101
|
Zhang M, Zou Y, Xu X, Zhang X, Gao M, Song J, Huang P, Chen Q, Zhu Z, Lin W, Zare RN, Yang C. Highly parallel and efficient single cell mRNA sequencing with paired picoliter chambers. Nat Commun 2020; 11:2118. [PMID: 32355211 PMCID: PMC7193604 DOI: 10.1038/s41467-020-15765-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 03/25/2020] [Indexed: 12/14/2022] Open
Abstract
ScRNA-seq has the ability to reveal accurate and precise cell types and states. Existing scRNA-seq platforms utilize bead-based technologies uniquely barcoding individual cells, facing practical challenges for precious samples with limited cell number. Here, we present a scRNA-seq platform, named Paired-seq, with high cells/beads utilization efficiency, cell-free RNAs removal capability, high gene detection ability and low cost. We utilize the differential flow resistance principle to achieve single cell/barcoded bead pairing with high cell utilization efficiency (95%). The integration of valves and pumps enables the complete removal of cell-free RNAs, efficient cell lysis and mRNA capture, achieving highest mRNA detection accuracy (R = 0.955) and comparable sensitivity. Lower reaction volume and higher mRNA capture and barcoding efficiency significantly reduce the cost of reagents and sequencing. The single-cell expression profile of mES and drug treated cells reveal cell heterogeneity, demonstrating the enormous potential of Paired-seq for cell biology, developmental biology and precision medicine. Single-cell RNA-seq can reveal accurate and precise cell types and states. Here the authors present an scRNA-seq platform, Paired-seq, which uses differential flow resistance to achieve 95% cell utilisation efficiency for improved cell-free RNA removal and gene detection.
Collapse
Affiliation(s)
- Mingxia Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Yuan Zou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China.,Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Xing Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Xuebing Zhang
- Hangzhou Weizhu Biological Technology Co., Ltd, Hangzhou, China
| | - Mingxuan Gao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Jia Song
- Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Peifeng Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Qin Chen
- Hangzhou Weizhu Biological Technology Co., Ltd, Hangzhou, China
| | - Zhi Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Wei Lin
- Translational Genomics Research Institute, Molecular Medicine Division, Phoenix, AZ, USA.,Hunan Provincial Key Lab of Emergency and Critical Care, Hunan People's Hospital, Changsha, China
| | - Richard N Zare
- Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
| | - Chaoyong Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China. .,Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
102
|
Faugeroux V, Pailler E, Oulhen M, Deas O, Brulle-Soumare L, Hervieu C, Marty V, Alexandrova K, Andree KC, Stoecklein NH, Tramalloni D, Cairo S, NgoCamus M, Nicotra C, Terstappen LWMM, Manaresi N, Lapierre V, Fizazi K, Scoazec JY, Loriot Y, Judde JG, Farace F. Genetic characterization of a unique neuroendocrine transdifferentiation prostate circulating tumor cell-derived eXplant model. Nat Commun 2020; 11:1884. [PMID: 32313004 PMCID: PMC7171138 DOI: 10.1038/s41467-020-15426-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/04/2020] [Indexed: 02/07/2023] Open
Abstract
Transformation of castration-resistant prostate cancer (CRPC) into an aggressive neuroendocrine disease (CRPC-NE) represents a major clinical challenge and experimental models are lacking. A CTC-derived eXplant (CDX) and a CDX-derived cell line are established using circulating tumor cells (CTCs) obtained by diagnostic leukapheresis from a CRPC patient resistant to enzalutamide. The CDX and the derived-cell line conserve 16% of primary tumor (PT) and 56% of CTC mutations, as well as 83% of PT copy-number aberrations including clonal TMPRSS2-ERG fusion and NKX3.1 loss. Both harbor an androgen receptor-null neuroendocrine phenotype, TP53, PTEN and RB1 loss. While PTEN and RB1 loss are acquired in CTCs, evolutionary analysis suggest that a PT subclone harboring TP53 loss is the driver of the metastatic event leading to the CDX. This CDX model provides insights on the sequential acquisition of key drivers of neuroendocrine transdifferentiation and offers a unique tool for effective drug screening in CRPC-NE management.
Collapse
MESH Headings
- Animals
- Benzamides
- Carcinoma, Neuroendocrine/genetics
- Carcinoma, Neuroendocrine/metabolism
- Cell Line, Tumor
- Cell Transdifferentiation/genetics
- Disease Models, Animal
- Drug Resistance, Neoplasm
- Gene Expression Regulation, Neoplastic
- Homeodomain Proteins/metabolism
- Humans
- Male
- Mice
- Mice, Inbred NOD
- Neoplastic Cells, Circulating/drug effects
- Neoplastic Cells, Circulating/metabolism
- Nitriles
- Phenylthiohydantoin/analogs & derivatives
- Phenylthiohydantoin/pharmacology
- Phylogeny
- Prostate/metabolism
- Prostate/pathology
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/metabolism
- Receptors, Androgen/genetics
- Sequence Alignment
- Serine Endopeptidases/metabolism
- Transcription Factors/metabolism
- Transcriptome
- Tumor Suppressor Protein p53/genetics
Collapse
Affiliation(s)
- Vincent Faugeroux
- INSERM, U981 "Identification of Molecular Predictors and new Targets for Cancer Treatment", 94805, Villejuif, France
- Gustave Roussy, Université Paris-Saclay, "Circulating Tumor Cells" Translational Platform, CNRS UMS3655-INSERM US23 AMMICA, 94805, Villejuif, France
| | - Emma Pailler
- INSERM, U981 "Identification of Molecular Predictors and new Targets for Cancer Treatment", 94805, Villejuif, France
- Gustave Roussy, Université Paris-Saclay, "Circulating Tumor Cells" Translational Platform, CNRS UMS3655-INSERM US23 AMMICA, 94805, Villejuif, France
| | - Marianne Oulhen
- Gustave Roussy, Université Paris-Saclay, "Circulating Tumor Cells" Translational Platform, CNRS UMS3655-INSERM US23 AMMICA, 94805, Villejuif, France
| | | | | | - Céline Hervieu
- INSERM, U981 "Identification of Molecular Predictors and new Targets for Cancer Treatment", 94805, Villejuif, France
- Gustave Roussy, Université Paris-Saclay, "Circulating Tumor Cells" Translational Platform, CNRS UMS3655-INSERM US23 AMMICA, 94805, Villejuif, France
| | - Virginie Marty
- Gustave Roussy, Université Paris-Saclay, Experimental and Translational Pathology Platform, CNRS UMS3655-INSERM US23 AMMICA, 94805, Villejuif, France
| | - Kamelia Alexandrova
- Gustave Roussy, Université Paris-Saclay, Department of Cell Therapy, 94805, Villejuif, France
| | - Kiki C Andree
- Medical Cell Biophysics Group, Technical Medical Centre, Faculty of Science and Technology, University of Twente, 7522 NB, Enschede, The Netherlands
| | - Nikolas H Stoecklein
- Department of General, Visceral and Pediatric Surgery, Medical Faculty, University Hospital of the Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Dominique Tramalloni
- Gustave Roussy, Université Paris-Saclay, Department of Cell Therapy, 94805, Villejuif, France
| | | | - Maud NgoCamus
- Gustave Roussy, Université Paris-Saclay, Department of Cancer Medicine, 94805, Villejuif, France
| | - Claudio Nicotra
- Gustave Roussy, Université Paris-Saclay, Department of Cancer Medicine, 94805, Villejuif, France
| | - Leon W M M Terstappen
- Medical Cell Biophysics Group, Technical Medical Centre, Faculty of Science and Technology, University of Twente, 7522 NB, Enschede, The Netherlands
| | | | - Valérie Lapierre
- Gustave Roussy, Université Paris-Saclay, Department of Cell Therapy, 94805, Villejuif, France
| | - Karim Fizazi
- INSERM, U981 "Identification of Molecular Predictors and new Targets for Cancer Treatment", 94805, Villejuif, France
- Gustave Roussy, Université Paris-Saclay, Department of Cancer Medicine, 94805, Villejuif, France
| | - Jean-Yves Scoazec
- Gustave Roussy, Université Paris-Saclay, Experimental and Translational Pathology Platform, CNRS UMS3655-INSERM US23 AMMICA, 94805, Villejuif, France
| | - Yohann Loriot
- Gustave Roussy, Université Paris-Saclay, Department of Cancer Medicine, 94805, Villejuif, France.
| | | | - Françoise Farace
- INSERM, U981 "Identification of Molecular Predictors and new Targets for Cancer Treatment", 94805, Villejuif, France.
- Gustave Roussy, Université Paris-Saclay, "Circulating Tumor Cells" Translational Platform, CNRS UMS3655-INSERM US23 AMMICA, 94805, Villejuif, France.
| |
Collapse
|
103
|
Lim B, Lin Y, Navin N. Advancing Cancer Research and Medicine with Single-Cell Genomics. Cancer Cell 2020; 37:456-470. [PMID: 32289270 PMCID: PMC7899145 DOI: 10.1016/j.ccell.2020.03.008] [Citation(s) in RCA: 188] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/01/2020] [Accepted: 03/09/2020] [Indexed: 01/21/2023]
Abstract
Single-cell sequencing (SCS) has impacted many areas of cancer research and improved our understanding of intratumor heterogeneity, the tumor microenvironment, metastasis, and therapeutic resistance. The development and refinement of SCS technologies has led to massive reductions in costs, increased cell throughput, and improved reproducibility, paving the way for clinical applications. However, before translational applications can be realized, there are a number of logistical and technical challenges that must be overcome. This review discusses past cancer research studies, emerging technologies, and future clinical applications that are bound to transform cancer medicine.
Collapse
Affiliation(s)
- Bora Lim
- Department of Breast Medical Oncology, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yiyun Lin
- Department of Genetics, UT MD Anderson Cancer Center, Houston, TX 77030, USA; Graduate School of Biomedical Sciences, UT MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nicholas Navin
- Department of Genetics, UT MD Anderson Cancer Center, Houston, TX 77030, USA; Graduate School of Biomedical Sciences, UT MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Bioinformatics and Computational Biology, UT MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
104
|
Tokar JJ, Stahlfeld CN, Sperger JM, Niles DJ, Beebe DJ, Lang JM, Warrick JW. Pairing Microwell Arrays with an Affordable, Semiautomated Single-Cell Aspirator for the Interrogation of Circulating Tumor Cell Heterogeneity. SLAS Technol 2020; 25:162-176. [PMID: 31983266 PMCID: PMC8879417 DOI: 10.1177/2472630319898146] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Comprehensive analysis of tumor heterogeneity requires robust methods for the isolation and analysis of single cells from patient samples. An ideal approach would be fully compatible with downstream analytic methods, such as advanced genomic testing. These endpoints necessitate the use of live cells at high purity. A multitude of microfluidic circulating tumor cell (CTC) enrichment technologies exist, but many of those perform bulk sample enrichment and are not, on their own, capable of single-cell interrogation. To address this, we developed an affordable semiautomated single-cell aspirator (SASCA) to further enrich rare-cell populations from a specialized microwell array, per their phenotypic markers. Immobilization of cells within microwells, integrated with a real-time image processing software, facilitates the detection and precise isolation of targeted cells that have been optimally seeded into the microwells. Here, we demonstrate the platform capabilities through the aspiration of target cells from an impure background population, where we obtain purity levels of 90%-100% and demonstrate the enrichment of the target population with high-quality RNA extraction. A range of low cell numbers were aspirated using SASCA before undergoing whole transcriptome and genome analysis, exhibiting the ability to obtain endpoints from low-template inputs. Lastly, CTCs from patients with castration-resistant prostate cancer were isolated with this platform and the utility of this method was confirmed for rare-cell isolation. SASCA satisfies a need for an affordable option to isolate single cells or highly purified subpopulations of cells to probe complex mechanisms driving disease progression and resistance in patients with cancer.
Collapse
Affiliation(s)
- Jacob J Tokar
- Dept. of Biomedical Eng. – Univ. of Wisconsin, Madison - Madison, USA
| | | | - Jamie M Sperger
- Dept. of Medicine – Univ. of Wisconsin, Madison - Madison, USA
| | - David J Niles
- Dept. of Biomedical Eng. – Univ. of Wisconsin, Madison - Madison, USA
| | - David J Beebe
- Dept. of Biomedical Eng. – Univ. of Wisconsin, Madison - Madison, USA
- UW Carbone Cancer Center. – Univ. of Wisconsin, Madison - Madison, USA
| | - Joshua M Lang
- UW Carbone Cancer Center. – Univ. of Wisconsin, Madison - Madison, USA
- Dept. of Medicine – Univ. of Wisconsin, Madison - Madison, USA
| | - Jay W Warrick
- Dept. of Biomedical Eng. – Univ. of Wisconsin, Madison - Madison, USA
| |
Collapse
|
105
|
Castro-Giner F, Aceto N. Tracking cancer progression: from circulating tumor cells to metastasis. Genome Med 2020; 12:31. [PMID: 32192534 PMCID: PMC7082968 DOI: 10.1186/s13073-020-00728-3] [Citation(s) in RCA: 228] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 03/09/2020] [Indexed: 02/08/2023] Open
Abstract
The analysis of circulating tumor cells (CTCs) is an outstanding tool to provide insights into the biology of metastatic cancers, to monitor disease progression and with potential for use in liquid biopsy-based personalized cancer treatment. These goals are ambitious, yet recent studies are already allowing a sharper understanding of the strengths, challenges, and opportunities provided by liquid biopsy approaches. For instance, through single-cell-resolution genomics and transcriptomics, it is becoming increasingly clear that CTCs are heterogeneous at multiple levels and that only a fraction of them is capable of initiating metastasis. It also appears that CTCs adopt multiple ways to enhance their metastatic potential, including homotypic clustering and heterotypic interactions with immune and stromal cells. On the clinical side, both CTC enumeration and molecular analysis may provide new means to monitor cancer progression and to take individualized treatment decisions, but their use for early cancer detection appears to be challenging compared to that of other tumor derivatives such as circulating tumor DNA. In this review, we summarize current data on CTC biology and CTC-based clinical applications that are likely to impact our understanding of the metastatic process and to influence the clinical management of patients with metastatic cancer, including new prospects that may favor the implementation of precision medicine.
Collapse
Affiliation(s)
- Francesc Castro-Giner
- Department of Biomedicine, Cancer Metastasis Laboratory, University of Basel and University Hospital Basel, 4058, Basel, Switzerland.,Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Nicola Aceto
- Department of Biomedicine, Cancer Metastasis Laboratory, University of Basel and University Hospital Basel, 4058, Basel, Switzerland.
| |
Collapse
|
106
|
Morrison GJ, Cunha AT, Jojo N, Xu Y, Xu Y, Kwok E, Robinson P, Dorff T, Quinn D, Carpten J, Manojlovic Z, Goldkorn A. Cancer transcriptomic profiling from rapidly enriched circulating tumor cells. Int J Cancer 2020; 146:2845-2854. [PMID: 32037533 DOI: 10.1002/ijc.32915] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 01/27/2020] [Accepted: 01/29/2020] [Indexed: 12/26/2022]
Abstract
Transcriptomic profiling of metastatic cancer can illuminate mechanisms of progression and lead to new therapies, but standard biopsy is invasive and reflects only a single metastatic site. In contrast, circulating tumor cell (CTC) profiling is noninvasive and repeatable, reflecting the dynamic and systemic nature of advanced disease. To date, transcriptomic profiling of CTCs has not delivered on its full potential, because white blood cells (WBCs) vastly outnumber CTCs. Current profiling strategies either lack cancer sensitivity and specificity or require specialized CTC capture protocols that are not readily scalable to large patient cohorts. Here, we describe a new strategy for rapid CTC enrichment and transcriptomic profiling using commercially available WBC depletion, microfluidic enrichment and RNA sequencing. When applied to blood samples from patients with advanced prostate cancer (PC), transcriptomes from enriched samples cluster with cancer positive controls and previously undetectable prostate-specific transcripts become readily measurable. Gene set enrichment analysis reveals multiple significantly enriched signaling pathways associated with PC, as well as novel pathways that merit further study. This accessible and scalable approach yields cancer-specific transcriptomic data and can be applied repeatedly and noninvasively in large cancer patient cohorts to discover new therapeutic targets in advanced disease.
Collapse
Affiliation(s)
- Gareth J Morrison
- Department of Medicine, University of Southern California (USC), Keck School of Medicine and Norris Comprehensive Cancer Center (NCCC), California, Los Angeles
| | - Alexander T Cunha
- Department of Medicine, University of Southern California (USC), Keck School of Medicine and Norris Comprehensive Cancer Center (NCCC), California, Los Angeles
| | - Nita Jojo
- Department of Medicine, University of Southern California (USC), Keck School of Medicine and Norris Comprehensive Cancer Center (NCCC), California, Los Angeles
| | - Yucheng Xu
- Department of Medicine, University of Southern California (USC), Keck School of Medicine and Norris Comprehensive Cancer Center (NCCC), California, Los Angeles
| | - Yili Xu
- Department of Translational Genomics, USC Keck School of Medicine and NCCC, California, Los Angeles
| | - Eric Kwok
- Department of Translational Genomics, USC Keck School of Medicine and NCCC, California, Los Angeles
| | - Peggy Robinson
- Angle PLC, Surrey, United Kingdom
- Caza Health LLC, Earlysville, Virginia
| | - Tanya Dorff
- Department of Medicine, University of Southern California (USC), Keck School of Medicine and Norris Comprehensive Cancer Center (NCCC), California, Los Angeles
- Department of Medical Oncology and Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, California
| | - David Quinn
- Department of Medicine, University of Southern California (USC), Keck School of Medicine and Norris Comprehensive Cancer Center (NCCC), California, Los Angeles
| | - John Carpten
- Department of Translational Genomics, USC Keck School of Medicine and NCCC, California, Los Angeles
| | - Zarko Manojlovic
- Department of Translational Genomics, USC Keck School of Medicine and NCCC, California, Los Angeles
| | - Amir Goldkorn
- Department of Medicine, University of Southern California (USC), Keck School of Medicine and Norris Comprehensive Cancer Center (NCCC), California, Los Angeles
| |
Collapse
|
107
|
Wu L, Wang Y, Zhu L, Liu Y, Wang T, Liu D, Song Y, Yang C. Aptamer-Based Liquid Biopsy. ACS APPLIED BIO MATERIALS 2020; 3:2743-2764. [DOI: 10.1021/acsabm.9b01194] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Lingling Wu
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yidi Wang
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Lin Zhu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yilong Liu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Teng Wang
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Dan Liu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yanling Song
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chaoyong Yang
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
108
|
Situ B, Ye X, Zhao Q, Mai L, Huang Y, Wang S, Chen J, Li B, He B, Zhang Y, Zou J, Tang BZ, Pan X, Zheng L. Identification and Single-Cell Analysis of Viable Circulating Tumor Cells by a Mitochondrion-Specific AIE Bioprobe. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1902760. [PMID: 32099764 PMCID: PMC7029725 DOI: 10.1002/advs.201902760] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/08/2019] [Indexed: 05/21/2023]
Abstract
Liquid biopsies of cancer via single-cell molecular profiling of circulating tumor cells (CTCs) are hampered by the lack of ideal CTC markers. In this study, it is reported that TPN, a bioprobe with aggregation-induced emission (AIE) activity is capable of distinguishing various tumor cells from blood leukocytes based on the difference in cell mitochondria. TPN is a cell-permeant live-cell stain that has little effect on cell viability and integrity, enabling single-cell DNA/RNA analysis with improved efficiency compared with traditional antibody-based methods. Using TPN labeling, CTCs and CTC cluster are detected in the blood from patients with lung or liver cancer. The capability of TPN to identify rare tumor cells in the malignant pleural effusion samples is also demonstrated. Furthermore, RNA sequencing of single lung CTC identified by TPN is successfully performed. The findings presented here provide an antibody-free, low-cost, and nondisruptive approach for detection and genomic characterization of viable tumor cells based on a mitochondria-targeting AIE luminogen. It might serve as a new tool for monitoring of genomics dynamic of tumor and unraveling the mechanisms of tumor metastasis.
Collapse
Affiliation(s)
- Bo Situ
- Department of Laboratory MedicineNanfang HospitalSouthern Medical UniversityGuangzhou510515China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic BiosensorsNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Xinyi Ye
- Department of Laboratory MedicineNanfang HospitalSouthern Medical UniversityGuangzhou510515China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic BiosensorsNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Qianwen Zhao
- Department of Laboratory MedicineNanfang HospitalSouthern Medical UniversityGuangzhou510515China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic BiosensorsNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Liyao Mai
- Department of Biochemistry and Molecular BiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
- Guangdong Provincial Key Laboratory of Single Cell Technology ApplicationGuangzhou510515China
| | - Yifang Huang
- Department of Laboratory MedicineNanfang HospitalSouthern Medical UniversityGuangzhou510515China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic BiosensorsNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Siqi Wang
- Department of Biochemistry and Molecular BiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
- Guangdong Provincial Key Laboratory of Single Cell Technology ApplicationGuangzhou510515China
| | - Jing Chen
- Department of Laboratory MedicineNanfang HospitalSouthern Medical UniversityGuangzhou510515China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic BiosensorsNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Bo Li
- Department of Laboratory MedicineNanfang HospitalSouthern Medical UniversityGuangzhou510515China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic BiosensorsNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Bairong He
- Department of Laboratory MedicineNanfang HospitalSouthern Medical UniversityGuangzhou510515China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic BiosensorsNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Ye Zhang
- Department of Laboratory MedicineNanfang HospitalSouthern Medical UniversityGuangzhou510515China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic BiosensorsNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| | - Jianjun Zou
- Department of OncologyGuangzhou Chest HospitalGuangzhou510515China
| | - Ben Zhong Tang
- Guangdong Province Key Laboratory of Biomedical EngineeringSouth China University of TechnologyGuangzhou510006China
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and ReconstructionThe Hong Kong University of Science & TechnologyClear Water BayKowloonHong KongChina
- HKUST‐Shenzhen Research InstituteNo. 9 Yuexing 1st RD, South Area, Hi‐tech Park, NanshanShenzhen518057China
| | - Xinghua Pan
- Department of Biochemistry and Molecular BiologySchool of Basic Medical SciencesSouthern Medical UniversityGuangzhou510515China
- Guangdong Provincial Key Laboratory of Single Cell Technology ApplicationGuangzhou510515China
| | - Lei Zheng
- Department of Laboratory MedicineNanfang HospitalSouthern Medical UniversityGuangzhou510515China
- Guangdong Engineering and Technology Research Center for Rapid Diagnostic BiosensorsNanfang HospitalSouthern Medical UniversityGuangzhou510515China
| |
Collapse
|
109
|
Yao Y, Li Y, Liu Q, Zhou K, Zhao W, Liu S, Yang J, Jiang Y, Sui G. Rapid detection of hepatocellular carcinoma metastasis using reverse transcription loop-mediated isothermal amplification. Talanta 2020; 208:120402. [PMID: 31816739 DOI: 10.1016/j.talanta.2019.120402] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 09/25/2019] [Accepted: 09/27/2019] [Indexed: 12/12/2022]
Abstract
The main therapies of hepatocellular carcinoma (HCC) are hepatectomy and liver transplantation, but the recurrence rate of HCC after radical resection remains high. We established a novel method based on reverse transcription loop-mediated isothermal amplification (RT-LAMP) for the rapid identification of four cancer stem cell-specific biomarkers to estimate the potential risk of HCC metastasis. After optimizing the final concentrations of Mg2+ and betaine, the sensitivity limits for detection of CK19 and EpCAM could reach 10 to 20 copies, while the sensitivity limits for the detection of CD133 and CD90 could reach 10 copies. We detected clinical specimens from 10 HCC patients and performed analysis before and after receiving hepatectomy using RT-LAMP and quantitative reverse transcription polymerase chain reaction (qRT-PCR). The results of both were consistent, but RT-LAMP was proved to be a more rapid, more sensitive, and more economic approach. This novel method is expected to estimate the recurrence and metastasis of HCC for clinical application by combining various low-cost circulating tumor cell sorting and detection tools.
Collapse
Affiliation(s)
- Yuhan Yao
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science & Engineering, Fudan University, 2205 Songhu Road, Shanghai, 200433, PR China
| | - Yuancheng Li
- Institute of Biomedical Science, Fudan University, No. 138 Yixueyuan Road, Shanghai, 200032, PR China
| | - Qi Liu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science & Engineering, Fudan University, 2205 Songhu Road, Shanghai, 200433, PR China
| | - Kaiqian Zhou
- The Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China
| | - Wang Zhao
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science & Engineering, Fudan University, 2205 Songhu Road, Shanghai, 200433, PR China
| | - Sixiu Liu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science & Engineering, Fudan University, 2205 Songhu Road, Shanghai, 200433, PR China
| | - Jielin Yang
- Technical Center for Animal, Plant and Food Inspection and Quarantine of Shanghai Customs, Shanghai, 200131, PR China
| | - Yuan Jiang
- Technical Center for Animal, Plant and Food Inspection and Quarantine of Shanghai Customs, Shanghai, 200131, PR China
| | - Guodong Sui
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science & Engineering, Fudan University, 2205 Songhu Road, Shanghai, 200433, PR China; Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Nanjing University of Information Science & Technology, Nanjing, 210044, PR China.
| |
Collapse
|
110
|
Ramón y Cajal S, Sesé M, Capdevila C, Aasen T, De Mattos-Arruda L, Diaz-Cano SJ, Hernández-Losa J, Castellví J. Clinical implications of intratumor heterogeneity: challenges and opportunities. J Mol Med (Berl) 2020; 98:161-177. [PMID: 31970428 PMCID: PMC7007907 DOI: 10.1007/s00109-020-01874-2] [Citation(s) in RCA: 294] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 11/05/2019] [Accepted: 01/07/2020] [Indexed: 02/06/2023]
Abstract
In this review, we highlight the role of intratumoral heterogeneity, focusing on the clinical and biological ramifications this phenomenon poses. Intratumoral heterogeneity arises through complex genetic, epigenetic, and protein modifications that drive phenotypic selection in response to environmental pressures. Functionally, heterogeneity provides tumors with significant adaptability. This ranges from mutual beneficial cooperation between cells, which nurture features such as growth and metastasis, to the narrow escape and survival of clonal cell populations that have adapted to thrive under specific conditions such as hypoxia or chemotherapy. These dynamic intercellular interplays are guided by a Darwinian selection landscape between clonal tumor cell populations and the tumor microenvironment. Understanding the involved drivers and functional consequences of such tumor heterogeneity is challenging but also promises to provide novel insight needed to confront the problem of therapeutic resistance in tumors.
Collapse
Affiliation(s)
- Santiago Ramón y Cajal
- Translational Molecular Pathology, Vall d’Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Pathology Department, Vall d’Hebron Hospital, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Spanish Biomedical Research Network Centre in Oncology (CIBERONC), Barcelona, Spain
- Department of Pathology, Vall d’Hebron University Hospital, Autonomous University of Barcelona, Pg. Vall d’Hebron, 119-129, 08035 Barcelona, Spain
| | - Marta Sesé
- Translational Molecular Pathology, Vall d’Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Spanish Biomedical Research Network Centre in Oncology (CIBERONC), Barcelona, Spain
| | - Claudia Capdevila
- Translational Molecular Pathology, Vall d’Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032 USA
| | - Trond Aasen
- Translational Molecular Pathology, Vall d’Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Spanish Biomedical Research Network Centre in Oncology (CIBERONC), Barcelona, Spain
| | - Leticia De Mattos-Arruda
- Vall d’Hebron Institute of Oncology, Vall d’Hebron University Hospital, c/Natzaret, 115-117, 08035 Barcelona, Spain
| | - Salvador J. Diaz-Cano
- Department of Histopathology, King’s College Hospital and King’s Health Partners, London, UK
| | - Javier Hernández-Losa
- Translational Molecular Pathology, Vall d’Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Pathology Department, Vall d’Hebron Hospital, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Spanish Biomedical Research Network Centre in Oncology (CIBERONC), Barcelona, Spain
| | - Josep Castellví
- Translational Molecular Pathology, Vall d’Hebron Institute of Research (VHIR), Universitat Autònoma de Barcelona, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Pathology Department, Vall d’Hebron Hospital, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain
- Spanish Biomedical Research Network Centre in Oncology (CIBERONC), Barcelona, Spain
| |
Collapse
|
111
|
Affiliation(s)
- Malgorzata A. Witek
- Department of Chemistry, The University of Kansas, Lawrence, Kansas 66044, United States
- Center of Biomodular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, Kansas 66044, United States
- Department of Biomedical Engineering, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Ian M. Freed
- Department of Chemistry, The University of Kansas, Lawrence, Kansas 66044, United States
- Center of Biomodular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, Kansas 66044, United States
| | - Steven A. Soper
- Department of Chemistry, The University of Kansas, Lawrence, Kansas 66044, United States
- Center of Biomodular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, Kansas 66044, United States
- Department of Mechanical Engineering, The University of Kansas, Lawrence, Kansas 66044, United States
- Bioengineering Program, The University of Kansas, Lawrence, Kansas 66044, United States
| |
Collapse
|
112
|
Kolinsky MP, Stoecklein N, Lambros M, Gil V, Rodrigues DN, Carreira S, Zafeiriou Z, de Bono JS. Genetic Analysis of Circulating Tumour Cells. Recent Results Cancer Res 2020; 215:57-76. [PMID: 31605223 DOI: 10.1007/978-3-030-26439-0_3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The classification of human cancers has traditionally relied on the tissue of origin, the histologic appearance and anatomical extent of disease, otherwise referred to as grade and stage. However, this system fails to explain the highly variable clinical behaviour seen for any one cancer. Molecular characterization through techniques such as next-generation sequencing (NGS) has led to an appreciation of the extreme genetic heterogeneity that underlies most human cancers. Because of the difficulties associated with fresh tissue biopsy, interest has increased in using circulating tumour material, such as circulating tumour cells (CTCs), as a non-invasive way to access tumour tissue. CTC enumeration has been demonstrated to have prognostic value in metastatic breast, colon and prostate cancers. Recent studies have also shown that CTCs are suitable material for molecular characterization, using techniques such as reverse transcription-polymerase chain reaction (RT-PCR), fluorescence in situ hybridization (FISH), array comparative genomic hybridization (aCGH) and NGS. Furthermore, genetic analysis of CTCs may be more suitable to study tumour heterogeneity and clonal evolution than fresh tissue biopsy. Whether blood-based biopsy techniques will be accepted as a replacement to fresh tissue biopsies remains to be seen, but there is reason for optimism. While significant barriers to this acceptance exist, blood-based biopsy techniques appear to be reliable and representative alternatives to fresh tissue biopsy.
Collapse
Affiliation(s)
- Michael Paul Kolinsky
- The Institute of Cancer Research, The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK
- Cross Cancer Institute, 11560 University Avenue, Edmonton, AB, T61Z2, Canada
| | | | - Maryou Lambros
- The Institute of Cancer Research, The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK
| | - Veronica Gil
- The Institute of Cancer Research, The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK
| | - Daniel Nava Rodrigues
- The Institute of Cancer Research, The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK
| | - Suzanne Carreira
- The Institute of Cancer Research, The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK
| | - Zafeiris Zafeiriou
- The Institute of Cancer Research, The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK
| | - Johann Sebastian de Bono
- The Institute of Cancer Research, The Royal Marsden NHS Foundation Trust, Downs Road, Sutton, Surrey, SM2 5PT, UK.
| |
Collapse
|
113
|
Dong J, Chen JF, Smalley M, Zhao M, Ke Z, Zhu Y, Tseng HR. Nanostructured Substrates for Detection and Characterization of Circulating Rare Cells: From Materials Research to Clinical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1903663. [PMID: 31566837 PMCID: PMC6946854 DOI: 10.1002/adma.201903663] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/02/2019] [Indexed: 05/03/2023]
Abstract
Circulating rare cells in the blood are of great significance for both materials research and clinical applications. For example, circulating tumor cells (CTCs) have been demonstrated as useful biomarkers for "liquid biopsy" of the tumor. Circulating fetal nucleated cells (CFNCs) have shown potential in noninvasive prenatal diagnostics. However, it is technically challenging to detect and isolate circulating rare cells due to their extremely low abundance compared to hematologic cells. Nanostructured substrates offer a unique solution to address these challenges by providing local topographic interactions to strengthen cell adhesion and large surface areas for grafting capture agents, resulting in improved cell capture efficiency, purity, sensitivity, and reproducibility. In addition, rare-cell retrieval strategies, including stimulus-responsiveness and additive reagent-triggered release on different nanostructured substrates, allow for on-demand retrieval of the captured CTCs/CFNCs with high cell viability and molecular integrity. Several nanostructured substrate-enabled CTC/CFNC assays are observed maturing from enumeration and subclassification to molecular analyses. These can one day become powerful tools in disease diagnosis, prognostic prediction, and dynamic monitoring of therapeutic response-paving the way for personalized medical care.
Collapse
Affiliation(s)
- Jiantong Dong
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Jie-Fu Chen
- Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Matthew Smalley
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Meiping Zhao
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Zunfu Ke
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, P. R. China
| | - Yazhen Zhu
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Hsian-Rong Tseng
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
114
|
Wang Q, Zhao L, Han L, Tuo X, Ma S, Wang Y, Feng X, Liang D, Sun C, Wang Q, Song Q, Li Q. The Discordance of Gene Mutations between Circulating Tumor Cells and Primary/Metastatic Tumor. Mol Ther Oncolytics 2019; 15:21-29. [PMID: 31650022 PMCID: PMC6804648 DOI: 10.1016/j.omto.2019.08.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/19/2019] [Indexed: 12/14/2022] Open
Abstract
Circulating tumor cells (CTCs) are an important part in the field of "liquid biopsy." However, major questions remain to be answered whether the mutations in the CTCs represent the mutations in primary tumor tissue and metastatic tumors. We compared the genetic mutations between CTCs and their matched tumors, and extracted data on the heterogeneity of the mutational status in CTCs and the change in mutations of CTCs before and during treatment. For mutations detected in single genes, we calculated the concordance of the mutations between the CTCs and primary tumor tissue. For mutations detected in multiple genes, we calculated the concordance of the mutations between the CTCs and primary/metastatic tumor tissue. The heterogeneity of the mutational status is clearly present in CTCs. For mutations detected in a single gene, the overall concordance of mutations is 53.05%. For mutations detected in multiple genes, the concordance of mutations is extremely different. The heterogeneity of the mutational status existed in single CTCs, and the mutational status of CTCs was discordant with that of tumor tissue.
Collapse
Affiliation(s)
- Qi Wang
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
- Center for Single-Cell Biology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Lanbo Zhao
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Lu Han
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Xiaoqian Tuo
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Sijia Ma
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Yiran Wang
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Xue Feng
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Dongxin Liang
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Chao Sun
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Qing Wang
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| | - Qing Song
- Center for Single-Cell Biology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
- Cardiovascular Research Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Qiling Li
- Department of Obstetrics and Gynecology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
- Center for Single-Cell Biology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi 710061, China
| |
Collapse
|
115
|
Abstract
Abstract
Precision oncology aims to tailor clinical decisions specifically to patients with the objective of improving treatment outcomes. This can be achieved by leveraging omics information for accurate molecular characterization of tumors. Tumor tissue biopsies are currently the main source of information for molecular profiling. However, biopsies are invasive and limited in resolving spatiotemporal heterogeneity in tumor tissues. Alternative non-invasive liquid biopsies can exploit patient’s body fluids to access multiple layers of tumor-specific biological information (genomes, epigenomes, transcriptomes, proteomes, metabolomes, circulating tumor cells, and exosomes). Analysis and integration of these large and diverse datasets using statistical and machine learning approaches can yield important insights into tumor biology and lead to discovery of new diagnostic, predictive, and prognostic biomarkers. Translation of these new diagnostic tools into standard clinical practice could transform oncology, as demonstrated by a number of liquid biopsy assays already entering clinical use. In this review, we highlight successes and challenges facing the rapidly evolving field of cancer biomarker research.
Lay Summary
Precision oncology aims to tailor clinical decisions specifically to patients with the objective of improving treatment outcomes. The discovery of biomarkers for precision oncology has been accelerated by high-throughput experimental and computational methods, which can inform fine-grained characterization of tumors for clinical decision-making. Moreover, advances in the liquid biopsy field allow non-invasive sampling of patient’s body fluids with the aim of analyzing circulating biomarkers, obviating the need for invasive tumor tissue biopsies. In this review, we highlight successes and challenges facing the rapidly evolving field of liquid biopsy cancer biomarker research.
Collapse
|
116
|
D'Oronzo S, Lovero D, Palmirotta R, Stucci LS, Tucci M, Felici C, Cascardi E, Giardina C, Cafforio P, Silvestris F. Dissection of major cancer gene variants in subsets of circulating tumor cells in advanced breast cancer. Sci Rep 2019; 9:17276. [PMID: 31754145 PMCID: PMC6872745 DOI: 10.1038/s41598-019-53660-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 11/04/2019] [Indexed: 02/07/2023] Open
Abstract
Enumeration of circulating tumor cells (CTCs) may reflect the metastatic potential of breast cancer (BC). By using the DEPArray, we investigated CTCs with respect to their epithelial-to-mesenchymal transition phenotype and compared their genomic heterogeneity with tissue biopsies. Seventeen stage IV BC patients were enrolled. Pre-enriched CTC suspensions were stained with fluorescent-labeled antibodies to epithelial (E) and mesenchymal (M) markers. CTC samples were processed by DEPArray system and clustered in relation to their markers. DNA from CTCs, as well as from primary tumor samples, was sequenced by next generation sequencing to assess the mutational state of 50 major cancer-related genes. We identified four different CTC subsets that harbored different gene variants. The most heterogenous CTC subsets included the M+/E- phenotype, which, however, expressed only 7 repeatedly mutated genes, while in the M-/E+ subset multiple mutations affected only 2 out of 50 genes. When matching all gene variants among CTC subsets, a small number of mutations was shared by only 4 genes, namely ATM, FGFR3, PIK3CA, and TP53 that, however, were absent in primary tumors. Our results postulate that the detected mutations in all CTC subsets may be considered as genomic markers of metastatic dissemination to be investigated during early stages of BC.
Collapse
Affiliation(s)
- Stella D'Oronzo
- Department of Biomedical Sciences and Human Oncology - Section of Internal Medicine and Clinical Oncology - University of Bari Aldo Moro, P.zza G. Cesare, 11 - 70124, Bari, Italy
- I.R.C.C.S-Giovanni Paolo II Cancer Institute, 70124, Bari, Italy
| | - Domenica Lovero
- Department of Biomedical Sciences and Human Oncology - Section of Internal Medicine and Clinical Oncology - University of Bari Aldo Moro, P.zza G. Cesare, 11 - 70124, Bari, Italy
| | - Raffaele Palmirotta
- Department of Biomedical Sciences and Human Oncology - Section of Internal Medicine and Clinical Oncology - University of Bari Aldo Moro, P.zza G. Cesare, 11 - 70124, Bari, Italy
| | - Luigia Stefania Stucci
- Department of Biomedical Sciences and Human Oncology - Section of Internal Medicine and Clinical Oncology - University of Bari Aldo Moro, P.zza G. Cesare, 11 - 70124, Bari, Italy
| | - Marco Tucci
- Department of Biomedical Sciences and Human Oncology - Section of Internal Medicine and Clinical Oncology - University of Bari Aldo Moro, P.zza G. Cesare, 11 - 70124, Bari, Italy
- I.R.C.C.S-Giovanni Paolo II Cancer Institute, 70124, Bari, Italy
| | - Claudia Felici
- Department of Biomedical Sciences and Human Oncology - Section of Internal Medicine and Clinical Oncology - University of Bari Aldo Moro, P.zza G. Cesare, 11 - 70124, Bari, Italy
| | - Eliano Cascardi
- Department of Emergency and Organs Transplant, Division of Pathology, University of Bari Aldo Moro, P.zza G. Cesare, 11 - 70124, Bari, Italy
| | - Carmela Giardina
- Department of Emergency and Organs Transplant, Division of Pathology, University of Bari Aldo Moro, P.zza G. Cesare, 11 - 70124, Bari, Italy
| | - Paola Cafforio
- Department of Biomedical Sciences and Human Oncology - Section of Internal Medicine and Clinical Oncology - University of Bari Aldo Moro, P.zza G. Cesare, 11 - 70124, Bari, Italy
| | - Franco Silvestris
- Department of Biomedical Sciences and Human Oncology - Section of Internal Medicine and Clinical Oncology - University of Bari Aldo Moro, P.zza G. Cesare, 11 - 70124, Bari, Italy.
| |
Collapse
|
117
|
Laks E, McPherson A, Zahn H, Lai D, Steif A, Brimhall J, Biele J, Wang B, Masud T, Ting J, Grewal D, Nielsen C, Leung S, Bojilova V, Smith M, Golovko O, Poon S, Eirew P, Kabeer F, Ruiz de Algara T, Lee SR, Taghiyar MJ, Huebner C, Ngo J, Chan T, Vatrt-Watts S, Walters P, Abrar N, Chan S, Wiens M, Martin L, Scott RW, Underhill TM, Chavez E, Steidl C, Da Costa D, Ma Y, Coope RJN, Corbett R, Pleasance S, Moore R, Mungall AJ, Mar C, Cafferty F, Gelmon K, Chia S, Marra MA, Hansen C, Shah SP, Aparicio S. Clonal Decomposition and DNA Replication States Defined by Scaled Single-Cell Genome Sequencing. Cell 2019; 179:1207-1221.e22. [PMID: 31730858 PMCID: PMC6912164 DOI: 10.1016/j.cell.2019.10.026] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 06/14/2019] [Accepted: 10/22/2019] [Indexed: 01/21/2023]
Abstract
Accurate measurement of clonal genotypes, mutational processes, and replication states from individual tumor-cell genomes will facilitate improved understanding of tumor evolution. We have developed DLP+, a scalable single-cell whole-genome sequencing platform implemented using commodity instruments, image-based object recognition, and open source computational methods. Using DLP+, we have generated a resource of 51,926 single-cell genomes and matched cell images from diverse cell types including cell lines, xenografts, and diagnostic samples with limited material. From this resource we have defined variation in mitotic mis-segregation rates across tissue types and genotypes. Analysis of matched genomic and image measurements revealed correlations between cellular morphology and genome ploidy states. Aggregation of cells sharing copy number profiles allowed for calculation of single-nucleotide resolution clonal genotypes and inference of clonal phylogenies and avoided the limitations of bulk deconvolution. Finally, joint analysis over the above features defined clone-specific chromosomal aneuploidy in polyclonal populations.
Collapse
Affiliation(s)
- Emma Laks
- Department of Molecular Oncology, BC Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC V5Z 1L3, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 2B5, Canada; Genome Science and Technology Graduate Program, University of British Columbia, Vancouver, BC, Canada
| | - Andrew McPherson
- Department of Molecular Oncology, BC Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC V5Z 1L3, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 2B5, Canada; Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, 417 East 68th St., New York, NY 10065, USA
| | - Hans Zahn
- Department of Molecular Oncology, BC Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC V5Z 1L3, Canada; Genome Science and Technology Graduate Program, University of British Columbia, Vancouver, BC, Canada; Centre for High Throughput Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - Daniel Lai
- Department of Molecular Oncology, BC Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC V5Z 1L3, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - Adi Steif
- Department of Molecular Oncology, BC Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC V5Z 1L3, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 2B5, Canada; Genome Science and Technology Graduate Program, University of British Columbia, Vancouver, BC, Canada
| | - Jazmine Brimhall
- Department of Molecular Oncology, BC Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC V5Z 1L3, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - Justina Biele
- Department of Molecular Oncology, BC Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC V5Z 1L3, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - Beixi Wang
- Department of Molecular Oncology, BC Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC V5Z 1L3, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - Tehmina Masud
- Department of Molecular Oncology, BC Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC V5Z 1L3, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - Jerome Ting
- Department of Molecular Oncology, BC Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC V5Z 1L3, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - Diljot Grewal
- Department of Molecular Oncology, BC Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC V5Z 1L3, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 2B5, Canada; Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, 417 East 68th St., New York, NY 10065, USA
| | - Cydney Nielsen
- Department of Molecular Oncology, BC Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC V5Z 1L3, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - Samantha Leung
- Department of Molecular Oncology, BC Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC V5Z 1L3, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 2B5, Canada; Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, 417 East 68th St., New York, NY 10065, USA
| | - Viktoria Bojilova
- Department of Molecular Oncology, BC Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC V5Z 1L3, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 2B5, Canada; Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, 417 East 68th St., New York, NY 10065, USA
| | - Maia Smith
- Department of Molecular Oncology, BC Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC V5Z 1L3, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - Oleg Golovko
- Department of Molecular Oncology, BC Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC V5Z 1L3, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - Steven Poon
- Department of Molecular Oncology, BC Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC V5Z 1L3, Canada
| | - Peter Eirew
- Department of Molecular Oncology, BC Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC V5Z 1L3, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - Farhia Kabeer
- Department of Molecular Oncology, BC Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC V5Z 1L3, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - Teresa Ruiz de Algara
- Department of Molecular Oncology, BC Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC V5Z 1L3, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - So Ra Lee
- Department of Molecular Oncology, BC Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC V5Z 1L3, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - M Jafar Taghiyar
- Department of Molecular Oncology, BC Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC V5Z 1L3, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - Curtis Huebner
- Department of Molecular Oncology, BC Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC V5Z 1L3, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - Jessica Ngo
- Department of Molecular Oncology, BC Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC V5Z 1L3, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - Tim Chan
- Department of Molecular Oncology, BC Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC V5Z 1L3, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - Spencer Vatrt-Watts
- Department of Molecular Oncology, BC Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC V5Z 1L3, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 2B5, Canada; Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, 417 East 68th St., New York, NY 10065, USA
| | - Pascale Walters
- Department of Molecular Oncology, BC Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC V5Z 1L3, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - Nafis Abrar
- Department of Molecular Oncology, BC Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC V5Z 1L3, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - Sophia Chan
- Department of Molecular Oncology, BC Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC V5Z 1L3, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - Matt Wiens
- Department of Molecular Oncology, BC Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC V5Z 1L3, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - Lauren Martin
- Department of Molecular Oncology, BC Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC V5Z 1L3, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - R Wilder Scott
- Department of Molecular Oncology, BC Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC V5Z 1L3, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - T Michael Underhill
- Centre for High Throughput Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - Elizabeth Chavez
- Centre for Lymphoid Cancer, BC Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC V5Z 1L3, Canada
| | - Christian Steidl
- Centre for Lymphoid Cancer, BC Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC V5Z 1L3, Canada
| | - Daniel Da Costa
- Department of Molecular Oncology, BC Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC V5Z 1L3, Canada; Centre for High Throughput Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - Yussanne Ma
- Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 1L3, Canada
| | - Robin J N Coope
- Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 1L3, Canada
| | - Richard Corbett
- Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 1L3, Canada
| | - Stephen Pleasance
- Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 1L3, Canada
| | - Richard Moore
- Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 1L3, Canada
| | - Andrew J Mungall
- Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 1L3, Canada
| | - Colin Mar
- Department of Radiology, BC Cancer, 600 West 10th Avenue, Vancouver, BC V5Z 4E6, Canada
| | - Fergus Cafferty
- Department of Radiology, BC Cancer, 600 West 10th Avenue, Vancouver, BC V5Z 4E6, Canada
| | - Karen Gelmon
- Department of Medical Oncology, BC Cancer, 600 West 10th Avenue, Vancouver, BC V5Z 4E6, Canada
| | - Stephen Chia
- Department of Medical Oncology, BC Cancer, 600 West 10th Avenue, Vancouver, BC V5Z 4E6, Canada
| | - Marco A Marra
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - Carl Hansen
- Centre for High Throughput Biology, Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - Sohrab P Shah
- Department of Molecular Oncology, BC Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC V5Z 1L3, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 2B5, Canada; Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, 417 East 68th St., New York, NY 10065, USA.
| | - Samuel Aparicio
- Department of Molecular Oncology, BC Cancer Research Centre, 675 West 10th Avenue, Vancouver, BC V5Z 1L3, Canada; Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 2B5, Canada.
| |
Collapse
|
118
|
Li W, Wang H, Zhao Z, Gao H, Liu C, Zhu L, Wang C, Yang Y. Emerging Nanotechnologies for Liquid Biopsy: The Detection of Circulating Tumor Cells and Extracellular Vesicles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1805344. [PMID: 30589111 DOI: 10.1002/adma.201805344] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/29/2018] [Indexed: 05/18/2023]
Abstract
Liquid biopsy enables noninvasive and dynamic analysis of molecular or cellular biomarkers, and therefore holds great potential for the diagnosis, prognosis, monitoring of disease progress and treatment efficacy, understanding of disease mechanisms, and identification of therapeutic targets for drug development. In this review, the recent progress in nanomaterials, nanostructures, nanodevices, and nanosensors for liquid biopsy is summarized, with a focus on the detection and molecular characterization of circulating tumor cells (CTCs) and extracellular vesicles (EVs). The developments and advances of nanomaterials and nanostructures in enhancing the sensitivity, specificity, and purity for the detection of CTCs and EVs are discussed. Sensing techniques for signal transduction and amplification as well as visualization strategies are also discussed. New technologies for the reversible release of the isolated CTCs and EVs and for single-CTC/EV analysis are summarized. Emerging microfluidic platforms for the integral on-chip isolation, detection, and molecular analysis are also included. The opportunities, challenges, and prospects of these innovative materials and technologies, especially with regard to their feasibility in clinical applications, are discussed. The applications of nanotechnology-based liquid biopsy will bring new insight into the clinical practice in monitoring and treatment of tumor and other significant diseases.
Collapse
Affiliation(s)
- Wenzhe Li
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Huayi Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zijian Zhao
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Houqian Gao
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Changliang Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ling Zhu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chen Wang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yanlian Yang
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory of Biological Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
119
|
Mollica V, Di Nunno V, Santoni M, Cimadamore A, Scarpelli M, Lopez-Beltran A, Cheng L, Mariani C, Battelli N, Montironi R, Massari F. An evaluation of current prostate cancer diagnostic approaches with emphasis on liquid biopsies and prostate cancer. Expert Rev Mol Diagn 2019; 20:207-217. [PMID: 31640441 DOI: 10.1080/14737159.2019.1684265] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Introduction: Knowledge of the complex biology of prostate cancer is constantly growing, opening the field up to new therapeutic advances. The selection of patients on the basis of prognostic and predictive biomarkers is a challenging and emerging clinical need, not yet completely fulfilled. In this scenario, liquid biopsy offers a noninvasive and attractive approach to give important information about tumor biology and eventual resistance to treatments.Areas covered: The aim of this review of the literature is to evaluate the current knowledge and the promising value of liquid biopsy in prostate cancer. Circulating tumor cells and circulating tumor DNA identified by liquid biopsies are currently under evaluation to guide therapeutic decisions in prostate cancer management, even though practical applications of these approaches are still very limited. We examined the current areas of interest in which circulating tumor cells and circulating tumor DNA are being investigated, such as their prognostic and predictive role in response to chemotherapy or androgen receptor signaling inhibition, especially in the castration-resistant setting.Expert opinion: As the body of knowledge on liquid biopsy rapidly grows, we need to identify which can be the real applications of this technique in clinical practice and to overcome the problems that are limiting its routinely use.
Collapse
Affiliation(s)
- Veronica Mollica
- Division of Oncology, S.Orsola-Malpighi Hospital, Bologna, Italy
| | | | | | - Alessia Cimadamore
- Section of Pathological Anatomy, Polytechnic University of the Marche Region, School of Medicine, United Hospitals, Ancona, Italy
| | - Marina Scarpelli
- Section of Pathological Anatomy, Polytechnic University of the Marche Region, School of Medicine, United Hospitals, Ancona, Italy
| | | | - Liang Cheng
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | | - Rodolfo Montironi
- Section of Pathological Anatomy, Polytechnic University of the Marche Region, School of Medicine, United Hospitals, Ancona, Italy
| | | |
Collapse
|
120
|
Soda N, Rehm BHA, Sonar P, Nguyen NT, Shiddiky MJA. Advanced liquid biopsy technologies for circulating biomarker detection. J Mater Chem B 2019; 7:6670-6704. [PMID: 31646316 DOI: 10.1039/c9tb01490j] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Liquid biopsy is a new diagnostic concept that provides important information for monitoring and identifying tumor genomes in body fluid samples. Detection of tumor origin biomolecules like circulating tumor cells (CTCs), circulating tumor specific nucleic acids (circulating tumor DNA (ctDNA), circulating tumor RNA (ctRNA), microRNAs (miRNAs), long non-coding RNAs (lnRNAs)), exosomes, autoantibodies in blood, saliva, stool, urine, etc. enables cancer screening, early stage diagnosis and evaluation of therapy response through minimally invasive means. From reliance on painful and hazardous tissue biopsies or imaging depending on sophisticated equipment, cancer management schemes are witnessing a rapid evolution towards minimally invasive yet highly sensitive liquid biopsy-based tools. Clinical application of liquid biopsy is already paving the way for precision theranostics and personalized medicine. This is achieved especially by enabling repeated sampling, which in turn provides a more comprehensive molecular profile of tumors. On the other hand, integration with novel miniaturized platforms, engineered nanomaterials, as well as electrochemical detection has led to the development of low-cost and simple platforms suited for point-of-care applications. Herein, we provide a comprehensive overview of the biogenesis, significance and potential role of four widely known biomarkers (CTCs, ctDNA, miRNA and exosomes) in cancer diagnostics and therapeutics. Furthermore, we provide a detailed discussion of the inherent biological and technical challenges associated with currently available methods and the possible pathways to overcome these challenges. The recent advances in the application of a wide range of nanomaterials in detecting these biomarkers are also highlighted.
Collapse
Affiliation(s)
- Narshone Soda
- School of Environment and Science, Griffith University, Nathan Campus, QLD 4111, Australia. and Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, QLD 4111, Australia
| | - Bernd H A Rehm
- Centre for Cell Factories and Biopolymers (CCFB), Griffith Institute for Drug Discovery (GRIDD), Griffith University, Nathan, QLD 4111, Australia
| | - Prashant Sonar
- School of Chemistry, Physics and Mechanical Engineering, Molecular Design and Synthesis, Queensland University of Technology (QUT), Brisbane, Australia
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, QLD 4111, Australia
| | - Muhammad J A Shiddiky
- School of Environment and Science, Griffith University, Nathan Campus, QLD 4111, Australia. and Queensland Micro- and Nanotechnology Centre (QMNC), Griffith University, Nathan Campus, QLD 4111, Australia
| |
Collapse
|
121
|
Lim SB, Lim CT, Lim WT. Single-Cell Analysis of Circulating Tumor Cells: Why Heterogeneity Matters. Cancers (Basel) 2019; 11:cancers11101595. [PMID: 31635038 PMCID: PMC6826423 DOI: 10.3390/cancers11101595] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 12/31/2022] Open
Abstract
Unlike bulk-cell analysis, single-cell approaches have the advantage of assessing cellular heterogeneity that governs key aspects of tumor biology. Yet, their applications to circulating tumor cells (CTCs) are relatively limited, due mainly to the technical challenges resulting from extreme rarity of CTCs. Nevertheless, recent advances in microfluidics and immunoaffinity enrichment technologies along with sequencing platforms have fueled studies aiming to enrich, isolate, and sequence whole genomes of CTCs with high fidelity across various malignancies. Here, we review recent single-cell CTC (scCTC) sequencing efforts, and the integrated workflows, that have successfully characterized patient-derived CTCs. We examine how these studies uncover DNA alterations occurring at multiple molecular levels ranging from point mutations to chromosomal rearrangements from a single CTC, and discuss their cellular heterogeneity and clinical consequences. Finally, we highlight emerging strategies to address key challenges currently limiting the translation of these findings to clinical practice.
Collapse
Affiliation(s)
- Su Bin Lim
- NUS Graduate School for Integrative Sciences & Engineering, National University of Singapore, Singapore 117456, Singapore.
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore.
| | - Chwee Teck Lim
- NUS Graduate School for Integrative Sciences & Engineering, National University of Singapore, Singapore 117456, Singapore.
- Department of Biomedical Engineering, National University of Singapore, Singapore 117583, Singapore.
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Singapore.
- Institute for Health Innovation and Technology (iHealthtech), National University of Singapore, Singapore 117599, Singapore.
| | - Wan-Teck Lim
- Division of Medical Oncology, National Cancer Centre Singapore, Singapore 169610, Singapore.
- Office of Academic and Clinical Development, Duke-NUS Medical School, Singapore 169857, Singapore.
- IMCB NCC MPI Singapore Oncogenome Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore 138673, Singapore.
| |
Collapse
|
122
|
Rossi E, Zamarchi R. Single-Cell Analysis of Circulating Tumor Cells: How Far Have We Come in the -Omics Era? Front Genet 2019; 10:958. [PMID: 31681412 PMCID: PMC6811661 DOI: 10.3389/fgene.2019.00958] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 09/09/2019] [Indexed: 12/11/2022] Open
Abstract
Tumor cells detach from the primary tumor or metastatic sites and enter the peripheral blood, often causing metastasis. These cells, named Circulating Tumor Cells (CTCs), display the same spatial and temporal heterogeneity as the primary tumor. Since CTCs are involved in tumor progression, they represent a privileged window to disclose mechanisms of metastases, while -omic analyses at the single-cell level allow dissection of the complex relationships between the tumor subpopulations and the surrounding normal tissue. However, in addition to reporting the proof of concept that we can query CTCs to reveal tumor evolution throughout the continuum of treatment for early detection of resistance to therapy, the scientific literature has also been highlighting the disadvantages of CTCs, which hampers a routine use of this approach in clinical practice. To date, an increasing number of CTC technologies, as well as -omics methods, have been employed, mostly lacking strong comparative analyses. The rarity of CTCs also represents a major challenge, because there is no consensus regarding the minimal criteria necessary and sufficient to define an event as CTC; moreover, we cannot often compare data from of one study with that of another. Finally, the availability of an individual tumor profile undermines the traditional histology-based treatment. Applying molecular data for patient benefit implies a collective effort by biologists, bioengineers, and clinicians, to create tools to interpret molecular data and manage precision medicine in every single patient. Herein, we focus on the most recent findings in CTC −omics to learn how far we have come.
Collapse
Affiliation(s)
- Elisabetta Rossi
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy.,Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Rita Zamarchi
- Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| |
Collapse
|
123
|
Circulating Tumour Cells in Lung Cancer. Recent Results Cancer Res 2019. [PMID: 31605226 DOI: 10.1007/978-3-030-26439-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Circulating tumour cells (CTCs) constitute a potential tumour surrogate that could serve as "liquid biopsy" with the advantage to be a minimally invasive approach compared to traditional tissue biopsies. As CTCs are thought to be the source of metastatic lesions, their analysis represents a potential means of tracking cancer cells from the primary tumour en route to distant sites, thus providing valuable insights into the metastatic process. However, several problems, such as their rarity in the peripheral blood, the technical limitations of single-cell downstream analysis and their phenotypic variability, make CTC detection and molecular characterisation very challenging. Nevertheless, in the last decade, there has been an exponential increase of interest in the development of powerful cellular and molecular methodologies applied to CTCs. In this chapter, we focus on the recent advances of functional studies and molecular profiling of CTCs. We will also highlight the clinical relevance of CTC detection and enumeration, and discuss their potential as tumour biomarkers with special focus on lung cancer.
Collapse
|
124
|
He G, Feng J, Zhang A, Zhou L, Wen R, Wu J, Yang C, Yang J, Li C, Chen D, Wang J, Hu N, Xie X. Multifunctional Branched Nanostraw-Electroporation Platform for Intracellular Regulation and Monitoring of Circulating Tumor Cells. NANO LETTERS 2019; 19:7201-7209. [PMID: 31557044 DOI: 10.1021/acs.nanolett.9b02790] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Downstream analysis of circulating tumor cells (CTCs) has provided new insights into cancer research. In particular, the detection of CTCs, followed by the regulation and monitoring of their intracellular activities, can provide valuable information for comprehensively understanding cancer pathogenesis and progression. However, current CTC detection techniques are rarely capable of in situ regulation and monitoring of the intracellular microenvironments of cancer cells over time. Here, we developed a multifunctional branched nanostraw (BNS)-electroporation platform that could effectively capture CTCs and allow for downstream regulation and monitoring of their intracellular activities in a real-time and in situ manner. The BNSs possessed numerous nanobranches on the outer sidewall of hollow nanotubes, which could be conjugated with specific antibodies to facilitate the effective capture of CTCs. Nanoelectroporation could be applied through the BNSs to nondestructively porate the membranes of the captured cells at a low voltage, allowing the delivery of exogenous biomolecules into the cytosol and the extraction of cytosolic contents through the BNSs without affecting cell viability. The efficient delivery of biomolecules (e.g., small molecule dyes and DNA plasmids) into cancer cells with spatial and temporal control and, conversely, the repeated extraction of intracellular enzymes (e.g., caspase-3) for real-time monitoring were both demonstrated. This technology can provide new opportunities for the comprehensive understanding of cancer cell functions that will facilitate cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Gen He
- The First Affiliated Hospital of Sun Yat-Sen University, State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology , Sun Yat-Sen University , Guangzhou 510006 , China
| | - Jianming Feng
- The First Affiliated Hospital of Sun Yat-Sen University, State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology , Sun Yat-Sen University , Guangzhou 510006 , China
| | - Aihua Zhang
- The First Affiliated Hospital of Sun Yat-Sen University, State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology , Sun Yat-Sen University , Guangzhou 510006 , China
| | - Lingfei Zhou
- The First Affiliated Hospital of Sun Yat-Sen University, State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology , Sun Yat-Sen University , Guangzhou 510006 , China
| | - Rui Wen
- The First Affiliated Hospital of Sun Yat-Sen University, State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology , Sun Yat-Sen University , Guangzhou 510006 , China
| | - Jiangming Wu
- The First Affiliated Hospital of Sun Yat-Sen University, State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology , Sun Yat-Sen University , Guangzhou 510006 , China
| | - Chengduan Yang
- The First Affiliated Hospital of Sun Yat-Sen University, State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology , Sun Yat-Sen University , Guangzhou 510006 , China
| | - Jiang Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine , Sun Yat-sen University Cancer Center , Guangzhou 510060 , China
| | - Chunwei Li
- The First Affiliated Hospital of Sun Yat-Sen University, State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology , Sun Yat-Sen University , Guangzhou 510006 , China
| | - Demeng Chen
- The First Affiliated Hospital of Sun Yat-Sen University, State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology , Sun Yat-Sen University , Guangzhou 510006 , China
| | - Ji Wang
- The First Affiliated Hospital of Sun Yat-Sen University, State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology , Sun Yat-Sen University , Guangzhou 510006 , China
| | - Ning Hu
- The First Affiliated Hospital of Sun Yat-Sen University, State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology , Sun Yat-Sen University , Guangzhou 510006 , China
| | - Xi Xie
- The First Affiliated Hospital of Sun Yat-Sen University, State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology , Sun Yat-Sen University , Guangzhou 510006 , China
| |
Collapse
|
125
|
Yamamoto TN, Kishton RJ, Restifo NP. Developing neoantigen-targeted T cell-based treatments for solid tumors. Nat Med 2019; 25:1488-1499. [PMID: 31591590 DOI: 10.1038/s41591-019-0596-y] [Citation(s) in RCA: 163] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 08/22/2019] [Indexed: 02/06/2023]
Abstract
Stimulating an immune response against cancer through adoptive transfer of tumor-targeting lymphocytes has shown great promise in hematological malignancies, but clinical efficacy against many common solid epithelial cancers remains low. Targeting 'neoantigens'-the somatic mutations expressed only by tumor cells-might enable tumor destruction without causing undue damage to vital healthy tissues. Major challenges to targeting neoantigens with T cells include heterogeneity and variability in antigen processing and presentation of targets by tumors, and an incomplete understanding of which T cell qualities are essential for clinically effective therapies. Finally, the prospect of targeting somatic tumor mutations to promote T cell destruction of cancer must contend with the biology that not all tumor-expressed 'neoepitopes' actually generate neoantigens that can be functionally recognized and provoke an effective immune response. In this Review, we discuss the promise, progress and challenges for improving neoantigen-targeted T cell-based immunotherapies for cancer.
Collapse
Affiliation(s)
- Tori N Yamamoto
- Center for Cancer Research, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA.,Center for Cell-Based Therapy, NCI, NIH, Bethesda, MD, USA.,Immunology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Rigel J Kishton
- Center for Cancer Research, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA.,Center for Cell-Based Therapy, NCI, NIH, Bethesda, MD, USA
| | - Nicholas P Restifo
- Center for Cancer Research, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD, USA. .,Center for Cell-Based Therapy, NCI, NIH, Bethesda, MD, USA. .,Lyell Immunopharma, South San Francisco, CA, USA.
| |
Collapse
|
126
|
Abstract
As an alternative target to surgically resected tissue specimens, liquid biopsy has gained much attention over the past decade. Of the various circulating biomarkers, circulating tumor cells (CTCs) have particularly opened new windows into the metastatic cascade, with their functional, biochemical, and biophysical properties. Given the extreme rarity of intact CTCs and the associated technical challenges, however, analyses have been limited to bulk-cell strategies, missing out on clinically significant sources of information from cellular heterogeneity. With recent technological developments, it is now possible to probe genetic material of CTCs at the single-cell resolution to study spatial and temporal dynamics in circulation. Here, we discuss recent transcriptomic profiling efforts that enabled single-cell characterization of patient-derived CTCs spanning diverse cancer types. We further highlight how expression data of these putative biomarkers have advanced our understanding of metastatic spectrum and provided a basis for the development of CTC-based liquid biopsies to track, monitor, and predict the efficacy of therapy and any emergent resistance.
Collapse
|
127
|
Chemi F, Rothwell DG, McGranahan N, Gulati S, Abbosh C, Pearce SP, Zhou C, Wilson GA, Jamal-Hanjani M, Birkbak N, Pierce J, Kim CS, Ferdous S, Burt DJ, Slane-Tan D, Gomes F, Moore D, Shah R, Al Bakir M, Hiley C, Veeriah S, Summers Y, Crosbie P, Ward S, Mesquita B, Dynowski M, Biswas D, Tugwood J, Blackhall F, Miller C, Hackshaw A, Brady G, Swanton C, Dive C. Pulmonary venous circulating tumor cell dissemination before tumor resection and disease relapse. Nat Med 2019; 25:1534-1539. [PMID: 31591595 PMCID: PMC6986897 DOI: 10.1038/s41591-019-0593-1] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 08/20/2019] [Indexed: 11/08/2022]
Abstract
Approximately 50% of patients with early-stage non-small-cell lung cancer (NSCLC) who undergo surgery with curative intent will relapse within 5 years1,2. Detection of circulating tumor cells (CTCs) at the time of surgery may represent a tool to identify patients at higher risk of recurrence for whom more frequent monitoring is advised. Here we asked whether CellSearch-detected pulmonary venous CTCs (PV-CTCs) at surgical resection of early-stage NSCLC represent subclones responsible for subsequent disease relapse. PV-CTCs were detected in 48% of 100 patients enrolled into the TRACERx study3, were associated with lung-cancer-specific relapse and remained an independent predictor of relapse in multivariate analysis adjusted for tumor stage. In a case study, genomic profiling of single PV-CTCs collected at surgery revealed higher mutation overlap with metastasis detected 10 months later (91%) than with the primary tumor (79%), suggesting that early-disseminating PV-CTCs were responsible for disease relapse. Together, PV-CTC enumeration and genomic profiling highlight the potential of PV-CTCs as early predictors of NSCLC recurrence after surgery. However, the limited sensitivity of PV-CTCs in predicting relapse suggests that further studies using a larger, independent cohort are warranted to confirm and better define the potential clinical utility of PV-CTCs in early-stage NSCLC.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Biomarkers, Tumor/genetics
- Carcinoma, Non-Small-Cell Lung/diagnosis
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/surgery
- Female
- Gene Expression Regulation, Neoplastic/genetics
- Genome, Human/genetics
- Humans
- Male
- Middle Aged
- Neoplasm Metastasis
- Neoplasm Recurrence, Local/diagnosis
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/pathology
- Neoplasm Recurrence, Local/surgery
- Neoplasm Staging
- Neoplastic Cells, Circulating/pathology
- Pulmonary Veins/pathology
Collapse
Affiliation(s)
- Francesca Chemi
- Clinical and Experimental Pharmacology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, UK
- Cancer Research UK Lung Cancer Centre of Excellence, The University of Manchester, Manchester, UK
| | - Dominic G Rothwell
- Clinical and Experimental Pharmacology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, UK
| | - Nicholas McGranahan
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Sakshi Gulati
- Clinical and Experimental Pharmacology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, UK
| | - Chris Abbosh
- University College London Cancer Institute, London, UK
| | - Simon P Pearce
- Clinical and Experimental Pharmacology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, UK
| | - Cong Zhou
- Clinical and Experimental Pharmacology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, UK
| | - Gareth A Wilson
- University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Mariam Jamal-Hanjani
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- University College London Cancer Institute, London, UK
| | - Nicolai Birkbak
- University College London Cancer Institute, London, UK
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
- Department of Molecular Medicine, Aarhus University, Aarhus, Denmark
| | - Jackie Pierce
- Clinical and Experimental Pharmacology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, UK
| | - Chang Sik Kim
- Clinical and Experimental Pharmacology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, UK
| | - Saba Ferdous
- Clinical and Experimental Pharmacology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, UK
| | - Deborah J Burt
- Clinical and Experimental Pharmacology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, UK
| | - Daniel Slane-Tan
- Clinical and Experimental Pharmacology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, UK
| | - Fabio Gomes
- Cancer Research UK Lung Cancer Centre of Excellence, The University of Manchester, Manchester, UK
| | - David Moore
- University College London Cancer Institute, London, UK
| | - Rajesh Shah
- Department of Thoracic Surgery, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Maise Al Bakir
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Crispin Hiley
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- University College London Cancer Institute, London, UK
| | | | - Yvonne Summers
- Division of Cancer Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Philip Crosbie
- Cancer Research UK Lung Cancer Centre of Excellence, The University of Manchester, Manchester, UK
- Division of Cancer Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
- North West Lung Centre, Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | - Sophia Ward
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Barbara Mesquita
- Clinical and Experimental Pharmacology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, UK
| | - Marek Dynowski
- Scientific Computing Core Facility, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, UK
| | - Dhruva Biswas
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK
| | - Jonathan Tugwood
- Clinical and Experimental Pharmacology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, UK
| | - Fiona Blackhall
- Cancer Research UK Lung Cancer Centre of Excellence, The University of Manchester, Manchester, UK
- Division of Cancer Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Crispin Miller
- RNA Biology, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, UK
| | | | - Ged Brady
- Clinical and Experimental Pharmacology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, UK.
- Cancer Research UK Lung Cancer Centre of Excellence, The University of Manchester, Manchester, UK.
| | - Charles Swanton
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK.
- University College London Cancer Institute, London, UK.
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK.
| | - Caroline Dive
- Clinical and Experimental Pharmacology Group, Cancer Research UK Manchester Institute, The University of Manchester, Alderley Park, UK.
- Cancer Research UK Lung Cancer Centre of Excellence, The University of Manchester, Manchester, UK.
| |
Collapse
|
128
|
Keller L, Pantel K. Unravelling tumour heterogeneity by single-cell profiling of circulating tumour cells. Nat Rev Cancer 2019; 19:553-567. [PMID: 31455893 DOI: 10.1038/s41568-019-0180-2] [Citation(s) in RCA: 393] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/09/2019] [Indexed: 12/17/2022]
Abstract
Single-cell technologies have contributed to unravelling tumour heterogeneity, now considered a hallmark of cancer and one of the main causes of tumour resistance to cancer therapies. Liquid biopsy (LB), defined as the detection and analysis of cells or cell products released by tumours into the blood, offers an appealing minimally invasive approach that allows the characterization and monitoring of tumour heterogeneity in individual patients. Here, we will review and discuss how circulating tumour cell (CTC) analysis at single-cell resolution provides unique insights into tumour heterogeneity that are not revealed by analysis of circulating tumour DNA (ctDNA) derived from LBs. The molecular analysis of CTCs provides complementary information to that of genomic aberrations determined using ctDNA to fully describe many different cellular components (for example, DNA, RNA, proteins and metabolites) that can influence tumour heterogeneity.
Collapse
Affiliation(s)
- Laura Keller
- Department of Tumour Biology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Klaus Pantel
- Department of Tumour Biology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
129
|
Laajala TD, Gerke T, Tyekucheva S, Costello JC. Modeling genetic heterogeneity of drug response and resistance in cancer. CURRENT OPINION IN SYSTEMS BIOLOGY 2019; 17:8-14. [PMID: 37736115 PMCID: PMC10512436 DOI: 10.1016/j.coisb.2019.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Heterogeneity in tumors is recognized as a key contributor to drug resistance and spread of advanced disease, but deep characterization of genetic variation within tumors has only recently been quantifiable with the advancement of next generation sequencing and single cell technologies. These data have been essential in developing molecular models of how tumors develop, evolve, and respond to environmental changes, such as therapeutic intervention. A deeper understanding of tumor evolution has subsequently opened up new research efforts to develop mathematical models that account for evolutionary dynamics with the goal of predicting drug response and resistance in cancer. Here, we describe recent advances and limitations of how models of tumor evolution can impact treatment strategies for cancer patients.
Collapse
Affiliation(s)
- Teemu D. Laajala
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Mathematics and Statistics, University of Turku, Turku, Finland
| | - Travis Gerke
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Svitlana Tyekucheva
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA
| | - James C Costello
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Univeristy of Colorado Comprehensive Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
130
|
Li R, Jia F, Zhang W, Shi F, Fang Z, Zhao H, Hu Z, Wei Z. Device for whole genome sequencing single circulating tumor cells from whole blood. LAB ON A CHIP 2019; 19:3168-3178. [PMID: 31455953 DOI: 10.1039/c9lc00473d] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Whole-genome sequencing on circulating tumor cells (CTCs) at the single cell level has recently been found helpful for precision medicine, as the oncogenic profiles of single CTCs are useful for discovering oncogenic mutation heterogeneities and guiding/adjusting cancer treatment. To overcome the limits of existing methods of single CTC sequencing, in which CTC enrichment, identification and gene amplification are performed by discrete modules, this study presents a novel method in which all processing steps from blood sample collection to preparation of gene amplification products for sequencers are finished in a single microfluidic chip. This microfluidic chip comprehensively performs blood filtering, CTC enrichment, CTC identification/isolation, CTC lysis and whole genome amplification (WGA) at the single cell level. By sequencing single CTCs from clinical blood samples with pointing key driver and drug-resistance mutations, the novel microfluidic chip was validated to be capable of genetically profiling single CTCs with minimum cell loss/human labor, and more importantly, high accuracy and repeatability, which are crucial factors for promoting clinical application of single CTC sequencing.
Collapse
Affiliation(s)
- Ren Li
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, China.
| | | | | | | | | | | | | | | |
Collapse
|
131
|
Snow A, Chen D, Lang JE. The current status of the clinical utility of liquid biopsies in cancer. Expert Rev Mol Diagn 2019; 19:1031-1041. [PMID: 31482746 DOI: 10.1080/14737159.2019.1664290] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Liquid biopsies have attracted considerable attention as potential diagnostic, prognostic, predictive, and screening assays in oncology. The term liquid biopsies include circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA) in the blood. While many liquid biopsy technologies are under active investigation, relatively few liquid biopsy assays have been proven to serve as a diagnostic surrogate for biopsies of metastatic disease as predictive biomarkers to guide the selection of therapy in the clinic. Areas covered: The objective of this review is to highlight the status of liquid biopsies in solid tumors in the oncology literature with attention to proven utility as diagnostic surrogates for macrometastases. Expert opinion: Carefully designed clinical-translational studies are needed to establish the diagnostic accuracy and clinical utility of liquid biopsy biomarkers in oncology. Investigators must fully consider relevant pre-analytical variables, assay sensitivity, bioinformatics considerations as well as the clinical utility of rare event profiling in the context of the normal blood background. Future liquid biopsy research should address the concern that not all DNA mutations are expressed and should provide the means to discover potential therapeutic targets in metastatic patients via a minimally invasive blood draw.
Collapse
Affiliation(s)
- Anson Snow
- Department of Surgery, University of Southern California Norris Comprehensive Cancer Center , Los Angeles , CA , USA
| | - Denaly Chen
- Department of Medicine, University of Southern California Norris Comprehensive Cancer Center , Los Angeles , CA , USA
| | - Julie E Lang
- Department of Surgery, University of Southern California Norris Comprehensive Cancer Center , Los Angeles , CA , USA
| |
Collapse
|
132
|
Addressing cellular heterogeneity in tumor and circulation for refined prognostication. Proc Natl Acad Sci U S A 2019; 116:17957-17962. [PMID: 31416912 PMCID: PMC6731691 DOI: 10.1073/pnas.1907904116] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Delineation of intratumor heterogeneity (ITH) has been a subject of growing interest for defining and tracking the evolution of cancer. Yet, the clinical consequences of such ITH on risk prediction remain unclear. Here we show ITH-driven variance on patient stratification and argue that the level of ITH of individual genes should be considered when developing single sector-based prognostic multigene tests (MGTs) in non–small-cell lung cancer (NSCLC). Single-cell molecular analysis of enriched, patient-derived circulating tumor cells (CTCs) further revealed predictive biomarkers for metastatic risk. Through systematic analysis of genes implicated in multiple steps of the metastatic spectrum, we demonstrate that the refined signatures achieve superior accuracy in identifying patients with early-stage disease at high risk of recurrence of NSCLC. Despite pronounced genomic and transcriptomic heterogeneity in non–small-cell lung cancer (NSCLC) not only between tumors, but also within a tumor, validation of clinically relevant gene signatures for prognostication has relied upon single-tissue samples, including 2 commercially available multigene tests (MGTs). Here we report an unanticipated impact of intratumor heterogeneity (ITH) on risk prediction of recurrence in NSCLC, underscoring the need for a better genomic strategy to refine prognostication. By leveraging label-free, inertial-focusing microfluidic approaches in retrieving circulating tumor cells (CTCs) at single-cell resolution, we further identified specific gene signatures with distinct expression profiles in CTCs from patients with differing metastatic potential. Notably, a refined prognostic risk model that reconciles the level of ITH and CTC-derived gene expression data outperformed the initial classifier in predicting recurrence-free survival (RFS). We propose tailored approaches to providing reliable risk estimates while accounting for ITH-driven variance in NSCLC.
Collapse
|
133
|
Temilola DO, Wium M, Coulidiati TH, Adeola HA, Carbone GM, Catapano CV, Zerbini LF. The Prospect and Challenges to the Flow of Liquid Biopsy in Africa. Cells 2019; 8:E862. [PMID: 31404988 PMCID: PMC6721679 DOI: 10.3390/cells8080862] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 07/30/2019] [Accepted: 08/03/2019] [Indexed: 12/24/2022] Open
Abstract
Liquid biopsy technologies have the potential to transform cancer patient management as it offers non-invasive diagnosis and real-time monitoring of disease progression and treatment responses. The use of liquid biopsy for non-invasive cancer diagnosis can have pivotal importance for the African continent where access to medical infrastructures is limited, as it eliminates the need for surgical biopsies. To apply liquid biopsy technologies in the African setting, the influence of environmental and population genetic factors must be known. In this review, we discuss the use of circulating tumor cells, cell-free nucleic acids, extracellular vesicles, protein, and other biomolecules in liquid biopsy technology for cancer management with special focus on African studies. We discussed the prospect, barriers, and other aspects that pose challenges to the use of liquid biopsy in the African continent.
Collapse
Affiliation(s)
- Dada Oluwaseyi Temilola
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa
- Integrative Biomedical Sciences Division, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Martha Wium
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa
| | - Tangbadioa Herve Coulidiati
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa
- Training and Research unit in Sciences and Technology, University Norbert Zongo, P.O. Box 376, Koudougou 376, Burkina Faso
| | - Henry Ademola Adeola
- Division of Dermatology, Department of Medicine, Faculty of Health Sciences and Groote Schuur Hospital, University of Cape Town, Cape Town 7925, South Africa
| | - Giuseppina Maria Carbone
- Institute of Oncology Research, Università della Svizzera Italiana, Via Vincenzo Vela 6, CH-6500 Bellinzona, Switzerland
| | - Carlo Vittorio Catapano
- Institute of Oncology Research, Università della Svizzera Italiana, Via Vincenzo Vela 6, CH-6500 Bellinzona, Switzerland
| | - Luiz Fernando Zerbini
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town 7925, South Africa.
| |
Collapse
|
134
|
Wu L, Zhu L, Huang M, Song J, Zhang H, Song Y, Wang W, Yang C. Aptamer-based microfluidics for isolation, release and analysis of circulating tumor cells. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2019.05.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
135
|
Liu T, Ma Q, Zhang Y, Wang X, Xu K, Yan K, Dong W, Fan Q, Zhang Y, Qiu X. Self-seeding circulating tumor cells promote the proliferation and metastasis of human osteosarcoma by upregulating interleukin-8. Cell Death Dis 2019; 10:575. [PMID: 31366916 PMCID: PMC6668432 DOI: 10.1038/s41419-019-1795-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 06/24/2019] [Accepted: 06/27/2019] [Indexed: 01/21/2023]
Abstract
Most circulating tumor cells (CTCs) die during the process of metastasis, but self-seeding CTCs can invade the primary tumor or form clinically meaningful metastases. This study aimed to evaluate the capacity of self-seeding CTCs to promote osteosarcoma growth and lung metastasis and to clarify the specific role of interleukin (IL)-8 in CTC self-seeding. We successfully isolated and cultured self-seeding CTCs through a self-seeding nude mouse model established using green fluorescent protein (GFP)-labeled F5M2 cells and found that self-seeding CTCs exhibit increased cellular proliferation, migration, and invasion in vitro, increased tumor growth and lung metastasis in mice, and increased IL-8 expression. Furthermore, suppressing IL-8 inhibited tumor growth and metastasis and reduced CTC seeding in primary tumors in vitro and in vivo. In osteosarcoma patients, IL-8 levels significantly correlated with the Enneking stage and metastasis. These findings demonstrate that self-seeding osteosarcoma CTCs can promote tumor growth and lung metastasis through IL-8. Their increased metastatic potential and elevated IL-8 expression suggest a novel strategy for future therapeutic interventions to prevent osteosarcoma progression and metastasis.
Collapse
Affiliation(s)
- Tao Liu
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, Shanxi, China.,Orthopaedic Oncology Institute, Tangdu Hospital, Fourth Military Medical University, 1 Xinsi Road, Xi'an, 710032, Shanxi, China
| | - Qiong Ma
- Orthopaedic Oncology Institute, Tangdu Hospital, Fourth Military Medical University, 1 Xinsi Road, Xi'an, 710032, Shanxi, China
| | - Yinglong Zhang
- Department of Orthopaedics, First Affiliated Hospital of PLA General Hospital, 100048, Beijing, China
| | - Xin Wang
- Rehabilitation Center of Lintong Sanatorium of PLA, No. 32 Huaqing Road, Lintong District, Xi'an, 710600, Shanxi, China
| | - Kui Xu
- Orthopaedic Oncology Institute, Tangdu Hospital, Fourth Military Medical University, 1 Xinsi Road, Xi'an, 710032, Shanxi, China
| | - Kang Yan
- Orthopaedic Oncology Institute, Tangdu Hospital, Fourth Military Medical University, 1 Xinsi Road, Xi'an, 710032, Shanxi, China
| | - Wengang Dong
- Orthopaedic Oncology Institute, Tangdu Hospital, Fourth Military Medical University, 1 Xinsi Road, Xi'an, 710032, Shanxi, China
| | - Qingyu Fan
- Orthopaedic Oncology Institute, Tangdu Hospital, Fourth Military Medical University, 1 Xinsi Road, Xi'an, 710032, Shanxi, China
| | - Yingqi Zhang
- State Key Laboratory of Cancer Biology, Biotechnology Center, School of Pharmacy, The Fourth Military Medical University, 169 Changle West Road, Xi'an, 710032, Shanxi, China.
| | - Xiuchun Qiu
- Orthopaedic Oncology Institute, Tangdu Hospital, Fourth Military Medical University, 1 Xinsi Road, Xi'an, 710032, Shanxi, China.
| |
Collapse
|
136
|
Tellez-Gabriel M, Heymann MF, Heymann D. Circulating Tumor Cells as a Tool for Assessing Tumor Heterogeneity. Am J Cancer Res 2019; 9:4580-4594. [PMID: 31367241 PMCID: PMC6643448 DOI: 10.7150/thno.34337] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 04/23/2019] [Indexed: 12/18/2022] Open
Abstract
Tumor heterogeneity is the major cause of failure in cancer prognosis and prediction. Accurately detecting heterogeneity for the development of biomarkers and the detection of the clones resistant to therapy is one of the main goals of contemporary medicine. Metastases belong to the natural history of cancer. The present review gives an overview on the origin of tumor heterogeneity. Recent progress has made it possible to isolate and characterize circulating tumor cells (CTCs), which are the drivers of the disease between the primary sites and metastatic foci. The most recent methods for characterizing CTCs are summarized and we discuss the power of CTC profiling for analyzing tumor heterogeneity in early and advanced diseases.
Collapse
|
137
|
Moreno JG, Gomella LG. Evolution of the Liquid Biopsy in Metastatic Prostate Cancer. Urology 2019; 132:1-9. [PMID: 31207303 DOI: 10.1016/j.urology.2019.06.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/05/2019] [Accepted: 06/07/2019] [Indexed: 12/11/2022]
Abstract
We reviewed the literature for the biologic, prognostic, and predictive significance of circulating prostate cancer tumor cells (CTCs), and circulating tumor DNA in the blood of metastatic castration resistant prostate cancer patients. CTCs demonstrate robust prognostic value independent of PSA in predicting overall survival. The CTC androgen receptor variant receptor 7 phenotype predicts resistance to androgen receptor synthesis inhibitors and sensitivity to taxane based chemotherapy in metastatic castration resistant prostate cancer patients who are candidates for second line therapy. Research is rapidly pivoting toward circulating tumor DNA analysis because the approach is sensitive, prognostic, cost effective, and it can elucidate mechanisms of systemic therapy.
Collapse
Affiliation(s)
- Jose G Moreno
- Department of Urology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA; MidLantic Urology, LLC, Pottstown, PA
| | - Leonard G Gomella
- Department of Urology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA.
| |
Collapse
|
138
|
Lu YT, Delijani K, Mecum A, Goldkorn A. Current status of liquid biopsies for the detection and management of prostate cancer. Cancer Manag Res 2019; 11:5271-5291. [PMID: 31239778 PMCID: PMC6559244 DOI: 10.2147/cmar.s170380] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 04/18/2019] [Indexed: 12/14/2022] Open
Abstract
In recent years, new therapeutic options have become available for prostate cancer (PC) patients, generating an urgent need for better biomarkers to guide the choice of therapy and monitor treatment response. Liquid biopsies, including circulating tumor cells (CTCs), circulating nucleic acids, and exosomes, have been developed as minimally invasive assays allowing oncologists to monitor PC patients with real-time cellular or molecular information. While CTC counts remain the most extensively validated prognostic biomarker to monitor treatment response, recent advances demonstrate that CTC morphology and androgen receptor characterization can provide additional information to guide the choice of treatment. Characterization of cell-free DNA (cfDNA) is another rapidly emerging field with novel technologies capable of monitoring the evolution of treatment relevant alterations such as those in DNA damage repair genes for poly (ADP-ribose) polymerase (PARP) inhibition. In addition, several new liquid biopsy fields are emerging, including the characterization of heterogeneity, CTC RNA sequencing, the culture and xenografting of CTCs, and the characterization of extracellular vesicles (EVs) and circulating microRNAs. This review describes the clinical utilization of liquid biopsies in the management of PC patients and emerging liquid biopsy technologies with the potential to advance personalized cancer therapy.
Collapse
Affiliation(s)
- Yi-Tsung Lu
- Division of Medical Oncology, Department of Medicine, Keck School of Medicine and Translational and Clinical Science Program, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Kevin Delijani
- Division of Medical Oncology, Department of Medicine, Keck School of Medicine and Translational and Clinical Science Program, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Andrew Mecum
- Division of Medical Oncology, Department of Medicine, Keck School of Medicine and Translational and Clinical Science Program, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Amir Goldkorn
- Division of Medical Oncology, Department of Medicine, Keck School of Medicine and Translational and Clinical Science Program, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
139
|
Cui S, Ni Y, Zhao Y, Li Z, Xiong L, Liu J, Liang X, Jiang L. Epidermal growth factor receptor-targeted immunomagnetic liposomes for circulating tumor cell enumeration in non-small cell lung cancer treated with epidermal growth factor receptor-tyrosine kinase inhibitors. Lung Cancer 2019; 132:45-53. [DOI: 10.1016/j.lungcan.2019.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/02/2019] [Accepted: 04/04/2019] [Indexed: 01/08/2023]
|
140
|
Ghobrial I, Cruz CH, Garfall A, Shah N, Munshi N, Kaufman J, Boise LH, Morgan G, Adalsteinsson VA, Manier S, Pillai R, Malavasi F, Lonial S. Immunotherapy in Multiple Myeloma: Accelerating on the Path to the Patient. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2019; 19:332-344. [DOI: 10.1016/j.clml.2019.02.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 01/11/2019] [Accepted: 02/11/2019] [Indexed: 11/16/2022]
|
141
|
A Rich Array of Prostate Cancer Molecular Biomarkers: Opportunities and Challenges. Int J Mol Sci 2019; 20:ijms20081813. [PMID: 31013716 PMCID: PMC6515282 DOI: 10.3390/ijms20081813] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 01/30/2023] Open
Abstract
Prostate cancer is the most prevalent non-skin cancer in men and is the leading cause of cancer-related death. Early detection of prostate cancer is largely determined by a widely used prostate specific antigen (PSA) blood test and biopsy is performed for definitive diagnosis. Prostate cancer is asymptomatic in the early stage of the disease, comprises of diverse clinico-pathologic and progression features, and is characterized by a large subset of the indolent cancer type. Therefore, it is critical to develop an individualized approach for early detection, disease stratification (indolent vs. aggressive), and prediction of treatment response for prostate cancer. There has been remarkable progress in prostate cancer biomarker discovery, largely through advancements in genomic technologies. A rich array of prostate cancer diagnostic and prognostic tests has emerged for serum (4K, phi), urine (Progensa, T2-ERG, ExoDx, SelectMDx), and tumor tissue (ConfirmMDx, Prolaris, Oncoytype DX, Decipher). The development of these assays has created new opportunities for improving prostate cancer diagnosis, prognosis, and treatment decisions. While opening exciting opportunities, these developments also pose unique challenges in terms of selecting and incorporating these assays into the continuum of prostate cancer patient care.
Collapse
|
142
|
Agnoletto C, Corrà F, Minotti L, Baldassari F, Crudele F, Cook WJJ, Di Leva G, d'Adamo AP, Gasparini P, Volinia S. Heterogeneity in Circulating Tumor Cells: The Relevance of the Stem-Cell Subset. Cancers (Basel) 2019; 11:cancers11040483. [PMID: 30959764 PMCID: PMC6521045 DOI: 10.3390/cancers11040483] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/16/2019] [Accepted: 03/30/2019] [Indexed: 12/20/2022] Open
Abstract
The release of circulating tumor cells (CTCs) into vasculature is an early event in the metastatic process. The analysis of CTCs in patients has recently received widespread attention because of its clinical implications, particularly for precision medicine. Accumulated evidence documents a large heterogeneity in CTCs across patients. Currently, the most accepted view is that tumor cells with an intermediate phenotype between epithelial and mesenchymal have the highest plasticity. Indeed, the existence of a meta-stable or partial epithelial–mesenchymal transition (EMT) cell state, with both epithelial and mesenchymal features, can be easily reconciled with the concept of a highly plastic stem-like state. A close connection between EMT and cancer stem cells (CSC) traits, with enhanced metastatic competence and drug resistance, has also been described. Accordingly, a subset of CTCs consisting of CSC, present a stemness profile, are able to survive chemotherapy, and generate metastases after xenotransplantation in immunodeficient mice. In the present review, we discuss the current evidence connecting CTCs, EMT, and stemness. An improved understanding of the CTC/EMT/CSC connections may uncover novel therapeutic targets, irrespective of the tumor type, since most cancers seem to harbor a pool of CSCs, and disclose important mechanisms underlying tumorigenicity.
Collapse
Affiliation(s)
- Chiara Agnoletto
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy.
| | - Fabio Corrà
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy.
| | - Linda Minotti
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy.
| | - Federica Baldassari
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy.
| | - Francesca Crudele
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy.
| | | | - Gianpiero Di Leva
- School of Environment and Life Sciences, University of Salford, Salford M5 4WT, UK.
| | - Adamo Pio d'Adamo
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34127 Trieste, Italy.
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", 34137 Trieste, Italy.
| | - Paolo Gasparini
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34127 Trieste, Italy.
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", 34137 Trieste, Italy.
| | - Stefano Volinia
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy.
| |
Collapse
|
143
|
SeqSQC: A Bioconductor Package for Evaluating the Sample Quality of Next-generation Sequencing Data. GENOMICS PROTEOMICS & BIOINFORMATICS 2019; 17:211-218. [PMID: 30959223 PMCID: PMC6620264 DOI: 10.1016/j.gpb.2018.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 06/06/2018] [Accepted: 07/27/2018] [Indexed: 11/25/2022]
Abstract
As next-generation sequencing (NGS) technology has become widely used to identify genetic causal variants for various diseases and traits, a number of packages for checking NGS data quality have sprung up in public domains. In addition to the quality of sequencing data, sample quality issues, such as gender mismatch, abnormal inbreeding coefficient, cryptic relatedness, and population outliers, can also have fundamental impact on downstream analysis. However, there is a lack of tools specialized in identifying problematic samples from NGS data, often due to the limitation of sample size and variant counts. We developed SeqSQC, a Bioconductor package, to automate and accelerate sample cleaning in NGS data of any scale. SeqSQC is designed for efficient data storage and access, and equipped with interactive plots for intuitive data visualization to expedite the identification of problematic samples. SeqSQC is available at http://bioconductor.org/packages/SeqSQC.
Collapse
|
144
|
Abstract
Cell-free circulating tumor DNA (ctDNA) and circulating tumor cells (CTCs) can be found in the bloodstream of individuals with cancer and are increasingly being explored as biomarkers in various aspects of cancer management. The application of next-generation sequencing (NGS) technologies to ctDNA and CTC analysis are providing new opportunities to characterize the cancer genome from a simple blood test and can facilitate the ease with which tumor-specific genomic changes can be followed over time. The serial analysis of ctDNA and CTCs has enormous potential to provide insights into intratumor heterogeneity and clonal evolution during disease progression, and may ultimately allow noninvasive molecular disease monitoring to guide therapeutic decisions and improve patient outcomes.
Collapse
Affiliation(s)
- Sarah-Jane Dawson
- Divisions of Cancer Medicine and Research, Peter MacCallum Cancer Centre, Melbourne 3000, Australia; Centre for Cancer Research, University of Melbourne, Melbourne 3010, Australia
| |
Collapse
|
145
|
Abstract
In the context of oncology, liquid biopsies consist of harvesting cancer biomarkers, such as circulating tumor cells, tumor-derived cell-free DNA, and extracellular vesicles, from bodily fluids. These biomarkers provide a source of clinically actionable molecular information that can enable precision medicine. Herein, we review technologies for the molecular profiling of liquid biopsy markers with special emphasis on the analysis of low abundant markers from mixed populations.
Collapse
Affiliation(s)
- Camila D. M. Campos
- Department of Chemistry, The University of Kansas, Lawrence, KS 66047
- Center of Biomodular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66047
| | - Joshua M. Jackson
- Department of Chemistry, The University of Kansas, Lawrence, KS 66047
- Center of Biomodular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66047
| | - Małgorzata A. Witek
- Department of Chemistry, The University of Kansas, Lawrence, KS 66047
- Center of Biomodular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66047
- Department of Biomedical Engineering, The University of North Carolina, Chapel Hill, NC 27599
| | - Steven A. Soper
- Department of Chemistry, The University of Kansas, Lawrence, KS 66047
- Center of Biomodular Multiscale Systems for Precision Medicine, The University of Kansas, Lawrence, KS 66047
- BioEngineering Program, The University of Kansas, Lawrence, KS 66047
- Department of Mechanical Engineering, The University of Kansas, Lawrence, KS 66047
- Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| |
Collapse
|
146
|
Future of Liquid Biopsies With Growing Technological and Bioinformatics Studies: Opportunities and Challenges in Discovering Tumor Heterogeneity With Single-Cell Level Analysis. ACTA ACUST UNITED AC 2019; 24:104-108. [PMID: 29601337 DOI: 10.1097/ppo.0000000000000308] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Liquid biopsy provides minimally invasive and readily obtainable access to tumor-associated biological material in blood or other body fluids. These samples provide important insights into cancer biology, such as primary tumor heterogeneity; real-time tumor evolution; response to therapy, including immunotherapy; and mechanisms of cancer metastasis. Initial biological materials studied were circulating tumor cells and circulating nucleic acids, including circulating tumor DNA and microRNAs; more recently, studies have expanded to investigate extracellular vesicles, such as exosomes, microvesicles, and large oncosomes; tumor-derived circulating endothelial cells; and tumor-educated platelets. Even with an ongoing ambitious investment effort to develop liquid biopsy as an early cancer detection test in asymptomatic individuals, current challenges remain regarding how to access and analyze rare cells and tumor-derived nucleic acids in cancer patients. Technologies and associated bioinformatics tools are continuously evolving to capture these rare materials in an unbiased manner and to analyze them with high confidence. After first presenting recent applications of liquid biopsy, this review discusses aspects affecting the field, including tumor heterogeneity, single-cell analyses, and associated computational tools that will shape the future of liquid biopsy, with resultant opportunities and challenges.
Collapse
|
147
|
Challenges in Developing Protein Secretion Assays at a Single-Cell Level. Methods Mol Biol 2019; 1808:1-7. [PMID: 29956169 DOI: 10.1007/978-1-4939-8567-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
In addition to direct physical interactions between/among cells, the secretion of humoral factors from living cells is a critical process for cell-cell communications. A well-known extracellular signaling event is mediated by immune cell cytokines/chemokines. Because cell-cell communication is crucial in immune cell sociology, protein secretion assays first attracted a broad range of immunology interests. Now that we have entered an era of systems biology, cell-cell interactions mediated by secreted molecules should be revisited to understand the dynamics and homeostasis of the cell society as a whole. Of more importance, recent advances in detection and microfluidics technologies enable us to monitor protein secretion in real time rather than as a snapshot from the past, which gives us an opportunity to more deeply understand the logic of mammalian cell sociology. This chapter reviews the recent progress in and future direction of protein secretion assays, particularly from a mammalian cell sociology viewpoint.
Collapse
|
148
|
Cho H, Kim J, Song H, Sohn KY, Jeon M, Han KH. Microfluidic technologies for circulating tumor cell isolation. Analyst 2019; 143:2936-2970. [PMID: 29796523 DOI: 10.1039/c7an01979c] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Metastasis is the main cause of tumor-related death, and the dispersal of tumor cells through the circulatory system is a critical step in the metastatic process. Early detection and analysis of circulating tumor cells (CTCs) is therefore important for early diagnosis, prognosis, and effective treatment of cancer, enabling favorable clinical outcomes in cancer patients. Accurate and reliable methods for isolating and detecting CTCs are necessary to obtain this clinical information. Over the past two decades, microfluidic technologies have demonstrated great potential for isolating and detecting CTCs from blood. The present paper reviews current advanced microfluidic technologies for isolating CTCs based on various biological and physical principles, and discusses their fundamental advantages and drawbacks for subsequent cellular and molecular assays. Owing to significant genetic heterogeneity among CTCs, microfluidic technologies for isolating individual CTCs have recently been developed. We discuss these single-cell isolation methods, as well as approaches to overcoming the limitations of current microfluidic CTC isolation technologies. Finally, we provide an overview of future innovative microfluidic platforms.
Collapse
Affiliation(s)
- Hyungseok Cho
- Department of Nanoscience and Engineering, Center for Nano Manufacturing, Inje University, Gimhae 621-749, Republic of Korea.
| | | | | | | | | | | |
Collapse
|
149
|
Rostami P, Kashaninejad N, Moshksayan K, Saidi MS, Firoozabadi B, Nguyen NT. Novel approaches in cancer management with circulating tumor cell clusters. JOURNAL OF SCIENCE: ADVANCED MATERIALS AND DEVICES 2019; 4:1-18. [DOI: 10.1016/j.jsamd.2019.01.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
150
|
Pantel K, Alix-Panabières C. Liquid biopsy and minimal residual disease — latest advances and implications for cure. Nat Rev Clin Oncol 2019; 16:409-424. [DOI: 10.1038/s41571-019-0187-3] [Citation(s) in RCA: 702] [Impact Index Per Article: 117.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|