlos O Arean
- Department of Chemistry, University of the Balearic Islands, E-07122 Palma, Spain.
| |
Collapse
|
137
|
Li XN, Zou XP, He SG. Metal-mediated catalysis in the gas phase: A review. CHINESE JOURNAL OF CATALYSIS 2017. [DOI: 10.1016/s1872-2067(17)62782-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
138
|
Banerjee R, Komor AJ, Lipscomb JD. Use of Isotopes and Isotope Effects for Investigations of Diiron Oxygenase Mechanisms. Methods Enzymol 2017; 596:239-290. [PMID: 28911774 DOI: 10.1016/bs.mie.2017.07.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Isotope effects of four broad and overlapping categories have been applied to the study of the mechanisms of chemical reaction and regulation of nonheme diiron cluster-containing oxygenases. The categories are: (a) mass properties that allow substrate-to-product conversions to be tracked, (b) atomic properties that allow specialized spectroscopies, (c) mass properties that impact primarily vibrational spectroscopies, and (d) bond dissociation energy shifts that permit dynamic isotope effect studies of many types. The application of these categories of isotope effects is illustrated using the soluble methane monooxygenase system and CmlI, which catalyzes the multistep arylamine to arylnitro conversion in the biosynthetic pathway for chloramphenicol.
Collapse
Affiliation(s)
| | - Anna J Komor
- University of Minnesota, Minneapolis, MN, United States
| | | |
Collapse
|
139
|
Blomberg MRA, Ädelroth P. The mechanism for oxygen reduction in cytochrome c dependent nitric oxide reductase (cNOR) as obtained from a combination of theoretical and experimental results. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1858:884-894. [PMID: 28801051 DOI: 10.1016/j.bbabio.2017.08.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/29/2017] [Accepted: 08/05/2017] [Indexed: 11/30/2022]
Abstract
Bacterial NO-reductases (NOR) belong to the heme-copper oxidase (HCuO) superfamily, in which most members are O2-reducing, proton-pumping enzymes. This study is one in a series aiming to elucidate the reaction mechanisms of the HCuOs, including the mechanisms for cellular energy conservation. One approach towards this goal is to compare the mechanisms for the different types of HCuOs, cytochrome c oxidase (CcO) and NOR, reducing the two substrates O2 and NO. Specifically in this study, we describe the mechanism for oxygen reduction in cytochrome c dependent NOR (cNOR). Hybrid density functional calculations were performed on large cluster models of the cNOR binuclear active site. Our results are used, together with published experimental information, to construct a free energy profile for the entire catalytic cycle. Although the overall reaction is quite exergonic, we show that during the reduction of molecular oxygen in cNOR, two of the reduction steps are endergonic with high barriers for proton uptake, which is in contrast to oxygen reduction in CcO, where all reduction steps are exergonic. This difference between the two enzymes is suggested to be important for their differing capabilities for energy conservation. An additional result from this study is that at least three of the four reduction steps are initiated by proton transfer to the active site, which is in contrast to CcO, where electrons always arrive before the protons to the active site. The roles of the non-heme metal ion and the redox-active tyrosine in the active site are also discussed.
Collapse
Affiliation(s)
- Margareta R A Blomberg
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm SE-106 91, Sweden.
| | - Pia Ädelroth
- Department of Biochemistry and Biophysics, Arrhenius Laboratory, Stockholm University, Stockholm SE-106 91, Sweden
| |
Collapse
|
140
|
Sabenya G, Lázaro L, Gamba I, Martin-Diaconescu V, Andris E, Weyhermüller T, Neese F, Roithova J, Bill E, Lloret-Fillol J, Costas M. Generation, Spectroscopic, and Chemical Characterization of an Octahedral Iron(V)-Nitrido Species with a Neutral Ligand Platform. J Am Chem Soc 2017; 139:9168-9177. [DOI: 10.1021/jacs.7b00429] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Gerard Sabenya
- Institut
de Química Computacional i Catàlisi (IQCC) and Departament
de Química, Universitat de Girona, Campus Montilivi, E17071 Girona, Catalonia, Spain
| | - Laura Lázaro
- Institut
de Química Computacional i Catàlisi (IQCC) and Departament
de Química, Universitat de Girona, Campus Montilivi, E17071 Girona, Catalonia, Spain
| | - Ilaria Gamba
- Institut
de Química Computacional i Catàlisi (IQCC) and Departament
de Química, Universitat de Girona, Campus Montilivi, E17071 Girona, Catalonia, Spain
| | - Vlad Martin-Diaconescu
- Institut
de Química Computacional i Catàlisi (IQCC) and Departament
de Química, Universitat de Girona, Campus Montilivi, E17071 Girona, Catalonia, Spain
| | - Erik Andris
- Department
of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030/8, 12843 Prague 2, Czech Republic
| | - Thomas Weyhermüller
- Max Planck Institut für Chemische Energiekonversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Frank Neese
- Max Planck Institut für Chemische Energiekonversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Jana Roithova
- Department
of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030/8, 12843 Prague 2, Czech Republic
| | - Eckhard Bill
- Max Planck Institut für Chemische Energiekonversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Julio Lloret-Fillol
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avinguda Paisos Catalans 16, 43007 Tarragona, Catalonia, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluïs Companys 23, 08010 Barcelona, Spain
| | - Miquel Costas
- Institut
de Química Computacional i Catàlisi (IQCC) and Departament
de Química, Universitat de Girona, Campus Montilivi, E17071 Girona, Catalonia, Spain
| |
Collapse
|
141
|
Honarmand Ebrahimi K, Bill E, Hagedoorn P, Hagen WR. Spectroscopic evidence for the presence of a high-valent Fe(IV) species in the ferroxidase reaction of an archaeal ferritin. FEBS Lett 2017; 591:1712-1719. [PMID: 28542723 PMCID: PMC5519934 DOI: 10.1002/1873-3468.12697] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/10/2017] [Accepted: 05/21/2017] [Indexed: 12/20/2022]
Abstract
A high‐valent Fe(IV) species is proposed to be generated from the decay of a peroxodiferric intermediate in the catalytic cycle at the di‐iron cofactor center of dioxygen‐activating enzymes such as methane monooxygenase. However, it is believed that this intermediate is not formed in the di‐iron substrate site of ferritin, where oxidation of Fe(II) substrate to Fe(III) (the ferroxidase reaction) occurs also via a peroxodiferric intermediate. In opposition to this generally accepted view, here we present evidence for the occurrence of a high‐valent Fe(IV) in the ferroxidase reaction of an archaeal ferritin, which is based on trapped intermediates obtained with the freeze‐quench technique and combination of spectroscopic characterization. We hypothesize that a Fe(IV) intermediate catalyzes oxidation of excess Fe(II) nearby the ferroxidase center.
Collapse
Affiliation(s)
| | - Eckhard Bill
- Max Planck Institute for Chemical Energy Conversion (MPI‐CEC)MülheimGermany
| | | | - Wilfred R. Hagen
- Department of BiotechnologyDelft University of TechnologyThe Netherlands
| |
Collapse
|
142
|
Ipek B, Wulfers MJ, Kim H, Göltl F, Hermans I, Smith JP, Booksh KS, Brown CM, Lobo RF. Formation of [Cu2O2]2+ and [Cu2O]2+ toward C–H Bond Activation in Cu-SSZ-13 and Cu-SSZ-39. ACS Catal 2017. [DOI: 10.1021/acscatal.6b03005] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | - Hacksung Kim
- Department
of Chemistry, Center for Catalysis and Surface Science, Northwestern University, Evanston, Illinois 60208, United States
- Chemical
Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | | | | | | | | | - Craig M. Brown
- Center
for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | | |
Collapse
|
143
|
Ross MO, Rosenzweig AC. A tale of two methane monooxygenases. J Biol Inorg Chem 2017; 22:307-319. [PMID: 27878395 PMCID: PMC5352483 DOI: 10.1007/s00775-016-1419-y] [Citation(s) in RCA: 158] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 11/15/2016] [Indexed: 11/24/2022]
Abstract
Methane monooxygenase (MMO) enzymes activate O2 for oxidation of methane. Two distinct MMOs exist in nature, a soluble form that uses a diiron active site (sMMO) and a membrane-bound form with a catalytic copper center (pMMO). Understanding the reaction mechanisms of these enzymes is of fundamental importance to biologists and chemists, and is also relevant to the development of new biocatalysts. The sMMO catalytic cycle has been elucidated in detail, including O2 activation intermediates and the nature of the methane-oxidizing species. By contrast, many aspects of pMMO catalysis remain unclear, most notably the nuclearity and molecular details of the copper active site. Here, we review the current state of knowledge for both enzymes, and consider pMMO O2 activation intermediates suggested by computational and synthetic studies in the context of existing biochemical data. Further work is needed on all fronts, with the ultimate goal of understanding how these two remarkable enzymes catalyze a reaction not readily achieved by any other metalloenzyme or biomimetic compound.
Collapse
Affiliation(s)
- Matthew O Ross
- Departments of Molecular Biosciences and of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Amy C Rosenzweig
- Departments of Molecular Biosciences and of Chemistry, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
144
|
Spaeth AD, Gagnon NL, Dhar D, Yee GM, Tolman WB. Determination of the Cu(III)-OH Bond Distance by Resonance Raman Spectroscopy Using a Normalized Version of Badger's Rule. J Am Chem Soc 2017; 139:4477-4485. [PMID: 28319386 PMCID: PMC5975256 DOI: 10.1021/jacs.7b00210] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The stretching frequency, ν(Cu-O), of the [CuOH]2+ core in the complexes LCuOH (L = N,N'-bis(2,6-diisopropyl-4-R-phenyl)pyridine-2,6-dicarboxamide, R = H or NO2, or N,N'-bis(2,6-diisopropylphenyl)-1-methylpiperidine-2,6-dicarboxamide) was determined to be ∼630 cm-1 by resonance Raman spectroscopy and verified by isotopic labeling. In efforts to use Badger's rule to estimate the bond distance corresponding to ν(Cu-O), a modified version of the rule was developed through use of stretching frequencies normalized by dividing by the appropriate reduced masses. The modified version was found to yield excellent fits of normalized frequencies to bond distances for >250 data points from theory and experiment for a variety of M-X and X-X bond distances in the range ∼1.1-2.2 Å (root mean squared errors for the predicted bond distances of 0.03 Å). Using the resulting general equation, the Cu-O bond distance was predicted to be ∼1.80 Å for the reactive [CuOH]2+ core. Limitations of the equation and its use in predictions of distances in a variety of moieties for which structural information is not available were explored.
Collapse
Affiliation(s)
- Andrew D. Spaeth
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Nicole L. Gagnon
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Debanjan Dhar
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Gereon M. Yee
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - William B. Tolman
- Department of Chemistry and Center for Metals in Biocatalysis, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
145
|
In-crystal reaction cycle of a toluene-bound diiron hydroxylase. Nature 2017; 544:191-195. [PMID: 28346937 DOI: 10.1038/nature21681] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/31/2017] [Indexed: 02/06/2023]
Abstract
Electrophilic aromatic substitution is one of the most important and recognizable classes of organic chemical transformation. Enzymes create the strong electrophiles that are needed for these highly energetic reactions by using O2, electrons, and metals or other cofactors. Although the nature of the oxidants that carry out electrophilic aromatic substitution has been deduced from many approaches, it has been difficult to determine their structures. Here we show the structure of a diiron hydroxylase intermediate formed during a reaction with toluene. Density functional theory geometry optimizations of an active site model reveal that the intermediate is an arylperoxo Fe2+/Fe3+ species with delocalized aryl radical character. The structure suggests that a carboxylate ligand of the diiron centre may trigger homolytic cleavage of the O-O bond by transferring a proton from a metal-bound water. Our work provides the spatial and electronic constraints needed to propose a comprehensive mechanism for diiron enzyme arene hydroxylation that accounts for many prior experimental results.
Collapse
|
146
|
Kochem A, Gennarini F, Yemloul M, Orio M, Le Poul N, Rivière E, Giorgi M, Faure B, Le Mest Y, Réglier M, Simaan AJ. Characterization of a Dinuclear Copper(II) Complex and Its Fleeting Mixed-Valent Copper(II)/Copper(III) Counterpart. Chempluschem 2017; 82:615-624. [DOI: 10.1002/cplu.201600636] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 02/14/2017] [Indexed: 01/06/2023]
Affiliation(s)
- Amélie Kochem
- Aix Marseille Université, CNRS; Centrale Marseille, iSm2; 13397 Marseille France
| | | | - Mehdi Yemloul
- Aix Marseille Université, CNRS; Centrale Marseille, iSm2; 13397 Marseille France
| | - Maylis Orio
- Aix Marseille Université, CNRS; Centrale Marseille, iSm2; 13397 Marseille France
| | - Nicolas Le Poul
- Université de Bretagne occidentale; CEMCA, UMR CNRS; 6521 Brest France
| | - Eric Rivière
- Institut de Chimie Moléculaire et des Matériaux d'Orsay; Univ Paris Sud, Université Paris-Saclay, CNRS; 91400 Orsay France
| | - Michel Giorgi
- Aix Marseille Université, CNRS; Spectropole FR1739; 13397 Marseille France
| | - Bruno Faure
- Aix Marseille Université, CNRS; Centrale Marseille, iSm2; 13397 Marseille France
| | - Yves Le Mest
- Université de Bretagne occidentale; CEMCA, UMR CNRS; 6521 Brest France
| | - Marius Réglier
- Aix Marseille Université, CNRS; Centrale Marseille, iSm2; 13397 Marseille France
| | - A. Jalila Simaan
- Aix Marseille Université, CNRS; Centrale Marseille, iSm2; 13397 Marseille France
| |
Collapse
|
147
|
|
148
|
Wang VCC, Maji S, Chen PPY, Lee HK, Yu SSF, Chan SI. Alkane Oxidation: Methane Monooxygenases, Related Enzymes, and Their Biomimetics. Chem Rev 2017; 117:8574-8621. [PMID: 28206744 DOI: 10.1021/acs.chemrev.6b00624] [Citation(s) in RCA: 257] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Methane monooxygenases (MMOs) mediate the facile conversion of methane into methanol in methanotrophic bacteria with high efficiency under ambient conditions. Because the selective oxidation of methane is extremely challenging, there is considerable interest in understanding how these enzymes carry out this difficult chemistry. The impetus of these efforts is to learn from the microbes to develop a biomimetic catalyst to accomplish the same chemical transformation. Here, we review the progress made over the past two to three decades toward delineating the structures and functions of the catalytic sites in two MMOs: soluble methane monooxygenase (sMMO) and particulate methane monooxygenase (pMMO). sMMO is a water-soluble three-component protein complex consisting of a hydroxylase with a nonheme diiron catalytic site; pMMO is a membrane-bound metalloenzyme with a unique tricopper cluster as the site of hydroxylation. The metal cluster in each of these MMOs harnesses O2 to functionalize the C-H bond using different chemistry. We highlight some of the common basic principles that they share. Finally, the development of functional models of the catalytic sites of MMOs is described. These efforts have culminated in the first successful biomimetic catalyst capable of efficient methane oxidation without overoxidation at room temperature.
Collapse
Affiliation(s)
- Vincent C-C Wang
- Institute of Chemistry, Academia Sinica , 128, Section 2, Academia Road, Nankang, Taipei 11529, Taiwan
| | - Suman Maji
- School of Chemical Engineering and Physical Sciences, Lovely Professional University , Jalandhar-Delhi G. T. Road (NH-1), Phagwara, Punjab India 144411
| | - Peter P-Y Chen
- Department of Chemistry, National Chung Hsing University , 250 Kuo Kuang Road, Taichung 402, Taiwan
| | - Hung Kay Lee
- Department of Chemistry, The Chinese University of Hong Kong , Shatin, New Territories, Hong Kong
| | - Steve S-F Yu
- Institute of Chemistry, Academia Sinica , 128, Section 2, Academia Road, Nankang, Taipei 11529, Taiwan
| | - Sunney I Chan
- Institute of Chemistry, Academia Sinica , 128, Section 2, Academia Road, Nankang, Taipei 11529, Taiwan.,Department of Chemistry, National Taiwan University , No. 1, Section 4, Roosevelt Road, Taipei 10617, Taiwan.,Noyes Laboratory, 127-72, California Institute of Technology , 1200 East California Boulevard, Pasadena, California 91125, United States
| |
Collapse
|
149
|
Ghosh A. Electronic Structure of Corrole Derivatives: Insights from Molecular Structures, Spectroscopy, Electrochemistry, and Quantum Chemical Calculations. Chem Rev 2017; 117:3798-3881. [PMID: 28191934 DOI: 10.1021/acs.chemrev.6b00590] [Citation(s) in RCA: 227] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Presented herein is a comprehensive account of the electronic structure of corrole derivatives. Our knowledge in this area derives from a broad range of methods, including UV-vis-NIR absorption and MCD spectroscopies, single-crystal X-ray structure determination, vibrational spectroscopy, NMR and EPR spectroscopies, electrochemistry, X-ray absorption spectroscopy, and quantum chemical calculations, the latter including both density functional theory and ab initio multiconfigurational methods. The review is organized according to the Periodic Table, describing free-base and main-group element corrole derivatives, then transition-metal corroles, and finally f-block element corroles. Like porphyrins, corrole derivatives with a redox-inactive coordinated atom follow the Gouterman four-orbital model. A key difference from porphyrins is the much wider prevalence of noninnocent electronic structures as well as full-fledged corrole•2- radicals among corrole derivatives. The most common orbital pathways mediating ligand noninnocence in transition-metal corroles are the metal(dz2)-corrole("a2u") interaction (most commonly observed in Mn and Fe corroles) and the metal(dx2-y2)-corrole(a2u) interaction in coinage metal corroles. Less commonly encountered is the metal(dπ)-corrole("a1u") interaction, a unique feature of formal d5 metallocorroles. Corrole derivatives exhibit a rich array of optical properties, including substituent-sensitive Soret maxima indicative of ligand noninnocence, strong fluorescence in the case of lighter main-group element complexes, and room-temperature near-IR phosphorescence in the case of several 5d metal complexes. The review concludes with an attempt at identifying gaps in our current knowledge and potential future directions of electronic-structural research on corrole derivatives.
Collapse
Affiliation(s)
- Abhik Ghosh
- Department of Chemistry and Center for Theoretical and Computational Chemistry, UiT-The Arctic University of Norway , 9037 Tromsø, Norway
| |
Collapse
|
150
|
Martinie RJ, Blaesi EJ, Krebs C, Bollinger JM, Silakov A, Pollock CJ. Evidence for a Di-μ-oxo Diamond Core in the Mn(IV)/Fe(IV) Activation Intermediate of Ribonucleotide Reductase from Chlamydia trachomatis. J Am Chem Soc 2017; 139:1950-1957. [PMID: 28075562 DOI: 10.1021/jacs.6b11563] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
High-valent iron and manganese complexes effect some of the most challenging biochemical reactions known, including hydrocarbon and water oxidations associated with the global carbon cycle and oxygenic photosynthesis, respectively. Their extreme reactivity presents an impediment to structural characterization, but their biological importance and potential chemical utility have, nevertheless, motivated extensive efforts toward that end. Several such intermediates accumulate during activation of class I ribonucleotide reductase (RNR) β subunits, which self-assemble dimetal cofactors with stable one-electron oxidants that serve to initiate the enzyme's free-radical mechanism. In the class I-c β subunit from Chlamydia trachomatis, a heterodinuclear Mn(II)/Fe(II) complex reacts with dioxygen to form a Mn(IV)/Fe(IV) intermediate, which undergoes reduction of the iron site to produce the active Mn(IV)/Fe(III) cofactor. Herein, we assess the structure of the Mn(IV)/Fe(IV) activation intermediate using Fe- and Mn-edge extended X-ray absorption fine structure (EXAFS) analysis and multifrequency pulse electron paramagnetic resonance (EPR) spectroscopy. The EXAFS results reveal a metal-metal vector of 2.74-2.75 Å and an intense light-atom (C/N/O) scattering interaction 1.8 Å from the Fe. Pulse EPR data reveal an exchangeable deuterium hyperfine coupling of strength |T| = 0.7 MHz, but no stronger couplings. The results suggest that the intermediate possesses a di-μ-oxo diamond core structure with a terminal hydroxide ligand to the Mn(IV).
Collapse
Affiliation(s)
- Ryan J Martinie
- Department of Chemistry and ‡Department of Biochemistry and Molecular Biology, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Elizabeth J Blaesi
- Department of Chemistry and ‡Department of Biochemistry and Molecular Biology, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Carsten Krebs
- Department of Chemistry and ‡Department of Biochemistry and Molecular Biology, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - J Martin Bollinger
- Department of Chemistry and ‡Department of Biochemistry and Molecular Biology, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Alexey Silakov
- Department of Chemistry and ‡Department of Biochemistry and Molecular Biology, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| | - Christopher J Pollock
- Department of Chemistry and ‡Department of Biochemistry and Molecular Biology, The Pennsylvania State University , University Park, Pennsylvania 16802, United States
| |
Collapse
|