101
|
Condie BG. The untapped potential of the GENSAT mice-A valuable resource for developmental biology. Genesis 2016; 54:245-56. [PMID: 27074373 DOI: 10.1002/dvg.22942] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 04/06/2016] [Accepted: 04/07/2016] [Indexed: 12/13/2022]
Abstract
Gene Expression Nervous System Atlas (GENSAT) transgenic mice express EGFP, tdTomato, or Cre recombinase in a wide range of cell types. The mice and the bacterial artificial chromosome transgenes are available from repositories (MMRRC or CHORI), thereby making these resources readily available to the research community. This resource of 1,386 transgenic lines was developed and validated for neuroscience research. However, GENSAT mice have many potential applications in other contexts including studies of development outside of the CNS. The cell type-specific expression of fluorescent proteins in these mice has been used to identify cells in living embryos, in living embryo explants, and in stem or progenitor cell populations in postnatal tissues. The large number of fluorescent protein driver lines generated by GENSAT greatly expands the range of cell type markers that can be used for live cell sorting. In addition, the GENSAT project has generated 278 new Cre driver lines. This review provides an overview of the GENSAT lines and information for identifying lines that may be useful for a particular application. I also provide a review of the few published cases in which GENSAT mice have been used for studies of embryonic development or analysis of stem/progenitor cells in nonneural tissues. genesis 54:245-256, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Brian G Condie
- Department of Genetics, Developmental Biology Alliance, University of Georgia, Athens, Georgia
| |
Collapse
|
102
|
Henning SJ, von Furstenberg RJ. GI stem cells - new insights into roles in physiology and pathophysiology. J Physiol 2016; 594:4769-79. [PMID: 27107928 DOI: 10.1113/jp271663] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 01/19/2016] [Indexed: 12/21/2022] Open
Abstract
This overview gives a brief historical summary of key discoveries regarding stem cells of the small intestine. The current concept is that there are two pools of intestinal stem cells (ISCs): an actively cycling pool that is marked by Lgr5, is relatively homogeneous and is responsible for daily turnover of the epithelium; and a slowly cycling or quiescent pool that functions as reserve ISCs. The latter pool appears to be quite heterogeneous and may include partially differentiated epithelial lineages that can reacquire stem cell characteristics following injury to the intestine. Markers and methods of isolation for active and quiescent ISC populations are described as well as the numerous important advances that have been made in approaches to the in vitro culture of ISCs and crypts. Factors regulating ISC biology are briefly summarized and both known and unknown aspects of the ISC niche are discussed. Although most of our current knowledge regarding ISC physiology and pathophysiology has come from studies with mice, recent work with human tissue highlights the potential translational applications arising from this field of research. Many of these topics are further elaborated in the following articles.
Collapse
Affiliation(s)
- Susan J Henning
- Department of Medicine - Division of Gastroenterology and Hepatology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7555, USA
| | | |
Collapse
|
103
|
Smith NR, Gallagher AC, Wong MH. Defining a stem cell hierarchy in the intestine: markers, caveats and controversies. J Physiol 2016; 594:4781-90. [PMID: 26864260 DOI: 10.1113/jp271651] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 01/06/2016] [Indexed: 12/22/2022] Open
Abstract
The past decade has appreciated rapid advance in identifying the once elusive intestinal stem cell (ISC) populations that fuel the continual renewal of the epithelial layer. This advance was largely driven by identification of novel stem cell marker genes, revealing the existence of quiescent, slowly- and active-cycling ISC populations. However, a critical barrier for translating this knowledge to human health and disease remains elucidating the functional interplay between diverse stem cell populations. Currently, the precise hierarchical and regulatory relationships between these ISC populations are under intense scrutiny. The classical theory of a linear hierarchy, where quiescent and slowly-cycling stem cells self-renew but replenish an active-cycling population, is well established in other rapidly renewing tissues such as the haematopoietic system. Efforts to definitively establish a similar stem cell hierarchy within the intestinal epithelium have yielded conflicting results, been difficult to interpret, and suggest non-conventional alternatives to a linear hierarchy. While these new and potentially paradigm-shifting discoveries are intriguing, the field will require development of a number of critical tools, including highly specific stem cell marker genes along with more rigorous experimental methodologies, to delineate the complex cellular relationships within this dynamic organ system.
Collapse
Affiliation(s)
- Nicholas R Smith
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Alexandra C Gallagher
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Melissa H Wong
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR, 97239, USA.,OHSU Stem Cell Center, Oregon Health and Science University, Portland, OR, 97239, USA
| |
Collapse
|
104
|
Attayek PJ, Ahmad AA, Wang Y, Williamson I, Sims CE, Magness ST, Allbritton NL. In Vitro Polarization of Colonoids to Create an Intestinal Stem Cell Compartment. PLoS One 2016; 11:e0153795. [PMID: 27100890 PMCID: PMC4839657 DOI: 10.1371/journal.pone.0153795] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 04/04/2016] [Indexed: 12/22/2022] Open
Abstract
The polarity of proliferative and differentiated cellular compartments of colonic crypts is believed to be specified by gradients of key mitogens and morphogens. Indirect evidence demonstrates a tight correlation between Wnt- pathway activity and the basal-luminal patterning; however, to date there has been no direct experimental manipulation demonstrating that a chemical gradient of signaling factors can produce similar patterning under controlled conditions. In the current work, colonic organoids (colonoids) derived from cultured, multicellular organoid fragments or single stem cells were exposed in culture to steep linear gradients of two Wnt-signaling ligands, Wnt-3a and R-spondin1. The use of a genetically engineered Sox9-Sox9EGFP:CAGDsRED reporter gene mouse model and EdU-based labeling enabled crypt patterning to be quantified in the developing colonoids. Colonoids derived from multicellular fragments cultured for 5 days under a Wnt-3a or a combined Wnt-3a and R-spondin1 gradient were highly polarized with proliferative cells localizing to the region of the higher morphogen concentration. In a Wnt-3a gradient, Sox9EGFP polarization was 7.3 times greater than that of colonoids cultured in the absence of a gradient; and the extent of EdU polarization was 2.2 times greater than that in the absence of a gradient. Under a Wnt-3a/R-spondin1 gradient, Sox9EGFP polarization was 8.2 times greater than that of colonoids cultured in the absence of a gradient while the extent of EdU polarization was 10 times greater than that in the absence of a gradient. Colonoids derived from single stem cells cultured in Wnt-3a/R-spondin1 gradients were most highly polarized demonstrated by a Sox9EGFP polarization 20 times that of colonoids grown in the absence of a gradient. This data provides direct evidence that a linear gradient of Wnt signaling factors applied to colonic stem cells is sufficient to direct patterning of the colonoid unit in culture.
Collapse
Affiliation(s)
- Peter J. Attayek
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC 27599 and North Carolina State University, Raleigh, NC, 27695, United States of America
| | - Asad A. Ahmad
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC 27599 and North Carolina State University, Raleigh, NC, 27695, United States of America
| | - Yuli Wang
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, 27599, United States of America
| | - Ian Williamson
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC 27599 and North Carolina State University, Raleigh, NC, 27695, United States of America
| | - Christopher E. Sims
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, 27599, United States of America
| | - Scott T. Magness
- Department of Medicine, Division of Gastroenterology and Hepatology, University of North Carolina, Chapel Hill, NC, 27599, United States of America
| | - Nancy L. Allbritton
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC 27599 and North Carolina State University, Raleigh, NC, 27695, United States of America
- Department of Chemistry, University of North Carolina, Chapel Hill, NC, 27599, United States of America
- * E-mail:
| |
Collapse
|
105
|
Abstract
Research in the past decade has greatly expanded our understanding of the pathogenesis of inflammatory bowel disease, which includes Crohn's disease and ulcerative colitis. In addition to the sophisticated network of immune response, the epithelial layer lining the mucosa has emerged as an essential player in the development and persistence of intestinal inflammation. As the frontline of numerous environmental insults in the gut, the intestinal epithelial cells are subject to various cellular stresses. In eukaryotic cells, disturbance of endoplasmic reticulum homeostasis may lead to the accumulation of unfolded and misfolded proteins in the ER lumen, a condition called ER stress. This cellular process activates the unfolded protein response, which functions to enhance the ER protein folding capacity, alleviates the burden of protein synthesis and maturation, and activates ER-associated protein degradation. Paneth and goblet cells, 2 secretory epithelial populations in the gut, are particularly sensitive to ER stress on environmental or genetic disturbances. Recent studies suggested that epithelial ER stress may contribute to the pathogenesis of Crohn's disease and ulcerative colitis by compromising protein secretion, inducing epithelial cell apoptosis and activating proinflammatory response in the gut. Our knowledge of ER stress in intestinal epithelial function may open avenue to new inflammatory bowel disease therapies by targeting the ER protein folding homeostasis in the cells lining the intestinal mucosa.
Collapse
|
106
|
Interrogating cellular fate decisions with high-throughput arrays of multiplexed cellular communities. Nat Commun 2016; 7:10309. [PMID: 26754526 PMCID: PMC4729920 DOI: 10.1038/ncomms10309] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 11/27/2015] [Indexed: 01/06/2023] Open
Abstract
Recreating heterotypic cell-cell interactions in vitro is key to dissecting the role of cellular communication during a variety of biological processes. This is especially relevant for stem cell niches, where neighbouring cells provide instructive inputs that govern cell fate decisions. To investigate the logic and dynamics of cell-cell signalling networks, we prepared heterotypic cell-cell interaction arrays using DNA-programmed adhesion. Our platform specifies the number and initial position of up to four distinct cell types within each array and offers tunable control over cell-contact time during long-term culture. Here, we use the platform to study the dynamics of single adult neural stem cell fate decisions in response to competing juxtacrine signals. Our results suggest a potential signalling hierarchy between Delta-like 1 and ephrin-B2 ligands, as neural stem cells adopt the Delta-like 1 phenotype of stem cell maintenance on simultaneous presentation of both signals.
Collapse
|
107
|
Attayek PJ, Hunsucker SA, Wang Y, Sims CE, Armistead PM, Allbritton NL. Array-Based Platform To Select, Release, and Capture Epstein-Barr Virus-Infected Cells Based on Intercellular Adhesion. Anal Chem 2015; 87:12281-9. [PMID: 26558605 PMCID: PMC6026766 DOI: 10.1021/acs.analchem.5b03579] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Microraft arrays were developed to select and separate cells based on a complex phenotype, weak intercellular adhesion, without knowledge of cell-surface markers or intracellular proteins. Since the cells were also not competent to bind to a culture surface, a method to encapsulate nonadherent cells within a gelatin plug on the concave microraft surface was developed, enabling release and collection of the cells without the need for cell attachment to the microraft surface. After microraft collection, the gelatin was liquified to release the cell(s) for culture or analysis. A semiautomated release and collection device for the microrafts demonstrated 100 ± 0% collection efficiency of the microraft while increasing throughput 5-fold relative to that of manual release and collection. Using the microraft array platform along with the gelatin encapsulation method, single cells that were not surface-attached were isolated with a 100 ± 0% efficiency and a 96 ± 4% postsort single-cell cloning efficiency. As a demonstration, Epstein-Barr virus-infected lymphoblastoid cell lines (EBV-LCL) were isolated based on their intercellular adhesive properties. The identified cell colonies were collected with a 100 ± 0% sorting efficiency and a postsort viability of 87 ± 3%. When gene expression analysis of the EBV latency-associated gene, EBNA-2, was performed, there was no difference in expression between blasting or weakly adhesive cells and nonblasting or nonadhesive cells. Microraft arrays are a versatile method enabling separation of cells based on complicated and as yet poorly understood cell phenotypes.
Collapse
Affiliation(s)
| | - Sally A Hunsucker
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine , Chapel Hill, North Carolina 27599, United States
| | - Yuli Wang
- Department of Chemistry, University of North Carolina , Chapel HillNorth Carolina 27599, United States
| | - Christopher E Sims
- Department of Chemistry, University of North Carolina , Chapel HillNorth Carolina 27599, United States
| | - Paul M Armistead
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine , Chapel Hill, North Carolina 27599, United States
| | - Nancy L Allbritton
- Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine , Chapel Hill, North Carolina 27599, United States
- Department of Chemistry, University of North Carolina , Chapel HillNorth Carolina 27599, United States
| |
Collapse
|
108
|
Roche KC, Gracz AD, Liu XF, Newton V, Akiyama H, Magness ST. SOX9 maintains reserve stem cells and preserves radioresistance in mouse small intestine. Gastroenterology 2015; 149:1553-1563.e10. [PMID: 26170137 PMCID: PMC4709179 DOI: 10.1053/j.gastro.2015.07.004] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 06/30/2015] [Accepted: 07/06/2015] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Reserve intestinal stem cells (rISCs) are quiescent/slowly cycling under homeostatic conditions, allowing for their identification with label-retention assays. rISCs mediate epithelial regeneration after tissue damage by converting to actively proliferating stem cells (aISCs) that self renew and demonstrate multipotency, which are defining properties of stem cells. Little is known about the genetic mechanisms that regulate the production and maintenance of rISCs. High expression levels of the transcription factor Sox9 (Sox9(high)) are associated with rISCs. This study investigates the role of SOX9 in regulating the rISC state. METHODS We used fluorescence-activated cell sorting to isolate cells defined as aISCs (Lgr5(high)) and rISCs (Sox9(high)) from Lgr5(EGFP) and Sox9(EGFP) reporter mice. Expression of additional markers associated with active and reserve ISCs were assessed in Lgr5(high) and Sox9(high) populations by single-cell gene expression analyses. We used label-retention assays to identify whether Sox9(high) cells were label-retatining cells (LRCs). Lineage-tracing experiments were performed in Sox9-CreERT2 mice to measure the stem cell capacities and radioresistance of Sox9-expressing cells. Conditional SOX9 knockout mice and inducible-conditional SOX9 knockout mice were used to determine whether SOX9 was required to maintain LRCs and rISC function. RESULTS Lgr5(high) and a subset of crypt-based Sox9(high) cells co-express markers of aISC and rISC (Lgr5, Bmi1, Lrig1, and Hopx). LRCs express high levels of Sox9 and are lost in SOX9-knockout mice. SOX9 is required for epithelial regeneration after high-dose irradiation. Crypts from SOX9-knockout mice have increased sensitivity to radiation, compared with control mice, which could not be attributed to impaired cell-cycle arrest or DNA repair. CONCLUSIONS SOX9 limits proliferation in LRCs and imparts radiation resistance to rISCs in mice.
Collapse
Affiliation(s)
- Kyle C. Roche
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Adam D. Gracz
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Xiao Fu Liu
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Victoria Newton
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina,Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Haruhiko Akiyama
- Department of Orthopedics, Gifu University, Gifu, Gifu Prefecture, Japan
| | - Scott T. Magness
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina,Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
109
|
Mu H, Li N, Wu J, Zheng L, Zhai Y, Li B, Song W, Wang J, Zhu H, Li G, Hua J. PLZF-Induced Upregulation of CXCR4 Promotes Dairy Goat Male Germline Stem Cell Proliferation by Targeting Mir146a. J Cell Biochem 2015; 117:844-52. [PMID: 26365432 DOI: 10.1002/jcb.25371] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 09/10/2015] [Indexed: 02/03/2023]
Abstract
Previous studies have shown that promyelocytic leukemia zinc finger (PLZF), chemokine (C-X-C motif) receptor 4 (CXCR4) and mir146a were associated with the self-renewal of mouse spermatogonial stem cells (SSCs); however, there is little information on their effects on the fate of livestock SSCs. Here, we have identified a regulatory pathway in dairy goat mGSCs, involving PLZF, mir146a and the SDF-1 receptor CXCR4. PLZF overexpression downregulated mir146a and simultaneously upregulated the expression of CXCR4 protein, whereas PLZF knockdown (siPLZF) induced the specifically opposite effects. The in vitro assays demonstrated that PLZF specifically interacts with and suppresses the mir146a promoter, and mir146a targets CXCR4 to impede its translation. The levels of ERK1/2 phosphorylation in the mGSCs overexpressed CXCR4 and PLZF were upregulated, respectively, whereas mir146a expression was decreased and CXCR4 protein was increased. Mir146a overexpression and siPLZF impaired mGSC proliferation and differentiation, however, Mir146a knockdown induced the opposite effects. The effects of PLZF and mir146a were mediated regulation by mir146a and CXCR4, respectively. Overexpression of CXCR4 or addition of CXCL12 in cultures of dairy goat mGSCs resulted in the upregulation of their signaling, and the phosphorylation of ERK1/2 was increased. Collectively, these findings indicate that PLZF is an important transcription factor in the regulation of the expression of CXCR4 to promote dairy goat mGSC proliferation by targeting mir146a.
Collapse
Affiliation(s)
- Hailong Mu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Shaanxi, 712100, China
| | - Na Li
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Shaanxi, 712100, China
| | - Jiang Wu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Shaanxi, 712100, China.,College of Agriculture, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Liming Zheng
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Shaanxi, 712100, China
| | - Yuanxin Zhai
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Shaanxi, 712100, China
| | - Bo Li
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Shaanxi, 712100, China
| | - Wencong Song
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Shaanxi, 712100, China
| | - Jinglu Wang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Shaanxi, 712100, China
| | - Haijing Zhu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Shaanxi, 712100, China.,College of Life Science, Yulin University, Yulin, Shaanxi, 719000, China
| | - Guangpeng Li
- Key Laboratory for Mammalian Reproductive Biology and Biotechnology, Ministry of Education, Inner Mongolia University, Hohhot, 010021, China
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering & Technology, Northwest A&F University, Shaanxi, 712100, China
| |
Collapse
|
110
|
Ahmad AA, Wang Y, Sims CE, Magness ST, Allbritton NL. Optimizing Wnt-3a and R-spondin1 concentrations for stem cell renewal and differentiation in intestinal organoids using a gradient-forming microdevice. RSC Adv 2015. [DOI: 10.1039/c5ra14923a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A gradient-generating device assayed the impact of Wnt-3a and R-spondin1 on colonoids identifying concentrations required to yield a physiologically-relevant epithelium.
Collapse
Affiliation(s)
- Asad A. Ahmad
- Department of Biomedical Engineering
- University of North Carolina
- North Carolina State University
- Chapel Hill
- Raleigh
| | - Yuli Wang
- Department of Chemistry
- University of North Carolina
- Chapel Hill
- USA
| | | | - Scott T. Magness
- Department of Medicine
- Division of Gastroenterology and Hepatology
- University of North Carolina
- Chapel Hill
- USA
| | - Nancy L. Allbritton
- Department of Biomedical Engineering
- University of North Carolina
- North Carolina State University
- Chapel Hill
- Raleigh
| |
Collapse
|