101
|
Tosello V, Saccomani V, Yu J, Bordin F, Amadori A, Piovan E. Calcineurin complex isolated from T-cell acute lymphoblastic leukemia (T-ALL) cells identifies new signaling pathways including mTOR/AKT/S6K whose inhibition synergize with calcineurin inhibition to promote T-ALL cell death. Oncotarget 2018; 7:45715-45729. [PMID: 27304189 PMCID: PMC5216755 DOI: 10.18632/oncotarget.9933] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 05/28/2016] [Indexed: 02/06/2023] Open
Abstract
Calcineurin (Cn) is a calcium activated protein phosphatase involved in many aspects of normal T cell physiology, however the role of Cn and/or its downstream targets in leukemogenesis are still ill-defined. In order to identify putative downstream targets/effectors involved in the pro-oncogenic activity of Cn in T-cell acute lymphoblastic leukemia (T-ALL) we used tandem affinity chromatography, followed by mass spectrometry to purify novel Cn-interacting partners. We found the Cn-interacting proteins to be part of numerous cellular signaling pathways including eIF2 signaling and mTOR signaling. Coherently, modulation of Cn activity in T-ALL cells determined alterations in the phosphorylation status of key molecules implicated in protein translation such as eIF-2α and ribosomal protein S6. Joint targeting of PI3K-mTOR, eIF-2α and 14-3-3 signaling pathways with Cn unveiled novel synergistic pro-apoptotic drug combinations. Further analysis disclosed that the synergistic interaction between PI3K-mTOR and Cn inhibitors was prevalently due to AKT inhibition. Finally, we showed that the synergistic pro-apoptotic response determined by jointly targeting AKT and Cn pathways was linked to down-modulation of key anti-apoptotic proteins including Mcl-1, Claspin and XIAP. In conclusion, we identify AKT inhibition as a novel promising drug combination to potentiate the pro-apoptotic effects of Cn inhibitors.
Collapse
Affiliation(s)
- Valeria Tosello
- UOC Immunologia e Diagnostica Molecolare Oncologica, Istituto Oncologico Veneto-IRCCS, Padova, 35128, Italy
| | - Valentina Saccomani
- Dipartimento di Scienze Chirurgiche, Oncologiche e Gastroenterologiche, Sezione di Oncologia, Universita' di Padova, Padova, 35128, Italy
| | - Jiyang Yu
- Department of Biomedical Informatics, Columbia University, New York, NY, 10032, USA.,Department of Systems Biology, Columbia University, New York, NY, 10032, USA.,Present address: Department of Precision Medicine, Oncology Research Unit, Pfizer Inc., Pearl River, NY, 10965, USA
| | - Fulvio Bordin
- Dipartimento di Scienze Chirurgiche, Oncologiche e Gastroenterologiche, Sezione di Oncologia, Universita' di Padova, Padova, 35128, Italy
| | - Alberto Amadori
- UOC Immunologia e Diagnostica Molecolare Oncologica, Istituto Oncologico Veneto-IRCCS, Padova, 35128, Italy.,Dipartimento di Scienze Chirurgiche, Oncologiche e Gastroenterologiche, Sezione di Oncologia, Universita' di Padova, Padova, 35128, Italy
| | - Erich Piovan
- UOC Immunologia e Diagnostica Molecolare Oncologica, Istituto Oncologico Veneto-IRCCS, Padova, 35128, Italy.,Dipartimento di Scienze Chirurgiche, Oncologiche e Gastroenterologiche, Sezione di Oncologia, Universita' di Padova, Padova, 35128, Italy
| |
Collapse
|
102
|
Ram BM, Dolpady J, Kulkarni R, Usha R, Bhoria U, Poli UR, Islam M, Trehanpati N, Ramakrishna G. Human papillomavirus (HPV) oncoprotein E6 facilitates Calcineurin-Nuclear factor for activated T cells 2 (NFAT2) signaling to promote cellular proliferation in cervical cell carcinoma. Exp Cell Res 2018; 362:132-141. [DOI: 10.1016/j.yexcr.2017.11.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 11/06/2017] [Accepted: 11/08/2017] [Indexed: 12/13/2022]
|
103
|
Bronchud MH, Tresserra F, Zantop BS. Epigenetic changes found in uterine decidual and placental tissues can also be found in the breast cancer microenvironment of the same unique patient: description and potential interpretations. Oncotarget 2017; 9:6028-6041. [PMID: 29464052 PMCID: PMC5814192 DOI: 10.18632/oncotarget.23488] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 12/02/2017] [Indexed: 01/23/2023] Open
Abstract
Microenvironmental properties are thought to be responsible for feto-maternal tolerance. Speculatively, ectopic expression of placental gene programs might also be related to cancer cells’ ability to escape from immune vigilance mechanisms during carcinogenesis and cancer progression. Recently, we published the first human genomic evidence of similar immune related gene expression profiles in both placenta (placenta and decidual tissue) and cancer (both primary and metastatic) in the same patient with lymph-node positive breast carcinoma during pregnancy. Here we report the first epigenomic analysis of these tissue samples and describe their main findings, with respect to immune related genes regulation (over or under expressed) in cancer cells with regards placental tissues. We confirm significant similarities, and hierarchical clustering (both unsupervised and supervised), in CpG island methylation patterns between decidual/placental and cancer microenvironments, which cannot be easily explained by simple models or unique pathways. Several different cell types are probably involved in these complex immune regulation mechanisms. Cancers may somehow “hijack” gene programs evolved over millions of years to allow for feto-maternal tolerance in placental mammals in order to escape from immune vigilance and spread locally or to distant sites.
Collapse
Affiliation(s)
- Miguel H Bronchud
- Institut Bellmunt Oncologia, Hospital Universitari Dexeus, Grupo Quiron Salud, Barcelona, 08028 Spain
| | - Francesc Tresserra
- Servicio de Anatomía Patológica y Citología, Hospital Universitari Dexeus, Grupo Quiron Salud, Barcelona, 08028 Spain
| | - Bernat Serra Zantop
- Servicio de Ginecología, Obstetricia y Reproducción, Hospital Universitari Dexeus, Grupo Quiron Salud, Barcelona, 08028 Spain
| |
Collapse
|
104
|
Cleavage of osmosensitive transcriptional factor NFAT5 by Coxsackieviral protease 2A promotes viral replication. PLoS Pathog 2017; 13:e1006744. [PMID: 29220410 PMCID: PMC5738146 DOI: 10.1371/journal.ppat.1006744] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 12/20/2017] [Accepted: 11/10/2017] [Indexed: 12/16/2022] Open
Abstract
Nuclear factor of activated T cells 5 (NFAT5)/Tonicity enhancer binding protein (TonEBP) is a transcription factor induced by hypertonic stress in the kidney. However, the function of NFAT5 in other organs has rarely been studied, even though it is ubiquitously expressed. Indeed, although NFAT5 was reported to be critical for heart development and function, its role in infectious heart diseases has remained obscure. In this study, we aimed to understand the mechanism by which NFAT5 interferes with infection of Coxsackievirus B3 (CVB3), a major cause of viral myocarditis. Our initial results demonstrated that although the mRNA level of NFAT5 remained constant during CVB3 infection, NFAT5 protein level decreased because the protein was cleaved. Bioinformatic prediction and verification of the predicted site by site-directed mutagenesis experiments determined that the NFAT5 protein was cleaved by CVB3 protease 2A at Glycine 503. Such cleavage led to the inactivation of NFAT5, and the 70-kDa N-terminal cleavage product (p70-NFAT5) exerted a dominant negative effect on the full-length NFAT5 protein. We further showed that elevated expression of NFAT5 to counteract viral protease cleavage, especially overexpression of a non-cleavable mutant of NFAT5, significantly inhibited CVB3 replication. Ectopic expression of NFAT5 resulted in elevated expression of inducible nitric oxide synthase (iNOS), a factor reported to inhibit CVB3 replication. The necessity of iNOS for the anti-CVB3 effect of NFAT5 was supported by the observation that inhibition of iNOS blocked the anti-CVB3 effect of NFAT5. In a murine model of viral myocarditis, we observed that treatment with hypertonic saline or mannitol solution upregulated NFAT5 and iNOS expression, inhibited CVB3 replication and reduced tissue damage in the heart. Taken together, our data demonstrate that the anti-CVB3 activity of NFAT5 is impaired during CVB3 infection due to 2A-mediated cleavage of NFAT5. Thus induction of NFAT5 by hypertonic agents may be a promising strategy for the development of anti-CVB3 therapeutics.
Collapse
|
105
|
Glucocorticoid resistance is reverted by LCK inhibition in pediatric T-cell acute lymphoblastic leukemia. Blood 2017; 130:2750-2761. [PMID: 29101238 DOI: 10.1182/blood-2017-05-784603] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 10/30/2017] [Indexed: 11/20/2022] Open
Abstract
Pediatric T-acute lymphoblastic leukemia (T-ALL) patients often display resistance to glucocorticoid (GC) treatment. These patients, classified as prednisone poor responders (PPR), have poorer outcome than do the other pediatric T-ALL patients receiving a high-risk adapted therapy. Because glucocorticoids are administered to ALL patients during all the different phases of therapy, GC resistance represents an important challenge to improving the outcome for these patients. Mechanisms underlying resistance are not yet fully unraveled; thus our research focused on the identification of deregulated signaling pathways to point out new targeted approaches. We first identified, by reverse-phase protein arrays, the lymphocyte cell-specific protein-tyrosine kinase (LCK) as aberrantly activated in PPR patients. We showed that LCK inhibitors, such as dasatinib, bosutinib, nintedanib, and WH-4-023, are able to induce cell death in GC-resistant T-ALL cells, and remarkably, cotreatment with dexamethasone is able to reverse GC resistance, even at therapeutic drug concentrations. This was confirmed by specific LCK gene silencing and ex vivo combined treatment of cells from PPR patient-derived xenografts. Moreover, we observed that LCK hyperactivation in PPR patients upregulates the calcineurin/nuclear factor of activated T cells signaling triggering to interleukin-4 (IL-4) overexpression. GC-sensitive cells cultured with IL-4 display an increased resistance to dexamethasone, whereas the inhibition of IL-4 signaling could increase GC-induced apoptosis in resistant cells. Treatment with dexamethasone and dasatinib also impaired engraftment of leukemia cells in vivo. Our results suggest a quickly actionable approach to supporting conventional therapies and overcoming GC resistance in pediatric T-ALL patients.
Collapse
|
106
|
Tarallo R, Giurato G, Bruno G, Ravo M, Rizzo F, Salvati A, Ricciardi L, Marchese G, Cordella A, Rocco T, Gigantino V, Pierri B, Cimmino G, Milanesi L, Ambrosino C, Nyman TA, Nassa G, Weisz A. The nuclear receptor ERβ engages AGO2 in regulation of gene transcription, RNA splicing and RISC loading. Genome Biol 2017; 18:189. [PMID: 29017520 PMCID: PMC5634881 DOI: 10.1186/s13059-017-1321-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 09/20/2017] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The RNA-binding protein Argonaute 2 (AGO2) is a key effector of RNA-silencing pathways It exerts a pivotal role in microRNA maturation and activity and can modulate chromatin remodeling, transcriptional gene regulation and RNA splicing. Estrogen receptor beta (ERβ) is endowed with oncosuppressive activities, antagonizing hormone-induced carcinogenesis and inhibiting growth and oncogenic functions in luminal-like breast cancers (BCs), where its expression correlates with a better prognosis of the disease. RESULTS Applying interaction proteomics coupled to mass spectrometry to characterize nuclear factors cooperating with ERβ in gene regulation, we identify AGO2 as a novel partner of ERβ in human BC cells. ERβ-AGO2 association was confirmed in vitro and in vivo in both the nucleus and cytoplasm and is shown to be RNA-mediated. ChIP-Seq demonstrates AGO2 association with a large number of ERβ binding sites, and total and nascent RNA-Seq in ERβ + vs ERβ - cells, and before and after AGO2 knock-down in ERβ + cells, reveals a widespread involvement of this factor in ERβ-mediated regulation of gene transcription rate and RNA splicing. Moreover, isolation and sequencing by RIP-Seq of ERβ-associated long and small RNAs in the cytoplasm suggests involvement of the nuclear receptor in RISC loading, indicating that it may also be able to directly control mRNA translation efficiency and stability. CONCLUSIONS These results demonstrate that AGO2 can act as a pleiotropic functional partner of ERβ, indicating that both factors are endowed with multiple roles in the control of key cellular functions.
Collapse
Affiliation(s)
- Roberta Tarallo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, via S. Allende, 1, 84081, Baronissi, SA, Italy
| | - Giorgio Giurato
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, via S. Allende, 1, 84081, Baronissi, SA, Italy
- Genomix4Life srl, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Giuseppina Bruno
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, via S. Allende, 1, 84081, Baronissi, SA, Italy
| | - Maria Ravo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, via S. Allende, 1, 84081, Baronissi, SA, Italy
- Genomix4Life srl, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Francesca Rizzo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, via S. Allende, 1, 84081, Baronissi, SA, Italy
| | - Annamaria Salvati
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, via S. Allende, 1, 84081, Baronissi, SA, Italy
| | - Luca Ricciardi
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, via S. Allende, 1, 84081, Baronissi, SA, Italy
| | - Giovanna Marchese
- Genomix4Life srl, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | | | - Teresa Rocco
- Genomix4Life srl, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Valerio Gigantino
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, via S. Allende, 1, 84081, Baronissi, SA, Italy
| | - Biancamaria Pierri
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, via S. Allende, 1, 84081, Baronissi, SA, Italy
| | - Giovanni Cimmino
- Department of Cardiothoracic and Respiratory Sciences, University of Campania'L. Vanvitelli', Naples, Italy
| | - Luciano Milanesi
- Institute of Biomedical Technologies, National Research Council, Segregate, MI, Italy
| | - Concetta Ambrosino
- Department of Science and Technology, University of Sannio, Benevento, Italy
- IRGS Biogem, Ariano Irpino, AV, Italy
| | - Tuula A Nyman
- Department of Immunology, Institute of Clinical Medicine, University of Oslo and Rikshospitalet Oslo, Oslo, Norway
| | - Giovanni Nassa
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, via S. Allende, 1, 84081, Baronissi, SA, Italy.
| | - Alessandro Weisz
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry "Schola Medica Salernitana", University of Salerno, via S. Allende, 1, 84081, Baronissi, SA, Italy.
| |
Collapse
|
107
|
Barrow TM, Klett H, Toth R, Böhm J, Gigic B, Habermann N, Scherer D, Schrotz-King P, Skender S, Abbenhardt-Martin C, Zielske L, Schneider M, Ulrich A, Schirmacher P, Herpel E, Brenner H, Busch H, Boerries M, Ulrich CM, Michels KB. Smoking is associated with hypermethylation of the APC 1A promoter in colorectal cancer: the ColoCare Study. J Pathol 2017; 243:366-375. [PMID: 28791728 DOI: 10.1002/path.4955] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 07/02/2017] [Accepted: 08/01/2017] [Indexed: 12/22/2022]
Abstract
Smoking tobacco is a known risk factor for the development of colorectal cancer and for mortality associated with the disease. Smoking has been reported to be associated with changes in DNA methylation in blood and in lung tumour tissues, although there has been scant investigation of how epigenetic factors may be implicated in the increased risk of developing colorectal cancer. To identify epigenetic changes associated with smoking behaviours, we performed epigenome-wide analysis of DNA methylation in colorectal tumours from 36 never-smokers, 47 former smokers, and 13 active smokers, and in adjacent mucosa from 49 never-smokers, 64 former smokers, and 18 active smokers. Our analyses identified 15 CpG sites within the APC 1A promoter that were significantly hypermethylated and 14 CpG loci within the NFATC1 gene body that were significantly hypomethylated (pLIS < 1 × 10-5 ) in the tumours of active smokers. The APC 1A promoter was hypermethylated in 7 of 36 tumours from never-smokers (19%), 12 of 47 tumours from former smokers (26%), and 8 of 13 tumours from active smokers (62%). Promoter hypermethylation was positively associated with duration of smoking (Spearman rank correlation, ρ = 0.26, p = 0.03) and was confined to tumours, with hypermethylation never being observed in adjacent mucosa. Further analysis of adjacent mucosa revealed significant hypomethylation of four loci associated with the TNXB gene in tissue from active smokers. Our findings provide exploratory evidence for hypermethylation of the key tumour suppressor gene APC being implicated in smoking-associated colorectal carcinogenesis. Further work is required to establish the validity of our observations in independent cohorts. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Timothy M Barrow
- German Cancer Consortium (DKTK), Heidelberg, Germany.,Institute for Prevention and Cancer Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hagen Klett
- German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Institute of Molecular Medicine and Cell Research, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Reka Toth
- German Cancer Consortium (DKTK), Heidelberg, Germany.,Division of Preventive Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jürgen Böhm
- German Cancer Consortium (DKTK), Heidelberg, Germany.,Division of Preventive Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Biljana Gigic
- German Cancer Consortium (DKTK), Heidelberg, Germany.,Division of Preventive Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Surgical Oncology, University Clinic Heidelberg, Heidelberg, Germany
| | - Nina Habermann
- German Cancer Consortium (DKTK), Heidelberg, Germany.,Division of Preventive Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dominique Scherer
- German Cancer Consortium (DKTK), Heidelberg, Germany.,Division of Preventive Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Institute of Medical Biometry and Informatics, University of Heidelberg, Heidelberg, Germany
| | - Petra Schrotz-King
- German Cancer Consortium (DKTK), Heidelberg, Germany.,Division of Preventive Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stephanie Skender
- German Cancer Consortium (DKTK), Heidelberg, Germany.,Division of Preventive Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Clare Abbenhardt-Martin
- German Cancer Consortium (DKTK), Heidelberg, Germany.,Division of Preventive Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lin Zielske
- German Cancer Consortium (DKTK), Heidelberg, Germany.,Division of Preventive Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martin Schneider
- Department of Surgical Oncology, University Clinic Heidelberg, Heidelberg, Germany
| | - Alexis Ulrich
- Department of Surgical Oncology, University Clinic Heidelberg, Heidelberg, Germany
| | - Peter Schirmacher
- German Cancer Consortium (DKTK), Heidelberg, Germany.,Department of General Pathology, University Clinic Heidelberg, Heidelberg, Germany
| | - Esther Herpel
- German Cancer Consortium (DKTK), Heidelberg, Germany.,Department of General Pathology, University Clinic Heidelberg, Heidelberg, Germany
| | - Hermann Brenner
- German Cancer Consortium (DKTK), Heidelberg, Germany.,Division of Preventive Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hauke Busch
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany.,Lübeck Institute of Experimental Dermatology and Institute of Cardiogenetics, University of Lübeck, Lübeck, Germany
| | - Melanie Boerries
- German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany.,Institute of Molecular Medicine and Cell Research, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Cornelia M Ulrich
- German Cancer Consortium (DKTK), Heidelberg, Germany.,Division of Preventive Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Population Sciences, Huntsman Cancer Institute, Salt Lake City, Utah, USA
| | - Karin B Michels
- German Cancer Consortium (DKTK), Heidelberg, Germany.,Institute for Prevention and Cancer Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany.,Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, California, USA
| |
Collapse
|
108
|
Yu H, Zheng J, Liu X, Xue Y, Shen S, Zhao L, Li Z, Liu Y. Transcription Factor NFAT5 Promotes Glioblastoma Cell-driven Angiogenesis via SBF2-AS1/miR-338-3p-Mediated EGFL7 Expression Change. Front Mol Neurosci 2017; 10:301. [PMID: 28983240 PMCID: PMC5613209 DOI: 10.3389/fnmol.2017.00301] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 09/06/2017] [Indexed: 01/01/2023] Open
Abstract
Glioblastoma (GBM) is the most aggressive primary intracranial tumor of adults and confers a poor prognosis due to high vascularization. Hence anti-angiogenic therapy has become a promising strategy for GBM treatment. In this study, the transcription factor nuclear factor of activated T-cells 5 (NFAT5) was significantly elevated in glioma samples and GBM cell lines, and positively correlated with glioma WHO grades. Knockdown of NFAT5 inhibited GBM cell-driven angiogenesis. Furthermore, long non-coding RNA SBF2 antisense RNA 1 (SBF2-AS1) was upregulated in glioma samples and knockdown of SBF2-AS1 impaired GBM-induced angiogenesis. Downregulation of NFAT5 decreased SBF2-AS1 expression at transcriptional level. In addition, knockdown of SBF2-AS1 repressed GBM cell-driven angiogenesis via enhancing the inhibitory effect of miR-338-3p on EGF like domain multiple 7 (EGFL7). In vivo study demonstrated that the combination of NFAT5 knockdown and SBF2-AS1 knockdown produced the smallest xenograft volume and the lowest microvessel density. NFAT5/SBF2-AS1/miR-338-3p/EGFL7 pathway may provide novel targets for glioma anti-angiogenic treatment.
Collapse
Affiliation(s)
- Hai Yu
- Department of Neurosurgery, Shengjing Hospital of China Medical UniversityShenyang, China.,Liaoning Research Center for Clinical Medicine in Nervous System DiseaseShenyang, China.,Key laboratory of Neuro-oncology in Liaoning ProvinceShenyang, China
| | - Jian Zheng
- Department of Neurosurgery, Shengjing Hospital of China Medical UniversityShenyang, China.,Liaoning Research Center for Clinical Medicine in Nervous System DiseaseShenyang, China.,Key laboratory of Neuro-oncology in Liaoning ProvinceShenyang, China
| | - Xiaobai Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical UniversityShenyang, China.,Liaoning Research Center for Clinical Medicine in Nervous System DiseaseShenyang, China.,Key laboratory of Neuro-oncology in Liaoning ProvinceShenyang, China
| | - Yixue Xue
- Department of Neurobiology, College of Basic Medicine, China Medical UniversityShenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of ChinaShenyang, China
| | - Shuyuan Shen
- Department of Neurobiology, College of Basic Medicine, China Medical UniversityShenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of ChinaShenyang, China
| | - Lini Zhao
- Department of Neurobiology, College of Basic Medicine, China Medical UniversityShenyang, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of ChinaShenyang, China
| | - Zhen Li
- Department of Neurosurgery, Shengjing Hospital of China Medical UniversityShenyang, China.,Liaoning Research Center for Clinical Medicine in Nervous System DiseaseShenyang, China.,Key laboratory of Neuro-oncology in Liaoning ProvinceShenyang, China
| | - Yunhui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical UniversityShenyang, China.,Liaoning Research Center for Clinical Medicine in Nervous System DiseaseShenyang, China.,Key laboratory of Neuro-oncology in Liaoning ProvinceShenyang, China
| |
Collapse
|
109
|
Jin H, Wang C, Jin G, Ruan H, Gu D, Wei L, Wang H, Wang N, Arunachalam E, Zhang Y, Deng X, Yang C, Xiong Y, Feng H, Yao M, Fang J, Gu J, Cong W, Qin W. Regulator of Calcineurin 1 Gene Isoform 4, Down-regulated in Hepatocellular Carcinoma, Prevents Proliferation, Migration, and Invasive Activity of Cancer Cells and Metastasis of Orthotopic Tumors by Inhibiting Nuclear Translocation of NFAT1. Gastroenterology 2017; 153:799-811.e33. [PMID: 28583823 DOI: 10.1053/j.gastro.2017.05.045] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 05/27/2017] [Accepted: 05/27/2017] [Indexed: 01/09/2023]
Abstract
BACKGROUND & AIMS Individuals with Down syndrome have a low risk for many solid tumors, prompting the search for tumor suppressor genes on human chromosome 21 (HSA21). We aimed to identify and explore potential mechanisms of tumor suppressors on HSA21 in hepatocellular carcinoma (HCC). METHODS We compared expression of HSA21 genes in 14 pairs of primary HCC and adjacent noncancer liver tissues using the Affymetrix HG-U133 Plus 2.0 array (Affymetrix, Santa Clara, CA). HCC tissues and adjacent normal liver tissues were collected from 108 patients at a hospital in China for real-time polymerase chain reaction and immunohistochemical analyses; expression levels of regulator of calcineurin 1 (RCAN1) isoform 4 (RCAN1.4) were associated with clinical features. We overexpressed RCAN1.4 from lentiviral vectors in MHCC97H and HCCLM3 cells and knocked expression down using small interfering RNAs in SMMC7721 and Huh7 cells. Cells were analyzed in proliferation, migration, and invasion assays. HCC cells that overexpressed RCAN1.4 or with RCAN1.4 knockdown were injected into livers or tail veins of nude mice; tumor growth and numbers of lung metastases were quantified. We performed bisulfite pyrosequencing and methylation-specific polymerase chain reaction analyses to analyze CpG island methylation. We measured phosphatase activity of calcineurin in HCC cells. RESULTS RCAN1.4 mRNA and protein levels were significantly decreased in primary HCC compared with adjacent noncancer liver tissues. Reduced levels of RCAN1.4 mRNA were significantly associated with advanced tumor stages, poor differentiation, larger tumor size, and vascular invasion. Kaplan-Meier survival analysis showed that patients with HCCs with lower levels of RCAN1.4 mRNA had shorter time of overall survival and time to recurrence than patients whose tumors had high levels of RCAN1.4 mRNA. In HCC cell lines, expression of RCAN1.4 significantly reduced proliferation, migration, and invasive activity. HCC cells that overexpressed RCAN1.4 formed smaller xenograft tumors, with fewer metastases and blood vessels, than control HCC cells. In HCC cells, RCAN1.4 inhibited expression of insulin-like growth factor 1 and vascular endothelial growth factor A by reducing calcineurin activity and blocking nuclear translocation of nuclear factor of activated T cells (NFAT1). HCC cells incubated with the calcineurin inhibitor cyclosporin A had decreased nuclear level of NFAT1. HCC cells had hypermethylation of a CpG island in the 5' regulatory region of RCAN1.4, which reduced its expression. CONCLUSIONS RCAN1.4 is down-regulated in HCC tissues, compared with non-tumor liver tissues. RCAN1.4 prevents cell proliferation, migration, and invasion in vitro; overexpressed RCAN1.4 in HCC cells prevents growth, angiogenesis, and metastases of xenograft tumors by inhibiting calcineurin activity and nuclear translocation of NFAT1.
Collapse
Affiliation(s)
- Haojie Jin
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cun Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guangzhi Jin
- Department of Pathology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Haoyu Ruan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dishui Gu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Pathophysiology, School of Basic Medical Sciences, Guangdong Medical University, Dongguan, Guangdong, China
| | - Lin Wei
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ning Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Einthavy Arunachalam
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; The School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surry, UK
| | - Yurong Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuan Deng
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chen Yang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Xiong
- State Key Laboratory of Microbial Metabolism and College of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hugang Feng
- Department of Life Science, Imperial College, London, UK
| | - Ming Yao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingyuan Fang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianren Gu
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenming Cong
- Department of Pathology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China.
| | - Wenxin Qin
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
110
|
Qin JJ, Wang W, Zhang R. Experimental Therapy of Advanced Breast Cancer: Targeting NFAT1-MDM2-p53 Pathway. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 151:195-216. [PMID: 29096894 PMCID: PMC6663080 DOI: 10.1016/bs.pmbts.2017.07.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Advanced breast cancer, especially advanced triple-negative breast cancer, is typically more aggressive and more difficult to treat than other breast cancer phenotypes. There is currently no curable option for breast cancer patients with advanced diseases, highlighting the urgent need for novel treatment strategies. We have recently discovered that the nuclear factor of activated T cells 1 (NFAT1) activates the murine double minute 2 (MDM2) oncogene. Both MDM2 and NFAT1 are overexpressed and constitutively activated in breast cancer, particularly in advanced breast cancer, and contribute to its initiation, progression, and metastasis. MDM2 regulates cancer cell proliferation, cell cycle progression, apoptosis, migration, and invasion through both p53-dependent and -independent mechanisms. We have proposed to target the NFAT1-MDM2-p53 pathway for the treatment of human cancers, especially breast cancer. We have recently identified NFAT1 and MDM2 dual inhibitors that have shown excellent in vitro and in vivo activities against breast cancer, including triple-negative breast cancer. Herein, we summarize recent advances made in the understanding of the oncogenic functions of MDM2 and NFAT1 in breast cancer, as well as current targeting strategies and representative inhibitors. We also propose several strategies for inhibiting the NFAT1-MDM2-p53 pathway, which could be useful for developing more specific and effective inhibitors for breast cancer therapy.
Collapse
Affiliation(s)
- Jiang-Jiang Qin
- University of Houston, Houston, TX, United States; Texas Tech University Health Sciences Center, Amarillo, TX, United States
| | - Wei Wang
- University of Houston, Houston, TX, United States; Texas Tech University Health Sciences Center, Amarillo, TX, United States
| | - Ruiwen Zhang
- University of Houston, Houston, TX, United States; Texas Tech University Health Sciences Center, Amarillo, TX, United States.
| |
Collapse
|
111
|
Zafari V, Hashemzadeh S, Hosseinpour Feizi M, Pouladi N, Rostami Zadeh L, Sakhinia E. mRNA expression of nuclear factor of activated T-cells, cytoplasmic 2 (NFATc2) and peroxisome proliferator-activated receptor gamma (PPARG) transcription factors in colorectal carcinoma. Bosn J Basic Med Sci 2017; 17:255-261. [PMID: 28504924 DOI: 10.17305/bjbms.2017.1886] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 03/17/2017] [Accepted: 02/24/2017] [Indexed: 02/06/2023] Open
Abstract
Transcription factors are involved in cell cycle and apoptosis regulation and thus have a key role in the carcinogenesis of different tumors. Nuclear factor of activated T-cells, cytoplasmic 2 (NFATc2) and peroxisome proliferator-activated receptor gamma (PPARG) transcription factors are important in the carcinogenesis of colorectal cancer (CRC). In this study, we examined whether the expression of NFATc2 and PPARG genes is significantly altered during the carcinogenesis of CRC. A total of 47 tumor samples and matched normal tissue margins were collected during surgery from patients with CRC. In addition, three CRC cell lines (HCT119, SW480, and HT29) and healthy cell line were used. After total RNA extraction and cDNA synthesis, mRNA expression levels of NFATc2 and PPARG were examined by real-time polymerase chain reaction. The results showed that NFATc2 is overexpressed in the tumor tissues compared with normal tissue margins (p ≤ 0.05). However, the mRNA expression levels of PPARG were not significantly different between the tumor tissues and tissue margins. Our results indicate that NFATc2 may be used as an early diagnostic or predictive biomarker for CRC as well as a therapeutic target, providing that upcoming studies confirm these results.
Collapse
Affiliation(s)
- Venus Zafari
- Department of Biochemistry and Clinical Laboratories, Division of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Tuberculosis and Lung Disease Research Center of Tabriz University of Medical Sciences, Tabriz, Iran.
| | | | | | | | | | | |
Collapse
|
112
|
Carpenter BL, Liu J, Qi L, Wang C, O'Connor KL. Integrin α6β4 Upregulates Amphiregulin and Epiregulin through Base Excision Repair-Mediated DNA Demethylation and Promotes Genome-wide DNA Hypomethylation. Sci Rep 2017; 7:6174. [PMID: 28733611 PMCID: PMC5522472 DOI: 10.1038/s41598-017-06351-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 06/13/2017] [Indexed: 02/05/2023] Open
Abstract
Aberrant DNA methylation patterns are a common theme across all cancer types. Specific DNA demethylation of regulatory sequences can result in upregulation of genes that are critical for tumor development and progression. Integrin α6β4 is highly expressed in pancreatic carcinoma and contributes to cancer progression, in part, through the specific DNA demethylation and upregulation of epidermal growth factor receptor (EGFR) ligands amphiregulin (AREG) and epiregulin (EREG). Whole genome bisulfite sequencing (WGBS) revealed that integrin α6β4 signaling promotes an overall hypomethylated state and site specific DNA demethylation of enhancer elements within the proximal promoters of AREG and EREG. Additionally, we find that the base excision repair (BER) pathway is required to maintain expression of AREG and EREG, as blocking DNA repair molecules, TET1 GADD45A, TDG, or PARP-1 decreased gene expression. Likewise, we provide the novel finding that integrin α6β4 confers an enhanced ability on cells to repair DNA lesions and survive insult. Therefore, while many known signaling functions mediated by integrin α6β4 that promote invasive properties have been established, this study demonstrates that integrin α6β4 can dramatically impact the epigenome of cancer cells, direct global DNA methylation levels toward a hypomethylated state, and impact DNA repair and subsequent cell survival.
Collapse
Affiliation(s)
- Brittany L Carpenter
- Markey Cancer Center, University of Kentucky, Lexington, 40506-0509, USA.,Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, 40506-0509, USA
| | - Jinpeng Liu
- Markey Cancer Center, University of Kentucky, Lexington, 40506-0509, USA
| | - Lei Qi
- Markey Cancer Center, University of Kentucky, Lexington, 40506-0509, USA.,Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, 40506-0509, USA
| | - Chi Wang
- Markey Cancer Center, University of Kentucky, Lexington, 40506-0509, USA.,Department of Biostatistics, Division of Cancer Biostatistics, University of Kentucky, Lexington, 40506-0509, USA
| | - Kathleen L O'Connor
- Markey Cancer Center, University of Kentucky, Lexington, 40506-0509, USA. .,Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, 40506-0509, USA.
| |
Collapse
|
113
|
Sato E, Zhang LJ, Dorschner RA, Adase CA, Choudhury BP, Gallo RL. Activation of Parathyroid Hormone 2 Receptor Induces Decorin Expression and Promotes Wound Repair. J Invest Dermatol 2017; 137:1774-1783. [PMID: 28454729 DOI: 10.1016/j.jid.2017.03.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 03/25/2017] [Accepted: 03/27/2017] [Indexed: 01/05/2023]
Abstract
In this study, we report that TIP39, a parathyroid hormone ligand family member that was recently identified to be expressed in the skin, can induce decorin expression and enhance wound repair. Topical treatment of mice with TIP39 accelerated wound repair, whereas TIP39-deficient mice had delayed repair that was associated with formation of abnormal collagen bundles. To study the potential mechanism responsible for the action of TIP39 in the dermis, fibroblasts were cultured in three-dimensional collagen gels, a process that results in enhanced decorin expression unless activated to differentiate to adipocytes, whereupon these cells reduce expression of several proteoglycans, including decorin. Small interfering RNA-mediated silencing of parathyroid hormone 2 receptor (PTH2R), the receptor for TIP39, suppressed the expression of extracellular matrix-related genes, including decorin, collagens, fibronectin, and matrix metalloproteases. Skin wounds in TIP39-/- mice had decreased decorin expression, and addition of TIP39 to cultured fibroblasts induced decorin and increased phosphorylation and nuclear translocation of CREB. Fibroblasts differentiated to adipocytes and treated with TIP39 also showed increased decorin and production of chondroitin sulfate. Furthermore, the skin of PTH2R-/- mice showed abnormal extracellular matrix structure, decreased decorin expression, and skin hardness. Thus, the TIP39-PTH2R system appears to be a previously unrecognized mechanism for regulation of extracellular matrix formation and wound repair.
Collapse
Affiliation(s)
- Emi Sato
- Department of Dermatology, University of California-San Diego, La Jolla, California, USA
| | - Ling-Juan Zhang
- Department of Dermatology, University of California-San Diego, La Jolla, California, USA
| | - Robert A Dorschner
- Department of Dermatology, University of California-San Diego, La Jolla, California, USA
| | - Christopher A Adase
- Department of Dermatology, University of California-San Diego, La Jolla, California, USA
| | - Biswa P Choudhury
- Glycotechnology Core Resource, University of California-San Diego, La Jolla, California, USA
| | - Richard L Gallo
- Department of Dermatology, University of California-San Diego, La Jolla, California, USA.
| |
Collapse
|
114
|
Fortes MRS, Nguyen LT, Weller MMDCA, Cánovas A, Islas-Trejo A, Porto-Neto LR, Reverter A, Lehnert SA, Boe-Hansen GB, Thomas MG, Medrano JF, Moore SS. Transcriptome analyses identify five transcription factors differentially expressed in the hypothalamus of post- versus prepubertal Brahman heifers. J Anim Sci 2017; 94:3693-3702. [PMID: 27898892 DOI: 10.2527/jas.2016-0471] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Puberty onset is a developmental process influenced by genetic determinants, environment, and nutrition. Mutations and regulatory gene networks constitute the molecular basis for the genetic determinants of puberty onset. The emerging knowledge of these genetic determinants presents opportunities for innovation in the breeding of early pubertal cattle. This paper presents new data on hypothalamic gene expression related to puberty in (Brahman) in age- and weight-matched heifers. Six postpubertal heifers were compared with 6 prepubertal heifers using whole-genome RNA sequencing methodology for quantification of global gene expression in the hypothalamus. Five transcription factors (TF) with potential regulatory roles in the hypothalamus were identified in this experiment: , , , , and . These TF genes were significantly differentially expressed in the hypothalamus of postpubertal versus prepubertal heifers and were also identified as significant according to the applied regulatory impact factor metric ( < 0.05). Two of these 5 TF, and , were zinc fingers, belonging to a gene family previously reported to have a central regulatory role in mammalian puberty. The gene belongs to the family of homologues of Drosophila sine oculis () genes implicated in transcriptional regulation of gonadotrope gene expression. Tumor-related genes such as and are known to affect basic cellular processes that are relevant in both cancer and developmental processes. Mutations in were associated with puberty in humans. Mutations in these TF, together with other genetic determinants previously discovered, could be used in genomic selection to predict the genetic merit of cattle (i.e., the likelihood of the offspring presenting earlier than average puberty for Brahman). Knowledge of key mutations involved in genetic traits is an advantage for genomic prediction because it can increase its accuracy.
Collapse
|
115
|
Han EJ, Kim HY, Lee N, Kim NH, Yoo SA, Kwon HM, Jue DM, Park YJ, Cho CS, De TQ, Jeong DY, Lim HJ, Park WK, Lee GH, Cho H, Kim WU. Suppression of NFAT5-mediated Inflammation and Chronic Arthritis by Novel κB-binding Inhibitors. EBioMedicine 2017; 18:261-273. [PMID: 28396011 PMCID: PMC5405180 DOI: 10.1016/j.ebiom.2017.03.039] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/17/2017] [Accepted: 03/27/2017] [Indexed: 01/28/2023] Open
Abstract
Nuclear factor of activated T cells 5 (NFAT5) has been implicated in the pathogenesis of various human diseases, including cancer and arthritis. However, therapeutic agents inhibiting NFAT5 activity are currently unavailable. To discover NFAT5 inhibitors, a library of > 40,000 chemicals was screened for the suppression of nitric oxide, a direct target regulated by NFAT5 activity, through high-throughput screening. We validated the anti-NFAT5 activity of 198 primary hit compounds using an NFAT5-dependent reporter assay and identified the novel NFAT5 suppressor KRN2, 13-(2-fluoro)-benzylberberine, and its derivative KRN5. KRN2 inhibited NFAT5 upregulation in macrophages stimulated with lipopolysaccharide and repressed the formation of NF-κB p65-DNA complexes in the NFAT5 promoter region. Interestingly, KRN2 selectively suppressed the expression of pro-inflammatory genes, including Nos2 and Il6, without hampering high-salt-induced NFAT5 and its target gene expressions. Moreover, KRN2 and KRN5, the latter of which exhibits high oral bioavailability and metabolic stability, ameliorated experimentally induced arthritis in mice without serious adverse effects, decreasing pro-inflammatory cytokine production. Particularly, orally administered KRN5 was stronger in suppressing arthritis than methotrexate, a commonly used anti-rheumatic drug, displaying better potency and safety than its original compound, berberine. Therefore, KRN2 and KRN5 can be potential therapeutic agents in the treatment of chronic arthritis. We identify a novel NFAT5 suppressor KRN2, 13-(2-fluoro)-benzylberberine, and its derivative KRN5 to inhibit NFAT5 activity. KRN2 inhibits the transcriptional activation of NFAT5 and the pro-inflammatory responses. KRN2 and KRN5 suppress experimentally induced arthritis in mice.
NFAT5 has been implicated in the pathogenesis of arthritis. However, therapeutic agents specifically inhibiting NFAT5 activity are currently unavailable. To discover NFAT5 inhibitors, a library of > 40,000 chemicals was screened, leading to the discovery of novel berberine-based NFAT5 suppressors, KRN2 and its oral derivative KRN5. KRN2 inhibited the transcriptional activation of NFAT5 by blocking NF-κB binding to the NFAT5 promoter region, thereby reducing the expression of pro-inflammatory genes. Moreover, KRN2 and KRN5 ameliorated experimentally induced arthritis in mice without serious adverse effects. Therefore, we propose that KRN2 and KRN5 may be potential therapeutic agents in the treatment of chronic arthritis.
Collapse
Affiliation(s)
- Eun-Jin Han
- Center for Integrative Rheumatoid Transcriptomics and Dynamics, The Catholic University of Korea, Seoul, Republic of Korea
| | - Hyun Young Kim
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Naeun Lee
- Center for Integrative Rheumatoid Transcriptomics and Dynamics, The Catholic University of Korea, Seoul, Republic of Korea
| | - Nam-Hoon Kim
- Center for Integrative Rheumatoid Transcriptomics and Dynamics, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seung-Ah Yoo
- Center for Integrative Rheumatoid Transcriptomics and Dynamics, The Catholic University of Korea, Seoul, Republic of Korea
| | - H Moo Kwon
- School of Nano-Bioscience and Chemical Engineering, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Dae-Myung Jue
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yune-Jung Park
- Center for Integrative Rheumatoid Transcriptomics and Dynamics, The Catholic University of Korea, Seoul, Republic of Korea; Division of Rheumatology, Department of Internal Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chul-Soo Cho
- Center for Integrative Rheumatoid Transcriptomics and Dynamics, The Catholic University of Korea, Seoul, Republic of Korea; Division of Rheumatology, Department of Internal Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Tran Quang De
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea; Medicinal Chemistry and Pharmacology, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Dae Young Jeong
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Hee-Jong Lim
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea; Medicinal Chemistry and Pharmacology, Korea University of Science and Technology, Daejeon, Republic of Korea
| | - Woo Kyu Park
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Ge Hyeong Lee
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Heeyeong Cho
- Bio & Drug Discovery Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea; Medicinal Chemistry and Pharmacology, Korea University of Science and Technology, Daejeon, Republic of Korea.
| | - Wan-Uk Kim
- Center for Integrative Rheumatoid Transcriptomics and Dynamics, The Catholic University of Korea, Seoul, Republic of Korea; Division of Rheumatology, Department of Internal Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
116
|
Li XL, Liu L, Li DD, He YP, Guo LH, Sun LP, Liu LN, Xu HX, Zhang XP. Integrin β4 promotes cell invasion and epithelial-mesenchymal transition through the modulation of Slug expression in hepatocellular carcinoma. Sci Rep 2017; 7:40464. [PMID: 28084395 PMCID: PMC5233967 DOI: 10.1038/srep40464] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 12/06/2016] [Indexed: 02/08/2023] Open
Abstract
Integrin β4 (ITGB4) is a transmembrane receptor involved in tumorigenesis and the invasiveness of many cancers. However, its role in hepatocellular carcinoma (HCC), one of the most prevalent human cancers worldwide, remains unclear. Here, we examined the involvement of ITGB4 in HCC and explored the underlying mechanisms. Real-time PCR and immunohistochemical analyses of tissues from 82 patients with HCC and four HCC cell lines showed higher ITGB4 levels in tumor than in adjacent non-tumor tissues and in HCC than in normal hepatic cells. Silencing of ITGB4 repressed cell proliferation, colony forming ability and cell invasiveness, whereas ectopic expression of ITGB4 promoted the proliferation and invasion of HCC cells and induced epithelial to mesenchymal transition (EMT) in parallel with the upregulation of Slug, as shown by transwell assays, WB and immunocytochemistry. Knockdown of Slug reduced cell viability inhibited invasion and reversed the effects of ITBG4 overexpression on promoting EMT, and AKT/Sox2-Nanog may also be involved. In a xenograft tumor model induced by injection of ITGB4-overexpressing cells into nude mice, ITGB4 promoted tumor growth and metastasis to the lungs. Taken together, our results indicate that ITGB4 plays a tumorigenic and pro-metastatic role mediated by Slug and suggest IGTB4 could be a prognostic indicator or a therapeutic target in patients with HCC.
Collapse
Affiliation(s)
- Xiao-Long Li
- Department of Medical Ultrasound, Shanghai Tenth People’s Hospital, Ultrasound Research and Educational Institute, Tongji University School of Medicine, Shanghai 200072, China
| | - Lin Liu
- Department of Interventional & Vascular Surgery, Tongji University School of Medicine, Shanghai 200072, China
| | - Dan-Dan Li
- Department of Medical Ultrasound, Shanghai Tenth People’s Hospital, Ultrasound Research and Educational Institute, Tongji University School of Medicine, Shanghai 200072, China
| | - Ya-Ping He
- Department of Medical Ultrasound, Shanghai Tenth People’s Hospital, Ultrasound Research and Educational Institute, Tongji University School of Medicine, Shanghai 200072, China
| | - Le-Hang Guo
- Department of Medical Ultrasound, Shanghai Tenth People’s Hospital, Ultrasound Research and Educational Institute, Tongji University School of Medicine, Shanghai 200072, China
| | - Li-Ping Sun
- Department of Medical Ultrasound, Shanghai Tenth People’s Hospital, Ultrasound Research and Educational Institute, Tongji University School of Medicine, Shanghai 200072, China
| | - Lin-Na Liu
- Department of Medical Ultrasound, Shanghai Tenth People’s Hospital, Ultrasound Research and Educational Institute, Tongji University School of Medicine, Shanghai 200072, China
| | - Hui-Xiong Xu
- Department of Medical Ultrasound, Shanghai Tenth People’s Hospital, Ultrasound Research and Educational Institute, Tongji University School of Medicine, Shanghai 200072, China,
| | - Xiao-Ping Zhang
- Department of Interventional & Vascular Surgery, Tongji University School of Medicine, Shanghai 200072, China,
| |
Collapse
|
117
|
The opposing roles of laminin-binding integrins in cancer. Matrix Biol 2017; 57-58:213-243. [DOI: 10.1016/j.matbio.2016.08.007] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 08/02/2016] [Accepted: 08/17/2016] [Indexed: 02/06/2023]
|
118
|
Oskay Halacli S. FOXP1 enhances tumor cell migration by repression of NFAT1 transcriptional activity in MDA-MB-231 cells. Cell Biol Int 2016; 41:102-110. [PMID: 27859969 DOI: 10.1002/cbin.10702] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 11/06/2016] [Indexed: 01/01/2023]
Abstract
Until now, forkhead box P1 (FOXP1) has been identified as a tumor suppressor in several correlation studies in breast cancer. Although FOXP1 is defined as a transcriptional repressor that interacts with other transcription factors in various mechanistic studies, there is no study that explains its repressor functions in breast cancer biology. This study demonstrated the repressor function of FOXP1 on nuclear factor of activated T cells (NFAT1) and the migratory effect of this repression in MDA-MB-231 breast cancer cells. Co-immunoprecipitation experiments were performed for the investigation of protein-protein interaction between two transcription factors. Protein-protein interaction on DNA was investigated with EMSA and transcriptional effects of FOXP1 on NFAT1, luciferase reporter assay was performed. Wound healing assay was used to analyze the effects of overexpression of FOXP1 on tumor cell migration. This study showed that FOXP1 has protein-protein interaction with NFAT1 on DNA and enhances breast cancer cell migration by repressing NFAT1 transcriptional activity and FOXP1 shows oncogenic function by regulating breast cancer cell motility.
Collapse
Affiliation(s)
- Sevil Oskay Halacli
- Department of Pediatric Immunology, Institute of Child Health, Hacettepe University, Sihhiye, 06100, Ankara, Turkey
| |
Collapse
|
119
|
Dumond JF, Zhang X, Izumi Y, Ramkissoon K, Wang G, Gucek M, Wang X, Burg MB, Ferraris JD. Peptide affinity analysis of proteins that bind to an unstructured region containing the transactivating domain of the osmoprotective transcription factor NFAT5. Physiol Genomics 2016; 48:835-849. [PMID: 27764768 DOI: 10.1152/physiolgenomics.00100.2016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 10/03/2016] [Indexed: 11/22/2022] Open
Abstract
NFAT5 is a transcription factor originally identified because it is activated by hypertonicity and that activation increases expression of genes that protect against the adverse effects of the hypertonicity. However, its targets also include genes not obviously related to tonicity. The transactivating domain of NFAT5 is contained in its COOH-terminal region, which is predicted to be unstructured. Unstructured regions are common in transcription factors particularly in transactivating domains where they can bind co-regulatory proteins essential to their function. To identify potential binding partners of NFAT5 from either cytoplasmic or nuclear HEK293 cell extracts, we used peptide affinity chromatography followed by mass spectrometry. Peptide aptamer-baits consisted of overlapping 20 amino acid peptides within the predicted COOH-terminal unstructured region of NFAT5. We identify a total of 351 unique protein preys that associate with at least one COOH-terminal peptide bait from NFAT5 in either cytoplasmic or nuclear extracts from cells incubated at various tonicities (NaCl varied). In addition to finding many proteins already known to associate with NFAT5, we found many new ones whose function suggest novel aspects of NFAT5 regulation, interaction, and function. Relatively few of the proteins pulled down by peptide baits from NFAT5 are generally involved in transcription, and most, therefore, are likely to be specifically related to the regulation of NFAT5 or its function. The novel associated proteins are involved with cancer, effects of hypertonicity on chromatin, development, splicing of mRNA, transcription, and vesicle trafficking.
Collapse
Affiliation(s)
- Jenna F Dumond
- Systems Biology Center, Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda, Maryland; and
| | - Xue Zhang
- Systems Biology Center, Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda, Maryland; and
| | - Yuichiro Izumi
- Systems Biology Center, Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda, Maryland; and.,Department of Nephrology, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Kevin Ramkissoon
- Systems Biology Center, Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda, Maryland; and
| | - Guanghui Wang
- Systems Biology Center, Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda, Maryland; and
| | - Marjan Gucek
- Systems Biology Center, Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda, Maryland; and
| | - Xujing Wang
- Systems Biology Center, Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda, Maryland; and
| | - Maurice B Burg
- Systems Biology Center, Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda, Maryland; and
| | - Joan D Ferraris
- Systems Biology Center, Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda, Maryland; and
| |
Collapse
|
120
|
Küper C, Beck FX, Neuhofer W. Autocrine MCP-1/CCR2 signaling stimulates proliferation and migration of renal carcinoma cells. Oncol Lett 2016; 12:2201-2209. [PMID: 27602164 DOI: 10.3892/ol.2016.4875] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 05/13/2016] [Indexed: 12/31/2022] Open
Abstract
The chemokine monocyte chemoattractant protein-1 [MCP-1; also known as chemokine (C-C motif) ligand 2] is an important mediator of monocyte recruitment during inflammatory processes. Pathologically high expression levels of MCP-1 by tumor cells have been observed in a variety of cancer types. In the majority of cases, high MCP-1 expression is associated with a poor prognosis, as infiltration of the tumor with inflammatory monocytes promotes tumor progression and metastasis. MCP-1 is also expressed in renal cell carcinoma (RCC). In the present study, the function and the regulation of MCP-1 was investigated in two RCC cell lines, CaKi-1 and 786-O. In both cell lines, expression of MCP-1 was significantly enhanced compared with non-cancerous control cells. As expected, secretion of MCP-1 into the medium facilitated the recruitment of peripheral blood monocytes via the chemokine (C-C motif) receptor type 2 (CCR2). As expression of CCR2 was also detected in 786-O and CaKi-1 cells, the effect of autocrine MCP-1/CCR2 signaling was evaluated in these cells. In proliferation assays, administration of an MCP-1 neutralizing antibody or of a CCR2 antagonist to CaKi-1 and 786-O cells significantly decreased cell growth; supplementation of the growth medium with recombinant human MCP-1 had no additional effect on proliferation. The migration ability of RCC cells was impaired by MCP-1 neutralization or pharmacological CCR2 inhibition, while it was stimulated by the addition of recombinant human MCP-1, compared with untreated control cells. Finally, substantial differences in the regulation of MCP-1 expression were observed between RCC cell lines. In CaKi-1 cells, expression of MCP-1 appears to be largely mediated by the transcription factor nuclear factor of activated T cells 5, while in 786-O cells, deletion of the tumor suppressor gene Von-Hippel-Lindau appeared to be responsible for MCP-1 upregulation, as suggested by previous studies. Taken together, the results of the current study indicate that expression of MCP-1 in RCC cells promotes tumor progression and metastasis not only by paracrine, but also by autocrine, MCP-1/CCR2 signaling events, enhancing cell proliferation and migration ability. Therefore, the present findings suggest the MCP-1/CCR2 axis is a potential target for future therapeutic strategies in the treatment of metastatic RCC.
Collapse
Affiliation(s)
- Christoph Küper
- Department of Physiology, University of Munich, D-80336 Munich, Germany
| | - Franz-Xaver Beck
- Department of Physiology, University of Munich, D-80336 Munich, Germany
| | - Wolfgang Neuhofer
- Division of Nephrology and Rheumatology, Clinical Center Traunstein, D-83278 Traunstein, Germany
| |
Collapse
|
121
|
Teixeira LK, Carrossini N, Sécca C, Kroll JE, DaCunha DC, Faget DV, Carvalho LDS, de Souza SJ, Viola JPB. NFAT1 transcription factor regulates cell cycle progression and cyclin E expression in B lymphocytes. Cell Cycle 2016; 15:2346-59. [PMID: 27399331 DOI: 10.1080/15384101.2016.1203485] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The NFAT family of transcription factors has been primarily related to T cell development, activation, and differentiation. Further studies have shown that these ubiquitous proteins are observed in many cell types inside and outside the immune system, and are involved in several biological processes, including tumor growth, angiogenesis, and invasiveness. However, the specific role of the NFAT1 family member in naive B cell proliferation remains elusive. Here, we demonstrate that NFAT1 transcription factor controls Cyclin E expression, cell proliferation, and tumor growth in vivo. Specifically, we show that inducible expression of NFAT1 inhibits cell cycle progression, reduces colony formation, and controls tumor growth in nude mice. We also demonstrate that NFAT1-deficient naive B lymphocytes show a hyperproliferative phenotype and high levels of Cyclin E1 and E2 upon BCR stimulation when compared to wild-type B lymphocytes. NFAT1 transcription factor directly regulates Cyclin E expression in B cells, inhibiting the G1/S cell cycle phase transition. Bioinformatics analysis indicates that low levels of NFAT1 correlate with high expression of Cyclin E1 in different human cancers, including Diffuse Large B-cell Lymphomas (DLBCL). Together, our results demonstrate a repressor role for NFAT1 in cell cycle progression and Cyclin E expression in B lymphocytes, and suggest a potential function for NFAT1 protein in B cell malignancies.
Collapse
Affiliation(s)
- Leonardo K Teixeira
- a Program of Cellular Biology , Brazilian National Cancer Institute (INCA) , Rio de Janeiro , Brazil
| | - Nina Carrossini
- a Program of Cellular Biology , Brazilian National Cancer Institute (INCA) , Rio de Janeiro , Brazil
| | - Cristiane Sécca
- a Program of Cellular Biology , Brazilian National Cancer Institute (INCA) , Rio de Janeiro , Brazil
| | - José E Kroll
- b Brain Institute, Federal University of Rio Grande do Norte (UFRN) , Natal , Brazil
| | - Déborah C DaCunha
- a Program of Cellular Biology , Brazilian National Cancer Institute (INCA) , Rio de Janeiro , Brazil
| | - Douglas V Faget
- a Program of Cellular Biology , Brazilian National Cancer Institute (INCA) , Rio de Janeiro , Brazil
| | - Lilian D S Carvalho
- a Program of Cellular Biology , Brazilian National Cancer Institute (INCA) , Rio de Janeiro , Brazil
| | - Sandro J de Souza
- b Brain Institute, Federal University of Rio Grande do Norte (UFRN) , Natal , Brazil
| | - João P B Viola
- a Program of Cellular Biology , Brazilian National Cancer Institute (INCA) , Rio de Janeiro , Brazil
| |
Collapse
|
122
|
Zhao X, Wang Q, Yang S, Chen C, Li X, Liu J, Zou Z, Cai D. Quercetin inhibits angiogenesis by targeting calcineurin in the xenograft model of human breast cancer. Eur J Pharmacol 2016; 781:60-8. [DOI: 10.1016/j.ejphar.2016.03.063] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 03/28/2016] [Accepted: 03/31/2016] [Indexed: 12/20/2022]
|
123
|
Sharma T, Radosevich JA, Pachori G, Mandal CC. A Molecular View of Pathological Microcalcification in Breast Cancer. J Mammary Gland Biol Neoplasia 2016; 21:25-40. [PMID: 26769216 DOI: 10.1007/s10911-015-9349-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 12/30/2015] [Indexed: 12/11/2022] Open
Abstract
Breast microcalcification is a potential diagnostic indicator for non-palpable breast cancers. Microcalcification type I (calcium oxalate) is restricted to benign tissue, whereas type II (calcium hydroxyapatite) occurs both in benign as well as in malignant lesions. Microcalcification is a pathological complication of the mammary gland. Over the past few decades, much attention has been paid to exploit this property, which forms the basis for advances in diagnostic procedures and imaging techniques. The mechanism of its formation is still poorly understood. Hence, in this paper, we have attempted to address the molecular mechanism of microcalcification in breast cancer. The central theme of this communication is "how a subpopulation of heterogeneous breast tumor cells attains an osteoblast-like phenotype, and what activities drive the process of pathophysiological microcalcification, especially at the invasive or infiltrating front of breast tumors". The role of bone morphogenetic proteins (BMPs) and tumor associated macrophages (TAMs) along with epithelial to mesenchymal transition (EMT) in manipulating this pathological process has been highlighted. Therefore, this review offers a novel insight into the mechanism underlying the development of microcalcification in breast carcinomas.
Collapse
Affiliation(s)
- Tanu Sharma
- Department of Biochemistry, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India
| | - James A Radosevich
- Department of Oral Medicine and Diagnostic Sciences, College of Dentistry, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Geeta Pachori
- Department of Pathology, J.L.N Medical College, Ajmer, Rajasthan, 305001, India
| | - Chandi C Mandal
- Department of Biochemistry, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India.
| |
Collapse
|
124
|
Cell cycle and apoptosis regulation by NFAT transcription factors: new roles for an old player. Cell Death Dis 2016; 7:e2199. [PMID: 27100893 PMCID: PMC4855676 DOI: 10.1038/cddis.2016.97] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 03/13/2016] [Accepted: 03/16/2016] [Indexed: 12/11/2022]
Abstract
The NFAT (nuclear factor of activated T cells) family of transcription factors consists of four Ca2+-regulated members (NFAT1–NFAT4), which were first described in T lymphocytes. In addition to their well-documented role in T lymphocytes, where they control gene expression during cell activation and differentiation, NFAT proteins are also expressed in a wide range of cells and tissue types and regulate genes involved in cell cycle, apoptosis, angiogenesis and metastasis. The NFAT proteins share a highly conserved DNA-binding domain (DBD), which allows all NFAT members to bind to the same DNA sequence in enhancers or promoter regions. The same DNA-binding specificity suggests redundant roles for the NFAT proteins, which is true during the regulation of some genes such as IL-2 and p21. However, it has become increasingly clear that different NFAT proteins and even isoforms can have unique functions. In this review, we address the possible reasons for these distinct roles, particularly regarding N- and C-terminal transactivation regions (TADs) and the partner proteins that interact with these TADs. We also discuss the genes regulated by NFAT during cell cycle regulation and apoptosis and the role of NFAT during tumorigenesis.
Collapse
|
125
|
Epithelial calcineurin controls microbiota-dependent intestinal tumor development. Nat Med 2016; 22:506-15. [PMID: 27043494 PMCID: PMC5570457 DOI: 10.1038/nm.4072] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 02/29/2016] [Indexed: 02/06/2023]
Abstract
Inflammation-associated pathways are active in intestinal epithelial cells (IECs) and contribute to the pathogenesis of colorectal cancer (CRC). Calcineurin, a phosphatase required for the activation of the nuclear factor of activated T cells (NFAT) family of transcription factors, shows increased expression in CRC. We therefore investigated the role of calcineurin in intestinal tumor development. We demonstrate that calcineurin and NFAT factors are constitutively expressed by primary IECs and selectively activated in intestinal tumors as a result of impaired stratification of the tumor-associated microbiota and toll-like receptor signaling. Epithelial calcineurin supports the survival and proliferation of cancer stem cells in an NFAT-dependent manner and promotes the development of intestinal tumors in mice. Moreover, somatic mutations that have been identified in human CRC are associated with constitutive activation of calcineurin, whereas nuclear translocation of NFAT is associated with increased death from CRC. These findings highlight an epithelial cell-intrinsic pathway that integrates signals derived from the commensal microbiota to promote intestinal tumor development.
Collapse
|
126
|
Suwala AK, Hanaford A, Kahlert UD, Maciaczyk J. Clipping the Wings of Glioblastoma: Modulation of WNT as a Novel Therapeutic Strategy. J Neuropathol Exp Neurol 2016; 75:388-96. [PMID: 26979081 DOI: 10.1093/jnen/nlw013] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Glioblastoma (GBM) is the most malignant brain tumor and has a dismal prognosis. Aberrant WNT signaling is known to promote glioma cell growth and dissemination and resistance to conventional radio- and chemotherapy. Moreover, a population of cancer stem-like cells that promote glioma growth and recurrence are strongly dependent on WNT signaling. Here, we discuss the role and mechanisms of aberrant canonical and noncanonical WNT signaling in GBM. We present current clinical approaches aimed at modulating WNT activity and evaluate their clinical perspective as a novel treatment option for GBM.
Collapse
Affiliation(s)
- Abigail K Suwala
- From the Department of Neurosurgery, University Medical Center Düsseldorf, Düsseldorf, Germany (AKS, UDK, JM); and Division of Neuropathology, Department of Pathology, Johns Hopkins Hospital, Baltimore, Maryland (AH)
| | - Allison Hanaford
- From the Department of Neurosurgery, University Medical Center Düsseldorf, Düsseldorf, Germany (AKS, UDK, JM); and Division of Neuropathology, Department of Pathology, Johns Hopkins Hospital, Baltimore, Maryland (AH)
| | - Ulf D Kahlert
- From the Department of Neurosurgery, University Medical Center Düsseldorf, Düsseldorf, Germany (AKS, UDK, JM); and Division of Neuropathology, Department of Pathology, Johns Hopkins Hospital, Baltimore, Maryland (AH)
| | - Jaroslaw Maciaczyk
- From the Department of Neurosurgery, University Medical Center Düsseldorf, Düsseldorf, Germany (AKS, UDK, JM); and Division of Neuropathology, Department of Pathology, Johns Hopkins Hospital, Baltimore, Maryland (AH).
| |
Collapse
|
127
|
Aung W, Tsuji AB, Sudo H, Sugyo A, Furukawa T, Ukai Y, Kurosawa Y, Saga T. Immunotargeting of Integrin α6β4 for Single-Photon Emission Computed Tomography and Near-Infrared Fluorescence Imaging in a Pancreatic Cancer Model. Mol Imaging 2016; 15:15/0/1536012115624917. [PMID: 27030400 PMCID: PMC5469600 DOI: 10.1177/1536012115624917] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 11/01/2015] [Indexed: 12/15/2022] Open
Abstract
To explore suitable imaging probes for early and specific detection of pancreatic cancer, we demonstrated that α6β4 integrin is a good target and employed single-photon emission computed tomography (SPECT) or near-infrared (NIR) imaging for immunotargeting. Expression levels of α6β4 were examined by Western blotting and flow cytometry in certain human pancreatic cancer cell lines. The human cell line BxPC-3 was used for α6β4-positive and a mouse cell line, A4, was used for negative counterpart. We labeled antibody against α6β4 with Indium-111 (111In) or indocyanine green (ICG). After injection of 111In-labeled probe to tumor-bearing mice, biodistribution, SPECT, autoradiography (ARG), and immunohistochemical (IHC) studies were conducted. After administration of ICG-labeled probe, in vivo and ex vivo NIR imaging and fluorescence microscopy of tumors were performed. BxPC-3 tumor showed a higher radioligand binding in SPECT and higher fluorescence intensity as well as a delay in the probe washout in NIR imaging when compared to A4 tumor. The biodistribution profile of 111In-labeled probe, ARG, and IHC confirmed the α6β4 specific binding of the probe. Here, we propose that α6β4 is a desirable target for the diagnosis of pancreatic cancer and that it could be detected by radionuclide imaging and NIR imaging using a radiolabeled or ICG-labeled α6β4 antibody.
Collapse
Affiliation(s)
- Winn Aung
- Diagnostic Imaging Program, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | - Atsushi B Tsuji
- Diagnostic Imaging Program, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | - Hitomi Sudo
- Diagnostic Imaging Program, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | - Aya Sugyo
- Diagnostic Imaging Program, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | - Takako Furukawa
- Diagnostic Imaging Program, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| | | | - Yoshikazu Kurosawa
- Innovation Center for Advanced Medicine, Fujita Health University, Toyoake, Japan
| | - Tsuneo Saga
- Diagnostic Imaging Program, Molecular Imaging Center, National Institute of Radiological Sciences, Chiba, Japan
| |
Collapse
|
128
|
Shiny A, Regin B, Mohan V, Balasubramanyam M. Coordinated augmentation of NFAT and NOD signaling mediates proliferative VSMC phenotype switch under hyperinsulinemia. Atherosclerosis 2016; 246:257-66. [PMID: 26814423 DOI: 10.1016/j.atherosclerosis.2016.01.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 11/20/2015] [Accepted: 01/05/2016] [Indexed: 11/29/2022]
Abstract
AIM Although hyperglycemia has been demonstrated to play a significant role in the vascular disease associated with type 2 diabetes, the mechanisms underlying hyperinsulinemia mediated vascular dysfunction are not well understood. We have analyzed whether hyperinsulinemia could activate NFAT (Nuclear factor of activated T cells) signaling and thereby influence vascular smooth muscle cell (VSMC) migration and proliferation, a major event in the progression of atherosclerosis. METHODS AND RESULTS Human aortic VSMCs upon chronic insulin treatment exhibited increased expression of NFATc1 both at the mRNA and protein levels. The mechanistic role of NFAT in VSMC migration and proliferation was examined using 11R-VIVIT, a cell permeable NFAT specific inhibitor, where it reduced the insulin effect on VSMC, which was further substantiated by over expression or silencing of NFATc1gene (p < 0.05). This study also report for the first time the role of NFAT in NOD (Nucleotide oligomerization domain) mediated innate immune signaling and its significance in insulin effect on VSMCs. mRNA expression of NOD was up regulated when cells were treated with insulin or ligands whereas pretreatment with 11R-VIVIT reversed this effect (p < 0.05). Our study uphold the clinical significance as we observed an increased mRNA expression of NFATc1 in monocytes isolated from patients with type 2 diabetes which correlated positively with insulin resistance and glycemic load (p < 0.05). DISCUSSION This study suggests that targeted NFAT inhibition can be an effective strategy to coordinately quench insulin induced proliferative and inflammatory responses along with innate immunity alterations in vascular smooth muscle cells, which underlie atherosclerosis.
Collapse
Affiliation(s)
- Abhijit Shiny
- Department of Cell and Molecular Biology, Madras Diabetes Research Foundation, Dr. Mohan's Diabetes Specialities Centre Gopalapuram, Chennai, India.
| | - Bhaskaran Regin
- Department of Cell and Molecular Biology, Madras Diabetes Research Foundation, Dr. Mohan's Diabetes Specialities Centre Gopalapuram, Chennai, India
| | - Viswanathan Mohan
- Department of Cell and Molecular Biology, Madras Diabetes Research Foundation, Dr. Mohan's Diabetes Specialities Centre Gopalapuram, Chennai, India
| | - Muthuswamy Balasubramanyam
- Department of Cell and Molecular Biology, Madras Diabetes Research Foundation, Dr. Mohan's Diabetes Specialities Centre Gopalapuram, Chennai, India
| |
Collapse
|
129
|
Grottke A, Ewald F, Lange T, Nörz D, Herzberger C, Bach J, Grabinski N, Gräser L, Höppner F, Nashan B, Schumacher U, Jücker M. Downregulation of AKT3 Increases Migration and Metastasis in Triple Negative Breast Cancer Cells by Upregulating S100A4. PLoS One 2016; 11:e0146370. [PMID: 26741489 PMCID: PMC4704820 DOI: 10.1371/journal.pone.0146370] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 12/16/2015] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Treatment of breast cancer patients with distant metastases represents one of the biggest challenges in today's gynecological oncology. Therefore, a better understanding of mechanisms promoting the development of metastases is of paramount importance. The serine/threonine kinase AKT was shown to drive cancer progression and metastasis. However, there is emerging data that single AKT isoforms (i.e. AKT1, AKT2 and AKT3) have different or even opposing functions in the regulation of cancer cell migration in vitro, giving rise to the hypothesis that inhibition of distinct AKT isoforms might have undesirable effects on cancer dissemination in vivo. METHODS The triple negative breast cancer cell line MDA-MB-231 was used to investigate the functional roles of AKT in migration and metastasis. AKT single and double knockdown cells were generated using isoform specific shRNAs. Migration was analyzed using live cell imaging, chemotaxis and transwell assays. The metastatic potential of AKT isoform knockdown cells was evaluated in a subcutaneous xenograft mouse model in vivo. RESULTS Depletion of AKT3, but not AKT1 or AKT2, resulted in increased migration in vitro. This effect was even more prominent in AKT2,3 double knockdown cells. Furthermore, combined downregulation of AKT2 and AKT3, as well as AKT1 and AKT3 significantly increased metastasis formation in vivo. Screening for promigratory proteins revealed that downregulation of AKT3 increases the expression of S100A4 protein. In accordance, depletion of S100A4 by siRNA approach reverses the increased migration induced by knockdown of AKT3. CONCLUSIONS We demonstrated that knockdown of AKT3 can increase the metastatic potential of triple negative breast cancer cells. Therefore, our results provide a rationale for the development of AKT isoform specific inhibitors.
Collapse
Affiliation(s)
- Astrid Grottke
- Center for Experimental Medicine, Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Florian Ewald
- Department of Hepatobiliary and Transplant Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Tobias Lange
- Center for Experimental Medicine, Department of Anatomy and Experimental Morphology, University Cancer Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Dominik Nörz
- Center for Experimental Medicine, Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Christiane Herzberger
- Center for Experimental Medicine, Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Johanna Bach
- Center for Experimental Medicine, Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Nicole Grabinski
- Center for Experimental Medicine, Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Lareen Gräser
- Center for Experimental Medicine, Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Frank Höppner
- Center for Experimental Medicine, Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Björn Nashan
- Department of Hepatobiliary and Transplant Surgery, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Udo Schumacher
- Center for Experimental Medicine, Department of Anatomy and Experimental Morphology, University Cancer Center, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Manfred Jücker
- Center for Experimental Medicine, Institute of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
- * E-mail:
| |
Collapse
|
130
|
Zhou X. How do kinases contribute to tonicity-dependent regulation of the transcription factor NFAT5? World J Nephrol 2016; 5:20-32. [PMID: 26788461 PMCID: PMC4707165 DOI: 10.5527/wjn.v5.i1.20] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 10/12/2015] [Accepted: 12/11/2015] [Indexed: 02/06/2023] Open
Abstract
NFAT5 plays a critical role in maintaining the renal functions. Its dis-regulation in the kidney leads to or is associated with certain renal diseases or disorders, most notably the urinary concentration defect. Hypertonicity, which the kidney medulla is normally exposed to, activates NFAT5 through phosphorylation of a signaling molecule or NFAT5 itself. Hypotonicity inhibits NFAT5 through a similar mechanism. More than a dozen of protein and lipid kinases have been identified to contribute to tonicity-dependent regulation of NFAT5. Hypertonicity activates NFAT5 by increasing its nuclear localization and transactivating activity in the early phase and protein abundance in the late phase. The known mechanism for inhibition of NFAT5 by hypotonicity is a decrease of nuclear NFAT5. The present article reviews the effect of each kinase on NFAT5 nuclear localization, transactivation and protein abundance, and the relationship among these kinases, if known. Cyclosporine A and tacrolimus suppress immune reactions by inhibiting the phosphatase calcineurin-dependent activation of NFAT1. It is hoped that this review would stimulate the interest to seek explanations from the NFAT5 regulatory pathways for certain clinical presentations and to explore novel therapeutic approaches based on the pathways. On the basic science front, this review raises two interesting questions. The first one is how these kinases can specifically signal to NFAT5 in the context of hypertonicity or hypotonicity, because they also regulate other cellular activities and even opposite activities in some cases. The second one is why these many kinases, some of which might have redundant functions, are needed to regulate NFAT5 activity. This review reiterates the concept of signaling through cooperation. Cells need these kinases working in a coordinated way to provide the signaling specificity that is lacking in the individual one. Redundancy in regulation of NFAT5 is a critical strategy for cells to maintain robustness against hypertonic or hypotonic stress.
Collapse
|
131
|
Shen LI, Liu L, Yang Z, Jiang N. Identification of genes and signaling pathways associated with squamous cell carcinoma by bioinformatics analysis. Oncol Lett 2015; 11:1382-1390. [PMID: 26893747 PMCID: PMC4734263 DOI: 10.3892/ol.2015.4051] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 11/02/2015] [Indexed: 11/05/2022] Open
Abstract
The present study aimed to investigate the genes and signaling pathways associated with squamous cell carcinoma (SCC) by bioinformatics analysis. For this purpose, the GSE2503 was downloaded from the Gene Expression Omnibus database, and the differentially expressed genes (DEGs) between 6 normal skin and 5 SCC samples were analyzed using the Linear Models for Microarray Data package. Gene Ontology (GO) and pathway enrichment analysis of DEGs were performed, followed by functional annotation and construction of a protein-protein interaction (PPI) network. Subnetwork modules were subsequently identified and analyzed. A total of 181 DEGs, including 95 upregulated and 86 downregulated DEGs, were identified, in addition to 20 GO biological processes terms enriched by upregulated DEGs and 14 enriched by downregulated DEGs. The upregulated DEGs were enriched in 18 pathways, and the downregulated DEGs were enriched in 7 pathways. Following functional annotation, three upregulated transcription factors (TFs), including hypoxia inducible factor 1, alpha subunit (HIF1A), and six downregulated TFs were identified. In the PPI network and subnetwork, matrix metallopeptidase 1 (MMP1), also known as interstitial collagenase, and interleukin 8 (IL8) were the hub genes with the highest degree of connectivity (degree =8). Integrin alpha (ITGA)6 and 2 were enriched in several pathways, including focal adhesion and extracellular matrix-receptor interaction. DEGs of SCC were primarily enriched in pathways associated with cancer and cell adhesion. Therefore, DEGs such as IL8, MMP1, HIF1A, ITGA6 and ITGA2 may be potential targets for the diagnosis and treatment of SCC.
Collapse
Affiliation(s)
- L I Shen
- Department of Plastic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China; Department of Plastic and Aesthetic Surgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Linbo Liu
- Department of Plastic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Zhenyong Yang
- Department of Plastic and Aesthetic Surgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Nan Jiang
- Department of Plastic and Aesthetic Surgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
132
|
Tosello V, Bordin F, Yu J, Agnusdei V, Indraccolo S, Basso G, Amadori A, Piovan E. Calcineurin and GSK-3 inhibition sensitizes T-cell acute lymphoblastic leukemia cells to apoptosis through X-linked inhibitor of apoptosis protein degradation. Leukemia 2015; 30:812-22. [PMID: 26648536 DOI: 10.1038/leu.2015.335] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 11/20/2015] [Accepted: 11/24/2015] [Indexed: 12/26/2022]
Abstract
The calcineurin (Cn)-nuclear factor of activated T cells signaling pathway is critically involved in many aspects of normal T-cell physiology; however, its direct implication in leukemogenesis is still ill-defined. Glycogen synthase kinase-3β (GSK-3β) has recently been reported to interact with Cn in neuronal cells and is implicated in MLL leukemia. Our biochemical studies clearly demonstrated that Cn was able to interact with GSK-3β in T-cell acute lymphoblastic leukemia (T-ALL) cells, and that this interaction was direct, leading to an increased catalytic activity of GSK-3β, possibly through autophosphorylation of Y216. Sensitivity to GSK-3 inhibitor treatment correlated with altered GSK-3β phosphorylation and was more prominent in T-ALL with Pre/Pro immunophenotype. In addition, dual Cn and GSK-3 inhibitor treatment in T-ALL cells promoted sensitization to apoptosis through proteasomal degradation of X-linked inhibitor of apoptosis protein (XIAP). Consistently, resistance to drug treatments in primary samples was strongly associated with higher XIAP protein levels. Finally, we showed that dual Cn and GSK-3 inhibitor treatment in vitro and in vivo is effective against available models of T-ALL, indicating an insofar untapped therapeutic opportunity.
Collapse
Affiliation(s)
- V Tosello
- UOC Immunologia e Diagnostica Molecolare Oncologica, Istituto Oncologico Veneto IOV-IRCCS, Padova, Italy
| | - F Bordin
- Dipartimento di Scienze Chirurgiche, Oncologiche e Gastroenterologiche, Universita' di Padova, Padova, Italy
| | - J Yu
- Department of Biomedical Informatics, Columbia University, New York, NY, USA.,Department of Systems Biology, Columbia University, New York, NY, USA
| | - V Agnusdei
- UOC Immunologia e Diagnostica Molecolare Oncologica, Istituto Oncologico Veneto IOV-IRCCS, Padova, Italy
| | - S Indraccolo
- UOC Immunologia e Diagnostica Molecolare Oncologica, Istituto Oncologico Veneto IOV-IRCCS, Padova, Italy
| | - G Basso
- Dipartimento di Salute della Donna e del Bambino, Università di Padova, Padova, Italy
| | - A Amadori
- UOC Immunologia e Diagnostica Molecolare Oncologica, Istituto Oncologico Veneto IOV-IRCCS, Padova, Italy.,Dipartimento di Scienze Chirurgiche, Oncologiche e Gastroenterologiche, Universita' di Padova, Padova, Italy
| | - E Piovan
- UOC Immunologia e Diagnostica Molecolare Oncologica, Istituto Oncologico Veneto IOV-IRCCS, Padova, Italy.,Dipartimento di Scienze Chirurgiche, Oncologiche e Gastroenterologiche, Universita' di Padova, Padova, Italy
| |
Collapse
|
133
|
NFATC1 promotes cell growth and tumorigenesis in ovarian cancer up-regulating c-Myc through ERK1/2/p38 MAPK signal pathway. Tumour Biol 2015; 37:4493-500. [DOI: 10.1007/s13277-015-4245-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 10/12/2015] [Indexed: 12/11/2022] Open
|
134
|
Manda KR, Tripathi P, Hsi AC, Ning J, Ruzinova MB, Liapis H, Bailey M, Zhang H, Maher CA, Humphrey PA, Andriole GL, Ding L, You Z, Chen F. NFATc1 promotes prostate tumorigenesis and overcomes PTEN loss-induced senescence. Oncogene 2015; 35:3282-92. [PMID: 26477312 PMCID: PMC5012433 DOI: 10.1038/onc.2015.389] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 08/25/2015] [Accepted: 09/08/2015] [Indexed: 02/06/2023]
Abstract
Despite recent insights into prostate cancer (PCa)-associated genetic changes, full understanding of prostate tumorigenesis remains elusive due to complexity of interactions among various cell types and soluble factors present in prostate tissue. We found upregulation of Nuclear Factor of Activated T Cells c1 (NFATc1) in human PCa and cultured PCa cells, but not in normal prostates and non-tumorigenic prostate cells. To understand the role of NFATc1 in prostate tumorigenesis in situ, we temporally and spatially controlled the activation of NFATc1 in mouse prostate and showed that such activation resulted in prostatic adenocarcinoma with features similar to those seen in human PCa. Our results indicate that the activation of a single transcription factor, NFATc1 in prostatic luminal epithelium to PCa can affect expression of diverse factors in both cells harboring the genetic changes and in neighboring cells through microenvironmental alterations. In addition to the activation of oncogenes c-MYC and STAT3 in tumor cells, a number of cytokines and growth factors, such as IL1β, IL6, and SPP1 (Osteopontin, a key biomarker for PCa), were upregulated in NFATc1-induced PCa, establishing a tumorigenic microenvironment involving both NFATc1 positive and negative cells for prostate tumorigenesis. To further characterize interactions between genes involved in prostate tumorigenesis, we generated mice with both NFATc1 activation and Pten inactivation in prostate. We showed that NFATc1 activation led to acceleration of Pten-null–driven prostate tumorigenesis by overcoming the PTEN loss–induced cellular senescence through inhibition of p21 activation. This study provides direct in vivo evidence of an oncogenic role of NFATc1 in prostate tumorigenesis and reveals multiple functions of NFATc1 in activating oncogenes, in inducing proinflammatory cytokines, in oncogene addiction, and in overcoming cellular senescence, which suggests calcineurin-NFAT signaling as a potential target in preventing PCa.
Collapse
Affiliation(s)
- K R Manda
- Department of Medicine, Washington University, School of Medicine, St Louis, MO, USA
| | - P Tripathi
- Department of Pathology and Immunology, Washington University, St Louis, MO, USA
| | - A C Hsi
- The Genome Institute, Washington University, St Louis, MO, USA
| | - J Ning
- Department of Medicine, Washington University, School of Medicine, St Louis, MO, USA.,The Genome Institute, Washington University, St Louis, MO, USA
| | - M B Ruzinova
- Department of Pathology and Immunology, Washington University, St Louis, MO, USA
| | - H Liapis
- Department of Pathology and Immunology, Washington University, St Louis, MO, USA
| | - M Bailey
- The Genome Institute, Washington University, St Louis, MO, USA
| | - H Zhang
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - C A Maher
- Department of Medicine, Washington University, School of Medicine, St Louis, MO, USA.,The Genome Institute, Washington University, St Louis, MO, USA.,Siteman Cancer Center, Washington University, St Louis, MO, USA
| | - P A Humphrey
- Department of Pathology, Yale University, New Haven, CT, USA
| | - G L Andriole
- Siteman Cancer Center, Washington University, St Louis, MO, USA.,Department of Surgery, Washington University, St Louis, MO, USA
| | - L Ding
- Department of Medicine, Washington University, School of Medicine, St Louis, MO, USA.,The Genome Institute, Washington University, St Louis, MO, USA.,Siteman Cancer Center, Washington University, St Louis, MO, USA
| | - Z You
- Department of Structural and Cellular Biology, Tulane University, New Orleans, LA, USA
| | - F Chen
- Department of Medicine, Washington University, School of Medicine, St Louis, MO, USA.,Siteman Cancer Center, Washington University, St Louis, MO, USA.,Department of Cell Biology and Physiology, Washington University, St Louis, MO, USA
| |
Collapse
|
135
|
The potential role of NFAT5 and osmolarity in peritoneal injury. BIOMED RESEARCH INTERNATIONAL 2015; 2015:578453. [PMID: 26495302 PMCID: PMC4606082 DOI: 10.1155/2015/578453] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 07/12/2015] [Indexed: 11/30/2022]
Abstract
A rise in osmotic concentration (osmolarity) activates the transcription factor Nuclear Factor of Activated T Cells 5 (NFAT5, also known as Tonicity-responsive Enhancer Binding Protein, TonEBP). This is part of a regulatory mechanism of cells adjusting to environments of high osmolarity. Under physiological conditions these are particularly important in the kidney. Activation of NFAT5 results in the modulation of various genes including some which promote inflammation. The osmolarity increases in patients with renal failure. Additionally, in peritoneal dialysis the cells of the peritoneal cavity are repeatedly exposed to a rise and fall in osmotic concentrations. Here we review the current information about NFAT5 activation in uremic patients and patients on peritoneal dialysis. We suggest that high osmolarity promotes injury in the “uremic” milieu, which results in inflammation locally in the peritoneal membrane, but most likely also in the systemic circulation.
Collapse
|
136
|
Wu Q, Guo L, Jiang F, Li L, Li Z, Chen F. Analysis of the miRNA-mRNA-lncRNA networks in ER+ and ER- breast cancer cell lines. J Cell Mol Med 2015; 19:2874-87. [PMID: 26416600 PMCID: PMC4687702 DOI: 10.1111/jcmm.12681] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 08/14/2015] [Indexed: 12/22/2022] Open
Abstract
Recently, rapid advances in bioinformatics analysis have expanded our understanding of the transcriptome to a genome‐wide level. miRNA–mRNA–lncRNA interactions have been shown to play critical regulatory role in cancer biology. In this study, we discussed the use of an integrated systematic approach to explore new facets of the oestrogen receptor (ER)‐regulated transcriptome. The identification of RNAs that are related to the expression status of the ER may be useful in clinical therapy and prognosis. We used a network modelling strategy. First, microarray expression profiling of mRNA, lncRNA and miRNA was performed in MCF‐7 (ER‐positive) and MDA‐MB‐231 cells (ER‐ negative). A co‐expression network was then built using co‐expression relationships of the differentially expressed mRNAs and lncRNAs. Finally, the selected miRNA–mRNA network was added to the network. The key miRNA–mRNA–lncRNA interaction can be inferred from the network. The mRNA and non‐coding RNA expression profiles of the cells with different ER phenotypes were distinct. Among the aberrantly expressed miRNAs, the expression levels of miR‐19a‐3p, miR‐19b‐3p and miR‐130a‐3p were much lower in the MCF‐7 cells, whereas that of miR‐148b‐3p was much higher. In a cluster of miR‐17‐92, the expression levels of six of seven miRNAs were lower in the MCF‐7 cells, in addition to miR‐20b in the miR‐106a‐363 cluster. However, the levels of all the miRNAs in the miR‐106a‐25 cluster were higher in the MCF‐7 cells. In the co‐expression networking, CD74 and FMNL2 gene which is involved in the immune response and metastasis, respectively, had a stronger correlation with ER. Among the aberrantly expressed lncRNAs, lncRNA‐DLEU1 was highly expressed in the MCF‐7 cells. A statistical analysis revealed that there was a co‐expression relationship between ESR1 and lncRNA‐DLEU1. In addition, miR‐19a and lncRNA‐DLEU1 are both located on the human chromosome 13q. We speculate that miR‐19a might be co‐expressed with lncRNA‐DLEU1 to co‐regulate the expression of ESR1, which influences the occurrence and development of breast cancer cells with different levels of ER expression. Our findings reveal that the status of ER is mainly due to the differences in the mRNA and ncRNA profile between the breast cancer cell lines, and highlight the importance of studying the miRNA–mRNA–lncRNA interactions to completely illustrate the intricate transcriptome.
Collapse
Affiliation(s)
- Qian Wu
- The State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Department of Hygienic Analysis and Detection, School of Public Health, Nanjing Medical University, Nanjing, China.,Department of Enviromental Health Sciences, Bloomburg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Li Guo
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab for Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Fei Jiang
- Department of Nutrition and Food Hygiene and Ministry of Education Key Lab for Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Lei Li
- Department of Hygienic Analysis and Detection, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhong Li
- Department of Nutrition and Food Hygiene and Ministry of Education Key Lab for Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Feng Chen
- Department of Epidemiology and Biostatistics and Ministry of Education Key Lab for Modern Toxicology, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
137
|
Carpenter BL, Chen M, Knifley T, Davis KA, Harrison SMW, Stewart RL, O'Connor KL. Integrin α6β4 Promotes Autocrine Epidermal Growth Factor Receptor (EGFR) Signaling to Stimulate Migration and Invasion toward Hepatocyte Growth Factor (HGF). J Biol Chem 2015; 290:27228-27238. [PMID: 26381405 DOI: 10.1074/jbc.m115.686873] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Indexed: 12/14/2022] Open
Abstract
Integrin α6β4 is up-regulated in pancreatic adenocarcinomas where it contributes to carcinoma cell invasion by altering the transcriptome. In this study, we found that integrin α6β4 up-regulates several genes in the epidermal growth factor receptor (EGFR) pathway, including amphiregulin (AREG), epiregulin (EREG), and ectodomain cleavage protease MMP1, which is mediated by promoter demethylation and NFAT5. The correlation of these genes with integrin α6β4 was confirmed in The Cancer Genome Atlas Pancreatic Cancer Database. Based on previous observations that integrin α6β4 cooperates with c-Met in pancreatic cancers, we examined the impact of EGFR signaling on hepatocyte growth factor (HGF)-stimulated migration and invasion. We found that AREG and EREG were required for autocrine EGFR signaling, as knocking down either ligand inhibited HGF-mediated migration and invasion. We further determined that HGF induced secretion of AREG, which is dependent on integrin-growth factor signaling pathways, including MAPK, PI3K, and PKC. Moreover, matrix metalloproteinase activity and integrin α6β4 signaling were required for AREG secretion. Blocking EGFR signaling with EGFR-specific antibodies or an EGFR tyrosine kinase inhibitor hindered HGF-stimulated pancreatic carcinoma cell chemotaxis and invasive growth in three-dimensional culture. Finally, we found that EGFR was phosphorylated in response to HGF stimulation that is dependent on EGFR kinase activity; however, c-Met phosphorylation in response to HGF was unaffected by EGFR signaling. Taken together, these data illustrate that integrin α6β4 stimulates invasion by promoting autocrine EGFR signaling through transcriptional up-regulation of key EGFR family members and by facilitating HGF-stimulated EGFR ligand secretion. These signaling events, in turn, promote pancreatic carcinoma migration and invasion.
Collapse
Affiliation(s)
- Brittany L Carpenter
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40506-0509; Departments of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky 40506-0509
| | - Min Chen
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40506-0509; Departments of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky 40506-0509
| | - Teresa Knifley
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40506-0509
| | - Kelley A Davis
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40506-0509
| | - Susan M W Harrison
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40506-0509
| | - Rachel L Stewart
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40506-0509; Departments of Pathology and Laboratory Medicine, University of Kentucky, Lexington, Kentucky 40506-0509
| | - Kathleen L O'Connor
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky 40506-0509; Departments of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky 40506-0509.
| |
Collapse
|
138
|
Clinical significance of the integrin α6β4 in human malignancies. J Transl Med 2015; 95:976-86. [PMID: 26121317 PMCID: PMC4554527 DOI: 10.1038/labinvest.2015.82] [Citation(s) in RCA: 156] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 05/06/2015] [Accepted: 05/13/2015] [Indexed: 12/14/2022] Open
Abstract
Integrin α6β4 is a cellular adhesion molecule that binds to laminins in the extracellular matrix and nucleates the formation of hemidesmosomes. During carcinoma progression, integrin α6β4 is released from hemidesmosomes, where it can then signal to facilitate multiple aspects of tumor progression including sustaining proliferative signaling, tumor invasion and metastasis, evasion of apoptosis, and stimulation of angiogenesis. The integrin achieves these ends by cooperating with growth factor receptors including EGFR, ErbB-2, and c-Met to amplify downstream pathways such as PI3K, AKT, MAPK, and the Rho family small GTPases. Furthermore, it dramatically alters the transcriptome toward a more invasive phenotype by controlling promoter DNA demethylation of invasion and metastasis-associated proteins, such as S100A4 and autotaxin, and upregulates and activates key tumor-promoting transcription factors such as the NFATs and NF-κB. Expression of integrin α6β4 has been studied in many human malignancies where its overexpression is associated with aggressive behavior and a poor prognosis. This review provides an assessment of integrin α6β4 expression patterns and their prognostic significance in human malignancies, and describes key signaling functions of integrin α6β4 that contribute to tumor progression.
Collapse
|
139
|
Guo K, Jin F. NFAT5 promotes proliferation and migration of lung adenocarcinoma cells in part through regulating AQP5 expression. Biochem Biophys Res Commun 2015; 465:644-9. [PMID: 26299924 DOI: 10.1016/j.bbrc.2015.08.078] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 08/18/2015] [Indexed: 11/17/2022]
Abstract
The osmoregulated transcription factor nuclear factor of activated T-cells 5(NFAT5), has been found to play important roles in the development of many kinds of human cancers, including breast cancer, colon carcinoma, renal cell carcinoma and melanoma. The aim of the present study was to determine whether NFAT5 is involved in the proliferation and migration of lung adenocarcinoma cells. We found that NFAT5 was upregulated in lung adenocarcinoma cells and knockdown of NFAT5 decreased proliferation and migration of the cells, accompanied by a significant reduction in the expression of AQP5. AQP5 was upregulated in lung adenocarcinoma cells and knockdown of AQP5 also inhibited proliferation and migration of the cells as knockdown of NFAT5 did. Moreover, overexpression of NFAT5 promoted proliferation and migration of lung adenocarcinoma cells, accompanied by a significant increase in the expression of AQP5. These results indicate that NFAT5 plays important roles in proliferation and migration of human lung adenocarcinoma cells through regulating AQP5 expression, providing a new therapeutic option for lung adenocarcinoma therapy.
Collapse
Affiliation(s)
- Kai Guo
- Department of Respiration, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China; Department of Respiration, 161th Hospital, PLA, Wuhan 430015, China.
| | - Faguang Jin
- Department of Respiration, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China.
| |
Collapse
|
140
|
Zhou C, You Y, Shen W, Zhu YZ, Peng J, Feng HT, Wang Y, Li D, Shao WW, Li CX, Li WZ, Xu J, Shen X. Deficiency of sorting nexin 10 prevents bone erosion in collagen-induced mouse arthritis through promoting NFATc1 degradation. Ann Rheum Dis 2015; 75:1211-8. [DOI: 10.1136/annrheumdis-2014-207134] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 06/09/2015] [Indexed: 01/01/2023]
Abstract
ObjectivePeriarticular and subchondral bone erosion in rheumatoid arthritis caused by osteoclast differentiation and activation is a critical index for diagnosis, therapy and monitoring of the disease. Sorting nexin (SNX) 10, a member of the SNX family which functions in regulation of endosomal sorting, has been implicated to play an important clinical role in malignant osteopetrosis. Here we studied the roles and precise mechanisms of SNX10 in the bone destruction of collagen-induced arthritis (CIA) mice.MethodsThe role of SNX10 in bone destruction was evaluated by a CIA mice model which was induced in male SNX10−/− mice and wild type littermates. The mechanism was explored in osteoclasts induced by receptor activator of nuclear factor κB ligand from bone marrow mononuclear cells of wild type and SNX10−/− mice.ResultsSNX10 knockout prevented bone loss and joint destruction in CIA mice with reduced serum levels of TNF-α, interleukin 1β and anticollagen IgG 2α antibody. SNX10 deficiency did not block osteoclastogenesis, but significantly impaired osteoclast maturation and bone-resorption function by disturbing the formation of actin belt. The production of TRAP, CtsK and MMP9 in SNX10−/− osteoclasts was significantly inhibited, and partially restored by SNX10 overexpression. We further demonstrated that the degradation of NFATc1 was accelerated in SNX10−/− osteoclasts causing an inhibition of integrin β3-Src-PYK2 signalling.ConclusionsOur study discloses a crucial role and novel mechanism for SNX10 in osteoclast function, and provides evidence for SNX10 as a promising novel therapeutic target for suppression of immune inflammation and bone erosion in rheumatoid arthritis.
Collapse
|
141
|
Flippot R, Kone M, Magné N, Vignot S. [FGF/FGFR signalling: Implication in oncogenesis and perspectives]. Bull Cancer 2015; 102:516-26. [PMID: 25986739 DOI: 10.1016/j.bulcan.2015.04.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 04/10/2015] [Indexed: 02/02/2023]
Abstract
Deregulation of FGF (fibroblast growth factor)/FGFR (fibroblast growth factor receptor) signalling leads to the promotion of several oncogenic mechanisms: proliferation, epithelial-mesenchymal transition, cytoskeleton modifications, migration and angiogenesis. Deregulation of this pathway is reported in various cancers at early stages, and can therefore be responsible for the emergence of the hallmarks of cancer. It is necessary to precise downstream pathways of FGFR signalling to understand its oncogenic potential. We will then describe its implications in different cancer types. Oncogenic mechanisms will be studied through the example of melanoma, in which deregulation of FGF/FGFR pathway is considered as a driver event and occurs in nearly 90% of cases. The FGF/FGFR signalling pathway is a putative therapeutic target. Numerous agents are in active development, operating through a selective or multi-targeted approach. Recent studies have shown rather disappointing results in non-selected patients, but promising results in patients with FGF/FGFR pathway alterations. A careful screening of patients is the key to a valuable evaluation of these new targeted molecular therapies.
Collapse
Affiliation(s)
- Ronan Flippot
- Gustave-Roussy, département d'innovations thérapeutiques essais précoces, 94800 Villejuif-Grand Paris, France
| | - Moumini Kone
- Hôpital Louis-Pasteur, service d'oncologie-hématologie, 28630 Chartres-Le-Coudray, France
| | - Nicolas Magné
- Institut de cancérologie Lucien-Neuwirth, département de radiothérapie, 42270 Saint-Priest-en-Jarez, France
| | - Stéphane Vignot
- Hôpital Louis-Pasteur, service d'oncologie-hématologie, 28630 Chartres-Le-Coudray, France.
| |
Collapse
|
142
|
Remo A, Simeone I, Pancione M, Parcesepe P, Finetti P, Cerulo L, Bensmail H, Birnbaum D, Van Laere SJ, Colantuoni V, Bonetti F, Bertucci F, Manfrin E, Ceccarelli M. Systems biology analysis reveals NFAT5 as a novel biomarker and master regulator of inflammatory breast cancer. J Transl Med 2015; 13:138. [PMID: 25928084 PMCID: PMC4438533 DOI: 10.1186/s12967-015-0492-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 04/14/2015] [Indexed: 01/30/2023] Open
Abstract
Background Inflammatory breast cancer (IBC) is the most rare and aggressive variant of breast cancer (BC); however, only a limited number of specific gene signatures with low generalization abilities are available and few reliable biomarkers are helpful to improve IBC classification into a molecularly distinct phenotype. We applied a network-based strategy to gain insight into master regulators (MRs) linked to IBC pathogenesis. Methods In-silico modeling and Algorithm for the Reconstruction of Accurate Cellular Networks (ARACNe) on IBC/non-IBC (nIBC) gene expression data (n = 197) was employed to identify novel master regulators connected to the IBC phenotype. Pathway enrichment analysis was used to characterize predicted targets of candidate genes. The expression pattern of the most significant MRs was then evaluated by immunohistochemistry (IHC) in two independent cohorts of IBCs (n = 39) and nIBCs (n = 82) and normal breast tissues (n = 15) spotted on tissue microarrays. The staining pattern of non-neoplastic mammary epithelial cells was used as a normal control. Results Using in-silico modeling of network-based strategy, we identified three top enriched MRs (NFAT5, CTNNB1 or β-catenin, and MGA) strongly linked to the IBC phenotype. By IHC assays, we found that IBC patients displayed a higher number of NFAT5-positive cases than nIBC (69.2% vs. 19.5%; p-value = 2.79 10-7). Accordingly, the majority of NFAT5-positive IBC samples revealed an aberrant nuclear expression in comparison with nIBC samples (70% vs. 12.5%; p-value = 0.000797). NFAT5 nuclear accumulation occurs regardless of WNT/β-catenin activated signaling in a substantial portion of IBCs, suggesting that NFAT5 pathway activation may have a relevant role in IBC pathogenesis. Accordingly, cytoplasmic NFAT5 and membranous β-catenin expression were preferentially linked to nIBC, accounting for the better prognosis of this phenotype. Conclusions We provide evidence that NFAT-signaling pathway activation could help to identify aggressive forms of BC and potentially be a guide to assignment of phenotype-specific therapeutic agents. The NFAT5 transcription factor might be developed into routine clinical practice as a putative biomarker of IBC phenotype. Electronic supplementary material The online version of this article (doi:10.1186/s12967-015-0492-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andrea Remo
- Department of Pathology, Mater Salutis Hospital, Legnago, Italy.
| | - Ines Simeone
- Department of Science and Technology, University of Sannio, Benevento, Italy. .,Qatar Computing Research Institute (QCRI), Qatar Foundation, Doha, Qatar.
| | - Massimo Pancione
- Department of Science and Technology, University of Sannio, Benevento, Italy.
| | - Pietro Parcesepe
- Department of Pathology and Diagnosis, University of Verona, Verona, Italy.
| | - Pascal Finetti
- Department of Molecular Oncology, Institut Paoli-Calmettes, U1068 Inserm, Marseille, France.
| | - Luigi Cerulo
- Department of Science and Technology, University of Sannio, Benevento, Italy. .,Bioinformatics Laboratory, BIOGEM, Ariano Irpino, Avellino, Italy.
| | - Halima Bensmail
- Qatar Computing Research Institute (QCRI), Qatar Foundation, Doha, Qatar.
| | - Daniel Birnbaum
- Department of Molecular Oncology, Institut Paoli-Calmettes, U1068 Inserm, Marseille, France.
| | | | - Vittorio Colantuoni
- Department of Science and Technology, University of Sannio, Benevento, Italy.
| | - Franco Bonetti
- Department of Pathology and Diagnosis, University of Verona, Verona, Italy.
| | - François Bertucci
- Department of Molecular Oncology, Institut Paoli-Calmettes, U1068 Inserm, Marseille, France.
| | - Erminia Manfrin
- Department of Pathology and Diagnosis, University of Verona, Verona, Italy.
| | - Michele Ceccarelli
- Department of Science and Technology, University of Sannio, Benevento, Italy. .,Qatar Computing Research Institute (QCRI), Qatar Foundation, Doha, Qatar.
| |
Collapse
|
143
|
Martínez-Høyer S, Solé-Sánchez S, Aguado F, Martínez-Martínez S, Serrano-Candelas E, Hernández JL, Iglesias M, Redondo JM, Casanovas O, Messeguer R, Pérez-Riba M. A novel role for an RCAN3-derived peptide as a tumor suppressor in breast cancer. Carcinogenesis 2015; 36:792-9. [PMID: 25916653 DOI: 10.1093/carcin/bgv056] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 04/20/2015] [Indexed: 01/29/2023] Open
Abstract
The members of the human regulators of calcineurin (RCAN) protein family are endogenous regulators of the calcineurin (CN)-cytosolic nuclear factor of activated T-cells (NFATc) pathway activation. This function is explained by the presence of a highly conserved calcipressin inhibitor of calcineurin (CIC) motif in RCAN proteins, which has been shown to compete with NFATc for the binding to CN and therefore are able to inhibit NFATc dephosphorylation and activation by CN. Very recently, emerging roles for NFATc proteins in transformation, tumor angiogenesis and metastasis have been described in different cancer cell types. In this work, we report that the overexpression of RCAN3 dramatically inhibits tumor growth and tumor angiogenesis in an orthotopic human breast cancer model. We suggest that RCAN3 exerts these effects in a CN-dependent manner, as mutation of the CIC motif in RCAN3 abolishes the tumor suppressor effect. Moreover, the expression of the EGFP-R3(178-210) peptide, spanning the CIC motif of RCAN3, is able to reproduce all the antitumor effects of RCAN3 full-length protein. Finally, we show that RCAN3 and the EGFP-R3(178-210) peptide inhibit the CN-NFATc signaling pathway and the induction of the NFATc-dependent gene cyclooxygenase-2. Our work suggests that the EGFP-R3(178-210) peptide possess potent tumor suppressor properties and therefore constitutes a novel lead for the development of potent and specific antitumoral agents. Moreover, we propose the targeting of the CN-NFATc pathway in the tumor cells constitutes an effective way to hamper tumor progression by impairing the paracrine network among tumor, endothelial and polymorphonucleated cells.
Collapse
Affiliation(s)
- Sergio Martínez-Høyer
- Cellular Signaling Unit, Human Molecular Genetics Group, Bellvitge Biomedical Research Institute - IDIBELL. L'Hospitalet de Llobregat 08908 Barcelona, Spain
| | - Sònia Solé-Sánchez
- Cellular Signaling Unit, Human Molecular Genetics Group, Bellvitge Biomedical Research Institute - IDIBELL. L'Hospitalet de Llobregat 08908 Barcelona, Spain
| | - Fernando Aguado
- Department of Cell Biology, University of Barcelona, Barcelona, Spain
| | - Sara Martínez-Martínez
- Departamento de Biología Vascular e Inflamación, Centro Nacional de Investigaciones Cardiovasculares, 28029 Madrid, Spain
| | - Eva Serrano-Candelas
- Cellular Signaling Unit, Human Molecular Genetics Group, Bellvitge Biomedical Research Institute - IDIBELL. L'Hospitalet de Llobregat 08908 Barcelona, Spain
| | - José Luis Hernández
- Biomed Division, LEITAT Technological Center, Parc Cientific de Barcelona, Edifici Hèlix, 08028 Barcelona, Spain
| | - Mar Iglesias
- Department of Pathology, Hospital del Mar (Institut Hospital del Mar d'Investigacions Mèdiques), Autonomous University of Barcelona 08004, Barcelona, Spain
| | - Juan Miguel Redondo
- Departamento de Biología Vascular e Inflamación, Centro Nacional de Investigaciones Cardiovasculares, 28029 Madrid, Spain
| | - Oriol Casanovas
- Tumor Angiogenesis Group, Translational Research Laboratory, Catalan Institute of Oncology - Bellvitge Biomedical Research Institute - IDIBELL. L'Hospitalet de Llobregat 08908 Barcelona, Spain
| | - Ramon Messeguer
- Biomed Division, LEITAT Technological Center, Parc Cientific de Barcelona, Edifici Hèlix, 08028 Barcelona, Spain
| | - Mercè Pérez-Riba
- Cellular Signaling Unit, Human Molecular Genetics Group, Bellvitge Biomedical Research Institute - IDIBELL. L'Hospitalet de Llobregat 08908 Barcelona, Spain,
| |
Collapse
|
144
|
Zhang J, He S, Wang Y, Brulois K, Lan K, Jung JU, Feng P. Herpesviral G protein-coupled receptors activate NFAT to induce tumor formation via inhibiting the SERCA calcium ATPase. PLoS Pathog 2015; 11:e1004768. [PMID: 25811856 PMCID: PMC4374719 DOI: 10.1371/journal.ppat.1004768] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 02/27/2015] [Indexed: 11/24/2022] Open
Abstract
G protein-coupled receptors (GPCRs) constitute the largest family of proteins that transmit signal to regulate an array of fundamental biological processes. Viruses deploy diverse tactics to hijack and harness intracellular signaling events induced by GPCR. Herpesviruses encode multiple GPCR homologues that are implicated in viral pathogenesis. Cellular GPCRs are primarily regulated by their cognate ligands, while herpesviral GPCRs constitutively activate downstream signaling cascades, including the nuclear factor of activated T cells (NFAT) pathway. However, the roles of NFAT activation and mechanism thereof in viral GPCR tumorigenesis remain unknown. Here we report that GPCRs of human Kaposi’s sarcoma-associated herpesvirus (kGPCR) and cytomegalovirus (US28) shortcut NFAT activation by inhibiting the sarcoplasmic reticulum calcium ATPase (SERCA), which is necessary for viral GPCR tumorigenesis. Biochemical approaches, entailing pharmacological inhibitors and protein purification, demonstrate that viral GPCRs target SERCA2 to increase cytosolic calcium concentration. As such, NFAT activation induced by vGPCRs was exceedingly sensitive to cyclosporine A that targets calcineurin, but resistant to inhibition upstream of ER calcium release. Gene expression profiling identified a signature of NFAT activation in endothelial cells expressing viral GPCRs. The expression of NFAT-dependent genes was up-regulated in tumors derived from tva-kGPCR mouse and human KS. Employing recombinant kGPCR-deficient KSHV, we showed that kGPCR was critical for NFAT-dependent gene expression in KSHV lytic replication. Finally, cyclosporine A treatment diminished NFAT-dependent gene expression and tumor formation induced by viral GPCRs. These findings reveal essential roles of NFAT activation in viral GPCR tumorigenesis and a mechanism of “constitutive” NFAT activation by viral GPCRs. G protein-coupled receptors (GPCRs) constitute the largest family of proteins that transmit signal across plasma membrane. Herpesviral GPCRs (vGPCRs) activate diverse signaling cascades and are implicated in viral pathogenesis (e.g., tumor development). In contrast to cellular GPCRs that are chiefly regulated via cognate ligand-association, vGPCRs are constitutively active independent of ligand-binding. vGPCRs provide useful tools to dissect signal transduction from plasma membrane receptors to nuclear transcription factors. To probe the activation of nuclear factor of T cells (NFAT), we demonstrate that vGPCRs target the ER calcium ATPase to increase cytosolic calcium concentration and activate NFAT. Inhibition of NFAT activation impairs tumor formation induced by vGPCRs, implying the antitumor therapeutic potential via disabling NFAT activation.
Collapse
Affiliation(s)
- Junjie Zhang
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Shanping He
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Yi Wang
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Kevin Brulois
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Ke Lan
- Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Jae U. Jung
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Pinghui Feng
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
145
|
Shou J, Jing J, Xie J, You L, Jing Z, Yao J, Han W, Pan H. Nuclear factor of activated T cells in cancer development and treatment. Cancer Lett 2015; 361:174-84. [PMID: 25766658 DOI: 10.1016/j.canlet.2015.03.005] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 03/04/2015] [Accepted: 03/04/2015] [Indexed: 01/03/2023]
Abstract
Since nuclear factor of activated T cells (NFAT) was first identified as a transcription factor in T cells, various NFAT isoforms have been discovered and investigated. Accumulating studies have suggested that NFATs are involved in many aspects of cancer, including carcinogenesis, cancer cell proliferation, metastasis, drug resistance and tumor microenvironment. Different NFAT isoforms have distinct functions in different cancers. The exact function of NFAT in cancer or the tumor microenvironment is context dependent. In this review, we summarize our current knowledge of NFAT regulation and function in cancer development and treatment. NFATs have emerged as a potential target for cancer prevention and therapy.
Collapse
Affiliation(s)
- Jiawei Shou
- Department of Medical Oncology, Institute of Clinical Science, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jing Jing
- Department of Medical Oncology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jiansheng Xie
- Laboratory of Cancer Biology, Institute of Clinical Science, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Liangkun You
- Department of Medical Oncology, Institute of Clinical Science, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhao Jing
- Department of Medical Oncology, Institute of Clinical Science, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Junlin Yao
- Department of Medical Oncology, Institute of Clinical Science, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Weidong Han
- Department of Medical Oncology, Institute of Clinical Science, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Laboratory of Cancer Biology, Institute of Clinical Science, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Hongming Pan
- Department of Medical Oncology, Institute of Clinical Science, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Laboratory of Cancer Biology, Institute of Clinical Science, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
146
|
Wang L, Wang Z, Li J, Zhang W, Ren F, Yue W. NFATc1 activation promotes the invasion of U251 human glioblastoma multiforme cells through COX-2. Int J Mol Med 2015; 35:1333-40. [PMID: 25738651 DOI: 10.3892/ijmm.2015.2124] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 02/25/2015] [Indexed: 11/06/2022] Open
Abstract
Recent studies have revealed that the nuclear factor of activated T-cells (NFAT) is a transcription factor that is highly expressed in aggressive cancer cells and tissues, and mediates invasion through the transcriptional induction of pro-invasion and pro-migration genes. However, the mechanisms through which nuclear factor of activated T-cells, cytoplasmic 1 (NFATc1), in particular, translocates to the nucleus and regulates the invasion of human glioblastoma multiforme (GBM) cells have not yet been fully elucidated. In the present study, to investigate the role of NFATc1 in GBM cells, we established a U251 cell line expressing a constitutively active form of NFATc1 (CA-NFATc1). On the other hand, RNA interference was used to knock down NFATc1 expression in the U251 cell line. Our results demonstrated that the expression of CA-NFATc1 promoted cancer cell invasion, while small interfering RNA (siRNA) against NFATc1 successfully inhibited the invasion ability of the U251 cell line. Moreover, we demonstrated that NFATc1 promoted U251 cell invasion through the induction of cyclooxygenase-2 (COX‑2). NFAT transcriptionally regulates the induction of COX-2 induction in U251 cells and binds to the promoter. We also demonstrated that a large proportion of GBM specimens expressed NFATc1. NFATc1 expression increased according to the histopathological grade of the glioma. However, no NFATc1 staining was observed in the non-neoplastic brain tissues. These findings suggest that the inhibition of the activation of the NFATc1 pathway is an effective therapeutic strategy for the clinical management of GBM.
Collapse
Affiliation(s)
- Laizang Wang
- Department of Neurosurgery, Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Zhi Wang
- Department of Neurosurgery, Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Jianhua Li
- Department of Neurosurgery, Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Weiguang Zhang
- Department of Neurosurgery, Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Fubin Ren
- Department of Neurosurgery, Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Wu Yue
- Department of Neurosurgery, Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
147
|
Quang CT, Leboucher S, Passaro D, Fuhrmann L, Nourieh M, Vincent-Salomon A, Ghysdael J. The calcineurin/NFAT pathway is activated in diagnostic breast cancer cases and is essential to survival and metastasis of mammary cancer cells. Cell Death Dis 2015; 6:e1658. [PMID: 25719243 PMCID: PMC4669815 DOI: 10.1038/cddis.2015.14] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 12/23/2014] [Accepted: 01/07/2015] [Indexed: 01/09/2023]
Abstract
Nuclear factor of activated T cells 1 (NFAT1) expression has been associated with increased migratory/invasive properties of mammary tumor-derived cell lines in vitro. It is unknown, however, if NFAT activation actually occurs in breast cancer cases and whether the calcineurin/NFAT pathway is important to mammary tumorigenesis. Using a cohort of 321 diagnostic cases of the major subgroup of breast cancer, we found Cn/NFAT pathway activated in ER−PR−HER2− triple-negative breast cancer subtype, whereas its prevalence is less in other subgroups. Using a small hairpin RNA-based gene expression silencing approach in murine mammary tumor cell line (4T1), we show that not only NFAT1 but also NFAT2 and their upstream activator Cn are essential to the migratory and invasive properties of mammary tumor cells. We also demonstrate that Cn, NFAT1 and NFAT2 are essential to the tumorigenic and metastatic properties of these cells in mice, a phenotype which coincides with increased apoptosis in vivo. Finally, global gene expression analyses identified several NFAT-deregulated genes, many of them being previously associated with mammary tumorigenesis. In particular, we identified the gene encoding a disintegrin and metalloproteinase with thrombonspondin motifs 1, as being a potential direct target of NFAT1. Thus, our results show that the Cn/NFAT pathway is activated in diagnostic cases of breast cancers and is essential to the tumorigenic and metastatic potential of mammary tumor cell line. These results suggest that pharmacological inhibition of the Cn/NFAT pathway at different levels could be of therapeutical interest for breast cancer patients.
Collapse
Affiliation(s)
- C Tran Quang
- 1] U1005-UMR3306-, Institut Curie, Bat 110 Centre Universitaire, Orsay 91405, France [2] Institut National de la Recherche Santé et de la Recherche Medicale, Orsay U1005, France [3] Centre National de la Recherche Scientifique, Orsay UMR3306, France
| | - S Leboucher
- 1] U1005-UMR3306-, Institut Curie, Bat 110 Centre Universitaire, Orsay 91405, France [2] Institut National de la Recherche Santé et de la Recherche Medicale, Orsay U1005, France [3] Centre National de la Recherche Scientifique, Orsay UMR3306, France
| | - D Passaro
- 1] U1005-UMR3306-, Institut Curie, Bat 110 Centre Universitaire, Orsay 91405, France [2] Institut National de la Recherche Santé et de la Recherche Medicale, Orsay U1005, France [3] Centre National de la Recherche Scientifique, Orsay UMR3306, France
| | - L Fuhrmann
- 1] Centre de Recherche, Institut Curie, Paris 75005, France [2] CNRS UMR144, Paris 75005, France [3] Department of Biopathology, Institut Curie, Paris 75005, France
| | - M Nourieh
- 1] Centre de Recherche, Institut Curie, Paris 75005, France [2] Department of Biopathology, Institut Curie, Paris 75005, France
| | - A Vincent-Salomon
- 1] Centre de Recherche, Institut Curie, Paris 75005, France [2] Department of Biopathology, Institut Curie, Paris 75005, France [3] INSERM U934, Paris 75005, France
| | - J Ghysdael
- 1] U1005-UMR3306-, Institut Curie, Bat 110 Centre Universitaire, Orsay 91405, France [2] Institut National de la Recherche Santé et de la Recherche Medicale, Orsay U1005, France [3] Centre National de la Recherche Scientifique, Orsay UMR3306, France
| |
Collapse
|
148
|
Kaunisto A, Henry WS, Montaser-Kouhsari L, Jaminet SC, Oh EY, Zhao L, Luo HR, Beck AH, Toker A. NFAT1 promotes intratumoral neutrophil infiltration by regulating IL8 expression in breast cancer. Mol Oncol 2015; 9:1140-54. [PMID: 25735562 DOI: 10.1016/j.molonc.2015.02.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 02/09/2015] [Accepted: 02/10/2015] [Indexed: 12/26/2022] Open
Abstract
NFAT transcription factors are key regulators of gene expression in immune cells. In addition, NFAT1-induced genes play diverse roles in mediating the progression of various solid tumors. Here we show that NFAT1 induces the expression of the IL8 gene by binding to its promoter and leading to IL8 secretion. Thapsigargin stimulation of breast cancer cells induces IL8 expression in an NFAT-dependent manner. Moreover, we show that NFAT1-mediated IL8 production promotes the migration of primary human neutrophils in vitro and also promotes neutrophil infiltration in tumor xenografts. Furthermore, expression of active NFAT1 effectively suppresses the growth of nascent and established tumors by a non cell-autonomous mechanism. Evaluation of breast tumor tissue reveals that while the levels of NFAT1 are similar in tumor cells and normal breast epithelium, cells in the tumor stroma express higher levels of NFAT1 compared to normal stroma. Elevated levels of NFAT1 also correlate with increased neutrophil infiltrate in breast tumors. These data point to a mechanism by which NFAT1 orchestrates the communication between breast cancer cells and host neutrophils during breast cancer progression.
Collapse
Affiliation(s)
- Aura Kaunisto
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Whitney S Henry
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | | - Shou-Ching Jaminet
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Eun-Yeong Oh
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Li Zhao
- Department of Laboratory Medicine, Children's Hospital Boston, Boston, MA, USA
| | - Hongbo R Luo
- Department of Laboratory Medicine, Children's Hospital Boston, Boston, MA, USA
| | - Andrew H Beck
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Alex Toker
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA.
| |
Collapse
|
149
|
Romano S, D'Angelillo A, Romano MF. Pleiotropic roles in cancer biology for multifaceted proteins FKBPs. Biochim Biophys Acta Gen Subj 2015; 1850:2061-8. [PMID: 25592270 DOI: 10.1016/j.bbagen.2015.01.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 01/05/2015] [Accepted: 01/06/2015] [Indexed: 12/18/2022]
Abstract
BACKGROUND FK506 binding proteins (FKBP) are multifunctional proteins highly conserved across the species and abundantly expressed in the cell. In addition to a well-established role in immunosuppression, FKBPs modulate several signal transduction pathways in the cell, due to their isomerase activity and the capability to interact with other proteins, inducing changes in conformation and function of protein partners. Increasing literature data support the concept that FKBPs control cancer related pathways. SCOPE OF THE REVIEW The aim of the present article is to review current knowledge on FKBPs roles in regulation of key signaling pathways associated with cancer. MAJOR CONCLUSIONS Some family members appear to promote disease while others are protective against tumorigenesis. GENERAL SIGNIFICANCE FKBPs family proteins are expected to provide new biomarkers and small molecular targets, in the near future, increasing diagnostic and therapeutic opportunities in the cancer field. This article is part of a Special Issue entitled Proline-Directed Foldases: Cell Signaling Catalysts and Drug Targets.
Collapse
Affiliation(s)
- Simona Romano
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Naples, Italy
| | - Anna D'Angelillo
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Naples, Italy; Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Maria Fiammetta Romano
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Naples, Italy.
| |
Collapse
|
150
|
Singh SK, Chen NM, Hessmann E, Siveke J, Lahmann M, Singh G, Voelker N, Vogt S, Esposito I, Schmidt A, Brendel C, Stiewe T, Gaedcke J, Mernberger M, Crawford HC, Bamlet WR, Zhang JS, Li XK, Smyrk TC, Billadeau DD, Hebrok M, Neesse A, Koenig A, Ellenrieder V. Antithetical NFATc1-Sox2 and p53-miR200 signaling networks govern pancreatic cancer cell plasticity. EMBO J 2015; 34:517-30. [PMID: 25586376 DOI: 10.15252/embj.201489574] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In adaptation to oncogenic signals, pancreatic ductal adenocarcinoma (PDAC) cells undergo epithelial-mesenchymal transition (EMT), a process combining tumor cell dedifferentiation with acquisition of stemness features. However, the mechanisms linking oncogene-induced signaling pathways with EMT and stemness remain largely elusive. Here, we uncover the inflammation-induced transcription factor NFATc1 as a central regulator of pancreatic cancer cell plasticity. In particular, we show that NFATc1 drives EMT reprogramming and maintains pancreatic cancer cells in a stem cell-like state through Sox2-dependent transcription of EMT and stemness factors. Intriguingly, NFATc1-Sox2 complex-mediated PDAC dedifferentiation and progression is opposed by antithetical p53-miR200c signaling, and inactivation of the tumor suppressor pathway is essential for tumor dedifferentiation and dissemination both in genetically engineered mouse models (GEMM) and human PDAC. Based on these findings, we propose the existence of a hierarchical signaling network regulating PDAC cell plasticity and suggest that the molecular decision between epithelial cell preservation and conversion into a dedifferentiated cancer stem cell-like phenotype depends on opposing levels of p53 and NFATc1 signaling activities.
Collapse
Affiliation(s)
- Shiv K Singh
- Signaling and Transcription Laboratory, Department of Gastroenterology, Philipps University, Marburg, Germany
| | - Nai-Ming Chen
- Department of Gastroenterology II, University Medical Center Goettingen, Goettingen, Germany
| | - Elisabeth Hessmann
- Department of Gastroenterology II, University Medical Center Goettingen, Goettingen, Germany
| | - Jens Siveke
- II. Medizinische Klinik, Klinikum rechts der Isar, Technische Universität, Munich, Germany
| | - Marlen Lahmann
- Institute for Molecular Tumor Biology, Philipps University, Marburg, Germany
| | - Garima Singh
- Signaling and Transcription Laboratory, Department of Gastroenterology, Philipps University, Marburg, Germany
| | - Nadine Voelker
- Signaling and Transcription Laboratory, Department of Gastroenterology, Philipps University, Marburg, Germany
| | - Sophia Vogt
- Signaling and Transcription Laboratory, Department of Gastroenterology, Philipps University, Marburg, Germany
| | - Irene Esposito
- Institute of Pathology, Helmholtz Zentrum, Munich, Germany
| | - Ansgar Schmidt
- Institute of Pathology, Philipps University, Marburg, Germany
| | - Cornelia Brendel
- Department of Hematology and Oncology, Philipps University, Marburg, Germany
| | - Thorsten Stiewe
- Institute for Molecular Tumor Biology, Philipps University, Marburg, Germany
| | - Jochen Gaedcke
- Department of Surgery, University Medical Center Goettingen, Goettingen, Germany
| | - Marco Mernberger
- Institute for Molecular Tumor Biology, Philipps University, Marburg, Germany
| | - Howard C Crawford
- Department of Cancer Biology, Mayo Clinic Florida, Jacksonville, FL, USA
| | - William R Bamlet
- Division of Biostatistics, College of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Jin-San Zhang
- Division of Oncology Research, Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN, USA School of Pharmaceutical Sciences and Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiao-Kun Li
- School of Pharmaceutical Sciences and Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Thomas C Smyrk
- Division of Anatomic Pathology, Mayo Clinic, Rochester, MN, USA
| | - Daniel D Billadeau
- Division of Oncology Research, Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN, USA
| | | | - Albrecht Neesse
- Department of Gastroenterology II, University Medical Center Goettingen, Goettingen, Germany
| | - Alexander Koenig
- Department of Gastroenterology II, University Medical Center Goettingen, Goettingen, Germany Division of Oncology Research, Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Volker Ellenrieder
- Department of Gastroenterology II, University Medical Center Goettingen, Goettingen, Germany
| |
Collapse
|