101
|
Gupta V, Palmer KJ, Spence P, Hudson A, Stephens DJ. Kinesin-1 (uKHC/KIF5B) is required for bidirectional motility of ER exit sites and efficient ER-to-Golgi transport. Traffic 2008; 9:1850-66. [PMID: 18817524 DOI: 10.1111/j.1600-0854.2008.00811.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Transport of proteins and lipids between intracellular compartments is fundamental to the organization and function of eukaryotic cells. The efficiency of this process is greatly enhanced through coupling of membranes to microtubules. This serves two functions, organelle positioning and vesicular transport. In this study, we show that in addition to the well-known role for the minus-end motor dynein in endoplasmic reticulum (ER)-to-Golgi transport, the plus-end-directed motor kinesin-1 is involved in positioning coat protein II-coated ER exit sites (ERES) in cells as well as the formation of transport carriers and their movement to the Golgi. Using two-dimensional Gaussian fitting to determine their location at high spatial resolution, we show that ERES undergo short-range bidirectional movements. Bidirectionality depends on both kinesin-1 and dynein. Suppression of kinesin-1 (KIF5B) also inhibits ER-to-Golgi transport and affects the morphology of ER-to-Golgi transport carriers. Furthermore, we show that suppression of dynein heavy chain expression increases the range of movement of ERES, suggesting that dynein might anchor ERES, or the ER itself, to microtubules. These data implicate kinesin-1 in the spatial organization of the ER/Golgi interface as well as in traffic outside the ER.
Collapse
Affiliation(s)
- Vijay Gupta
- Cell Biology Laboratories, Department of Biochemistry, University of Bristol, School of Medical Sciences, University Walk, Bristol, BS81TD, UK
| | | | | | | | | |
Collapse
|
102
|
Iyadurai SJP, Robinson JT, Ma L, He Y, Mische S, Li MG, Brown W, Guichard A, Bier E, Hays TS. Dynein and Star interact in EGFR signaling and ligand trafficking. J Cell Sci 2008; 121:2643-51. [PMID: 18653542 DOI: 10.1242/jcs.027144] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Intracellular transport and processing of ligands is critical to the activation of signal transduction pathways that guide development. Star is an essential gene in Drosophila that has been implicated in the trafficking of ligands for epidermal growth factor (EGF) receptor signaling. The role of cytoplasmic motors in the endocytic and secretory pathways is well known, but the specific requirement of motors in EGF receptor transport has not been investigated. We identified Star in a screen designed to recover second-site modifiers of the dominant rough eye phenotype of the Glued mutation Gl(1). The Glued (Gl) locus encodes the p150 subunit of the dynactin complex, an activator of cytoplasmic dynein-driven motility. We show that alleles of Gl and dynein genetically interact with both Star and EGFR alleles. Similarly to mutations in Star, the Gl(1) mutation is capable of modifying the phenotypes of the EGFR mutation Ellipse. These genetic interactions suggest a model in which Star, dynactin and dynein cooperate in the trafficking of EGF ligands. In support of this model, overexpression of the cleaved, active Spitz ligand can partially bypass defective trafficking and suppress the genetic interactions. Our direct observations of live S2 cells show that export of Spitz-GFP from the endoplasmic reticulum, as well as the trafficking of Spitz-GFP vesicles, depends on both Star and dynein.
Collapse
Affiliation(s)
- Stanley J P Iyadurai
- University of Minnesota, Department of Genetics, Cell Biology and Development, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
103
|
Fromme JC, Orci L, Schekman R. Coordination of COPII vesicle trafficking by Sec23. Trends Cell Biol 2008; 18:330-6. [DOI: 10.1016/j.tcb.2008.04.006] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 04/18/2008] [Accepted: 04/21/2008] [Indexed: 10/22/2022]
|
104
|
Optimising the precision for localising fluorescent proteins in living cells by 2D Gaussian fitting of digital images: application to COPII-coated endoplasmic reticulum exit sites. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2008; 37:1335-49. [PMID: 18504570 DOI: 10.1007/s00249-008-0343-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Revised: 04/28/2008] [Accepted: 04/28/2008] [Indexed: 11/27/2022]
Abstract
An insight into the operation of molecular motors has already been obtained under in vitro conditions from single-molecule tracking of proteins. It remains to analyse the effects of these motors on the position and secretion of specific organelles in the environment of the cell. For this purpose, we have investigated the accuracy of a standard algorithm to enable the tracking of particles in live-cell microscopy. The results have been applied to an example study into the role of the microtubule-motor kinesin on the function of COPII-coated secretory-cargo exit sites forming part of the mammalian endoplasmic reticulum. These exit sites are marked with multiple EYFP-tagged proteins to produce bright fluorescent particles, and a demonstration of the motility of vesicles, under different conditions in the cell, is described here. It is essential to use a low-level expression of fluorescent protein-tagged cellular components to ensure faithful replication for the behaviour of endogenous protein. However, this leads to a lower ratio for the signal-to-noise than is desired for the sub-pixel tracking of objects in digital images. This has driven the present effort to develop a computational model of the experiment in order to estimate the precision for localization of a fluorescent particle. Our work gives a greater insight, than has been managed in the past, into the accuracy and precision of particle tracking from live-cell imaging under a variety of different conditions, and it takes into consideration the current standards in digital technology for optical microscopy.
Collapse
|
105
|
Ebola virus matrix protein VP40 uses the COPII transport system for its intracellular transport. Cell Host Microbe 2008; 3:168-77. [PMID: 18329616 DOI: 10.1016/j.chom.2008.02.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Revised: 01/02/2008] [Accepted: 02/04/2008] [Indexed: 11/23/2022]
Abstract
The Ebola virus matrix protein VP40 plays an important role in virion formation and viral egress from cells. However, the host cell proteins and mechanisms responsible for intracellular transport of VP40 prior to its contribution to virion formation remain to be elucidated. Therefore we used coimmunoprecipitation and mass spectrometric analyses to identify host proteins interacting with VP40. We found that Sec24C, a component of the host COPII vesicular transport system, interacts specifically with VP40 via VP40 amino acids 303 to 307. Coimmunoprecipitation and dominant-negative mutant studies indicated that the COPII transport system plays a critical role in VP40 intracellular transport to the plasma membrane. Marburg virus VP40 was also shown to use the COPII transport system for intracellular transport. These findings identify a conserved intersection between a host pathway and filovirus replication, an intersection that can be targeted in the development of new antiviral drugs.
Collapse
|
106
|
Dukhovny A, Papadopulos A, Hirschberg K. Quantitative live-cell analysis of microtubule-uncoupled cargo-protein sorting in the ER. J Cell Sci 2008; 121:865-76. [PMID: 18303051 DOI: 10.1242/jcs.019463] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
The sorting and concentration of cargo proteins within ER exit sites (ERESs) is a fundamental function of the secretory machinery. The mechanism by which peripheral coat complexes and their small GTPase effectors mediate this function with export membrane domains is only partially understood. The secretory-machinery-mediated sorting to ERESs is a process that counters the entropy-driven even distribution of membrane proteins within organellar membranes. Here, for the first time, we quantified the dynamic properties of GFP-VSVG sorting to ERESs in living cells by uncoupling it from later translocation steps using microtubule depolymerization. The dynamics of the ER to ERES redistribution of cargo proteins was quantified in single cells by measuring changes in fluorescence-intensity variance after shift to the permissive temperature. Cargo concentration within ERESs continued in cells overexpressing the GTP-locked ARF1Q71L or in the presence of brefeldin A. In the absence of COPI and microtubules, ERESs transformed from tubulovesicular to spherical membranes that actively accumulated secretory cargo and excluded ER-membrane markers. We found sorting to ERESs to be a slow and diffusion-unlimited process. Our findings exclude COPI, and identify the COPII protein complex to be directly involved in the secretory cargo sorting and redistribution functions of ERESs.
Collapse
Affiliation(s)
- Anna Dukhovny
- Department of Pathology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
| | | | | |
Collapse
|
107
|
Abstract
A full mechanistic understanding of how secretory cargo proteins are exported from the endoplasmic reticulum for passage through the early secretory pathway is essential for us to comprehend how cells are organized, maintain compartment identity, as well as how they selectively secrete proteins and other macromolecules to the extracellular space. This process depends on the function of a multi-subunit complex, the COPII coat. Here we describe progress towards a full mechanistic understanding of COPII coat function, including the latest findings in this area. Much of our understanding of how COPII functions and is regulated comes from studies of yeast genetics, biochemical reconstitution and single cell microscopy. New developments arising from clinical cases and model organism biology and genetics enable us to gain far greater insight in to the role of membrane traffic in the context of a whole organism as well as during embryogenesis and development. A significant outcome of such a full understanding is to reveal how the machinery and processes of membrane trafficking through the early secretory pathway fail in disease states.
Collapse
|
108
|
Abstract
A recent use of quantitative proteomics to determine the constituents of the endoplasmic reticulum and Golgi complex is discussed in the light of other available methodologies for cataloging the proteins associated with the mammalian secretory pathway.
Collapse
Affiliation(s)
- Jeremy C Simpson
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse, 69117 Heidelberg, Germany
| | - Alvaro Mateos
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse, 69117 Heidelberg, Germany
| | - Rainer Pepperkok
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse, 69117 Heidelberg, Germany
| |
Collapse
|
109
|
Abstract
Microtubules (MTs) are highly dynamic polymers, which control many aspects of cellular architecture. Growing MT plus ends accumulate a specific set of evolutionary conserved factors, the so-called MT plus-end-tracking proteins (+TIPs). +TIPs regulate MT dynamics and the reciprocal interactions of MTs with the cell cortex, mitotic kinetochores or different cellular organelles. Most +TIPs can directly bind to MTs, but the molecular mechanisms of their specific targeting to the growing plus ends remain poorly understood. Recent studies suggest that the members of one particular +TIP family, EB1 and its homologues, are present in all eucaryotic kingdoms, interact directly with the majority of other known plus-end-associated proteins and may be responsible for their specific accumulation at the MT tips.
Collapse
Affiliation(s)
- Gideon Lansbergen
- MGC Department of Cell Biology, Erasmus Medical Center, 3000 DR Rotterdam, the Netherlands
| | | |
Collapse
|
110
|
Wu S, Chen H, Alexeyev MF, King JAC, Moore TM, Stevens T, Balczon RD. Microtubule motors regulate ISOC activation necessary to increase endothelial cell permeability. J Biol Chem 2007; 282:34801-8. [PMID: 17921144 DOI: 10.1074/jbc.m704522200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Calcium store depletion activates multiple ion channels, including calcium-selective and nonselective channels. Endothelial cells express TRPC1 and TRPC4 proteins that contribute to a calcium-selective store-operated current, I(SOC). Whereas thapsigargin activates the I(SOC) in pulmonary artery endothelial cells (PAECs), it does not activate I(SOC) in pulmonary microvascular endothelial cells (PMVECs), despite inducing a significant rise in global cytosolic calcium. Endoplasmic reticulum exhibits retrograde distribution in PMVECs when compared with PAECs. We therefore sought to determine whether endoplasmic reticulum-to-plasma membrane coupling represents an important determinant of I(SOC) activation in PAECs and PMVECs. Endoplasmic reticulum organization is controlled by microtubules, because nocodozole induced microtubule disassembly and caused retrograde endoplasmic reticulum collapse in PMVECs. In PMVECs, rolipram treatment produced anterograde endoplasmic reticulum distribution and revealed a thapsigargin-activated I(SOC) that was abolished by nocodozole and taxol. Microtubule motors control organelle distribution along microtubule tracks, with the dynein motor causing retrograde movement and the kinesin motor causing anterograde movement. Dynamitin expression reduces dynein motor function inducing anterograde endoplasmic reticulum transport, which allows for direct activation of I(SOC) by thapsigargin in PMVECs. In contrast, expression of dominant negative kinesin light chain reduces kinesin motor function and induces retrograde endoplasmic reticulum transport; dominant negative kinesin light chain expression prevented the direct activation of I(SOC) by thapsigargin in PAECs. I(SOC) activation is an important step leading to disruption of cell-cell adhesion and increased macromolecular permeability. Thus, microtubule motor function plays an essential role in activating cytosolic calcium transitions through the membrane I(SOC) channel leading to endothelial barrier disruption.
Collapse
Affiliation(s)
- Songwei Wu
- Department of Molecular and Cellular Pharmacology, College of Medicine, University of South Alabama, Mobile, Alabama 36688, USA.
| | | | | | | | | | | | | |
Collapse
|
111
|
Langhans M, Hawes C, Hillmer S, Hummel E, Robinson DG. Golgi regeneration after brefeldin A treatment in BY-2 cells entails stack enlargement and cisternal growth followed by division. PLANT PHYSIOLOGY 2007; 145:527-38. [PMID: 17704232 PMCID: PMC2048719 DOI: 10.1104/pp.107.104919] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Accepted: 08/02/2007] [Indexed: 05/05/2023]
Abstract
Brefeldin A (BFA) treatment stops secretion and leads to the resorption of much of the Golgi apparatus into the endoplasmic reticulum. This effect is reversible upon washing out the drug, providing a situation for studying Golgi biogenesis. In this investigation Golgi regeneration in synchronized tobacco BY-2 cells was followed by electron microscopy and by the immunofluorescence detection of ARF1, which localizes to the rims of Golgi cisternae and serves as an indicator of COPI vesiculation. Beginning as clusters of vesicles that are COPI positive, mini-Golgi stacks first become recognizable 60 min after BFA washout. They continue to increase in terms of numbers and length of cisternae for a further 90 min before overshooting the size of control Golgi stacks. As a result, increasing numbers of dividing Golgi stacks were observed 120 min after BFA washout. BFA-regeneration experiments performed on cells treated with BFA (10 microg mL(-1)) for only short periods (30-45 min) showed that the formation of ER-Golgi hybrid structures, once initiated by BFA treatment, is an irreversible process, the further incorporation of Golgi membranes into the ER continuing during a subsequent drug washout. Application of the protein kinase A inhibitor H-89, which effectively blocks the reassembly of the Golgi apparatus in mammalian cells, also prevented stack regeneration in BY-2 cells, but only at very high, almost toxic concentrations (>200 microm). Our data suggest that under normal conditions mitosis-related Golgi stack duplication may likely occur via cisternal growth followed by fission.
Collapse
Affiliation(s)
- Markus Langhans
- Department of Cell Biology, Heidelberg Institute for Plant Sciences, University of Heidelberg, 69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
112
|
Baines AC, Zhang B. Receptor-mediated protein transport in the early secretory pathway. Trends Biochem Sci 2007; 32:381-8. [PMID: 17618120 DOI: 10.1016/j.tibs.2007.06.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2007] [Revised: 05/31/2007] [Accepted: 06/22/2007] [Indexed: 11/25/2022]
Abstract
Many secretory proteins are thought to rely upon transmembrane cargo receptors for efficient endoplasmic reticulum (ER)-to-Golgi transport. These receptors recognize specific cargo-encoded sorting signals. Only a few such cargo receptors have been characterized in detail, most of them in yeast. The only well-defined cargo receptor from mammalian cells, the LMAN1-MCFD2 complex, is required for the efficient secretion of coagulation factors V and VIII. Studies of this complex, coupled with recent advances in elucidating the basic machinery that mediates ER-to-Golgi transport, have provided a more-detailed picture of the mechanisms underlying receptor-mediated transport in the early secretory pathway. In addition to yeast studies, insights have also come from investigations into several inherited disorders that have recently been attributed to defects in the secretory pathway.
Collapse
Affiliation(s)
- Andrea C Baines
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109-2216, USA
| | | |
Collapse
|
113
|
Kirk SJ, Ward TH. COPII under the microscope. Semin Cell Dev Biol 2007; 18:435-47. [PMID: 17693103 DOI: 10.1016/j.semcdb.2007.07.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Revised: 07/05/2007] [Accepted: 07/09/2007] [Indexed: 11/19/2022]
Abstract
Transport through the secretory pathway begins with COPII regulation of ER export. Driven by the Sar1 GTPase cycle, cytosolic COPII proteins exchange on and off the membrane at specific sites on the ER to regulate cargo exit. Here recent developments in COPII research are discussed, particularly the use of live-cell imaging, which has revealed surprising insights into the coat's role. The seemingly static ER exit sites are in fact highly dynamic, and the ability to visualise trafficking processes in intact living cells has highlighted the adaptable nature of COPII in cargo transport and the emerging roles of auxiliary factors.
Collapse
Affiliation(s)
- Semra J Kirk
- Immunology Unit, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK.
| | | |
Collapse
|
114
|
Hehnly H, Stamnes M. Regulating cytoskeleton-based vesicle motility. FEBS Lett 2007; 581:2112-8. [PMID: 17335816 PMCID: PMC1974873 DOI: 10.1016/j.febslet.2007.01.094] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2007] [Accepted: 01/18/2007] [Indexed: 11/17/2022]
Abstract
During vesicular transport, the assembly of the coat complexes and the selection of cargo proteins must be coordinated with the subsequent translocation of vesicles from the donor to an acceptor compartment. Here, we review recent progress toward uncovering the molecular mechanisms that connect transport vesicles to the protein machinery responsible for cytoskeleton-mediated motility. An emerging theme is that vesicle cargo proteins, either directly or through binding interactions with coat proteins, are able to influence cytoskeletal dynamics and motor protein function. Hence, a vesicle's cargo composition may help direct its intracellular motility and targeting.
Collapse
Affiliation(s)
- Heidi Hehnly
- Department of Molecular Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|
115
|
Appenzeller-Herzog C, Hauri HP. The ER-Golgi intermediate compartment (ERGIC): in search of its identity and function. J Cell Sci 2007; 119:2173-83. [PMID: 16723730 DOI: 10.1242/jcs.03019] [Citation(s) in RCA: 316] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Protein traffic moving from the endoplasmic reticulum (ER) to the Golgi complex in mammalian cells passes through the tubulovesicular membrane clusters of the ER-Golgi intermediate compartment (ERGIC), the marker of which is the lectin ERGIC-53. The dynamic nature and functional role of the ERGIC have been debated for quite some time. In the most popular current view, the ERGIC clusters are mobile transport complexes that deliver secretory cargo from ER-exit sites to the Golgi. Recent live-cell imaging data revealing the formation of anterograde carriers from stationary ERGIC-53-positive membranes, however, suggest a stable compartment model in which ER-derived cargo is first shuttled from ER-exit sites to stationary ERGIC clusters in a COPII-dependent step and subsequently to the Golgi in a second vesicular transport step. This model can better accommodate previous morphological and functional data on ER-to-Golgi traffic. Such a stationary ERGIC would be a major site of anterograde and retrograde sorting that is controlled by coat proteins, Rab and Arf GTPases, as well as tethering complexes, SNAREs and cytoskeletal networks. The ERGIC also contributes to the concentration, folding, and quality control of newly synthesized proteins.
Collapse
|
116
|
Colombelli J, Reynaud EG, Stelzer EHK. Investigating Relaxation Processes in Cells and Developing Organisms: From Cell Ablation to Cytoskeleton Nanosurgery. Methods Cell Biol 2007; 82:267-91. [PMID: 17586260 DOI: 10.1016/s0091-679x(06)82008-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Dynamic microscopy of living cells and organisms alone does not reveal the high level of complexity of cellular and subcellular organization. All observable processes rely on the activity of biochemical and biophysical processes and many occur at a physiological equilibrium. Experimentally, it is not trivial to apply a perturbation that targets a specific process without perturbing the overall equilibrium of a cell. Drugs and more recently RNAi certainly have general and undesired effects on cell physiology and metabolism. In particular, they affect the entire cell. Pulsed lasers allow to severe biological tissues with a precision in the range of hundreds of nanometers and to achieve ablation on the level of a single cell or a subcellular compartment. In this chapter, we present an efficient implementation of a picosecond UV-A pulsed laser-based nanosurgery system and review the different mechanisms of ablation that can be achieved at different levels of cellular organization. We discuss the performance of the ablation process in terms of the energy deposited onto the sample and compare our implementation to others recently employed for cellular and subcellular surgery. Above the energy threshold of ionization, we demonstrate how to achieve single-cell ablation through the induction of mechanical perturbation and cavitation in living organisms. Below this threshold, we induce cytoskeleton severing inside live cells. By combining nanosurgery with fast live-imaging fluorescence microscopy, we show how the apparent equilibrium of the cytoskeleton can be perturbed regionally inside a cell.
Collapse
Affiliation(s)
- Julien Colombelli
- Light Microscopy Group, Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), D-69117 Heidelberg, Germany
| | | | | |
Collapse
|
117
|
Stauber T, Simpson JC, Pepperkok R, Vernos I. A Role for Kinesin-2 in COPI-Dependent Recycling between the ER and the Golgi Complex. Curr Biol 2006; 16:2245-51. [PMID: 17113389 DOI: 10.1016/j.cub.2006.09.060] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Revised: 09/18/2006] [Accepted: 09/19/2006] [Indexed: 01/16/2023]
Abstract
Transport carriers operating between early compartments in the mammalian secretory pathway have to travel long distances in the cell by mostly relying on the microtubule network and its associated motor proteins. Although anterograde transport from the endoplasmic reticulum (ER) to the Golgi complex is mediated by cytoplasmic dynein, the identity of the motor(s) mediating transport in the retrograde direction is presently unclear. Some studies have suggested that the heterotrimeric kinesin-2 complex plays a role in transport between the ER and the Golgi. Here, we have examined kinesin-2 function by using an RNA-interference approach to downregulate the expression of KAP3, the nonmotor subunit of kinesin-2, in HeLa cells. KAP3 silencing results in the fragmentation of the Golgi apparatus and a change in the steady-state localization of the KDEL-receptor (KDEL-R). Using specific transport assays, we show that the rate of anterograde secretory traffic is unaffected in these cells but that KDEL-R-dependent retrograde transport is strongly abrogated. Our data strongly support a role for kinesin-2 in the KDEL-R-/COPI-dependent retrograde transport pathway from the Golgi complex to the ER.
Collapse
Affiliation(s)
- Tobias Stauber
- Cell Biology and Biophysics Programme, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | | | | | |
Collapse
|
118
|
Watson P, Townley AK, Koka P, Palmer KJ, Stephens DJ. Sec16 defines endoplasmic reticulum exit sites and is required for secretory cargo export in mammalian cells. Traffic 2006; 7:1678-87. [PMID: 17005010 PMCID: PMC1761133 DOI: 10.1111/j.1600-0854.2006.00493.x] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The selective export of proteins and lipids from the endoplasmic reticulum (ER) is mediated by the coat protein complex II (COPII) that assembles onto the ER membrane. In higher eukaryotes, COPII proteins assemble at discrete sites on the membrane known as ER exit sites (ERES). Here, we identify Sec16 as the protein that defines ERES in mammalian cells. Sec16 localizes to ERES independent of Sec23/24 and Sec13/31. Overexpression, and to a lesser extent, small interfering RNA depletion of Sec16, both inhibit ER-to-Golgi transport suggesting that Sec16 is required in stoichiometric amounts. Sar1 activity is required to maintain the localization of Sec16 at discrete locations on the ER membrane, probably through preventing its dissociation. Our data suggest that Sar1-GTP-dependent assembly of Sec16 on the ER membrane forms an organized scaffold defining an ERES.
Collapse
|
119
|
Vallee RB, Varma D, Dujardin DL. ZW10 function in mitotic checkpoint control, dynein targeting and membrane trafficking: is dynein the unifying theme? Cell Cycle 2006; 5:2447-51. [PMID: 17102640 PMCID: PMC2794429 DOI: 10.4161/cc.5.21.3395] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
ZW10 was initially identified as a mitotic checkpoint protein involved in chromosome segregation. It was subsequently implicated in targeting cytoplasmic dynein and dynactin to mitotic kinetochores, though the relationship between these functions remains incompletely understood. Recent studies have revealed that ZW10 performs important functions in nondividing cells as well. These include cytoplasmic dynein targeting to Golgi and other membranes, but also SNARE-mediated ER-Golgi trafficking. Identifying a unifying function for ZW10 in these diverse contexts has been elusive, but likely involves cytoplasmic dynein, as discussed here.
Collapse
Affiliation(s)
- Richard B Vallee
- Deptartment of Pathology and Cell Biology, Columbia University, New York, New York 10032, USA.
| | | | | |
Collapse
|
120
|
Shikano S, Coblitz B, Wu M, Li M. 14-3-3 proteins: regulation of endoplasmic reticulum localization and surface expression of membrane proteins. Trends Cell Biol 2006; 16:370-5. [PMID: 16769213 DOI: 10.1016/j.tcb.2006.05.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2006] [Revised: 03/31/2006] [Accepted: 05/24/2006] [Indexed: 11/24/2022]
Abstract
The density and composition of cell surface proteins are major determinants for cellular functions. Regulation of cell surface molecules occurs at several levels, including the efficiency of surface transport, and is therefore of great interest. As the major phosphoprotein-binding modules, 14-3-3 proteins are known for their crucial roles in a wide range of cellular activities, including the subcellular localization of target proteins. Accumulating evidence suggests a role for 14-3-3 in surface transport of membrane proteins, in which 14-3-3 binding reduces endoplasmic reticulum (ER) localization, thereby promoting surface expression of membrane proteins. Here, we focus on recent evidence of 14-3-3-mediated surface transport and discuss the possible molecular mechanisms.
Collapse
Affiliation(s)
- Sojin Shikano
- Department of Neuroscience and High Throughput Biology Center, School of Medicine, Johns Hopkins University, 733 North Broadway, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
121
|
Caviston JP, Holzbaur ELF. Microtubule motors at the intersection of trafficking and transport. Trends Cell Biol 2006; 16:530-7. [PMID: 16938456 DOI: 10.1016/j.tcb.2006.08.002] [Citation(s) in RCA: 222] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Revised: 07/25/2006] [Accepted: 08/17/2006] [Indexed: 12/19/2022]
Abstract
Molecular motors drive the transport of vesicles and organelles within the cell. Traditionally, these transport processes have been considered separately from membrane trafficking events, such as regulated budding and fusion. However, recent progress has revealed mechanistic links that integrate these processes within the cell. Rab proteins, which function as key regulators of intracellular trafficking, have now been shown to recruit specific motors to organelle membranes. Rab-independent recruitment of motors by adaptor or scaffolding proteins is also a key mechanism. Once recruited to vesicles and organelles, these motors can then drive directed transport; this directed transport could in turn affect the efficiency of trafficking events. Here, we discuss this coordinated regulation of trafficking and transport, which provides a powerful mechanism for temporal and spatial control of cellular dynamics.
Collapse
Affiliation(s)
- Juliane P Caviston
- Department of Physiology, University of Pennsylvania School of Medicine, D400 Richards Building, 3700 Hamilton Walk, Philadelphia, PA 19104-6085, USA
| | | |
Collapse
|
122
|
Runz H, Miura K, Weiss M, Pepperkok R. Sterols regulate ER-export dynamics of secretory cargo protein ts-O45-G. EMBO J 2006; 25:2953-65. [PMID: 16794576 PMCID: PMC1500972 DOI: 10.1038/sj.emboj.7601205] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2005] [Accepted: 05/31/2006] [Indexed: 11/08/2022] Open
Abstract
Alterations in endoplasmic reticulum (ER) cholesterol are fundamental for a variety of cellular processes such as the regulation of lipid homeostasis or efficient protein degradation. We show that reduced levels of cellular sterols cause a delayed ER-to-Golgi transport of the secretory cargo membrane protein ts-O45-G and a relocation to the ER of an endogenous protein cycling between the ER and the Golgi complex. Transport inhibition is characterized by a delay in the accumulation of ts-O45-G in ER-exit sites (ERES) and correlates with a reduced mobility of ts-O45-G within ER membranes. A simple mathematical model describing the kinetics of ER-exit predicts that reduced cargo loading to ERES and not the reduced mobility of ts-O45-G accounts for the delayed ER-exit and arrival at the Golgi. Consistent with this, membrane turnover of the COPII component Sec23p is delayed in sterol-depleted cells. Altogether, our results demonstrate the importance of sterol levels in COPII mediated ER-export.
Collapse
Affiliation(s)
- Heiko Runz
- Cell Biology & Cell Biophysics Programme, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany
- Cell Biology & Cell Biophysics Programme, European Molecular Biology Laboratory (EMBL), Meyerhofstr. 1, Heidelberg 69117, Germany. Tel.: +49 6221 387 332; Fax: +49 6221 387 306; E-mails: or
| | - Kota Miura
- Cell Biology & Cell Biophysics Programme, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Matthias Weiss
- Cellular Biophysics Group (BIOMS), German Cancer Research Center, Heidelberg, Germany
| | - Rainer Pepperkok
- Cell Biology & Cell Biophysics Programme, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Cell Biology & Cell Biophysics Programme, European Molecular Biology Laboratory (EMBL), Meyerhofstr. 1, Heidelberg 69117, Germany. Tel.: +49 6221 387 332; Fax: +49 6221 387 306; E-mails: or
| |
Collapse
|
123
|
Watson P, Stephens DJ. Microtubule plus-end loading of p150(Glued) is mediated by EB1 and CLIP-170 but is not required for intracellular membrane traffic in mammalian cells. J Cell Sci 2006; 119:2758-67. [PMID: 16772339 PMCID: PMC1630633 DOI: 10.1242/jcs.02999] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microtubule dynamics and function are regulated, at least in part, by a family of proteins that localize to microtubule plus-ends, and include EB1, CLIP-170 and the dynactin component p150(Glued). Plus-end pools of these proteins, notably dynactin, have been invoked in a number of ;search-and-capture' mechanisms, including the attachment of microtubules to kinetochores during mitosis and to endomembranes prior to the initiation of intracellular transport. Here we show that, in mammalian cells, EB1 is required for the plus-end localization of CLIP-170, and that this is in turn required to localize p150(Glued) to plus-ends. Specific depletion of CLIP-170 results in defects in microtubule dynamics, cell polarization in response to scratch wounding and a loss of p150(Glued) from plus ends. By contrast, removal of p150(Glued) from plus-ends by depletion of either EB1 or CLIP-170 caused no defects in the localization of intracellular organelles, the dynamics of ER-to-Golgi transport, the efficiency of transferrin uptake or the motility of early endosomes or lysosomes. In addition to labelling microtubule plus-ends, we show that GFP-p150(Glued) becomes incorporated into the dynactin complex and labels small, highly dynamic, punctate structures that move along microtubules. A subset of these structures colocalizes with ER-Golgi transport intermediates. Together, these data show that the function of CLIP-170 and p150(Glued) in membrane trafficking is not associated with their plus-end localization.
Collapse
|
124
|
Jékely G, Arendt D. Evolution of intraflagellar transport from coated vesicles and autogenous origin of the eukaryotic cilium. Bioessays 2006; 28:191-8. [PMID: 16435301 DOI: 10.1002/bies.20369] [Citation(s) in RCA: 175] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The cilium/flagellum is a sensory-motile organelle ancestrally present in eukaryotic cells. For assembly cilia universally rely on intraflagellar transport (IFT), a specialised bidirectional transport process mediated by the ancestral and conserved IFT complex. Based on the homology of IFT complex proteins to components of coat protein I (COPI) and clathrin-coated vesicles, we propose that the non- vesicular, membrane-bound IFT evolved as a specialised form of coated vesicle transport from a protocoatomer complex. IFT thus shares common ancestry with all protocoatomer derivatives, including all vesicle coats and the nuclear pore complex (NPC). This has major implications for the evolutionary origin of the cilium. First, it reinforces the tenet that duplication and divergence of pre-existing structures, rather than symbiosis, were the major themes during cilium evolution. Second, it suggests that the initial step in the autogenous origin of the cilium was the establishment of a membrane patch with transmembrane proteins transported by the ancestral vesicle-coating IFT complex. We propose a scenario for how the initial membrane patch gradually protruded to enhance exposure to the environment, then started to move, and finally compartmentalised to render receptor signalling and ciliary beating more efficient.
Collapse
Affiliation(s)
- Gáspár Jékely
- European Molecular Biology Laboratory, Heidelberg, Germany.
| | | |
Collapse
|
125
|
Zeuschner D, Geerts WJC, van Donselaar E, Humbel BM, Slot JW, Koster AJ, Klumperman J. Immuno-electron tomography of ER exit sites reveals the existence of free COPII-coated transport carriers. Nat Cell Biol 2006; 8:377-83. [PMID: 16531996 DOI: 10.1038/ncb1371] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2005] [Accepted: 01/05/2006] [Indexed: 01/16/2023]
Abstract
Transport from the endoplasmic reticulum (ER) to the Golgi complex requires assembly of the COPII coat complex at ER exit sites. Recent studies have raised the question as to whether in mammalian cells COPII coats give rise to COPII-coated transport vesicles or instead form ER sub-domains that collect proteins for transport via non-coated carriers. To establish whether COPII-coated vesicles do exist in vivo, we developed approaches to combine quantitative immunogold labelling (to identify COPII) and three-dimensional electron tomography (to reconstruct entire membrane structures). In tomograms of both chemically fixed and high-pressure-frozen HepG2 cells, immuno-labelled COPII was found on ER-associated buds as well as on free approximately 50-nm diameter vesicles. In addition, we identified a novel type of COPII-coated structure that consists of partially COPII-coated, 150-200-nm long, dumb-bell-shaped tubules. Both COPII-coated carriers also contain the SNARE protein Sec22b, which is necessary for downstream fusion events. Our studies unambiguously establish the existence of free, bona fide COPII-coated transport carriers at the ER-Golgi interface, suggesting that assembly of COPII coats in vivo can result in vesicle formation.
Collapse
Affiliation(s)
- Dagmar Zeuschner
- Department of Cell Biology, Institute of Biomembranes, UMC Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
126
|
Duden R, Eichinger L. Vesicular trafficking: 7th Young Scientists meeting of the German Society for Cell Biology (DGZ) - Jena, September 22nd to 24th, 2005. Eur J Cell Biol 2006; 85:133-40. [PMID: 16518887 DOI: 10.1016/j.ejcb.2005.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Rainer Duden
- School of Biological Sciences, Royal Holloway, University of London, Egham, Surrey TW20 0EX, UK.
| | | |
Collapse
|
127
|
Sannerud R, Marie M, Nizak C, Dale HA, Pernet-Gallay K, Perez F, Goud B, Saraste J. Rab1 defines a novel pathway connecting the pre-Golgi intermediate compartment with the cell periphery. Mol Biol Cell 2006; 17:1514-26. [PMID: 16421253 PMCID: PMC1415313 DOI: 10.1091/mbc.e05-08-0792] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The function of the pre-Golgi intermediate compartment (IC) and its relationship with the endoplasmic reticulum (ER) and Golgi remain only partially understood. Here, we report striking segregation of IC domains in polarized PC12 cells that develop neurite-like processes. Differentiation involves expansion of the IC and movement of Rab1-containing tubules to the growth cones of the neurites, whereas p58- and COPI-positive IC elements, like rough ER and Golgi, remain in the cell body. Exclusion of Rab1 effectors p115 and GM130 from the neurites further indicated that the centrifugal, Rab1-mediated pathway has functions that are not directly related to ER-to-Golgi trafficking. Disassembly of COPI coats did not affect this pathway but resulted in missorting of p58 to the neurites. Live cell imaging showed that green fluorescent protein (GFP)-Rab1A-containing IC elements move bidirectionally both within the neurites and cell bodies, interconnecting different ER exit sites and the cis-Golgi region. Moreover, in nonpolarized cells GFP-Rab1A-positive tubules moved centrifugally towards the cell cortex. Hydroxymethylglutaryl-CoA reductase, the key enzyme of cholesterol biosynthesis, colocalized with slowly sedimenting, Rab1-enriched membranes when the IC subdomains were separated by velocity sedimentation. These results reveal a novel pathway directly connecting the IC with the cell periphery and suggest that this Rab1-mediated pathway is linked to the dynamics of smooth ER.
Collapse
Affiliation(s)
- Ragna Sannerud
- Section of Anatomy and Cell Biology, Department of Biomedicine, University of Bergen, N-5009 Bergen, Norway
| | | | | | | | | | | | | | | |
Collapse
|
128
|
Abstract
We identified 1113 articles (103 reviews, 1010 primary research articles) published in 2005 that describe experiments performed using commercially available optical biosensors. While this number of publications is impressive, we find that the quality of the biosensor work in these articles is often pretty poor. It is a little disappointing that there appears to be only a small set of researchers who know how to properly perform, analyze, and present biosensor data. To help focus the field, we spotlight work published by 10 research groups that exemplify the quality of data one should expect to see from a biosensor experiment. Also, in an effort to raise awareness of the common problems in the biosensor field, we provide side-by-side examples of good and bad data sets from the 2005 literature.
Collapse
Affiliation(s)
- Rebecca L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
129
|
Simpson JC, Nilsson T, Pepperkok R. Biogenesis of tubular ER-to-Golgi transport intermediates. Mol Biol Cell 2005; 17:723-37. [PMID: 16314391 PMCID: PMC1356583 DOI: 10.1091/mbc.e05-06-0580] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Tubular transport intermediates (TTIs) have been described as one class of transport carriers in endoplasmic reticulum (ER)-to-Golgi transport. In contrast to vesicle budding and fusion, little is known about the molecular regulation of TTI synthesis, transport and fusion with target membranes. Here we have used in vivo imaging of various kinds of GFP-tagged proteins to start to address these questions. We demonstrate that under steady-state conditions TTIs represent approximately 20% of all moving transport carriers. They increase in number and length when more transport cargo becomes available at the donor membrane, which we induced by either temperature-related transport blocks or increased expression of the respective GFP-tagged transport markers. The formation and motility of TTIs is strongly dependent on the presence of intact microtubules. Microinjection of GTPgammaS increases the frequency of TTI synthesis and the length of these carriers. When Rab proteins are removed from membranes by microinjection of recombinant Rab-GDI, the synthesis of TTIs is completely blocked. Microinjection of the cytoplasmic tails of the p23 and p24 membrane proteins also abolishes formation of p24-containing TTIs. Our data suggest that TTIs are ER-to-Golgi transport intermediates that form preferentially when transport-competent cargo exists in excess at the donor membrane. We propose a model where the interaction of the cytoplasmic tails of membrane proteins with microtubules are key determinants for TTI synthesis and may also serve as a so far unappreciated model for aspects of transport carrier formation.
Collapse
Affiliation(s)
- Jeremy C Simpson
- Cell Biology and Biophysics Programme, European Molecular Biology Laboratory, 69117 Heidelberg, Germany.
| | | | | |
Collapse
|
130
|
Levine T, Rabouille C. Endoplasmic reticulum: one continuous network compartmentalized by extrinsic cues. Curr Opin Cell Biol 2005; 17:362-8. [PMID: 15975783 DOI: 10.1016/j.ceb.2005.06.005] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2005] [Accepted: 06/06/2005] [Indexed: 11/19/2022]
Abstract
The endoplasmic reticulum (ER) is an extensive three-dimensional network that stretches from the inner nuclear envelope to the cell cortex with a single, continuous membrane and a single, continuous lumen. Yet the ER contains specialized regions that carry out unique functions. The question that immediately arises is how the ER can be compartmentalized if it is continuous, and the answer to this is that cellular landmarks with unique sub-cellular distributions impose non-uniformity on the ER from outside, creating structural and functional sub-domains of the ER.
Collapse
Affiliation(s)
- Tim Levine
- Division of Cell Biology, Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | | |
Collapse
|
131
|
Palmer KJ, Konkel JE, Stephens DJ. PCTAIRE protein kinases interact directly with the COPII complex and modulate secretory cargo transport. J Cell Sci 2005; 118:3839-47. [PMID: 16091426 DOI: 10.1242/jcs.02496] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The export of secretory cargo from the endoplasmic reticulum is mediated by the COPII complex. In common with other aspects of intracellular transport, this step is regulated by protein kinase signalling. Recruitment of the COPII complex to the membrane is known to require ATP and to be blocked by the protein kinase inhibitor H-89. The identity of the specific protein kinase or kinases involved remains equivocal. Here we show that the Sec23p subunit of COPII interacts with PCTAIRE protein kinases. This interaction is shown using two-hybrid screening, direct binding and immunoprecipitation. Inhibition of PCTAIRE kinase activity by expression of a kinase-dead mutant, or specific depletion of PCTAIRE using RNAi, leads to defects in early secretory pathway function including cargo transport, as well as vesicular-tubular transport carrier (VTC) and Golgi localization. These data show a role for PCTAIRE protein kinase function in membrane traffic through the early secretory pathway.
Collapse
Affiliation(s)
- Krysten J Palmer
- Department of Biochemistry, University of Bristol, School of Medical Science, University Walk, Bristol, BS8 1TD, UK
| | | | | |
Collapse
|
132
|
Vaughan KT. Microtubule plus ends, motors, and traffic of Golgi membranes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1744:316-24. [PMID: 15950296 DOI: 10.1016/j.bbamcr.2005.05.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2005] [Revised: 04/30/2005] [Accepted: 05/03/2005] [Indexed: 01/06/2023]
Abstract
The intimate link between microtubule (MT) organization and the components of the secretory pathway has suggested that MT-based motility is an essential component of vesicular membrane transport and membrane polarization. The molecular details of these processes are still under investigation; however, a novel class of MT plus end-binding proteins shed new light on transport between the endoplasmic reticulum (ER) and Golgi apparatus. The dynactin complex, an initial member of this family, shares localization and live-cell imaging phenotypes with other plus end-binding proteins such as CLIP-170 and EB1. In addition, dynactin has been shown to mediate the binding of ER-Golgi transport vesicles to MTs through a regulated MT-binding motif in p150(Glued). Whereas the plus end-binding activity of CLIP-170 and EB1 has been linked to the regulation of dynamic instability, the plus end binding of dynactin is implicated in a search-capture mechanism for dynein-dependent cargoes. An examination of dynactin's role in ER-Golgi transport suggests that plus end binding could be a reflection of fundamental membrane transport mechanisms.
Collapse
Affiliation(s)
- Kevin T Vaughan
- Department of Biological Sciences, P.O. Box 369, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
133
|
Fromme JC, Schekman R. COPII-coated vesicles: flexible enough for large cargo? Curr Opin Cell Biol 2005; 17:345-52. [PMID: 15975775 DOI: 10.1016/j.ceb.2005.06.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2005] [Accepted: 06/06/2005] [Indexed: 11/21/2022]
Abstract
Cargo proteins exiting the endoplasmic reticulum en route to the Golgi are typically carried in 60-70 nm vesicles surrounded by the COPII protein coat. Some secretory cargo assemblies in specialized mammalian cells are too large for transport within such carriers. Recent studies on procollagen-I and chylomicron trafficking have reached conflicting conclusions regarding the role of COPII proteins in ER exit of these large biological assemblies. COPII is no doubt essential for such transport in vivo, but it remains unclear whether COPII envelops the membrane surrounding large cargo or instead plays a more indirect role in transport carrier biogenesis.
Collapse
Affiliation(s)
- J Christopher Fromme
- Department of Molecular and Cell Biology, University of California-Berkeley, 628 Barker Hall #3202, Berkeley, CA 94720-3202, USA
| | | |
Collapse
|
134
|
Tang BL, Wang Y, Ong YS, Hong W. COPII and exit from the endoplasmic reticulum. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1744:293-303. [PMID: 15979503 DOI: 10.1016/j.bbamcr.2005.02.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2004] [Revised: 02/16/2005] [Accepted: 02/23/2005] [Indexed: 01/06/2023]
Abstract
First discovered by genetic analysis of yeast secretion mutants, the evolutionarily conserved vesicular coat protein II (COPII) complex is responsible for membrane transport from the endoplasmic reticulum (ER) to the Golgi apparatus. In recent years, extensive efforts in structural, morphological, genetic and molecular analysis have greatly enhanced our understanding of the structural and molecular basis of COPII subunit assembly and selective cargo packaging during ER export. Very recent data have also indicated that a more "classical" picture of vesicle formation from ER exit sites (ERES) followed by their transport to the Golgi is far from accurate. Proteins modulating the function of COPII have also emerged in recent analysis. They either affect COPII-based cargo selection, the formation of vesicle/transport carrier, or subsequent targeting of the transport carrier. Together, elucidation of COPII-mediated ER export has painted a fascinating picture of molecular complexity for an essential process in all eukaryotic cells.
Collapse
Affiliation(s)
- Bor Luen Tang
- Department of Biochemistry, National University of Singapore, 8 Medical Drive, Singapore 117597, Singapore.
| | | | | | | |
Collapse
|
135
|
Presley JF. Imaging the secretory pathway: The past and future impact of live cell optical techniques. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1744:259-72. [PMID: 15921767 DOI: 10.1016/j.bbamcr.2005.04.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2004] [Revised: 04/21/2005] [Accepted: 04/27/2005] [Indexed: 11/17/2022]
Abstract
Classically, the secretory pathway has been studied using a combination of electron microscopic, biochemical and genetic approaches. In the last 20 years with the arrival of molecular biology and epitope tagging, fluorescence microscopy has become more important than previously. Moreover, with the common availability of Green Fluorescent Protein (GFP) and confocal microscopes in the last 10 years, live cell imaging has become a major experimental approach. This review highlights the impact of the recent introduction of single-cell quantitative time-lapse imaging and photobleach techniques on the study of the secretory pathway, and the potential impact of those optical techniques which may play a significant future role in the study of the Golgi apparatus and the secretory pathway. Particular attention is paid to techniques (Fluorescence Resonance Energy Transfer, Fluorescence Correlation Spectroscopy) which can monitor protein-protein interactions in living cells.
Collapse
Affiliation(s)
- John F Presley
- McGill University, Department of Anatomy and Cell Biology, 3640 University, Montreal, QC, Canada H3A 2B2.
| |
Collapse
|
136
|
Chen JL, Fucini RV, Lacomis L, Erdjument-Bromage H, Tempst P, Stamnes M. Coatomer-bound Cdc42 regulates dynein recruitment to COPI vesicles. ACTA ACUST UNITED AC 2005; 169:383-9. [PMID: 15866890 PMCID: PMC2171931 DOI: 10.1083/jcb.200501157] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cytoskeletal dynamics at the Golgi apparatus are regulated in part through a binding interaction between the Golgi-vesicle coat protein, coatomer, and the regulatory GTP-binding protein Cdc42 (Wu, W.J., J.W. Erickson, R. Lin, and R.A. Cerione. 2000. Nature. 405:800–804; Fucini, R.V., J.L. Chen, C. Sharma, M.M. Kessels, and M. Stamnes. 2002. Mol. Biol. Cell. 13:621–631). The precise role of this complex has not been determined. We have analyzed the protein composition of Golgi-derived coat protomer I (COPI)–coated vesicles after activating or inhibiting signaling through coatomer-bound Cdc42. We show that Cdc42 has profound effects on the recruitment of dynein to COPI vesicles. Cdc42, when bound to coatomer, inhibits dynein binding to COPI vesicles whereas preventing the coatomer–Cdc42 interaction stimulates dynein binding. Dynein recruitment was found to involve actin dynamics and dynactin. Reclustering of nocodazole-dispersed Golgi stacks and microtubule/dynein-dependent ER-to-Golgi transport are both sensitive to disrupting Cdc42 mediated signaling. By contrast, dynein-independent transport to the Golgi complex is insensitive to mutant Cdc42. We propose a model for how proper temporal regulation of motor-based vesicle translocation could be coupled to the completion of vesicle formation.
Collapse
Affiliation(s)
- Ji-Long Chen
- Department of Physiology and Biophysics, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | | | |
Collapse
|
137
|
Watson P, Stephens DJ. ER-to-Golgi transport: form and formation of vesicular and tubular carriers. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1744:304-15. [PMID: 15979504 DOI: 10.1016/j.bbamcr.2005.03.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2004] [Revised: 02/22/2005] [Accepted: 03/07/2005] [Indexed: 11/24/2022]
Abstract
The transport of proteins and lipids between the endoplasmic reticulum and Golgi apparatus is initiated by the collection of secretory cargo from within the lumen of the endoplasmic reticulum. Subsequently, transport carriers are formed that bud from this membrane and are transported to, and subsequently merge with, the Golgi. The principle driving force behind the budding process is the multi-subunit coat protein complex, COPII. A considerable amount of information is now available regarding the molecular mechanisms by which COPII components operate together to drive cargo selection and transport carrier formation. In contrast, the precise nature of the transport carriers formed is still a matter of considerable debate. Vesicular and tubular carriers have been characterized that are, or in other cases are not, coated with the COPII complex. Here, we seek to integrate much of the data surrounding this topic and try to understand the mechanisms by which vesicular and/or tubular carriers might be generated.
Collapse
Affiliation(s)
- Peter Watson
- Department of Biochemistry, University of Bristol, School of Medical Sciences, University Walk, Bristol BS8 1TD, UK
| | | |
Collapse
|
138
|
Abstract
One of the characteristics of the mammalian Golgi is its position adjacent to the nucleus. This characteristic is maintained through the action of the microtubule (MT) minus end–directed motor dynein and MT-associated proteins (MAPs). Recent findings suggest that GMAP-210, a member of the golgin family of proteins, may help to link Golgi membranes and vesicles with the MT cytoskeleton. However, there are good grounds to doubt that either GMAP-210 or its yeast homologue Rud3p is a MAP. Instead, they appear to function in vesicle trafficking events at the Golgi together with the GTPase ARF1 and a small membrane protein, Erv14. As such, the interesting question of how the Golgi interacts with MTs may well remain open to further investigation.
Collapse
Affiliation(s)
- Francis A Barr
- Max-Planck-Institute of Biochemistry, Martinsried, 82152 Germany.
| | | |
Collapse
|
139
|
Rybakin V, Clemen CS. Coronin proteins as multifunctional regulators of the cytoskeleton and membrane trafficking. Bioessays 2005; 27:625-32. [PMID: 15892111 DOI: 10.1002/bies.20235] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Coronins constitute an evolutionarily conserved family of WD-repeat actin-binding proteins, which can be clearly classified into two distinct groups based on their structural features. All coronins possess a conserved basic N-terminal motif and three to ten WD repeats clustered in one or two core domains. Dictyostelium and mammalian coronins are important regulators of the actin cytoskeleton, while the fly Dpod1 and the yeast coronin proteins crosslink both actin and microtubules. Apart from that, several coronins have been shown to be involved in vesicular transport. C. elegans POD-1 and Drosophila coro regulate the actin cytoskeleton, but also govern vesicular trafficking as indicated by mutant phenotypes. In both organisms, defects in cytoskeleton and trafficking lead to severe developmental defects ranging from abnormal cell division to aberrant formation of morphogen gradients. Finally, mammalian coronin 7 appears not to execute any cytoskeleton-related functions, but rather participates in regulating Golgi trafficking. Here, we review recent data providing more insight into molecular mechanisms underlying the regulation of F-actin structures, cytoskeletal rearrangements and intracellular membrane transport by coronin proteins and the way that they might link cytoskeleton with trafficking in development and disease.
Collapse
Affiliation(s)
- Vasily Rybakin
- Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, Germany
| | | |
Collapse
|
140
|
Farah CA, Liazoghli D, Perreault S, Desjardins M, Guimont A, Anton A, Lauzon M, Kreibich G, Paiement J, Leclerc N. Interaction of microtubule-associated protein-2 and p63: a new link between microtubules and rough endoplasmic reticulum membranes in neurons. J Biol Chem 2004; 280:9439-49. [PMID: 15623521 DOI: 10.1074/jbc.m412304200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neurons are polarized cells presenting two distinct compartments, dendrites and an axon. Dendrites can be distinguished from the axon by the presence of rough endoplasmic reticulum (RER). The mechanism by which the structure and distribution of the RER is maintained in these cells is poorly understood. In the present study, we investigated the role of the dendritic microtubule-associated protein-2 (MAP2) in the RER membrane positioning by comparing their distribution in brain subcellular fractions and in primary hippocampal cells and by examining the MAP2-microtubule interaction with RER membranes in vitro. Subcellular fractionation of rat brain revealed a high MAP2 content in a subfraction enriched with the endoplasmic reticulum markers ribophorin and p63. Electron microscope morphometry confirmed the enrichment of this subfraction with RER membranes. In cultured hippocampal neurons, MAP2 and p63 were found to concomitantly compartmentalize to the dendritic processes during neuronal differentiation. Protein blot overlays using purified MAP2c protein revealed its interaction with p63, and immunoprecipitation experiments performed in HeLa cells showed that this interaction involves the projection domain of MAP2. In an in vitro reconstitution assay, MAP2-containing microtubules were observed to bind to RER membranes in contrast to microtubules containing tau, the axonal MAP. This binding of MAP2c microtubules was reduced when an anti-p63 antibody was added to the assay. The present results suggest that MAP2 is involved in the association of RER membranes with microtubules and thereby could participate in the differential distribution of RER membranes within a neuron.
Collapse
Affiliation(s)
- Carole Abi Farah
- Département de Pathologie et Biologie Cellulaire, Université de Montréal, CP 6128, Succ. Centre-ville, Montréal, Québec H3C 3J7, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|