101
|
Rooney WM, Grinter RW, Correia A, Parkhill J, Walker DC, Milner JJ. Engineering bacteriocin-mediated resistance against the plant pathogen Pseudomonas syringae. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:1296-1306. [PMID: 31705720 PMCID: PMC7152609 DOI: 10.1111/pbi.13294] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/16/2019] [Accepted: 10/27/2019] [Indexed: 05/20/2023]
Abstract
The plant pathogen, Pseudomonas syringae (Ps), together with related Ps species, infects and attacks a wide range of agronomically important crops, including tomato, kiwifruit, pepper, olive and soybean, causing economic losses. Currently, chemicals and introduced resistance genes are used to protect plants against these pathogens but have limited success and may have adverse environmental impacts. Consequently, there is a pressing need to develop alternative strategies to combat bacterial disease in crops. One such strategy involves using narrow-spectrum protein antibiotics (so-called bacteriocins), which diverse bacteria use to compete against closely related species. Here, we demonstrate that one bacteriocin, putidacin L1 (PL1), can be expressed in an active form at high levels in Arabidopsis and in Nicotiana benthamiana in planta to provide effective resistance against diverse pathovars of Ps. Furthermore, we find that Ps strains that mutate to acquire tolerance to PL1 lose their O-antigen, exhibit reduced motility and still cannot induce disease symptoms in PL1-transgenic Arabidopsis. Our results provide proof-of-principle that the transgene-mediated expression of a bacteriocin in planta can provide effective disease resistance to bacterial pathogens. Thus, the expression of bacteriocins in crops might offer an effective strategy for managing bacterial disease, in the same way that the genetic modification of crops to express insecticidal proteins has proven to be an extremely successful strategy for pest management. Crucially, nearly all genera of bacteria, including many plant pathogenic species, produce bacteriocins, providing an extensive source of these antimicrobial agents.
Collapse
Affiliation(s)
- William M. Rooney
- Plant Science GroupInstitute of Molecular, Cell and Systems Biology & School of Life SciencesUniversity of GlasgowGlasgowUK
- Institute of Infection, Immunity & InflammationCollege of Medical, Veterinary & Life SciencesUniversity of GlasgowGlasgowUK
| | - Rhys W. Grinter
- Institute of Infection, Immunity & InflammationCollege of Medical, Veterinary & Life SciencesUniversity of GlasgowGlasgowUK
- Present address:
School of Biological SciencesCentre for Geometric BiologyMonash UniversityClaytonVictoria3800Australia
| | - Annapaula Correia
- Wellcome Trust Sanger InstituteWellcome Trust Genome CampusHinxtonUK
- Present address:
Department of ZoologyUniversity of OxfordSouth Parks RoadOxfordOX1 3PSUK
| | - Julian Parkhill
- Wellcome Trust Sanger InstituteWellcome Trust Genome CampusHinxtonUK
- Present address:
Department of Veterinary MedicineUniversity of CambridgeMadingley RoadCambridgeCB3 0ESUK
| | - Daniel C. Walker
- Institute of Infection, Immunity & InflammationCollege of Medical, Veterinary & Life SciencesUniversity of GlasgowGlasgowUK
| | - Joel J. Milner
- Plant Science GroupInstitute of Molecular, Cell and Systems Biology & School of Life SciencesUniversity of GlasgowGlasgowUK
| |
Collapse
|
102
|
Li W, Deng Y, Ning Y, He Z, Wang GL. Exploiting Broad-Spectrum Disease Resistance in Crops: From Molecular Dissection to Breeding. ANNUAL REVIEW OF PLANT BIOLOGY 2020; 71:575-603. [PMID: 32197052 DOI: 10.1146/annurev-arplant-010720-022215] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Plant diseases reduce crop yields and threaten global food security, making the selection of disease-resistant cultivars a major goal of crop breeding. Broad-spectrum resistance (BSR) is a desirable trait because it confers resistance against more than one pathogen species or against the majority of races or strains of the same pathogen. Many BSR genes have been cloned in plants and have been found to encode pattern recognition receptors, nucleotide-binding and leucine-rich repeat receptors, and defense-signaling and pathogenesis-related proteins. In addition, the BSR genes that underlie quantitative trait loci, loss of susceptibility and nonhost resistance have been characterized. Here, we comprehensively review the advances made in the identification and characterization of BSR genes in various species and examine their application in crop breeding. We also discuss the challenges and their solutions for the use of BSR genes in the breeding of disease-resistant crops.
Collapse
Affiliation(s)
- Wei Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Yiwen Deng
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China;
| | - Yuese Ning
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zuhua He
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China;
| | - Guo-Liang Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Department of Plant Pathology, The Ohio State University, Columbus, Ohio 43210, USA;
| |
Collapse
|
103
|
Timilsina S, Potnis N, Newberry EA, Liyanapathiranage P, Iruegas-Bocardo F, White FF, Goss EM, Jones JB. Xanthomonas diversity, virulence and plant-pathogen interactions. Nat Rev Microbiol 2020; 18:415-427. [PMID: 32346148 DOI: 10.1038/s41579-020-0361-8] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2020] [Indexed: 12/19/2022]
Abstract
Xanthomonas spp. encompass a wide range of plant pathogens that use numerous virulence factors for pathogenicity and fitness in plant hosts. In this Review, we examine recent insights into host-pathogen co-evolution, diversity in Xanthomonas populations and host specificity of Xanthomonas spp. that have substantially improved our fundamental understanding of pathogen biology. We emphasize the virulence factors in xanthomonads, such as type III secreted effectors including transcription activator-like effectors, type II secretion systems, diversity resulting in host specificity, evolution of emerging strains, activation of susceptibility genes and strategies of host evasion. We summarize the genomic diversity in several Xanthomonas spp. and implications for disease outbreaks, management strategies and breeding for disease resistance.
Collapse
Affiliation(s)
- Sujan Timilsina
- Plant Pathology Department, University of Florida, Gainesville, FL, USA
| | - Neha Potnis
- Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
| | - Eric A Newberry
- Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
| | | | | | - Frank F White
- Plant Pathology Department, University of Florida, Gainesville, FL, USA
| | - Erica M Goss
- Plant Pathology Department, University of Florida, Gainesville, FL, USA. .,Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA.
| | - Jeffrey B Jones
- Plant Pathology Department, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
104
|
Xue H, Lozano-Durán R, Macho AP. Insights into the Root Invasion by the Plant Pathogenic Bacterium Ralstonia solanacearum. PLANTS (BASEL, SWITZERLAND) 2020; 9:E516. [PMID: 32316375 PMCID: PMC7238422 DOI: 10.3390/plants9040516] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 04/03/2020] [Accepted: 04/05/2020] [Indexed: 12/17/2022]
Abstract
The plant pathogenic bacterium Ralstonia solanacearum, causal agent of the devastating bacterial wilt disease, is a soil-borne microbe that infects host plants through their roots. The initial mutual recognition between host plants and bacteria and the ensuing invasion of root tissues by R. solanacearum are critical steps in the establishment of the infection, and can determine the outcome of the interaction between plant and pathogen. In this minireview, we will focus on the early stages of the bacterial invasion, offering an overview of the defence mechanisms deployed by the host plants, the manipulation exerted by the pathogen in order to promote virulence, and the alterations in root development concomitant to bacterial colonization.
Collapse
Affiliation(s)
- Hao Xue
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Science, Chinese Academy of Sciences, Shanghai 201602, China;
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Rosa Lozano-Durán
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Science, Chinese Academy of Sciences, Shanghai 201602, China;
| | - Alberto P. Macho
- Shanghai Center for Plant Stress Biology, Center for Excellence in Molecular Plant Science, Chinese Academy of Sciences, Shanghai 201602, China;
| |
Collapse
|
105
|
Offor BC, Dubery IA, Piater LA. Prospects of Gene Knockouts in the Functional Study of MAMP-Triggered Immunity: A Review. Int J Mol Sci 2020; 21:ijms21072540. [PMID: 32268496 PMCID: PMC7177850 DOI: 10.3390/ijms21072540] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 12/27/2022] Open
Abstract
Plants depend on both preformed and inducible defence responses to defend themselves against biotic stresses stemming from pathogen attacks. In this regard, plants perceive pathogenic threats from the environment through pattern recognition receptors (PRRs) that recognise microbe-associated molecular patterns (MAMPs), and so induce plant defence responses against invading pathogens. Close to thirty PRR proteins have been identified in plants, however, the molecular mechanisms underlying MAMP perception by these receptors/receptor complexes are not fully understood. As such, knockout (KO) of genes that code for PRRs and co-receptors/defence-associated proteins is a valuable tool to study plant immunity. The loss of gene activity often causes changes in the phenotype of the model plant, allowing in vivo studies of gene function and associated biological mechanisms. Here, we review the functions of selected PRRs, brassinosteroid insensitive 1 (BRI1) associated receptor kinase 1 (BAK1) and other associated defence proteins that have been identified in plants, and also outline KO lines generated by T-DNA insertional mutagenesis as well as the effect on MAMP perception—and triggered immunity (MTI). In addition, we further review the role of membrane raft domains in flg22-induced MTI in Arabidopsis, due to the vital role in the activation of several proteins that are part of the membrane raft domain theory in this regard.
Collapse
Affiliation(s)
- Benedict C Offor
- Department of Biochemistry, University of Johannesburg, Auckland Park 2006, South Africa
| | - Ian A Dubery
- Department of Biochemistry, University of Johannesburg, Auckland Park 2006, South Africa
| | - Lizelle A Piater
- Department of Biochemistry, University of Johannesburg, Auckland Park 2006, South Africa
| |
Collapse
|
106
|
Chen Y, Bendix C, Lewis JD. Comparative Genomics Screen Identifies Microbe-Associated Molecular Patterns from ' Candidatus Liberibacter' spp. That Elicit Immune Responses in Plants. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:539-552. [PMID: 31790346 DOI: 10.1094/mpmi-11-19-0309-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Citrus huanglongbing (HLB), caused by phloem-limited 'Candidatus Liberibacter' bacteria, is a destructive disease threatening the worldwide citrus industry. The mechanisms of pathogenesis are poorly understood and no efficient strategy is available to control HLB. Here, we used a comparative genomics screen to identify candidate microbe-associated molecular patterns (MAMPs) from 'Ca. Liberibacter' spp. We identified the core genome from multiple 'Ca. Liberibacter' pathogens, and searched for core genes with signatures of positive selection. We hypothesized that genes encoding putative MAMPs would evolve to reduce recognition by the plant immune system, while retaining their essential functions. To efficiently screen candidate MAMP peptides, we established a high-throughput microtiter plate-based screening assay, particularly for citrus, that measured reactive oxygen species (ROS) production, which is a common immune response in plants. We found that two peptides could elicit ROS production in Arabidopsis and Nicotiana benthamiana. One of these peptides elicited ROS production and defense gene expression in HLB-tolerant citrus genotypes, and induced MAMP-triggered immunity against the bacterial pathogen Pseudomonas syringae. Our findings identify MAMPs that boost immunity in citrus and could help prevent or reduce HLB infection.
Collapse
Affiliation(s)
- Yuan Chen
- Plant Gene Expression Center, United States Department of Agriculture-Agricultural Research Service and Department of Plant and Microbial Biology, University of California-Berkeley, 800 Buchanan Street, Albany, CA 94710, U.S.A
| | - Claire Bendix
- Plant Gene Expression Center, United States Department of Agriculture-Agricultural Research Service and Department of Plant and Microbial Biology, University of California-Berkeley, 800 Buchanan Street, Albany, CA 94710, U.S.A
| | - Jennifer D Lewis
- Plant Gene Expression Center, United States Department of Agriculture-Agricultural Research Service and Department of Plant and Microbial Biology, University of California-Berkeley, 800 Buchanan Street, Albany, CA 94710, U.S.A
| |
Collapse
|
107
|
van Esse HP, Reuber TL, van der Does D. Genetic modification to improve disease resistance in crops. THE NEW PHYTOLOGIST 2020; 225:70-86. [PMID: 31135961 PMCID: PMC6916320 DOI: 10.1111/nph.15967] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/08/2019] [Indexed: 05/19/2023]
Abstract
Plant pathogens are a significant challenge in agriculture despite our best efforts to combat them. One of the most effective and sustainable ways to manage plant pathogens is to use genetic modification (GM) and genome editing, expanding the breeder's toolkit. For use in the field, these solutions must be efficacious, with no negative effect on plant agronomy, and deployed thoughtfully. They must also not introduce a potential allergen or toxin. Expensive regulation of biotech crops is prohibitive for local solutions. With 11-30% average global yield losses and greater local impacts, tackling plant pathogens is an ethical imperative. We need to increase world food production by at least 60% using the same amount of land, by 2050. The time to act is now and we cannot afford to ignore the new solutions that GM provides to manage plant pathogens.
Collapse
Affiliation(s)
- H. Peter van Esse
- 2Blades Foundation1630 Chicago AvenueEvanstonIL 60201USA
- The Sainsbury LaboratoryUniversity of East AngliaNorwich Research ParkNR4 7UHUK
| | | | | |
Collapse
|
108
|
Kumar A, Kumar R, Sengupta D, Das SN, Pandey MK, Bohra A, Sharma NK, Sinha P, Sk H, Ghazi IA, Laha GS, Sundaram RM. Deployment of Genetic and Genomic Tools Toward Gaining a Better Understanding of Rice- Xanthomonas oryzae pv. oryzae Interactions for Development of Durable Bacterial Blight Resistant Rice. FRONTIERS IN PLANT SCIENCE 2020; 11:1152. [PMID: 32849710 PMCID: PMC7417518 DOI: 10.3389/fpls.2020.01152] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/15/2020] [Indexed: 05/05/2023]
Abstract
Rice is the most important food crop worldwide and sustainable rice production is important for ensuring global food security. Biotic stresses limit rice production significantly and among them, bacterial blight (BB) disease caused by Xanthomonas oryzae pv. oryzae (Xoo) is very important. BB reduces rice yields severely in the highly productive irrigated and rainfed lowland ecosystems and in recent years; the disease is spreading fast to other rice growing ecosystems as well. Being a vascular pathogen, Xoo interferes with a range of physiological and biochemical exchange processes in rice. The response of rice to Xoo involves specific interactions between resistance (R) genes of rice and avirulence (Avr) genes of Xoo, covering most of the resistance genes except the recessive ones. The genetic basis of resistance to BB in rice has been studied intensively, and at least 44 genes conferring resistance to BB have been identified, and many resistant rice cultivars and hybrids have been developed and released worldwide. However, the existence and emergence of new virulent isolates of Xoo in the realm of a rapidly changing climate necessitates identification of novel broad-spectrum resistance genes and intensification of gene-deployment strategies. This review discusses about the origin and occurrence of BB in rice, interactions between Xoo and rice, the important roles of resistance genes in plant's defense response, the contribution of rice resistance genes toward development of disease resistance varieties, identification and characterization of novel, and broad-spectrum BB resistance genes from wild species of Oryza and also presents a perspective on potential strategies to achieve the goal of sustainable disease management.
Collapse
Affiliation(s)
- Anirudh Kumar
- Department of Botany, Indira Gandhi National Tribal University (IGNTU), Amarkantak, India
- *Correspondence: Raman Meenakshi Sundaram, ; Anirudh Kumar,
| | - Rakesh Kumar
- Department of Life Science, Central University of Karnataka, Kalaburagi, India
| | - Debashree Sengupta
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad (UoH), Hyderabad, India
| | - Subha Narayan Das
- Department of Botany, Indira Gandhi National Tribal University (IGNTU), Amarkantak, India
| | - Manish K. Pandey
- Department of Biotechnology, ICAR-Indian Institute of Rice Research (IIRR), Hyderabad, India
| | - Abhishek Bohra
- ICAR-Crop Improvement Division, Indian Institute of Pulses Research (IIPR), Kanpur, India
| | - Naveen K. Sharma
- Department of Botany, Indira Gandhi National Tribal University (IGNTU), Amarkantak, India
| | - Pragya Sinha
- Department of Biotechnology, ICAR-Indian Institute of Rice Research (IIRR), Hyderabad, India
| | - Hajira Sk
- Department of Biotechnology, ICAR-Indian Institute of Rice Research (IIRR), Hyderabad, India
| | - Irfan Ahmad Ghazi
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad (UoH), Hyderabad, India
| | - Gouri Sankar Laha
- Department of Biotechnology, ICAR-Indian Institute of Rice Research (IIRR), Hyderabad, India
| | - Raman Meenakshi Sundaram
- Department of Biotechnology, ICAR-Indian Institute of Rice Research (IIRR), Hyderabad, India
- *Correspondence: Raman Meenakshi Sundaram, ; Anirudh Kumar,
| |
Collapse
|
109
|
Abstract
Approaches to manipulating disease resistance in plants is expanding exponentially due to advances in our understanding of plant defense mechanisms and new tools for manipulating the plant genome. The application of effective strategies is only limited now by adoption of rapid classical genetic techniques and the acceptance of genetically engineered traits for some problems. The use of genome editing and cis-genetics, where possible, may facilitate applications that otherwise require considerable time or genetic engineering, depending on settling legal definitions of the products. Nonetheless, the variety of approaches to developing disease resistance has never been greater.
Collapse
Affiliation(s)
- Anuj Sharma
- Department of Plant Pathology, University of Florida, Gainesville, FL, USA
| | - Jeffrey B. Jones
- Department of Plant Pathology, University of Florida, Gainesville, FL, USA
| | - Frank F. White
- Department of Plant Pathology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
110
|
Abstract
Manihot esculenta Crantz (cassava) is a food crop originating from South America grown primarily for its starchy storage roots. Today, cassava is grown in the tropics of South America, Africa, and Asia with an estimated 800 million people relying on it as a staple source of calories. In parts of sub-Saharan Africa, cassava is particularly crucial for food security. Cassava root starch also has use in the pharmaceutical, textile, paper, and biofuel industries. Cassava has seen strong demand since 2000 and production has increased consistently year-over-year, but potential yields are hampered by susceptibility to biotic and abiotic stresses. In particular, bacterial and viral diseases can cause severe yield losses. Of note are cassava bacterial blight (CBB), cassava mosaic disease (CMD), and cassava brown streak disease (CBSD), all of which can cause catastrophic losses for growers. In this article, we provide an overview of the major microbial diseases of cassava, discuss current and potential future efforts to engineer new sources of resistance, and conclude with a discussion of the regulatory hurdles that face biotechnology.
Collapse
Affiliation(s)
- Z J Daniel Lin
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA
| | - Nigel J Taylor
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA
| | - Rebecca Bart
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA
| |
Collapse
|
111
|
Harvey KL, Jarocki VM, Charles IG, Djordjevic SP. The Diverse Functional Roles of Elongation Factor Tu (EF-Tu) in Microbial Pathogenesis. Front Microbiol 2019; 10:2351. [PMID: 31708880 PMCID: PMC6822514 DOI: 10.3389/fmicb.2019.02351] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 09/27/2019] [Indexed: 12/25/2022] Open
Abstract
Elongation factor thermal unstable Tu (EF-Tu) is a G protein that catalyzes the binding of aminoacyl-tRNA to the A-site of the ribosome inside living cells. Structural and biochemical studies have described the complex interactions needed to effect canonical function. However, EF-Tu has evolved the capacity to execute diverse functions on the extracellular surface of both eukaryote and prokaryote cells. EF-Tu can traffic to, and is retained on, cell surfaces where can interact with membrane receptors and with extracellular matrix on the surface of plant and animal cells. Our structural studies indicate that short linear motifs (SLiMs) in surface exposed, non-conserved regions of the molecule may play a key role in the moonlighting functions ascribed to this ancient, highly abundant protein. Here we explore the diverse moonlighting functions relating to pathogenesis of EF-Tu in bacteria and examine putative SLiMs on surface-exposed regions of the molecule.
Collapse
Affiliation(s)
- Kate L Harvey
- The ithree Institute, University of Technology Sydney, Ultimo, NSW, Australia
| | - Veronica M Jarocki
- The ithree Institute, University of Technology Sydney, Ultimo, NSW, Australia
| | - Ian G Charles
- Quadram Institute, Norwich, United Kingdom.,Norwich Medical School, Norwich, United Kingdom
| | - Steven P Djordjevic
- The ithree Institute, University of Technology Sydney, Ultimo, NSW, Australia
| |
Collapse
|
112
|
Holmes EC, Chen YC, Sattely ES, Mudgett MB. An engineered pathway for N-hydroxy-pipecolic acid synthesis enhances systemic acquired resistance in tomato. Sci Signal 2019; 12:eaay3066. [PMID: 31641079 PMCID: PMC7954083 DOI: 10.1126/scisignal.aay3066] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Systemic acquired resistance (SAR) is a powerful immune response that triggers broad-spectrum disease resistance throughout a plant. In the model plant Arabidopsis thaliana, long-distance signaling and SAR activation in uninfected tissues occur without circulating immune cells and instead rely on the metabolite N-hydroxy-pipecolic acid (NHP). Engineering SAR in crop plants would enable external control of a plant's ability to mount a global defense response upon sudden changes in the environment. Such a metabolite-engineering approach would require the molecular machinery for producing and responding to NHP in the crop plant. Here, we used heterologous expression in Nicotiana benthamiana leaves to identify a minimal set of Arabidopsis genes necessary for the biosynthesis of NHP. Local expression of these genes in tomato leaves triggered SAR in distal tissues in the absence of a pathogen, suggesting that the SAR trait can be engineered to enhance a plant's endogenous ability to respond to pathogens. We also showed tomato produces endogenous NHP in response to a bacterial pathogen and that NHP is present across the plant kingdom, raising the possibility that an engineering strategy to enhance NHP-induced defenses could be possible in many crop plants.
Collapse
Affiliation(s)
- Eric C Holmes
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Yun-Chu Chen
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Elizabeth S Sattely
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Mary Beth Mudgett
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
113
|
Qiu Z, Yan S, Xia B, Jiang J, Yu B, Lei J, Chen C, Chen L, Yang Y, Wang Y, Tian S, Cao B. The eggplant transcription factor MYB44 enhances resistance to bacterial wilt by activating the expression of spermidine synthase. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5343-5354. [PMID: 31587071 DOI: 10.1093/jxb/erz259] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Indexed: 05/22/2023]
Abstract
Bacterial wilt (BW) caused by Ralstonia solanacearum is a serious disease affecting the production of Solanaceae species, including eggplant (Solanum melongena). However, few resistance genes have been identified in eggplant, and therefore the underlying mechanism of BW resistance remains unclear. Hence, we investigated a spermidine synthase (SPDS) gene from eggplant and created knock-down lines with virus-induced gene silencing. After eggplant was infected with R. solanacearum, the SmSPDS gene was induced, concurrent with increased spermidine (Spd) content, especially in the resistant line. We speculated that Spd plays a significant role in the defense response of eggplant to BW. Moreover, using the yeast one-hybrid approach and dual luciferase-based transactivation assay, an R2R3-MYB transcription factor, SmMYB44, was identified as directly binding to the SmSPDS promoter, activating its expression. Overexpression of SmMYB44 in eggplant induced the expression of SmSPDS and Spd content, increasing the resistance to BW. In contrast, the SmMYB44-RNAi transgenic plants showed more susceptibility to BW compared with the control plants. Our results provide insight into the SmMYB44-SmSPDS-Spd module involved in the regulation of resistance to R. solanacearum. This research also provides candidates to enhance resistance to BW in eggplant.
Collapse
Affiliation(s)
- Zhengkun Qiu
- Key Laboratory of Biology, Innovation and Utilization for Germplasm Resources in Horticultural Crops in Southern China, College of Horticulture, South China Agricultural University, Guangzhou, China
- Guangdong Vegetable Engineering and Technology Research Center, South China Agricultural University, Guangzhou, China
| | - Shuangshuang Yan
- Key Laboratory of Biology, Innovation and Utilization for Germplasm Resources in Horticultural Crops in Southern China, College of Horticulture, South China Agricultural University, Guangzhou, China
- Guangdong Vegetable Engineering and Technology Research Center, South China Agricultural University, Guangzhou, China
| | - Bin Xia
- Office of Key Laboratory Construction of South China Agricultural University, Guangzhou, China
| | - Jing Jiang
- Key Laboratory of Biology, Innovation and Utilization for Germplasm Resources in Horticultural Crops in Southern China, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Bingwei Yu
- Key Laboratory of Biology, Innovation and Utilization for Germplasm Resources in Horticultural Crops in Southern China, College of Horticulture, South China Agricultural University, Guangzhou, China
- Guangdong Vegetable Engineering and Technology Research Center, South China Agricultural University, Guangzhou, China
| | - Jianjun Lei
- Key Laboratory of Biology, Innovation and Utilization for Germplasm Resources in Horticultural Crops in Southern China, College of Horticulture, South China Agricultural University, Guangzhou, China
- Guangdong Vegetable Engineering and Technology Research Center, South China Agricultural University, Guangzhou, China
| | - Changming Chen
- Key Laboratory of Biology, Innovation and Utilization for Germplasm Resources in Horticultural Crops in Southern China, College of Horticulture, South China Agricultural University, Guangzhou, China
- Guangdong Vegetable Engineering and Technology Research Center, South China Agricultural University, Guangzhou, China
| | - Lin Chen
- Key Laboratory of Biology, Innovation and Utilization for Germplasm Resources in Horticultural Crops in Southern China, College of Horticulture, South China Agricultural University, Guangzhou, China
- Guangdong Vegetable Engineering and Technology Research Center, South China Agricultural University, Guangzhou, China
| | - Yang Yang
- The Institute of Vegetable and Flower Research, Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Yongqing Wang
- The Institute of Vegetable and Flower Research, Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Shibing Tian
- The Institute of Vegetable and Flower Research, Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Bihao Cao
- Key Laboratory of Biology, Innovation and Utilization for Germplasm Resources in Horticultural Crops in Southern China, College of Horticulture, South China Agricultural University, Guangzhou, China
- Guangdong Vegetable Engineering and Technology Research Center, South China Agricultural University, Guangzhou, China
| |
Collapse
|
114
|
Ling Y, Ang L, Weilin Z. Current understanding of the molecular players involved in resistance to rice planthoppers. PEST MANAGEMENT SCIENCE 2019; 75:2566-2574. [PMID: 31095858 DOI: 10.1002/ps.5487] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/08/2019] [Accepted: 05/13/2019] [Indexed: 05/24/2023]
Abstract
Rice planthoppers are the most widespread and destructive pest of rice. Planthopper control depends greatly on the understanding of molecular players involved in resistance to planthoppers. This paper summarizes the recent progress in the understanding of some molecular players involved in resistance to planthoppers and the mechanisms involved. Recent researches showed that host-plant resistance is the most promising sustainable approach for controlling planthoppers. Planthopper-resistant varieties with a host-plant resistance gene have been released for rice products. Integrated planthopper management is a proposed strategy to prolong the durability of host-plant resistance. Bacillus spp. and their gene products or insect pathogenic fungi have great potential for application in the biological control of planthoppers. Enhancement of the activity of the natural enemies of planthoppers would be more cost-effective and environmentally friendly. Various molecular processes regulate rice-planthopper interactions. Rice encounters planthopper attacks via transcription factors, secondary metabolites, and signaling networks in which phytohormones have central roles. Maintenance of cell wall integrity and lignification act as physical barriers. Indirect defenses of rice are regulated via chemical elicitors, honeydew-associated elicitor, amendment with silicon and biochar, and salivary protein of BPH as elicitor or effector. Further research directions on planthopper control and rice defense against planthoppers are also put forward. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yang Ling
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, P. R. China
- Department of Environmental Engineering, Quzhou University, Quzhou, P.R. China
| | - Li Ang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, P. R. China
| | - Zhang Weilin
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, P. R. China
| |
Collapse
|
115
|
Albert I, Zhang L, Bemm H, Nürnberger T. Structure-Function Analysis of Immune Receptor AtRLP23 with Its Ligand nlp20 and Coreceptors AtSOBIR1 and AtBAK1. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:1038-1046. [PMID: 31237473 DOI: 10.1094/mpmi-09-18-0263-r] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Pattern-triggered immunity is an inherent feature of the plant immune system. Recognition of either microbe-derived surface structures (patterns) or of plant materials released due to the deleterious impact of microbial infection is brought about by plasma membrane pattern recognition receptors (PRRs). PRRs composed of leucine-rich repeat (LRR) ectodomains are thought to mediate sensing of proteinaceous patterns and to initiate signaling cascades culminating in the activation of generic plant defenses. In contrast to LRR receptor kinases, LRR receptor proteins (LRR-RPs) lack a cytoplasmic kinase domain for initiation of downstream signal transduction. LRR-RPs form heteromeric constitutive, ligand-independent complexes with coreceptor SOBIR1. Upon ligand binding to LRR-RPs, recruitment of coreceptor SERK3/BAK1 results in formation of a ternary PRR complex. Structure-function analysis of LRR-RP-type PRRs is missing. AtRLP23 constitutes an LRR-RP PRR that mediates recognition of a peptide motif (nlp20) found in numerous bacterial, fungal, and oomycete necrosis and ethylene-inducing peptide 1-like proteins (NLPs). We here report the use of a series of AtRLP23 variants to decipher subdomains required for ligand binding and interaction with coreceptors AtSOBIR1 and AtBAK1, respectively. Deletion of LRR1 or LRR3 subdomains efficiently abrogated the ability of AtRLP23 receptor variants to confer nlp20 pattern sensitivity, to bind nlp20, and to recruit AtBAK1 into a ternary PRR complex. This suggests that the very N-terminal part of the AtRLP23 ectodomain is crucial for receptor function. Deletion of the intracellular 17-amino-acid tail of AtRLP23 reduced but did not abolish receptor function, suggesting an auxiliary role of this domain in receptor function. We further found that interaction of AtRLP23 and other LRR-RP-type PRRs with AtSOBIR1 does not require the AtRLP23 LRR ectodomain but is brought about by a GxxxG protein dimerization motif in the transmembrane domain and a stretch of negatively charged glutamic acid residues in the outer juxtamembrane domain of the receptor. Further, AtRLP23 levels were found to be unaltered in Atsobir1-1 mutant genotypes, suggesting that AtSOBIR1 does not act as a protein scaffold in stabilizing LRR-RP-type PRRs in Arabidopsis.
Collapse
Affiliation(s)
- Isabell Albert
- 1Eberhard-Karls-University Tübingen, Center of Plant Molecular Biology, Auf der Morgenstelle 32, D-72076 Tübingen, Germany
| | - Lisha Zhang
- 1Eberhard-Karls-University Tübingen, Center of Plant Molecular Biology, Auf der Morgenstelle 32, D-72076 Tübingen, Germany
| | - Hannah Bemm
- 1Eberhard-Karls-University Tübingen, Center of Plant Molecular Biology, Auf der Morgenstelle 32, D-72076 Tübingen, Germany
| | - Thorsten Nürnberger
- 1Eberhard-Karls-University Tübingen, Center of Plant Molecular Biology, Auf der Morgenstelle 32, D-72076 Tübingen, Germany
- 2Department of Biochemistry, University of Johannesburg, Auckland Park, South Africa
| |
Collapse
|
116
|
Kanyuka K, Rudd JJ. Cell surface immune receptors: the guardians of the plant's extracellular spaces. CURRENT OPINION IN PLANT BIOLOGY 2019; 50:1-8. [PMID: 30861483 PMCID: PMC6731392 DOI: 10.1016/j.pbi.2019.02.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/01/2019] [Accepted: 02/07/2019] [Indexed: 05/18/2023]
Abstract
Since the original 'Zigzag model', several iterations have been proposed to reconcile both the Pattern Triggered Immunity (PTI) and the Effector Triggered Immunity (ETI) branches of the plant immune system. The recent cloning of new disease resistance genes, functioning in gene-for-gene interactions, which structurally resemble cell surface broad spectrum Pattern Recognition Receptors, have further blurred the distinctions between PTI and ETI in plant immunity. In an attempt to simplify further the existing conceptual models, we, herein, propose a scheme based on the spatial localization of the key proteins (receptors) which function to induce plant immune responses. We believe this 'Spatial Invasion model' will prove useful for understanding how immune receptors interact with different pathogen types which peripherally or totally invade plant cells, colonize solely extracellularly or switch locations during a successful infection.
Collapse
Affiliation(s)
- Kostya Kanyuka
- Biointeractions and Crop Protection, Rothamsted Research, Harpenden, United Kingdom.
| | - Jason J Rudd
- Biointeractions and Crop Protection, Rothamsted Research, Harpenden, United Kingdom
| |
Collapse
|
117
|
Wan WL, Fröhlich K, Pruitt RN, Nürnberger T, Zhang L. Plant cell surface immune receptor complex signaling. CURRENT OPINION IN PLANT BIOLOGY 2019; 50:18-28. [PMID: 30878771 DOI: 10.1016/j.pbi.2019.02.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/01/2019] [Accepted: 02/07/2019] [Indexed: 05/26/2023]
Abstract
Plant plasma membrane pattern recognition receptors are key to microbe sensing and activation of immunity to microbial invasion. Plants employ several types of such receptors that differ mainly in the structure of their ectodomains and the presence or absence of a cytoplasmic protein kinase domain. Plant immune receptors do not function as single entities, but form larger complexes which undergo compositional changes in a ligand-dependent manner. Here, we highlight current knowledge of molecular mechanisms underlying receptor complex dynamics and regulation, and cover early signaling networks implicated in the activation of generic plant immune responses. We further discuss how an increasingly comprehensive set of immune receptors may be employed to engineer crop plants with enhanced, durable resistance to microbial infection.
Collapse
Affiliation(s)
- Wei-Lin Wan
- Department of Plant Biochemistry, Centre for Plant Molecular Biology (ZMBP), Eberhard Karls University Tübingen, Auf der Morgenstelle 32, D-72076 Tübingen, Germany
| | - Katja Fröhlich
- Department of Plant Biochemistry, Centre for Plant Molecular Biology (ZMBP), Eberhard Karls University Tübingen, Auf der Morgenstelle 32, D-72076 Tübingen, Germany
| | - Rory N Pruitt
- Department of Plant Biochemistry, Centre for Plant Molecular Biology (ZMBP), Eberhard Karls University Tübingen, Auf der Morgenstelle 32, D-72076 Tübingen, Germany
| | - Thorsten Nürnberger
- Department of Plant Biochemistry, Centre for Plant Molecular Biology (ZMBP), Eberhard Karls University Tübingen, Auf der Morgenstelle 32, D-72076 Tübingen, Germany; Department of Biochemistry, University of Johannesburg, Auckland Park, South Africa
| | - Lisha Zhang
- Department of Plant Biochemistry, Centre for Plant Molecular Biology (ZMBP), Eberhard Karls University Tübingen, Auf der Morgenstelle 32, D-72076 Tübingen, Germany.
| |
Collapse
|
118
|
Roberts R, Mainiero S, Powell AF, Liu AE, Shi K, Hind SR, Strickler SR, Collmer A, Martin GB. Natural variation for unusual host responses and flagellin-mediated immunity against Pseudomonas syringae in genetically diverse tomato accessions. THE NEW PHYTOLOGIST 2019; 223:447-461. [PMID: 30861136 DOI: 10.1111/nph.15788] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 03/06/2019] [Indexed: 05/20/2023]
Abstract
The interaction between tomato and Pseudomonas syringae pv tomato (Pst) is a well-developed model for investigating the molecular basis of the plant immune system. There is extensive natural variation in Solanum lycopersicum (tomato) but it has not been fully leveraged to enhance our understanding of the tomato-Pst pathosystem. We screened 216 genetically diverse accessions of cultivated tomato and a wild tomato species for natural variation in their response to three strains of Pst. The host response to Pst was investigated using multiple Pst strains, tomato accessions with available genome sequences, reactive oxygen species (ROS) assays, reporter genes and bacterial population measurements. The screen uncovered a broad range of previously unseen host symptoms in response to Pst, and one of these, stem galls, was found to be simply inherited. The screen also identified tomato accessions that showed enhanced responses to flagellin in bacterial population assays and in ROS assays upon exposure to flagellin-derived peptides, flg22 and flgII-28. Reporter genes confirmed that the host responses were due primarily to pattern recognition receptor-triggered immunity. This study revealed extensive natural variation in tomato for susceptibility and resistance to Pst and will enable elucidation of the molecular mechanisms underlying these host responses.
Collapse
Affiliation(s)
- Robyn Roberts
- Boyce Thompson Institute for Plant Research, Ithaca, NY, 14853, USA
| | | | - Adrian F Powell
- Boyce Thompson Institute for Plant Research, Ithaca, NY, 14853, USA
| | - Alexander E Liu
- Boyce Thompson Institute for Plant Research, Ithaca, NY, 14853, USA
| | - Kai Shi
- Boyce Thompson Institute for Plant Research, Ithaca, NY, 14853, USA
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Sarah R Hind
- Boyce Thompson Institute for Plant Research, Ithaca, NY, 14853, USA
| | | | - Alan Collmer
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Gregory B Martin
- Boyce Thompson Institute for Plant Research, Ithaca, NY, 14853, USA
- Department of Horticultural Biotechnology, College of Life Sciences, Kyung Hee University, Yongin, 17104, Korea
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
119
|
Wu J, Reca I, Spinelli F, Lironi D, De Lorenzo G, Poltronieri P, Cervone F, Joosten MH, Ferrari S, Brutus A. An EFR-Cf-9 chimera confers enhanced resistance to bacterial pathogens by SOBIR1- and BAK1-dependent recognition of elf18. MOLECULAR PLANT PATHOLOGY 2019; 20:751-764. [PMID: 30938041 PMCID: PMC6637901 DOI: 10.1111/mpp.12789] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The transfer of well-studied native and chimeric pattern recognition receptors (PRRs) to susceptible plants is a proven strategy to improve host resistance. In most cases, the ectodomain determines PRR recognition specificity, while the endodomain determines the intensity of the immune response. Here we report the generation and characterization of the chimeric receptor EFR-Cf-9, which carries the ectodomain of the Arabidopsis thaliana EF-Tu receptor (EFR) and the endodomain of the tomato Cf-9 resistance protein. Both transient and stable expression of EFR-Cf-9 triggered a robust hypersensitive response (HR) upon elf18 treatment in tobacco. Co-immunoprecipitation and virus-induced gene silencing studies showed that EFR-Cf-9 constitutively interacts with SUPPRESSOR OF BIR1-1 (SOBIR1) co-receptor, and requires both SOBIR1 and kinase-active BRI1-ASSOCIATED KINASE1 (BAK1) for its function. Transgenic plants expressing EFR-Cf-9 were more resistant to the (hemi)biotrophic bacterial pathogens Pseudomonas amygdali pv. tabaci (Pta) 11528 and Pseudomonas syringae pv. tomato DC3000, and mounted an HR in response to high doses of Pta 11528 and P. carotovorum. Taken together, these data indicate that the EFR-Cf-9 chimera is a valuable tool for both investigating the molecular mechanisms responsible for the activation of defence responses by PRRs, and for potential biotechnological use to improve crop disease resistance.
Collapse
Affiliation(s)
- Jinbin Wu
- Laboratory of PhytopathologyWageningen UniversityDroevendaalsesteeg 16708 PBWageningenNetherlands
| | | | - Francesco Spinelli
- Department of Biology and Biotechnology “Charles Darwin”Sapienza University of Rome00185RomeItaly
| | - Damiano Lironi
- Department of Biology and Biotechnology “Charles Darwin”Sapienza University of Rome00185RomeItaly
| | - Giulia De Lorenzo
- Department of Biology and Biotechnology “Charles Darwin”Sapienza University of Rome00185RomeItaly
| | | | - Felice Cervone
- Department of Biology and Biotechnology “Charles Darwin”Sapienza University of Rome00185RomeItaly
| | - Matthieu H.A.J. Joosten
- Laboratory of PhytopathologyWageningen UniversityDroevendaalsesteeg 16708 PBWageningenNetherlands
| | - Simone Ferrari
- Department of Biology and Biotechnology “Charles Darwin”Sapienza University of Rome00185RomeItaly
| | - Alexandre Brutus
- DOE Plant Research LaboratoryMichigan State UniversityEast LansingMI48824USA
| |
Collapse
|
120
|
Bisht DS, Bhatia V, Bhattacharya R. Improving plant-resistance to insect-pests and pathogens: The new opportunities through targeted genome editing. Semin Cell Dev Biol 2019; 96:65-76. [PMID: 31039395 DOI: 10.1016/j.semcdb.2019.04.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/09/2019] [Accepted: 04/12/2019] [Indexed: 12/26/2022]
Abstract
The advantages of high input agriculture are fading away due to degenerating soil health and adverse effects of climate change. Safeguarding crop yields in the changing environment and dynamics of pest and pathogens, has posed new challenges to global agriculture. Thus, integration of new technologies in crop improvement has been imperative for achieving the breeding objectives in faster ways. Recently, enormous potential of genome editing through engineered nucleases has been demonstrated in plants. Continuous refinements of the genome editing tools have increased depth and breadth of their applications. So far, genome editing has been demonstrated in more than fifty plant species. These include model species like Arabidopsis, as well as important crops like rice, wheat, maize etc. Particularly, CRISPR/Cas9 based two component genome editing system has been facile with wider applicability. Potential of genome editing has unfurled enormous possibilities for engineering diverse agronomic traits including durable resistance against insect-pests and pathogens. Novel propositions of developing insect and pathogen resistant crops by genome editing include altering the effector-target interaction, knocking out of host-susceptibility genes, engineering synthetic immune receptor eliciting broad spectrum resistance, uncoupling of antagonistic action of defense hormones etc. Alternatively, modification of insect genomes has been used either to create gene drive or to counteract resistance to various insecticides. The distinct advantage of genome editing system is that it can knock out specific target region in the genome without leaving the unwanted vector backbone. In this article, we have reviewed the novel opportunities offered by the genome editing technologies for developing insect and pathogen resistant crop-types, their future prospects and anticipated challenges.
Collapse
Affiliation(s)
- Deepak Singh Bisht
- ICAR-National Institute for Plant Biotechnology, Indian Agricultural Research Institute Campus, New Delhi, India
| | - Varnika Bhatia
- Deen Dayal Upadhyaya College, University of Delhi, Delhi, India
| | - Ramcharan Bhattacharya
- ICAR-National Institute for Plant Biotechnology, Indian Agricultural Research Institute Campus, New Delhi, India.
| |
Collapse
|
121
|
Brulé D, Villano C, Davies LJ, Trdá L, Claverie J, Héloir M, Chiltz A, Adrian M, Darblade B, Tornero P, Stransfeld L, Boutrot F, Zipfel C, Dry IB, Poinssot B. The grapevine (Vitis vinifera) LysM receptor kinases VvLYK1-1 and VvLYK1-2 mediate chitooligosaccharide-triggered immunity. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:812-825. [PMID: 30256508 PMCID: PMC6419575 DOI: 10.1111/pbi.13017] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 09/23/2018] [Indexed: 05/05/2023]
Abstract
Chitin, a major component of fungal cell walls, is a well-known pathogen-associated molecular pattern (PAMP) that triggers defense responses in several mammal and plant species. Here, we show that two chitooligosaccharides, chitin and chitosan, act as PAMPs in grapevine (Vitis vinifera) as they elicit immune signalling events, defense gene expression and resistance against fungal diseases. To identify their cognate receptors, the grapevine family of LysM receptor kinases (LysM-RKs) was annotated and their gene expression profiles were characterized. Phylogenetic analysis clearly distinguished three V. vinifera LysM-RKs (VvLYKs) located in the same clade as the Arabidopsis CHITIN ELICITOR RECEPTOR KINASE1 (AtCERK1), which mediates chitin-induced immune responses. The Arabidopsis mutant Atcerk1, impaired in chitin perception, was transformed with these three putative orthologous genes encoding VvLYK1-1, -2, or -3 to determine if they would complement the loss of AtCERK1 function. Our results provide evidence that VvLYK1-1 and VvLYK1-2, but not VvLYK1-3, functionally complement the Atcerk1 mutant by restoring chitooligosaccharide-induced MAPK activation and immune gene expression. Moreover, expression of VvLYK1-1 in Atcerk1 restored penetration resistance to the non-adapted grapevine powdery mildew (Erysiphe necator). On the whole, our results indicate that the grapevine VvLYK1-1 and VvLYK1-2 participate in chitin- and chitosan-triggered immunity and that VvLYK1-1 plays an important role in basal resistance against E. necator.
Collapse
Affiliation(s)
- Daphnée Brulé
- AgroécologieAgrosup DijonINRAUniversité Bourgogne Franche‐ComtéCNRS ERL 6003DijonFrance
| | | | - Laura J. Davies
- Commonwealth Scientific and Industrial Research Organisation (CSIRO)AdelaideSAAustralia
| | - Lucie Trdá
- AgroécologieAgrosup DijonINRAUniversité Bourgogne Franche‐ComtéCNRS ERL 6003DijonFrance
| | - Justine Claverie
- AgroécologieAgrosup DijonINRAUniversité Bourgogne Franche‐ComtéCNRS ERL 6003DijonFrance
| | - Marie‐Claire Héloir
- AgroécologieAgrosup DijonINRAUniversité Bourgogne Franche‐ComtéCNRS ERL 6003DijonFrance
| | - Annick Chiltz
- AgroécologieAgrosup DijonINRAUniversité Bourgogne Franche‐ComtéCNRS ERL 6003DijonFrance
| | - Marielle Adrian
- AgroécologieAgrosup DijonINRAUniversité Bourgogne Franche‐ComtéCNRS ERL 6003DijonFrance
| | | | - Pablo Tornero
- Instituto de Biología Molecular y Celular de PlantasUniversitat Politècnica de ValènciaConsejo Superior de Investigaciones CientíficasValenciaSpain
| | | | | | - Cyril Zipfel
- The Sainsbury LaboratoryNorwich Research ParkNorwichUK
| | - Ian B. Dry
- Commonwealth Scientific and Industrial Research Organisation (CSIRO)AdelaideSAAustralia
| | - Benoit Poinssot
- AgroécologieAgrosup DijonINRAUniversité Bourgogne Franche‐ComtéCNRS ERL 6003DijonFrance
| |
Collapse
|
122
|
Pattern recognition receptors and their interactions with bacterial type III effectors in plants. Genes Genomics 2019; 41:499-506. [DOI: 10.1007/s13258-019-00801-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 02/19/2019] [Indexed: 01/29/2023]
|
123
|
Sánchez-Martín J, Keller B. Contribution of recent technological advances to future resistance breeding. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:713-732. [PMID: 30756126 DOI: 10.1007/s00122-019-03297-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 02/02/2019] [Indexed: 05/23/2023]
Abstract
The development of durable host resistance strategies to control crop diseases is a primary need for sustainable agricultural production in the future. This article highlights the potential of recent progress in the understanding of host resistance for future cereal breeding. Much of the novel work is based on advancements in large-scale sequencing and genomics, rapid gene isolation techniques and high-throughput molecular marker technologies. Moreover, emerging applications on the pathogen side like effector identification or field pathogenomics are discussed. The combination of knowledge from both sides of cereal pathosystems will result in new approaches for resistance breeding. We describe future applications and innovative strategies to implement effective and durable strategies to combat diseases of major cereal crops while reducing pesticide dependency.
Collapse
Affiliation(s)
- Javier Sánchez-Martín
- Department of Plant and Microbial Biology, University of Zürich, Zollikerstrasse 107, 8008, Zurich, Switzerland.
| | - Beat Keller
- Department of Plant and Microbial Biology, University of Zürich, Zollikerstrasse 107, 8008, Zurich, Switzerland
| |
Collapse
|
124
|
Pfeilmeier S, George J, Morel A, Roy S, Smoker M, Stransfeld L, Downie JA, Peeters N, Malone JG, Zipfel C. Expression of the Arabidopsis thaliana immune receptor EFR in Medicago truncatula reduces infection by a root pathogenic bacterium, but not nitrogen-fixing rhizobial symbiosis. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:569-579. [PMID: 30120864 PMCID: PMC6381793 DOI: 10.1111/pbi.12999] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 07/11/2018] [Accepted: 08/13/2018] [Indexed: 05/12/2023]
Abstract
Interfamily transfer of plant pattern recognition receptors (PRRs) represents a promising biotechnological approach to engineer broad-spectrum, and potentially durable, disease resistance in crops. It is however unclear whether new recognition specificities to given pathogen-associated molecular patterns (PAMPs) affect the interaction of the recipient plant with beneficial microbes. To test this in a direct reductionist approach, we transferred the Brassicaceae-specific PRR ELONGATION FACTOR-THERMO UNSTABLE RECEPTOR (EFR), conferring recognition of the bacterial EF-Tu protein, from Arabidopsis thaliana to the legume Medicago truncatula. Constitutive EFR expression led to EFR accumulation and activation of immune responses upon treatment with the EF-Tu-derived elf18 peptide in leaves and roots. The interaction of M. truncatula with the bacterial symbiont Sinorhizobium meliloti is characterized by the formation of root nodules that fix atmospheric nitrogen. Although nodule numbers were slightly reduced at an early stage of the infection in EFR-Medicago when compared to control lines, nodulation was similar in all lines at later stages. Furthermore, nodule colonization by rhizobia, and nitrogen fixation were not compromised by EFR expression. Importantly, the M. truncatula lines expressing EFR were substantially more resistant to the root bacterial pathogen Ralstonia solanacearum. Our data suggest that the transfer of EFR to M. truncatula does not impede root nodule symbiosis, but has a positive impact on disease resistance against a bacterial pathogen. In addition, our results indicate that Rhizobium can either avoid PAMP recognition during the infection process, or is able to actively suppress immune signaling.
Collapse
Affiliation(s)
- Sebastian Pfeilmeier
- The Sainsbury LaboratoryNorwich Research ParkNorwichUK
- John Innes CentreNorwich Research ParkNorwichUK
- Present address:
Institute of MicrobiologyDepartment of BiologyETH ZurichZurich8093Switzerland
| | | | - Arry Morel
- INRALaboratoire des Interactions Plantes Micro‐organismes (LIPM)UMR441Castanet‐TolosanFrance
- CNRSLaboratoire des Interactions Plantes Micro‐organismes (LIPM)UMR2594Castanet‐TolosanFrance
| | - Sonali Roy
- John Innes CentreNorwich Research ParkNorwichUK
- Present address:
Noble Research InstituteArdmoreOKUSA
| | | | - Lena Stransfeld
- The Sainsbury LaboratoryNorwich Research ParkNorwichUK
- Institute of Plant and Microbial Biology & Zurich‐Basel Plant Science CenterUniversity of ZurichZurichSwitzerland
| | | | - Nemo Peeters
- INRALaboratoire des Interactions Plantes Micro‐organismes (LIPM)UMR441Castanet‐TolosanFrance
- CNRSLaboratoire des Interactions Plantes Micro‐organismes (LIPM)UMR2594Castanet‐TolosanFrance
| | - Jacob G. Malone
- John Innes CentreNorwich Research ParkNorwichUK
- School of Biological SciencesUniversity of East AngliaNorwichUK
| | - Cyril Zipfel
- The Sainsbury LaboratoryNorwich Research ParkNorwichUK
- Institute of Plant and Microbial Biology & Zurich‐Basel Plant Science CenterUniversity of ZurichZurichSwitzerland
| |
Collapse
|
125
|
Zhang Y, Wu L, Wang X, Chen B, Zhao J, Cui J, Li Z, Yang J, Wu L, Wu J, Zhang G, Ma Z. The cotton laccase gene GhLAC15 enhances Verticillium wilt resistance via an increase in defence-induced lignification and lignin components in the cell walls of plants. MOLECULAR PLANT PATHOLOGY 2019; 20:309-322. [PMID: 30267563 PMCID: PMC6637971 DOI: 10.1111/mpp.12755] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Verticillium dahliae is a phytopathogenic fungal pathogen that causes vascular wilt diseases responsible for considerable decreases in cotton yields. The lignification of cell wall appositions is a conserved basal defence mechanism in the plant innate immune response. However, the function of laccase in defence-induced lignification has not been described. Screening of an SSH library of a resistant cotton cultivar, Jimian20, inoculated with V. dahliae revealed a laccase gene that was strongly induced by the pathogen. This gene was phylogenetically related to AtLAC15 and contained domains conserved by laccases; therefore, we named it GhLAC15. Quantitative reverse transcription-polymerase chain reaction indicated that GhLAC15 maintained higher expression levels in tolerant than in susceptible cultivars. Overexpression of GhLAC15 enhanced cell wall lignification, resulting in increased total lignin, G monolignol and G/S ratio, which significantly improved the Verticillium wilt resistance of transgenic Arabidopsis. In addition, the levels of arabinose and xylose were higher in transgenic plants than in wild-type plants, which resulted in transgenic Arabidopsis plants being less easily hydrolysed. Furthermore, suppression of the transcriptional level of GhLAC15 resulted in an increase in susceptibility in cotton. The content of monolignol and the G/S ratio were lower in silenced cotton plants, which led to resistant cotton cv. Jimian20 becoming susceptible. These results demonstrate that GhLAC15 enhances Verticillium wilt resistance via an increase in defence-induced lignification and arabinose and xylose accumulation in the cell wall of Gossypium hirsutum. This study broadens our knowledge of defence-induced lignification and cell wall modifications as defence mechanisms against V. dahliae.
Collapse
Affiliation(s)
- Yan Zhang
- North China Key Laboratory for Germplasm Resources of Education MinistryHebei Agricultural UniversityBaoding071001China
| | - Lizhu Wu
- North China Key Laboratory for Germplasm Resources of Education MinistryHebei Agricultural UniversityBaoding071001China
| | - Xingfen Wang
- North China Key Laboratory for Germplasm Resources of Education MinistryHebei Agricultural UniversityBaoding071001China
| | - Bin Chen
- North China Key Laboratory for Germplasm Resources of Education MinistryHebei Agricultural UniversityBaoding071001China
| | - Jing Zhao
- North China Key Laboratory for Germplasm Resources of Education MinistryHebei Agricultural UniversityBaoding071001China
| | - Jing Cui
- North China Key Laboratory for Germplasm Resources of Education MinistryHebei Agricultural UniversityBaoding071001China
| | - Zhikun Li
- North China Key Laboratory for Germplasm Resources of Education MinistryHebei Agricultural UniversityBaoding071001China
| | - Jun Yang
- North China Key Laboratory for Germplasm Resources of Education MinistryHebei Agricultural UniversityBaoding071001China
| | - Liqiang Wu
- North China Key Laboratory for Germplasm Resources of Education MinistryHebei Agricultural UniversityBaoding071001China
| | - Jinhua Wu
- North China Key Laboratory for Germplasm Resources of Education MinistryHebei Agricultural UniversityBaoding071001China
| | - Guiyin Zhang
- North China Key Laboratory for Germplasm Resources of Education MinistryHebei Agricultural UniversityBaoding071001China
| | - Zhiying Ma
- North China Key Laboratory for Germplasm Resources of Education MinistryHebei Agricultural UniversityBaoding071001China
| |
Collapse
|
126
|
The Tug-of-War between Plants and Viruses: Great Progress and Many Remaining Questions. Viruses 2019; 11:v11030203. [PMID: 30823402 PMCID: PMC6466000 DOI: 10.3390/v11030203] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/18/2019] [Accepted: 02/23/2019] [Indexed: 12/19/2022] Open
Abstract
Plants are persistently challenged by various phytopathogens. To protect themselves, plants have evolved multilayered surveillance against all pathogens. For intracellular parasitic viruses, plants have developed innate immunity, RNA silencing, translation repression, ubiquitination-mediated and autophagy-mediated protein degradation, and other dominant resistance gene-mediated defenses. Plant viruses have also acquired diverse strategies to suppress and even exploit host defense machinery to ensure their survival. A better understanding of the defense and counter-defense between plants and viruses will obviously benefit from the development of efficient and broad-spectrum virus resistance for sustainable agriculture. In this review, we summarize the cutting edge of knowledge concerning the defense and counter-defense between plants and viruses, and highlight the unexploited areas that are especially worth investigating in the near future.
Collapse
|
127
|
Abstract
Bacterial spot (BS), caused by four species of Xanthomonas: X. euvesicatoria, X. vesicatoria, X. perforans and X. gardneri in tomato (Solanum lycopersicum L.) results in severe loss in yield and quality by defoliation and the appearance of lesions on fruits, respectively. The combined industry standard for BS control (foliar applications Actigard® rotated with copper plus mancozeb) does not offer sufficient protection, especially when weather conditions favor disease spread. Development of tomato cultivars with BS resistance is thus an important measure to minimize losses. Hypersensitive and non-hypersensitive resistance has been identified in different wild accessions and cultivated tomato relatives and has been transferred to cultivated tomato. However, complete resistance is yet to be obtained. With the advent of next generation sequencing and precise genome editing tools, the genetic regions that confer resistance to bacterial spot can be targeted and enriched through gene pyramiding in a new commercial cultivar which may confer higher degree of horizontal resistance to multiple strains of Xanthomonas causing bacterial spot in tomato.
Collapse
|
128
|
Qi M, Zheng W, Zhao X, Hohenstein JD, Kandel Y, O'Conner S, Wang Y, Du C, Nettleton D, MacIntosh GC, Tylka GL, Wurtele ES, Whitham SA, Li L. QQS orphan gene and its interactor NF-YC4 reduce susceptibility to pathogens and pests. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:252-263. [PMID: 29878511 PMCID: PMC6330549 DOI: 10.1111/pbi.12961] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/04/2018] [Indexed: 05/19/2023]
Abstract
Enhancing the nutritional quality and disease resistance of crops without sacrificing productivity is a key issue for developing varieties that are valuable to farmers and for simultaneously improving food security and sustainability. Expression of the Arabidopsis thaliana species-specific AtQQS (Qua-Quine Starch) orphan gene or its interactor, NF-YC4 (Nuclear Factor Y, subunit C4), has been shown to increase levels of leaf/seed protein without affecting the growth and yield of agronomic species. Here, we demonstrate that overexpression of AtQQS and NF-YC4 in Arabidopsis and soybean enhances resistance/reduces susceptibility to viruses, bacteria, fungi, aphids and soybean cyst nematodes. A series of Arabidopsis mutants in starch metabolism were used to explore the relationships between QQS expression, carbon and nitrogen partitioning, and defense. The enhanced basal defenses mediated by QQS were independent of changes in protein/carbohydrate composition of the plants. We demonstrate that either AtQQS or NF-YC4 overexpression in Arabidopsis and in soybean reduces susceptibility of these plants to pathogens/pests. Transgenic soybean lines overexpressing NF-YC4 produce seeds with increased protein while maintaining healthy growth. Pull-down studies reveal that QQS interacts with human NF-YC, as well as with Arabidopsis NF-YC4, and indicate two QQS binding sites near the NF-YC-histone-binding domain. A new model for QQS interaction with NF-YC is speculated. Our findings illustrate the potential of QQS and NF-YC4 to increase protein and improve defensive traits in crops, overcoming the normal growth-defense trade-offs.
Collapse
Affiliation(s)
- Mingsheng Qi
- Department of Plant Pathology and MicrobiologyIowa State UniversityAmesIAUSA
| | - Wenguang Zheng
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIAUSA
| | - Xuefeng Zhao
- Laurence H. Baker Center for Bioinformatics and Biological StatisticsIowa State UniversityAmesIAUSA
| | - Jessica D. Hohenstein
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular BiologyIowa State UniversityAmesIAUSA
| | - Yuba Kandel
- Department of Plant Pathology and MicrobiologyIowa State UniversityAmesIAUSA
| | - Seth O'Conner
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIAUSA
- Department of Biological SciencesMississippi State UniversityStarkvilleMSUSA
| | - Yifan Wang
- Department of StatisticsIowa State UniversityAmesIAUSA
| | - Chuanlong Du
- Department of StatisticsIowa State UniversityAmesIAUSA
| | - Dan Nettleton
- Department of StatisticsIowa State UniversityAmesIAUSA
| | - Gustavo C. MacIntosh
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular BiologyIowa State UniversityAmesIAUSA
| | - Gregory L. Tylka
- Department of Plant Pathology and MicrobiologyIowa State UniversityAmesIAUSA
| | - Eve S. Wurtele
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIAUSA
- Center for Metabolic BiologyIowa State UniversityAmesIAUSA
| | - Steven A. Whitham
- Department of Plant Pathology and MicrobiologyIowa State UniversityAmesIAUSA
| | - Ling Li
- Department of Genetics, Development and Cell BiologyIowa State UniversityAmesIAUSA
- Department of Biological SciencesMississippi State UniversityStarkvilleMSUSA
- Center for Metabolic BiologyIowa State UniversityAmesIAUSA
| |
Collapse
|
129
|
Davies JP, Christensen CA. Developing Transgenic Agronomic Traits for Crops: Targets, Methods, and Challenges. Methods Mol Biol 2019; 1864:343-365. [PMID: 30415346 DOI: 10.1007/978-1-4939-8778-8_22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The last two decades have witnessed a surge of investment by the agricultural biotechnology industry in the development of transgenic agronomic traits. These are traits that improve yield performance by modifying endogenous physiological processes such as energy capture, nutrient utilization, and stress tolerance. In this chapter we provide a foundation for understanding these fundamental processes and then outline approaches that have been taken to use this knowledge for yield improvement. We characterize the current status of product development pipelines in the industry and illustrate the trait discovery process with three important examples-bacterial cold-shock proteins, alanine aminotransferase, and auxin-regulated genes. The challenges with developing and commercializing an agronomic trait product are discussed.
Collapse
Affiliation(s)
- John P Davies
- Corteva Agriscience™, Agriculture Division of DowDuPont™, Indianapolis, IN, USA.
| | - Cory A Christensen
- Corteva Agriscience™, Agriculture Division of DowDuPont™, Indianapolis, IN, USA
| |
Collapse
|
130
|
Li Z, Huang J, Wang Z, Meng F, Zhang S, Wu X, Zhang Z, Gao Z. Overexpression of Arabidopsis Nucleotide-Binding and Leucine-Rich Repeat Genes RPS2 and RPM1( D505V) Confers Broad-Spectrum Disease Resistance in Rice. FRONTIERS IN PLANT SCIENCE 2019; 10:417. [PMID: 31024591 PMCID: PMC6459959 DOI: 10.3389/fpls.2019.00417] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 03/19/2019] [Indexed: 05/06/2023]
Abstract
The nucleotide-binding domain leucine-rich repeat (NLR) immune receptors play important roles in innate plant immunity. The activation of NLRs is specifically induced by their cognate effectors released from pathogens. Autoactive NLRs are expected to confer broad-spectrum resistance because they do not need cognate effectors to activate their immune responses. In this study, we demonstrated that the NLR genes RPS2 and RPM1(D505V) from Arabidopsis were autoactive in Oryza sativa and conferred broad-spectrum resistance to fungal pathogen Magnaporthe oryzae, bacterial pathogen Xanthomonas oryzae pv. oryzae (Xoo), and pest brown planthopper (BPH, Nilaparvata lugens Stål). These results revealed that interfamily transfer of dicot NLRs to monocot species could be functional. The transgenic plants displayed early and strong induction of reactive oxygen species (ROS), callose deposition, and expression of defense-related genes after challenged with M. oryzae. The transcriptome analysis showed that the expressions of some defense-related genes were primed to adapt the transformed autoactive NLRs in the transgenic plants. This study indicates that autoactive NLRs are a promising resource for breeding crops with broad-spectrum resistance and provides new insights for engineering disease resistance.
Collapse
|
131
|
Kunwar S, Iriarte F, Fan Q, Evaristo da Silva E, Ritchie L, Nguyen NS, Freeman JH, Stall RE, Jones JB, Minsavage GV, Colee J, Scott JW, Vallad GE, Zipfel C, Horvath D, Westwood J, Hutton SF, Paret ML. Transgenic Expression of EFR and Bs2 Genes for Field Management of Bacterial Wilt and Bacterial Spot of Tomato. PHYTOPATHOLOGY 2018; 108:1402-1411. [PMID: 29923802 DOI: 10.1094/phyto-12-17-0424-r] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Field trials were conducted at two locations in Florida to evaluate transgenic tomato expressing the ELONGATION FACTOR TU RECEPTOR (EFR) gene from Arabidopsis thaliana, the Bs2 gene from pepper, or both Bs2 and EFR (Bs2/EFR) for managing bacterial wilt caused by Ralstonia solanacearum and bacterial spot caused by Xanthomonas perforans. Expression of EFR or Bs2/EFR in the susceptible genotype Fla. 8000 significantly reduced bacterial wilt incidence (50 to 100%) and increased total yield (57 to 114%) relative to lines expressing only Bs2 or the nontransformed Fla. 8000 control, although the marketable yield was not significantly affected. Following harvest, surviving symptomatic and nonsymptomatic plants were assessed for colonization by R. solanacearum. There were no significant differences in the population at the lower stem. Interestingly, in the middle stem, no bacteria could be recovered from EFR or Bs2/EFR lines but viable bacterial populations were recovered from Bs2 and nontransformed control lines at 102 to 105 CFU/g of stem tissue. In growth-chamber experiments, the EFR transgenic tomato lines were found to be effective against seven different R. solanacearum strains isolated from the southeastern United States, indicating utility across the southeastern United States. In all of the bacterial spot trials, EFR and Bs2/EFR lines had significantly reduced disease severity (22 to 98%) compared with the Fla. 8000 control. The marketable and total yield of Bs2/EFR were significantly higher (43 to 170%) than Fla. 8000 control in three of four field trials. These results demonstrate for the first time the potential of using the EFR gene for field management of bacterial wilt and bacterial spot diseases of tomato.
Collapse
Affiliation(s)
- Sanju Kunwar
- First, third, eighth, ninth, tenth, thirteenth, and eighteenth authors: Department of Plant Pathology, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32611; first, second, third, fourth, fifth, sixth, seventh, and eighteenth authors: North Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Quincy 32351; seventh, twelfth, and seventeenth authors: Horticultural Sciences Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville; eleventh author: Institute of Food and Agricultural Sciences, Statistics Division, University of Florida, Gainesville; twelfth, thirteenth, and seventeenth authors: Gulf Coast Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Wimauma 33598; fourteenth author: The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK; and fifteenth and sixteenth authors: Two Blades Foundation, Evanston, IL, 60201
| | - Fanny Iriarte
- First, third, eighth, ninth, tenth, thirteenth, and eighteenth authors: Department of Plant Pathology, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32611; first, second, third, fourth, fifth, sixth, seventh, and eighteenth authors: North Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Quincy 32351; seventh, twelfth, and seventeenth authors: Horticultural Sciences Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville; eleventh author: Institute of Food and Agricultural Sciences, Statistics Division, University of Florida, Gainesville; twelfth, thirteenth, and seventeenth authors: Gulf Coast Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Wimauma 33598; fourteenth author: The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK; and fifteenth and sixteenth authors: Two Blades Foundation, Evanston, IL, 60201
| | - Qiurong Fan
- First, third, eighth, ninth, tenth, thirteenth, and eighteenth authors: Department of Plant Pathology, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32611; first, second, third, fourth, fifth, sixth, seventh, and eighteenth authors: North Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Quincy 32351; seventh, twelfth, and seventeenth authors: Horticultural Sciences Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville; eleventh author: Institute of Food and Agricultural Sciences, Statistics Division, University of Florida, Gainesville; twelfth, thirteenth, and seventeenth authors: Gulf Coast Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Wimauma 33598; fourteenth author: The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK; and fifteenth and sixteenth authors: Two Blades Foundation, Evanston, IL, 60201
| | - Eduardo Evaristo da Silva
- First, third, eighth, ninth, tenth, thirteenth, and eighteenth authors: Department of Plant Pathology, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32611; first, second, third, fourth, fifth, sixth, seventh, and eighteenth authors: North Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Quincy 32351; seventh, twelfth, and seventeenth authors: Horticultural Sciences Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville; eleventh author: Institute of Food and Agricultural Sciences, Statistics Division, University of Florida, Gainesville; twelfth, thirteenth, and seventeenth authors: Gulf Coast Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Wimauma 33598; fourteenth author: The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK; and fifteenth and sixteenth authors: Two Blades Foundation, Evanston, IL, 60201
| | - Laura Ritchie
- First, third, eighth, ninth, tenth, thirteenth, and eighteenth authors: Department of Plant Pathology, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32611; first, second, third, fourth, fifth, sixth, seventh, and eighteenth authors: North Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Quincy 32351; seventh, twelfth, and seventeenth authors: Horticultural Sciences Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville; eleventh author: Institute of Food and Agricultural Sciences, Statistics Division, University of Florida, Gainesville; twelfth, thirteenth, and seventeenth authors: Gulf Coast Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Wimauma 33598; fourteenth author: The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK; and fifteenth and sixteenth authors: Two Blades Foundation, Evanston, IL, 60201
| | - Nghi Song Nguyen
- First, third, eighth, ninth, tenth, thirteenth, and eighteenth authors: Department of Plant Pathology, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32611; first, second, third, fourth, fifth, sixth, seventh, and eighteenth authors: North Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Quincy 32351; seventh, twelfth, and seventeenth authors: Horticultural Sciences Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville; eleventh author: Institute of Food and Agricultural Sciences, Statistics Division, University of Florida, Gainesville; twelfth, thirteenth, and seventeenth authors: Gulf Coast Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Wimauma 33598; fourteenth author: The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK; and fifteenth and sixteenth authors: Two Blades Foundation, Evanston, IL, 60201
| | - Joshua H Freeman
- First, third, eighth, ninth, tenth, thirteenth, and eighteenth authors: Department of Plant Pathology, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32611; first, second, third, fourth, fifth, sixth, seventh, and eighteenth authors: North Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Quincy 32351; seventh, twelfth, and seventeenth authors: Horticultural Sciences Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville; eleventh author: Institute of Food and Agricultural Sciences, Statistics Division, University of Florida, Gainesville; twelfth, thirteenth, and seventeenth authors: Gulf Coast Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Wimauma 33598; fourteenth author: The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK; and fifteenth and sixteenth authors: Two Blades Foundation, Evanston, IL, 60201
| | - Robert E Stall
- First, third, eighth, ninth, tenth, thirteenth, and eighteenth authors: Department of Plant Pathology, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32611; first, second, third, fourth, fifth, sixth, seventh, and eighteenth authors: North Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Quincy 32351; seventh, twelfth, and seventeenth authors: Horticultural Sciences Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville; eleventh author: Institute of Food and Agricultural Sciences, Statistics Division, University of Florida, Gainesville; twelfth, thirteenth, and seventeenth authors: Gulf Coast Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Wimauma 33598; fourteenth author: The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK; and fifteenth and sixteenth authors: Two Blades Foundation, Evanston, IL, 60201
| | - Jeffrey B Jones
- First, third, eighth, ninth, tenth, thirteenth, and eighteenth authors: Department of Plant Pathology, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32611; first, second, third, fourth, fifth, sixth, seventh, and eighteenth authors: North Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Quincy 32351; seventh, twelfth, and seventeenth authors: Horticultural Sciences Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville; eleventh author: Institute of Food and Agricultural Sciences, Statistics Division, University of Florida, Gainesville; twelfth, thirteenth, and seventeenth authors: Gulf Coast Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Wimauma 33598; fourteenth author: The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK; and fifteenth and sixteenth authors: Two Blades Foundation, Evanston, IL, 60201
| | - Gerald V Minsavage
- First, third, eighth, ninth, tenth, thirteenth, and eighteenth authors: Department of Plant Pathology, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32611; first, second, third, fourth, fifth, sixth, seventh, and eighteenth authors: North Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Quincy 32351; seventh, twelfth, and seventeenth authors: Horticultural Sciences Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville; eleventh author: Institute of Food and Agricultural Sciences, Statistics Division, University of Florida, Gainesville; twelfth, thirteenth, and seventeenth authors: Gulf Coast Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Wimauma 33598; fourteenth author: The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK; and fifteenth and sixteenth authors: Two Blades Foundation, Evanston, IL, 60201
| | - James Colee
- First, third, eighth, ninth, tenth, thirteenth, and eighteenth authors: Department of Plant Pathology, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32611; first, second, third, fourth, fifth, sixth, seventh, and eighteenth authors: North Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Quincy 32351; seventh, twelfth, and seventeenth authors: Horticultural Sciences Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville; eleventh author: Institute of Food and Agricultural Sciences, Statistics Division, University of Florida, Gainesville; twelfth, thirteenth, and seventeenth authors: Gulf Coast Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Wimauma 33598; fourteenth author: The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK; and fifteenth and sixteenth authors: Two Blades Foundation, Evanston, IL, 60201
| | - Jay W Scott
- First, third, eighth, ninth, tenth, thirteenth, and eighteenth authors: Department of Plant Pathology, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32611; first, second, third, fourth, fifth, sixth, seventh, and eighteenth authors: North Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Quincy 32351; seventh, twelfth, and seventeenth authors: Horticultural Sciences Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville; eleventh author: Institute of Food and Agricultural Sciences, Statistics Division, University of Florida, Gainesville; twelfth, thirteenth, and seventeenth authors: Gulf Coast Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Wimauma 33598; fourteenth author: The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK; and fifteenth and sixteenth authors: Two Blades Foundation, Evanston, IL, 60201
| | - Gary E Vallad
- First, third, eighth, ninth, tenth, thirteenth, and eighteenth authors: Department of Plant Pathology, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32611; first, second, third, fourth, fifth, sixth, seventh, and eighteenth authors: North Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Quincy 32351; seventh, twelfth, and seventeenth authors: Horticultural Sciences Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville; eleventh author: Institute of Food and Agricultural Sciences, Statistics Division, University of Florida, Gainesville; twelfth, thirteenth, and seventeenth authors: Gulf Coast Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Wimauma 33598; fourteenth author: The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK; and fifteenth and sixteenth authors: Two Blades Foundation, Evanston, IL, 60201
| | - Cyril Zipfel
- First, third, eighth, ninth, tenth, thirteenth, and eighteenth authors: Department of Plant Pathology, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32611; first, second, third, fourth, fifth, sixth, seventh, and eighteenth authors: North Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Quincy 32351; seventh, twelfth, and seventeenth authors: Horticultural Sciences Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville; eleventh author: Institute of Food and Agricultural Sciences, Statistics Division, University of Florida, Gainesville; twelfth, thirteenth, and seventeenth authors: Gulf Coast Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Wimauma 33598; fourteenth author: The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK; and fifteenth and sixteenth authors: Two Blades Foundation, Evanston, IL, 60201
| | - Diana Horvath
- First, third, eighth, ninth, tenth, thirteenth, and eighteenth authors: Department of Plant Pathology, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32611; first, second, third, fourth, fifth, sixth, seventh, and eighteenth authors: North Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Quincy 32351; seventh, twelfth, and seventeenth authors: Horticultural Sciences Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville; eleventh author: Institute of Food and Agricultural Sciences, Statistics Division, University of Florida, Gainesville; twelfth, thirteenth, and seventeenth authors: Gulf Coast Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Wimauma 33598; fourteenth author: The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK; and fifteenth and sixteenth authors: Two Blades Foundation, Evanston, IL, 60201
| | - Jack Westwood
- First, third, eighth, ninth, tenth, thirteenth, and eighteenth authors: Department of Plant Pathology, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32611; first, second, third, fourth, fifth, sixth, seventh, and eighteenth authors: North Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Quincy 32351; seventh, twelfth, and seventeenth authors: Horticultural Sciences Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville; eleventh author: Institute of Food and Agricultural Sciences, Statistics Division, University of Florida, Gainesville; twelfth, thirteenth, and seventeenth authors: Gulf Coast Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Wimauma 33598; fourteenth author: The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK; and fifteenth and sixteenth authors: Two Blades Foundation, Evanston, IL, 60201
| | - Samuel F Hutton
- First, third, eighth, ninth, tenth, thirteenth, and eighteenth authors: Department of Plant Pathology, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32611; first, second, third, fourth, fifth, sixth, seventh, and eighteenth authors: North Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Quincy 32351; seventh, twelfth, and seventeenth authors: Horticultural Sciences Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville; eleventh author: Institute of Food and Agricultural Sciences, Statistics Division, University of Florida, Gainesville; twelfth, thirteenth, and seventeenth authors: Gulf Coast Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Wimauma 33598; fourteenth author: The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK; and fifteenth and sixteenth authors: Two Blades Foundation, Evanston, IL, 60201
| | - Mathews L Paret
- First, third, eighth, ninth, tenth, thirteenth, and eighteenth authors: Department of Plant Pathology, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32611; first, second, third, fourth, fifth, sixth, seventh, and eighteenth authors: North Florida Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Quincy 32351; seventh, twelfth, and seventeenth authors: Horticultural Sciences Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville; eleventh author: Institute of Food and Agricultural Sciences, Statistics Division, University of Florida, Gainesville; twelfth, thirteenth, and seventeenth authors: Gulf Coast Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Wimauma 33598; fourteenth author: The Sainsbury Laboratory, Norwich Research Park, Norwich, NR4 7UH, UK; and fifteenth and sixteenth authors: Two Blades Foundation, Evanston, IL, 60201
| |
Collapse
|
132
|
Gilbert B, Bettgenhaeuser J, Upadhyaya N, Soliveres M, Singh D, Park RF, Moscou MJ, Ayliffe M. Components of Brachypodium distachyon resistance to nonadapted wheat stripe rust pathogens are simply inherited. PLoS Genet 2018; 14:e1007636. [PMID: 30265668 PMCID: PMC6161853 DOI: 10.1371/journal.pgen.1007636] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 08/15/2018] [Indexed: 11/19/2022] Open
Abstract
Phytopathogens have a limited range of host plant species that they can successfully parasitise ie. that they are adapted for. Infection of plants by nonadapted pathogens often results in an active resistance response that is relatively poorly characterised because phenotypic variation in this response often does not exist within a plant species, or is too subtle for genetic dissection. In addition, complex polygenic inheritance often underlies these resistance phenotypes and mutagenesis often does not impact upon this resistance, presumably due to genetic or mechanistic redundancy. Here it is demonstrated that phenotypic differences in the resistance response of Brachypodium distachyon to the nonadapted wheat stripe rust pathogen Puccinia striiformis f. sp. tritici (Pst) are genetically tractable and simply inherited. Two dominant loci were identified on B. distachyon chromosome 4 that each reduce attempted Pst colonisation compared with sib and parent lines without these loci. One locus (Yrr1) is effective against diverse Australian Pst isolates and present in two B. distachyon mapping families as a conserved region that was reduced to 5 candidate genes by fine mapping. A second locus, Yrr2, shows Pst race-specificity and encodes a disease resistance gene family typically associated with host plant resistance. These data indicate that some components of resistance to nonadapted pathogens are genetically tractable in some instances and may mechanistically overlap with host plant resistance to avirulent adapted pathogens.
Collapse
Affiliation(s)
- Brian Gilbert
- CSIRO Agriculture and Food, Clunies Ross Drive, Canberra, ACT, Australia
| | - Jan Bettgenhaeuser
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Narayana Upadhyaya
- CSIRO Agriculture and Food, Clunies Ross Drive, Canberra, ACT, Australia
| | - Melanie Soliveres
- CSIRO Agriculture and Food, Clunies Ross Drive, Canberra, ACT, Australia
| | - Davinder Singh
- University of Sydney, Plant Breeding Institute, Cobbitty, NSW, Australia
| | - Robert F. Park
- University of Sydney, Plant Breeding Institute, Cobbitty, NSW, Australia
| | - Matthew J. Moscou
- The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
- University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Michael Ayliffe
- CSIRO Agriculture and Food, Clunies Ross Drive, Canberra, ACT, Australia
| |
Collapse
|
133
|
Eckshtain‐Levi N, Weisberg AJ, Vinatzer BA. The population genetic test Tajima's D identifies genes encoding pathogen-associated molecular patterns and other virulence-related genes in Ralstonia solanacearum. MOLECULAR PLANT PATHOLOGY 2018; 19:2187-2192. [PMID: 29660239 PMCID: PMC6638162 DOI: 10.1111/mpp.12688] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 03/28/2018] [Accepted: 04/06/2018] [Indexed: 06/08/2023]
Abstract
The detection of pathogen-associated molecular patterns (PAMPs) by plant pattern recognition receptors (PRRs) is an essential part of plant immunity. Until recently, elf18, an epitope of elongation factor-Tu (EF-Tu), was the sole confirmed PAMP of Ralstonia solanacearum, the causal agent of bacterial wilt disease, limiting our understanding of R. solanacearum-plant interactions. Therefore, we set out to identify additional R. solanacearum PAMPs based on the hypothesis that genes encoding PAMPs are under selection to avoid recognition by plant PRRs. We calculated Tajima's D, a population genetic test statistic which identifies genes that do not evolve neutrally, for 3003 genes conserved in 37 R. solanacearum genomes. The screen flagged 49 non-neutrally evolving genes, including not only EF-Tu but also the gene for Cold Shock Protein C, which encodes the PAMP csp22. Importantly, an R. solanacearum allele of this PAMP was recently identified in a parallel independent study. Genes coding for efflux pumps, some with known roles in virulence, were also flagged by Tajima's D. We conclude that Tajima's D is a straightforward test to identify genes encoding PAMPs and other virulence-related genes in plant pathogen genomes.
Collapse
Affiliation(s)
- Noam Eckshtain‐Levi
- Department of Plant Pathology, Physiology and Weed ScienceVirginia TechBlacksburg VA 24061USA
| | - Alexandra J. Weisberg
- Department of Plant Pathology, Physiology and Weed ScienceVirginia TechBlacksburg VA 24061USA
| | - Boris A. Vinatzer
- Department of Plant Pathology, Physiology and Weed ScienceVirginia TechBlacksburg VA 24061USA
| |
Collapse
|
134
|
Monteiro F, Nishimura MT. Structural, Functional, and Genomic Diversity of Plant NLR Proteins: An Evolved Resource for Rational Engineering of Plant Immunity. ANNUAL REVIEW OF PHYTOPATHOLOGY 2018; 56:243-267. [PMID: 29949721 DOI: 10.1146/annurev-phyto-080417-045817] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plants employ a diverse intracellular system of NLR (nucleotide binding-leucine-rich repeat) innate immune receptors to detect pathogens of all types. These receptors represent valuable agronomic traits that plant breeders rely on to maximize yield in the face of devastating pathogens. Despite their importance, the mechanistic underpinnings of NLR-based disease resistance remain obscure. The rapidly increasing numbers of plant genomes are revealing a diverse array of NLR-type immune receptors. In parallel, mechanistic studies are describing diverse functions for NLR immune receptors. In this review, we intend to broadly describe how the structural, functional, and genomic diversity of plant immune receptors can provide a valuable resource for rational engineering of plant immunity.
Collapse
Affiliation(s)
- Freddy Monteiro
- Center for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, 08193 Barcelona, Spain
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280, USA
| | - Marc T Nishimura
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523-1870;
| |
Collapse
|
135
|
Pattern Recognition Receptors—Versatile Genetic Tools for Engineering Broad-Spectrum Disease Resistance in Crops. AGRONOMY-BASEL 2018. [DOI: 10.3390/agronomy8080134] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Infestations of crop plants with pathogens pose a major threat to global food supply. Exploiting plant defense mechanisms to produce disease-resistant crop varieties is an important strategy to control plant diseases in modern plant breeding and can greatly reduce the application of agrochemicals. The discovery of different types of immune receptors and a detailed understanding of their activation and regulation mechanisms in the last decades has paved the way for the deployment of these central plant immune components for genetic plant disease management. This review will focus on a particular class of immune sensors, termed pattern recognition receptors (PRRs), that activate a defense program termed pattern-triggered immunity (PTI) and outline their potential to provide broad-spectrum and potentially durable disease resistance in various crop species—simply by providing plants with enhanced capacities to detect invaders and to rapidly launch their natural defense program.
Collapse
|
136
|
Pereira JA, Yu F, Zhang Y, Jones JB, Mou Z. The Arabidopsis Elongator Subunit ELP3 and ELP4 Confer Resistance to Bacterial Speck in Tomato. FRONTIERS IN PLANT SCIENCE 2018; 9:1066. [PMID: 30087688 PMCID: PMC6066517 DOI: 10.3389/fpls.2018.01066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 06/29/2018] [Indexed: 06/08/2023]
Abstract
Although production of tomato (Solanum lycopersicum) is threatened by a number of major diseases worldwide, it has been difficult to identify effective and durable management measures against these diseases. In this study, we attempted to improve tomato disease resistance by transgenic overexpression of genes encoding the Arabidopsis thaliana Elongator (AtELP) complex subunits AtELP3 and AtELP4. We show that overexpression of AtELP3 and AtELP4 significantly enhanced resistance to tomato bacterial speck caused by the Pseudomonas syringae pv. tomato strain J4 (Pst J4) without clear detrimental effects on plant growth and development. Interestingly, the transgenic plants exhibited resistance to Pst J4 only when inoculated through foliar sprays but not through infiltration into the leaf apoplast. Although this result suggested possible involvement of stomatal immunity, we found that Pst J4 inoculation did not induce stomatal closure and there were no differences in stomatal apertures and conductance between the transgenic and control plants. Further RNA sequencing and real-time quantitative PCR analyses revealed a group of defense-related genes to be induced to higher levels after infection in the AtELP4 transgenic tomato plants than in the control, suggesting that the enhanced disease resistance of the transgenic plants may be attributed to elevated induction of defense responses. Additionally, we show that the tomato genome contains single-copy genes encoding all six Elongator subunits (SlELPs), which share high identities with the AtELP proteins, and that SlELP3 and SlELP4 complemented the Arabidopsis Atelp3 and Atelp4 mutants, respectively, indicating that the function of tomato Elongator is probably conserved. Taken together, our results not only shed new light on the tomato Elongator complex, but also revealed potential candidate genes for engineering disease resistance in tomato.
Collapse
Affiliation(s)
- Juliana A. Pereira
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
| | - Fahong Yu
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, United States
| | - Yanping Zhang
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, United States
| | - Jeffrey B. Jones
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
| | - Zhonglin Mou
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, United States
| |
Collapse
|
137
|
Wei Y, Caceres‐Moreno C, Jimenez‐Gongora T, Wang K, Sang Y, Lozano‐Duran R, Macho AP. The Ralstonia solanacearum csp22 peptide, but not flagellin-derived peptides, is perceived by plants from the Solanaceae family. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1349-1362. [PMID: 29265643 PMCID: PMC5999195 DOI: 10.1111/pbi.12874] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/10/2017] [Accepted: 12/12/2017] [Indexed: 05/20/2023]
Abstract
Ralstonia solanacearum, the causal agent of bacterial wilt disease, is considered one of the most destructive bacterial pathogens due to its lethality, unusually wide host range, persistence and broad geographical distribution. In spite of the extensive research on plant immunity over the last years, the perception of molecular patterns from R. solanacearum that activate immunity in plants is still poorly understood, which hinders the development of strategies to generate resistance against bacterial wilt disease. The perception of a conserved peptide of bacterial flagellin, flg22, is regarded as paradigm of plant perception of invading bacteria; however, no elicitor activity has been detected for R. solanacearum flg22. Recent reports have shown that other epitopes from flagellin are able to elicit immune responses in specific species from the Solanaceae family, yet our results show that these plants do not perceive any epitope from R. solanacearum flagellin. Searching for elicitor peptides from R. solanacearum, we found several protein sequences similar to the consensus of the elicitor peptide csp22, reported to elicit immunity in specific Solanaceae plants. A R. solanacearum csp22 peptide (csp22Rsol ) was indeed able to trigger immune responses in Nicotiana benthamiana and tomato, but not in Arabidopsis thaliana. Additionally, csp22Rsol treatment conferred increased resistance to R. solanacearum in tomato. Transgenic A. thaliana plants expressing the tomato csp22 receptor (SlCORE) gained the ability to respond to csp22Rsol and became more resistant to R. solanacearum infection. Our results shed light on the mechanisms for perception of R. solanacearum by plants, paving the way for improving current approaches to generate resistance against R. solanacearum.
Collapse
Affiliation(s)
- Yali Wei
- Shanghai Center for Plant Stress BiologyCAS Center for Excellence in Molecular Plant SciencesShanghai Institutes of Biological SciencesChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Carlos Caceres‐Moreno
- Shanghai Center for Plant Stress BiologyCAS Center for Excellence in Molecular Plant SciencesShanghai Institutes of Biological SciencesChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Tamara Jimenez‐Gongora
- Shanghai Center for Plant Stress BiologyCAS Center for Excellence in Molecular Plant SciencesShanghai Institutes of Biological SciencesChinese Academy of SciencesShanghaiChina
- University of Chinese Academy of SciencesBeijingChina
| | - Keke Wang
- Shanghai Center for Plant Stress BiologyCAS Center for Excellence in Molecular Plant SciencesShanghai Institutes of Biological SciencesChinese Academy of SciencesShanghaiChina
| | - Yuying Sang
- Shanghai Center for Plant Stress BiologyCAS Center for Excellence in Molecular Plant SciencesShanghai Institutes of Biological SciencesChinese Academy of SciencesShanghaiChina
| | - Rosa Lozano‐Duran
- Shanghai Center for Plant Stress BiologyCAS Center for Excellence in Molecular Plant SciencesShanghai Institutes of Biological SciencesChinese Academy of SciencesShanghaiChina
| | - Alberto P. Macho
- Shanghai Center for Plant Stress BiologyCAS Center for Excellence in Molecular Plant SciencesShanghai Institutes of Biological SciencesChinese Academy of SciencesShanghaiChina
| |
Collapse
|
138
|
Wei H, Collmer A. Defining essential processes in plant pathogenesis with Pseudomonas syringae pv. tomato DC3000 disarmed polymutants and a subset of key type III effectors. MOLECULAR PLANT PATHOLOGY 2018; 19:1779-1794. [PMID: 29277959 PMCID: PMC6638048 DOI: 10.1111/mpp.12655] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 11/10/2017] [Accepted: 12/20/2017] [Indexed: 05/22/2023]
Abstract
Pseudomonas syringae pv. tomato DC3000 and its derivatives cause disease in tomato, Arabidopsis and Nicotiana benthamiana. The primary virulence factors include a repertoire of 29 effector proteins injected into plant cells by the type III secretion system and the phytotoxin coronatine. The complete repertoire of effector genes and key coronatine biosynthesis genes have been progressively deleted and minimally reassembled to reconstitute basic pathogenic ability in N. benthamiana, and in Arabidopsis plants that have mutations in target genes that mimic effector actions. This approach and molecular studies of effector activities and plant immune system targets have highlighted a small subset of effectors that contribute to essential processes in pathogenesis. Most notably, HopM1 and AvrE1 redundantly promote an aqueous apoplastic environment, and AvrPtoB and AvrPto redundantly block early immune responses, two conditions that are sufficient for substantial bacterial growth in planta. In addition, disarmed DC3000 polymutants have been used to identify the individual effectors responsible for specific activities of the complete repertoire and to more effectively study effector domains, effector interplay and effector actions on host targets. Such work has revealed that AvrPtoB suppresses cell death elicitation in N. benthamiana that is triggered by another effector in the DC3000 repertoire, highlighting an important aspect of effector interplay in native repertoires. Disarmed DC3000 polymutants support the natural delivery of test effectors and infection readouts that more accurately reveal effector functions in key pathogenesis processes, and enable the identification of effectors with similar activities from a broad range of other pathogens that also defeat plants with cytoplasmic effectors.
Collapse
Affiliation(s)
- Hai‐Lei Wei
- School of Integrative Plant ScienceSection of Plant Pathology and Plant–Microbe Biology, Cornell UniversityIthacaNY14853USA
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of AgricultureInstitute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural SciencesBeijing100081China
| | - Alan Collmer
- School of Integrative Plant ScienceSection of Plant Pathology and Plant–Microbe Biology, Cornell UniversityIthacaNY14853USA
| |
Collapse
|
139
|
Romero CCT, Vermeulen JP, Vels A, Himmelbach A, Mascher M, Niks RE. Mapping resistance to powdery mildew in barley reveals a large-effect nonhost resistance QTL. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:1031-1045. [PMID: 29372282 PMCID: PMC5895680 DOI: 10.1007/s00122-018-3055-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 01/12/2018] [Indexed: 05/08/2023]
Abstract
Resistance factors against non-adapted powdery mildews were mapped in barley. Some QTLs seem effective only to non-adapted mildews, while others also play a role in defense against the adapted form. The durability and effectiveness of nonhost resistance suggests promising practical applications for crop breeding, relying upon elucidation of key aspects of this type of resistance. We investigated which genetic factors determine the nonhost status of barley (Hordeum vulgare L.) to powdery mildews (Blumeria graminis). We set out to verify whether genes involved in nonhost resistance have a wide effectiveness spectrum, and whether nonhost resistance genes confer resistance to the barley adapted powdery mildew. Two barley lines, SusBgtSC and SusBgtDC, with some susceptibility to the wheat powdery mildew B. graminis f.sp. tritici (Bgt) were crossed with cv Vada to generate two mapping populations. Each population was assessed for level of infection against four B. graminis ff.spp, and QTL mapping analyses were performed. Our results demonstrate polygenic inheritance for nonhost resistance, with some QTLs effective only to non-adapted mildews, while others play a role against adapted and non-adapted forms. Histology analyses of nonhost interaction show that most penetration attempts are stopped in association with papillae, and also suggest independent layers of defence at haustorium establishment and conidiophore formation. Nonhost resistance of barley to powdery mildew relies mostly on non-hypersensitive mechanisms. A large-effect nonhost resistance QTL mapped to a 1.4 cM interval is suitable for map-based cloning.
Collapse
Affiliation(s)
- Cynara C T Romero
- Plant Breeding, Wageningen University & Research, PO Box 386, 6700 AJ, Wageningen, The Netherlands
| | - Jasper P Vermeulen
- Plant Breeding, Wageningen University & Research, PO Box 386, 6700 AJ, Wageningen, The Netherlands
| | - Anton Vels
- Plant Breeding, Wageningen University & Research, PO Box 386, 6700 AJ, Wageningen, The Netherlands
| | - Axel Himmelbach
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466, Seeland, Germany
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466, Seeland, Germany
| | - Rients E Niks
- Plant Breeding, Wageningen University & Research, PO Box 386, 6700 AJ, Wageningen, The Netherlands.
| |
Collapse
|
140
|
Silva MS, Arraes FBM, Campos MDA, Grossi-de-Sa M, Fernandez D, Cândido EDS, Cardoso MH, Franco OL, Grossi-de-Sa MF. Review: Potential biotechnological assets related to plant immunity modulation applicable in engineering disease-resistant crops. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 270:72-84. [PMID: 29576088 DOI: 10.1016/j.plantsci.2018.02.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 02/01/2018] [Accepted: 02/04/2018] [Indexed: 05/21/2023]
Abstract
This review emphasizes the biotechnological potential of molecules implicated in the different layers of plant immunity, including, pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI), effector-triggered susceptibility (ETS), and effector-triggered immunity (ETI) that can be applied in the development of disease-resistant genetically modified (GM) plants. These biomolecules are produced by pathogens (viruses, bacteria, fungi, oomycetes) or plants during their mutual interactions. Biomolecules involved in the first layers of plant immunity, PTI and ETS, include inhibitors of pathogen cell-wall-degrading enzymes (CWDEs), plant pattern recognition receptors (PRRs) and susceptibility (S) proteins, while the ETI-related biomolecules include plant resistance (R) proteins. The biomolecules involved in plant defense PTI/ETI responses described herein also include antimicrobial peptides (AMPs), pathogenesis-related (PR) proteins and ribosome-inhibiting proteins (RIPs), as well as enzymes involved in plant defensive secondary metabolite biosynthesis (phytoanticipins and phytoalexins). Moreover, the regulation of immunity by RNA interference (RNAi) in GM disease-resistant plants is also considered. Therefore, the present review does not cover all the classes of biomolecules involved in plant innate immunity that may be applied in the development of disease-resistant GM crops but instead highlights the most common strategies in the literature, as well as their advantages and disadvantages.
Collapse
Affiliation(s)
- Marilia Santos Silva
- Embrapa Recursos Genéticos e Biotecnologia (Embrapa Cenargen), Brasília, DF, Brazil.
| | - Fabrício Barbosa Monteiro Arraes
- Embrapa Recursos Genéticos e Biotecnologia (Embrapa Cenargen), Brasília, DF, Brazil; Universidade Federal do Rio Grande do Sul (UFRGS), Post-Graduation Program in Molecular and Cellular Biology, Porto Alegre, RS, Brazil.
| | | | | | | | - Elizabete de Souza Cândido
- Universidade Católica de Brasília (UCB), Post-Graduation Program in Genomic Science and Biotechnology, Brasília, DF, Brazil; Universidade Católica Dom Bosco (UCDB), Campo Grande, MS, Brazil
| | - Marlon Henrique Cardoso
- Universidade Católica de Brasília (UCB), Post-Graduation Program in Genomic Science and Biotechnology, Brasília, DF, Brazil; Universidade Católica Dom Bosco (UCDB), Campo Grande, MS, Brazil; Universidade de Brasília (UnB), Brasilia, DF, Brazil
| | - Octávio Luiz Franco
- Universidade Católica de Brasília (UCB), Post-Graduation Program in Genomic Science and Biotechnology, Brasília, DF, Brazil; Universidade Católica Dom Bosco (UCDB), Campo Grande, MS, Brazil; Universidade de Brasília (UnB), Brasilia, DF, Brazil
| | - Maria Fátima Grossi-de-Sa
- Embrapa Recursos Genéticos e Biotecnologia (Embrapa Cenargen), Brasília, DF, Brazil; Universidade Federal do Rio Grande do Sul (UFRGS), Post-Graduation Program in Molecular and Cellular Biology, Porto Alegre, RS, Brazil; Universidade Católica de Brasília (UCB), Post-Graduation Program in Genomic Science and Biotechnology, Brasília, DF, Brazil; Universidade de Brasília (UnB), Brasilia, DF, Brazil.
| |
Collapse
|
141
|
Rich M, Delaux PM. Taking the step: from Evo-Devo to plant-microbe interaction evolution with the liverwort Marchantia. THE NEW PHYTOLOGIST 2018; 218:882-884. [PMID: 29658636 DOI: 10.1111/nph.15095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Affiliation(s)
- Mélanie Rich
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 Chemin de Borde Rouge, Auzeville, BP42617, 31326, Castanet Tolosan, France
| | - Pierre-Marc Delaux
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 Chemin de Borde Rouge, Auzeville, BP42617, 31326, Castanet Tolosan, France
| |
Collapse
|
142
|
Díaz Tatis PA, Herrera Corzo M, Ochoa Cabezas JC, Medina Cipagauta A, Prías MA, Verdier V, Chavarriaga Aguirre P, López Carrascal CE. The overexpression of RXam1, a cassava gene coding for an RLK, confers disease resistance to Xanthomonas axonopodis pv. manihotis. PLANTA 2018; 247:1031-1042. [PMID: 29453662 DOI: 10.1007/s00425-018-2863-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 01/24/2018] [Indexed: 05/27/2023]
Abstract
The overexpression of RXam1 leads to a reduction in bacterial growth of XamCIO136, suggesting that RXam1 might be implicated in strain-specific resistance. Cassava bacterial blight (CBB) caused by Xanthomonas axonopodis pv. manihotis (Xam) is a prevalent disease in all regions, where cassava is cultivated. CBB is a foliar and vascular disease usually controlled through host resistance. Previous studies have found QTLs explaining resistance to several Xam strains. Interestingly, one QTL called XM5 that explained 13% of resistance to XamCIO136 was associated with a similar fragment of the rice Xa21-resistance gene called PCR250. In this study, we aimed to further identify and characterize this fragment and its role in resistance to CBB. Screening and hybridization of a BAC library using the molecular marker PCR250 as a probe led to the identification of a receptor-like kinase similar to Xa21 and were called RXam1 (Resistance to Xam 1). Here, we report the functional characterization of susceptible cassava plants overexpressing RXam1. Our results indicated that the overexpression of RXam1 leads to a reduction in bacterial growth of XamCIO136. This suggests that RXAM1 might be implicated in strain-specific resistance to XamCIO136.
Collapse
Affiliation(s)
- Paula A Díaz Tatis
- Laboratorio Manihot Biotec, Departamento de Biología, Universidad Nacional de Colombia, Cra30 #45-03, Bogotá, Colombia
- Grupo de Ciencias Biológicas y Químicas, Departamento de Biología, Universidad Antonio Nariño, Cra1 #47a15, Bogotá, Colombia
| | - Mariana Herrera Corzo
- Laboratorio Manihot Biotec, Departamento de Biología, Universidad Nacional de Colombia, Cra30 #45-03, Bogotá, Colombia
- Programa de Biología y Mejoramiento de la Palma de Aceite, Cenipalma, Dir: Km 137 via Pto Araujo-La lizama, Bogotá, Colombia
| | - Juan C Ochoa Cabezas
- Laboratorio Manihot Biotec, Departamento de Biología, Universidad Nacional de Colombia, Cra30 #45-03, Bogotá, Colombia
- Department of Integrative Biology, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszynska 34, 60-479, Poznan, Poland
| | - Adriana Medina Cipagauta
- Plataforma de Transformación Genética, Centro Internacional de Agricultura Tropical (CIAT), Km 17 Recta Cali-Palmira, Palmira, Colombia
| | - Mónica A Prías
- Plataforma de Transformación Genética, Centro Internacional de Agricultura Tropical (CIAT), Km 17 Recta Cali-Palmira, Palmira, Colombia
| | - Valerie Verdier
- Institute de Recherche pour le Développement (IRD), CIRAD, Univ. Montpellier, Interactions Plantes Microorganismes Environnement (IPME), 34394, Montpellier, France
| | - Paul Chavarriaga Aguirre
- Plataforma de Transformación Genética, Centro Internacional de Agricultura Tropical (CIAT), Km 17 Recta Cali-Palmira, Palmira, Colombia
| | - Camilo E López Carrascal
- Laboratorio Manihot Biotec, Departamento de Biología, Universidad Nacional de Colombia, Cra30 #45-03, Bogotá, Colombia.
| |
Collapse
|
143
|
Zhou Z, Tian Y, Cong P, Zhu Y. Functional characterization of an apple (Malus x domestica) LysM domain receptor encoding gene for its role in defense response. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 269:56-65. [PMID: 29606217 DOI: 10.1016/j.plantsci.2018.01.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/15/2018] [Accepted: 01/19/2018] [Indexed: 05/08/2023]
Abstract
Apple gene, MD09G1111800, was identified as a chitin binding receptor-like kinase based on sequence similarity to AtCERK1 (chitin elicitor receptor kinase 1) from Arabidopsis. Sequence analysis on genomic structure, domain composition and transcriptional response to exogenous chitin treatment indicated that MD09G1111800 is an ortholog to AtCERK1 and was therefore named as MdCERK1. Tissue specific expression patterns indicated that MdCERK1 is primarily functional in vegetative tissues of leaf and root, rather than flower, fruit and seed of apple plant. The transcriptional regulation patterns in response to infection by Rhizoctonia solani demonstrated that MdCERK1 is a functional pattern recognition receptor protein (PRR) in apple root tissues. The ability of purified GST-MdCERK1 fusion protein to bind chitin molecules added biochemical evidence for its role in chitin mediated immune responses. An untargeted proteomic approach was also employed for identifying its putative in vivo interaction partners in apple root cells, and results indicated the existence of a functional receptor complex. These data support the conclusion that MdCERK1 is a chitin binding receptor kinase functioning in apple vegetative tissues, which plays an important role in defense activation in response to pathogen infection.
Collapse
Affiliation(s)
- Zhe Zhou
- Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, 125100, PR China
| | - Yi Tian
- Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, 125100, PR China
| | - Peihua Cong
- Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, Liaoning, 125100, PR China.
| | - Yanmin Zhu
- United States Department of Agriculture, Agricultural Research Service, Tree Fruit Research Laboratory, Wenatchee, WA, 98801, USA.
| |
Collapse
|
144
|
Koller T, Brunner S, Herren G, Hurni S, Keller B. Pyramiding of transgenic Pm3 alleles in wheat results in improved powdery mildew resistance in the field. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:861-871. [PMID: 29302719 PMCID: PMC5852180 DOI: 10.1007/s00122-017-3043-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 12/17/2017] [Indexed: 05/22/2023]
Abstract
The combined effects of enhanced total transgene expression level and allele-specificity combination in transgenic allele-pyramided Pm3 wheat lines result in improved powdery mildew field resistance without negative pleiotropic effects. Allelic Pm3 resistance genes of wheat confer race-specific resistance to powdery mildew (Blumeria graminis f. sp. tritici, Bgt) and encode nucleotide-binding domain, leucine-rich repeat (NLR) receptors. Transgenic wheat lines overexpressing alleles Pm3a, b, c, d, f, and g have previously been generated by transformation of cultivar Bobwhite and tested in field trials, revealing varying degrees of powdery mildew resistance conferred by the transgenes. Here, we tested four transgenic lines each carrying two pyramided Pm3 alleles, which were generated by crossbreeding of lines transformed with single Pm3 alleles. All four allele-pyramided lines showed strongly improved powdery mildew resistance in the field compared to their parental lines. The improved resistance results from the two effects of enhanced total transgene expression levels and allele-specificity combinations. In contrast to leaf segment tests on greenhouse-grown seedlings, no allelic suppression was observed in the field. Plant development and yield scores of the pyramided lines were similar to the mean scores of the corresponding parental lines, and thus, the allele pyramiding did not cause any negative effects. On the contrary, in pyramided line, Pm3b × Pm3f normal plant development was restored compared to the delayed development and reduced seed set of parental line Pm3f. Allele-specific RT qPCR revealed additive transgene expression levels of the two Pm3 alleles in the pyramided lines. A positive correlation between total transgene expression level and powdery mildew field resistance was observed. In summary, allele pyramiding of Pm3 transgenes proved to be successful in enhancing powdery mildew field resistance.
Collapse
Affiliation(s)
- Teresa Koller
- Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland
| | | | - Gerhard Herren
- Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland
| | - Severine Hurni
- Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland
| | - Beat Keller
- Department of Plant and Microbial Biology, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland
| |
Collapse
|
145
|
Song Y, Liu L, Wang Y, Valkenburg D, Zhang X, Zhu L, Thomma BPHJ. Transfer of tomato immune receptor Ve1 confers Ave1-dependent Verticillium resistance in tobacco and cotton. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:638-648. [PMID: 28796297 PMCID: PMC5787823 DOI: 10.1111/pbi.12804] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/14/2017] [Accepted: 08/02/2017] [Indexed: 05/24/2023]
Abstract
Verticillium wilts caused by soilborne fungal species of the Verticillium genus are economically important plant diseases that affect a wide range of host plants and are notoriously difficult to combat. Perception of pathogen(-induced) ligands by plant immune receptors is a key component of plant innate immunity. In tomato, race-specific resistance to Verticillium wilt is governed by the cell surface-localized immune receptor Ve1 through recognition of the effector protein Ave1 that is secreted by race 1 strains of Verticillium spp. It was previously demonstrated that transgenic expression of tomato Ve1 in the model plant Arabidopsis thaliana leads to Verticillium wilt resistance. Here, we investigated whether tomato Ve1 can confer Verticillium resistance when expressed in the crop species tobacco (Nicotiana tabcum) and cotton (Gossypium hirsutum). We show that transgenic tobacco and cotton plants constitutively expressing tomato Ve1 exhibit enhanced resistance against Verticillium wilt in an Ave1-dependent manner. Thus, we demonstrate that the functionality of tomato Ve1 in Verticillium wilt resistance through recognition of the Verticillium effector Ave1 is retained after transfer to tobacco and cotton, implying that the Ve1-mediated immune signalling pathway is evolutionary conserved across these plant species. Moreover, our results suggest that transfer of tomato Ve1 across sexually incompatible plant species can be exploited in breeding programmes to engineer Verticillium wilt resistance.
Collapse
Affiliation(s)
- Yin Song
- Laboratory of PhytopathologyWageningen UniversityWageningenThe Netherlands
| | - Linlin Liu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Yidong Wang
- Laboratory of PhytopathologyWageningen UniversityWageningenThe Netherlands
| | | | - Xianlong Zhang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Longfu Zhu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | | |
Collapse
|
146
|
Li Y, Zhang Y, Wang Q, Wang T, Cao X, Zhao Z, Zhao S, Xu Y, Xiao Z, Li J, Fan J, Yang H, Huang F, Xiao S, Wang W. RESISTANCE TO POWDERY MILDEW8.1 boosts pattern-triggered immunity against multiple pathogens in Arabidopsis and rice. PLANT BIOTECHNOLOGY JOURNAL 2018; 16. [PMID: 28640974 PMCID: PMC5787827 DOI: 10.1111/pbi.12782] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The Arabidopsis gene RESISTANCE TO POWDERY MILDEW8.1 (RPW8.1) confers resistance to virulent fungal and oomycete pathogens that cause powdery mildew and downy mildew, respectively. However, the underlying mechanism remains unclear. Here, we show that ectopic expression of RPW8.1 boosts pattern-triggered immunity (PTI) resulting in enhanced resistance against different pathogens in both Arabidopsis and rice. In Arabidopsis, transcriptome analysis revealed that ectopic expression of RPW8.1-YFP constitutively up-regulates expression of many pathogen-associated molecular pattern (PAMP-)-inducible genes. Consistently, upon PAMP application, the transgenic line expressing RPW8.1-YFP exhibited more pronounced PTI responses such as callose deposition, production of reactive oxygen species, expression of defence-related genes and hypersensitive response-like cell death. Accordingly, the growth of a virulent bacterial pathogen was significantly inhibited in the transgenic lines expressing RPW8.1-YFP. Conversely, impairment of the PTI signalling pathway from PAMP cognition to the immediate downstream relay of phosphorylation abolished or significantly compromised RPW8.1-boosted PTI responses. In rice, heterologous expression of RPW8.1-YFP also led to enhanced resistance to the blast fungus Pyricularia oryzae (syn. Magnaporthe oryzae) and the bacterial pathogen Xanthomonas oryzae pv. oryzae (Xoo). Taken together, our data suggest a surprising mechanistic connection between RPW8.1 function and PTI, and demonstrate the potential of RPW8.1 as a transgene for engineering disease resistance across wide taxonomic lineages of plants.
Collapse
Affiliation(s)
- Yan Li
- Rice Research Institute and Key Lab for Major Crop DiseasesSichuan Agricultural UniversityChengduChina
- Collaborative Innovation Center for Hybrid Rice in Yangtze River BasinSichuan Agricultural UniversityChengduChina
| | - Yong Zhang
- Rice Research Institute and Key Lab for Major Crop DiseasesSichuan Agricultural UniversityChengduChina
| | - Qing‐Xia Wang
- Rice Research Institute and Key Lab for Major Crop DiseasesSichuan Agricultural UniversityChengduChina
| | - Ting‐Ting Wang
- Rice Research Institute and Key Lab for Major Crop DiseasesSichuan Agricultural UniversityChengduChina
| | - Xiao‐Long Cao
- Rice Research Institute and Key Lab for Major Crop DiseasesSichuan Agricultural UniversityChengduChina
| | - Zhi‐Xue Zhao
- Rice Research Institute and Key Lab for Major Crop DiseasesSichuan Agricultural UniversityChengduChina
| | - Sheng‐Li Zhao
- Rice Research Institute and Key Lab for Major Crop DiseasesSichuan Agricultural UniversityChengduChina
| | - Yong‐Ju Xu
- Rice Research Institute and Key Lab for Major Crop DiseasesSichuan Agricultural UniversityChengduChina
| | - Zhi‐Yuan Xiao
- Rice Research Institute and Key Lab for Major Crop DiseasesSichuan Agricultural UniversityChengduChina
| | - Jin‐Lu Li
- Rice Research Institute and Key Lab for Major Crop DiseasesSichuan Agricultural UniversityChengduChina
| | - Jing Fan
- Rice Research Institute and Key Lab for Major Crop DiseasesSichuan Agricultural UniversityChengduChina
- Collaborative Innovation Center for Hybrid Rice in Yangtze River BasinSichuan Agricultural UniversityChengduChina
| | - Hui Yang
- College of Agronomy and Key Lab for Major Crop DiseasesSichuan Agricultural UniversityChengduChina
| | - Fu Huang
- College of Agronomy and Key Lab for Major Crop DiseasesSichuan Agricultural UniversityChengduChina
| | - Shunyuan Xiao
- Institute of Bioscience and Biotechnology ResearchDepartment of Plant Science and Landscape ArchitectureUniversity of MarylandCollege ParkMDUSA
| | - Wen‐Ming Wang
- Rice Research Institute and Key Lab for Major Crop DiseasesSichuan Agricultural UniversityChengduChina
- Collaborative Innovation Center for Hybrid Rice in Yangtze River BasinSichuan Agricultural UniversityChengduChina
| |
Collapse
|
147
|
Saijo Y, Loo EPI, Yasuda S. Pattern recognition receptors and signaling in plant-microbe interactions. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:592-613. [PMID: 29266555 DOI: 10.1111/tpj.13808] [Citation(s) in RCA: 241] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 12/09/2017] [Accepted: 12/14/2017] [Indexed: 05/20/2023]
Abstract
Plants solely rely on innate immunity of each individual cell to deal with a diversity of microbes in the environment. Extracellular recognition of microbe- and host damage-associated molecular patterns leads to the first layer of inducible defenses, termed pattern-triggered immunity (PTI). In plants, pattern recognition receptors (PRRs) described to date are all membrane-associated receptor-like kinases or receptor-like proteins, reflecting the prevalence of apoplastic colonization of plant-infecting microbes. An increasing inventory of elicitor-active patterns and PRRs indicates that a large number of them are limited to a certain range of plant groups/species, pointing to dynamic and convergent evolution of pattern recognition specificities. In addition to common molecular principles of PRR signaling, recent studies have revealed substantial diversification between PRRs in their functions and regulatory mechanisms. This serves to confer robustness and plasticity to the whole PTI system in natural infections, wherein different PRRs are simultaneously engaged and faced with microbial assaults. We review the functional significance and molecular basis of PRR-mediated pathogen recognition and disease resistance, and also an emerging role for PRRs in homeostatic association with beneficial or commensal microbes.
Collapse
Affiliation(s)
- Yusuke Saijo
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| | - Eliza Po-Iian Loo
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| | - Shigetaka Yasuda
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| |
Collapse
|
148
|
Identification of Cyclic Dipeptides from Escherichia coli as New Antimicrobial Agents against Ralstonia Solanacearum. Molecules 2018; 23:molecules23010214. [PMID: 29351264 PMCID: PMC6017746 DOI: 10.3390/molecules23010214] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/15/2018] [Accepted: 01/18/2018] [Indexed: 11/17/2022] Open
Abstract
Ralstonia solanacearum is a causative agent of bacterial wilt in many important crops throughout the world. How to control bacterial wilt caused by R. solanacearum is a major problem in agriculture. In this study, we aim to isolate the biocontrol agents that have high efficacy in the control of bacterial wilt. Three new bacterial strains with high antimicrobial activity against R. solanacearum GMI1000 were isolated and identified. Our results demonstrated that these bacteria could remarkably inhibit the disease index of host plant infected by R. solanacearum. It was indicated that strain GZ-34 (CCTCC No. M 2016353) showed an excellent protective effect to tomato under greenhouse conditions. Strain GZ-34 was characterized as Escherichia coli based on morphology, biochemistry, and 16S rRNA analysis. We identified that the main antimicrobial compounds produced by E. coli GZ-34 were cyclo(l-Pro-d-Ile) and cyclo(l-Pro-l-Phe) using electrospray ionization mass spectrometry (ESI-MS) and nuclear magnetic resonance (NMR) analysis. The two active compounds also interfered with the expression levels of some pathogenicity-contributors of R. solanacearum. Furthermore, cyclo(l-Pro-l-Phe) effectively inhibited spore formation of Magnaporthe grisea, which is a vital pathogenesis process of the fungal pathogen, suggesting cyclic dipeptides from E. coli are promising potential antimicrobial agents with broad-spectrum activity to kill pathogens or interfere with their pathogenesis.
Collapse
|
149
|
Kachroo A, Vincelli P, Kachroo P. Signaling Mechanisms Underlying Resistance Responses: What Have We Learned, and How Is It Being Applied? PHYTOPATHOLOGY 2017; 107:1452-1461. [PMID: 28609156 DOI: 10.1094/phyto-04-17-0130-rvw] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Plants have evolved highly specific mechanisms to resist pathogens including preformed barriers and the induction of elaborate signaling pathways. Induced signaling requires recognition of the pathogen either via conserved pathogen-derived factors or specific pathogen-encoded proteins called effectors. Recognition of these factors by host encoded receptor proteins can result in the elicitation of different tiers of resistance at the site of pathogen infection. In addition, plants induce a type of systemic immunity which is effective at the whole plant level and protects against a broad spectrum of pathogens. Advances in our understanding of pathogen-recognition mechanisms, identification of the underlying molecular components, and their significant conservation across diverse plant species has enabled the development of novel strategies to combat plant diseases. This review discusses key advances in plant defense signaling that have been adapted or have the potential to be adapted for plant protection against microbial diseases.
Collapse
Affiliation(s)
- Aardra Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington 40546
| | - Paul Vincelli
- Department of Plant Pathology, University of Kentucky, Lexington 40546
| | - Pradeep Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington 40546
| |
Collapse
|
150
|
Yocgo RE, Geza E, Chimusa ER, Mazandu GK. A post-gene silencing bioinformatics protocol for plant-defence gene validation and underlying process identification: case study of the Arabidopsis thaliana NPR1. BMC PLANT BIOLOGY 2017; 17:218. [PMID: 29169324 PMCID: PMC5701366 DOI: 10.1186/s12870-017-1151-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 11/07/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Advances in forward and reverse genetic techniques have enabled the discovery and identification of several plant defence genes based on quantifiable disease phenotypes in mutant populations. Existing models for testing the effect of gene inactivation or genes causing these phenotypes do not take into account eventual uncertainty of these datasets and potential noise inherent in the biological experiment used, which may mask downstream analysis and limit the use of these datasets. Moreover, elucidating biological mechanisms driving the induced disease resistance and influencing these observable disease phenotypes has never been systematically tackled, eliciting the need for an efficient model to characterize completely the gene target under consideration. RESULTS We developed a post-gene silencing bioinformatics (post-GSB) protocol which accounts for potential biases related to the disease phenotype datasets in assessing the contribution of the gene target to the plant defence response. The post-GSB protocol uses Gene Ontology semantic similarity and pathway dataset to generate enriched process regulatory network based on the functional degeneracy of the plant proteome to help understand the induced plant defence response. We applied this protocol to investigate the effect of the NPR1 gene silencing to changes in Arabidopsis thaliana plants following Pseudomonas syringae pathovar tomato strain DC3000 infection. Results indicated that the presence of a functionally active NPR1 reduced the plant's susceptibility to the infection, with about 99% of variability in Pseudomonas spore growth between npr1 mutant and wild-type samples. Moreover, the post-GSB protocol has revealed the coordinate action of target-associated genes and pathways through an enriched process regulatory network, summarizing the potential target-based induced disease resistance mechanism. CONCLUSIONS This protocol can improve the characterization of the gene target and, potentially, elucidate induced defence response by more effectively utilizing available phenotype information and plant proteome functional knowledge.
Collapse
Affiliation(s)
- Rosita E. Yocgo
- African Institute for Mathematical Sciences (AIMS), AIMS South Africa and AIMS Ghana, Cape Town, South Africa
- Biomathematics Division, Department of Mathematical Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Ephifania Geza
- African Institute for Mathematical Sciences (AIMS), AIMS South Africa and AIMS Ghana, Cape Town, South Africa
- Computational Biology Division, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Medical School, Anzio Road, Observatory, Cape Town, 7925 South Africa
| | - Emile R. Chimusa
- Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Medical School, Anzio Road, Observatory, Cape Town, 7925 South Africa
| | - Gaston K. Mazandu
- African Institute for Mathematical Sciences (AIMS), AIMS South Africa and AIMS Ghana, Cape Town, South Africa
- Biomathematics Division, Department of Mathematical Sciences, Stellenbosch University, Stellenbosch, South Africa
- Computational Biology Division, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Medical School, Anzio Road, Observatory, Cape Town, 7925 South Africa
| |
Collapse
|