101
|
Feng X, Song Y, Lin W. Transforming Hydroxide-Containing Metal–Organic Framework Nodes for Transition Metal Catalysis. TRENDS IN CHEMISTRY 2020. [DOI: 10.1016/j.trechm.2020.08.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
102
|
Wang L, Li Y, Wang Y, Yang J, Li L, Li J. Research on CO2-N2O separation using flexible metal organic frameworks. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117311] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
103
|
Chong S, Lee S, Kim B, Kim J. Applications of machine learning in metal-organic frameworks. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213487] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
104
|
Honda Y, Fujiwara N, Tada S, Kobayashi Y, Oyama ST, Kikuchi R. Direct electrochemical synthesis of oxygenates from ethane using phosphate-based electrolysis cells. Chem Commun (Camb) 2020; 56:11199-11202. [PMID: 32902545 DOI: 10.1039/d0cc05111j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ethane was converted directly to acetaldehyde and ethanol by partial oxidation at 220 °C and ambient pressure using an electrolysis cell with a proton-conducting electrolyte, CsH2PO4/SiP2O7, and Pt/C electrodes. The ethane conversion and the selectivity to the products increased with the voltage applied to the cell. It was found that O species generated by water electrolysis functioned as a favorable oxidant for partial oxidation of ethane on the Pt/C anode at intermediate temperatures. The production rates of acetaldehyde and ethanol recorded in this study were significantly higher than those in preceding reports.
Collapse
Affiliation(s)
- Yusuke Honda
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Naoya Fujiwara
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Shohei Tada
- Department of Materials Sciences and Engineering, Ibaraki University, Ibaraki 316-8511, Japan
| | - Yasukazu Kobayashi
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki 305-8565, Japan
| | - Shigeo Ted Oyama
- College of Chemical Engineering, Fuzhou University, Fuzhou 350116, China and Department of Chemical Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Ryuji Kikuchi
- Department of Chemical System Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
105
|
Gopalsamy K, Babarao R. Heterometallic Metal Organic Frameworks for Air Separation: A Computational Study. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c02449] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Karuppasamy Gopalsamy
- Applied Chemistry and Environmental Science, School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| | - Ravichandar Babarao
- Applied Chemistry and Environmental Science, School of Science, RMIT University, Melbourne, Victoria 3001, Australia
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing Flagship, Clayton, Victoria 3169, Australia
| |
Collapse
|
106
|
Peng F, Yang H, Hernandez A, Schier DE, Feng P, Bu X. Bimetallic Rod-Packing Metal-Organic Framework Combining Two Charged Forms of 2-Hydroxyterephthalic Acid. Chemistry 2020; 26:11146-11149. [PMID: 32767615 DOI: 10.1002/chem.202002541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/10/2020] [Indexed: 11/08/2022]
Abstract
Although many rod-packing metal-organic frameworks are known, few are based on ordered heterometallic rod building unit. We show here the synthesis of CPM-76 based on an unprecedented Zn-Mg bimetallic rod with crystallographically distinguishable metal sites. The configuration of the rod offers two types of coordination site with trigonal bipyramidal and octahedral sites selectively occupied by Zn and Mg, respectively. Also unusual is the inter-connection mode between the rods, which is based on dual-charged forms (-3 and -2) of the 2-hydroxyterephthalic acid (H3 OBDC) ligand. Interestingly, each metal site in CPM-76 binds one solvent molecule, leading to a high density of solvent binding sites.
Collapse
Affiliation(s)
- Fang Peng
- Department of Chemistry and Biochemistry, California State University, Long Beach, Long Beach, CA, 90840, USA
| | - Huajun Yang
- Department of Chemistry, University of California, Riverside, Riverside, CA, 92521, USA
| | - Anthony Hernandez
- Department of Chemistry and Biochemistry, California State University, Long Beach, Long Beach, CA, 90840, USA
| | - Danielle E Schier
- Department of Chemistry and Biochemistry, California State University, Long Beach, Long Beach, CA, 90840, USA
| | - Pingyun Feng
- Department of Chemistry, University of California, Riverside, Riverside, CA, 92521, USA
| | - Xianhui Bu
- Department of Chemistry and Biochemistry, California State University, Long Beach, Long Beach, CA, 90840, USA
| |
Collapse
|
107
|
Mancuso JL, Mroz AM, Le KN, Hendon CH. Electronic Structure Modeling of Metal-Organic Frameworks. Chem Rev 2020; 120:8641-8715. [PMID: 32672939 DOI: 10.1021/acs.chemrev.0c00148] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Owing to their molecular building blocks, yet highly crystalline nature, metal-organic frameworks (MOFs) sit at the interface between molecule and material. Their diverse structures and compositions enable them to be useful materials as catalysts in heterogeneous reactions, electrical conductors in energy storage and transfer applications, chromophores in photoenabled chemical transformations, and beyond. In all cases, density functional theory (DFT) and higher-level methods for electronic structure determination provide valuable quantitative information about the electronic properties that underpin the functions of these frameworks. However, there are only two general modeling approaches in conventional electronic structure software packages: those that treat materials as extended, periodic solids, and those that treat materials as discrete molecules. Each approach has features and benefits; both have been widely employed to understand the emergent chemistry that arises from the formation of the metal-organic interface. This Review canvases these approaches to date, with emphasis placed on the application of electronic structure theory to explore reactivity and electron transfer using periodic, molecular, and embedded models. This includes (i) computational chemistry considerations such as how functional, k-grid, and other model variables are selected to enable insights into MOF properties, (ii) extended solid models that treat MOFs as materials rather than molecules, (iii) the mechanics of cluster extraction and subsequent chemistry enabled by these molecular models, (iv) catalytic studies using both solids and clusters thereof, and (v) embedded, mixed-method approaches, which simulate a fraction of the material using one level of theory and the remainder of the material using another dissimilar theoretical implementation.
Collapse
Affiliation(s)
- Jenna L Mancuso
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97405, United States
| | - Austin M Mroz
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97405, United States
| | - Khoa N Le
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97405, United States
| | - Christopher H Hendon
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon 97405, United States
| |
Collapse
|
108
|
Chen L, Zhang X, Cheng X, Xie Z, Kuang Q, Zheng L. The function of metal-organic frameworks in the application of MOF-based composites. NANOSCALE ADVANCES 2020; 2:2628-2647. [PMID: 36132385 PMCID: PMC9417945 DOI: 10.1039/d0na00184h] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/07/2020] [Indexed: 05/25/2023]
Abstract
In the last two decades, metal-organic frameworks (MOFs), as a class of porous crystalline materials formed by organic linkers coordinated-metal ions, have attracted increasing attention due to their unique structures and wide applications. Compared to single components, various well-designed MOF-based composites combining MOFs with other functional materials, such as nanoparticles, quantum dots, natural enzymes and polymers with remarkably enhanced or novel properties have recently been reported. To efficiently and directionally synthesize high-performance MOF-based composites for specific applications, it is vital to understand the structural-functional relationships and role of MOFs. In this review, preparation methods of MOF-based composites are first summarized and then the relationship between the structure and performance is determined. The functions of MOFs in practical use are classified and discussed through various examples, which may help chemists to understand the structural-functional relationship in MOF-based composites from a new perspective.
Collapse
Affiliation(s)
- Luning Chen
- Department of Chemistry, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 P. R. China +86-592-2183047
| | - Xibo Zhang
- Department of Chemistry, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 P. R. China +86-592-2183047
| | - Xiqing Cheng
- Department of Chemistry, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 P. R. China +86-592-2183047
| | - Zhaoxiong Xie
- Department of Chemistry, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 P. R. China +86-592-2183047
| | - Qin Kuang
- Department of Chemistry, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 P. R. China +86-592-2183047
| | - Lansun Zheng
- Department of Chemistry, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 P. R. China +86-592-2183047
| |
Collapse
|
109
|
Halter DP, Klein RA, Boreen MA, Trump BA, Brown CM, Long JR. Self-adjusting binding pockets enhance H 2 and CH 4 adsorption in a uranium-based metal-organic framework. Chem Sci 2020; 11:6709-6716. [PMID: 32953032 PMCID: PMC7473405 DOI: 10.1039/d0sc02394a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 05/27/2020] [Indexed: 11/21/2022] Open
Abstract
A new, air-stable, permanently porous uranium(iv) metal-organic framework U(bdc)2 (1, bdc2- = 1,4-benzenedicarboxylate) was synthesized and its H2 and CH4 adsorption properties were investigated. Low temperature adsorption isotherms confirm strong adsorption of both gases in the framework at low pressures. In situ gas-dosed neutron diffraction experiments with different D2 loadings revealed a rare example of cooperative framework contraction (ΔV = -7.8%), triggered by D2 adsorption at low pressures. This deformation creates two optimized binding pockets for hydrogen (Q st = -8.6 kJ mol-1) per pore, in agreement with H2 adsorption data. Analogous experiments with CD4 (Q st = -24.8 kJ mol-1) and N,N-dimethylformamide as guests revealed that the binding pockets in 1 adjust by selective framework contractions that are unique for each adsorbent, augmenting individual host-guest interactions. Our results suggest that the strategic combination of binding pockets and structural flexibility in metal-organic frameworks holds great potential for the development of new adsorbents with an enhanced substrate affinity.
Collapse
Affiliation(s)
- Dominik P Halter
- Department of Chemistry , University of California , Berkeley , CA 94720 , USA .
- Materials Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , CA 94720 , USA
| | - Ryan A Klein
- Chemistry and Nanoscience Department , National Renewable Energy Laboratory , Golden , CO 80401 , USA
- Center for Neutron Research , National Institute of Standards and Technology , Gaithersburg , MD 20899 , USA
| | - Michael A Boreen
- Department of Chemistry , University of California , Berkeley , CA 94720 , USA .
- Chemical Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , CA 94720 , USA
| | - Benjamin A Trump
- Center for Neutron Research , National Institute of Standards and Technology , Gaithersburg , MD 20899 , USA
| | - Craig M Brown
- Center for Neutron Research , National Institute of Standards and Technology , Gaithersburg , MD 20899 , USA
- Department of Chemical Engineering , University of Delaware , Newark , DE 19716 , USA
| | - Jeffrey R Long
- Department of Chemistry , University of California , Berkeley , CA 94720 , USA .
- Materials Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , CA 94720 , USA
- Department of Chemical and Biomolecular Engineering , University of California , Berkeley , CA 94720 , USA
| |
Collapse
|
110
|
Barona M, Snurr RQ. Exploring the Tunability of Trimetallic MOF Nodes for Partial Oxidation of Methane to Methanol. ACS APPLIED MATERIALS & INTERFACES 2020; 12:28217-28231. [PMID: 32427460 DOI: 10.1021/acsami.0c06241] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Density functional theory is used to study the tunability of trigonal prismatic SBUs found in metal-organic frameworks (MOFs) such as MIL-100, MIL-101, and PCN-250/MIL-127 of chemical composition M3+2M2+(μ3-O)(RCOO)6 for the partial oxidation of methane to methanol. We performed a combinatorial screening by varying the composition of the trimetallic node (M13+)2(M22+) (where M1 and M2 = V, Cr, Mn, Fe, Co, and Ni) and calculated the reaction pathway on both M1 and M2 sites. The systematic replacement of metals in the trimetallic cluster allowed us to study the influence of spectator atoms on the catalytic activity of a specific metal site in the cluster toward the N2O activation and C-H bond activation steps of the reaction. In the screening, we identified the top-performing node compositions with predicted barriers lower than those already reported for experimentally tested MOFs with trigonal prismatic SBUs. This work demonstrates the opportunity to tune the catalytic activity of MOFs for redox reactions by changing their metal node composition.
Collapse
Affiliation(s)
- Melissa Barona
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Randall Q Snurr
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
111
|
He X, Looker BG, Dinh KT, Stubbs AW, Chen T, Meyer RJ, Serna P, Román-Leshkov Y, Lancaster KM, Dincă M. Cerium(IV) Enhances the Catalytic Oxidation Activity of Single-Site Cu Active Sites in MOFs. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02493] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xin He
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Benjamin G. Looker
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - Kimberly T. Dinh
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Amanda W. Stubbs
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Tianyang Chen
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Randall J. Meyer
- ExxonMobil Research and Engineering, Annandale, New Jersey 08801, United States
| | - Pedro Serna
- ExxonMobil Research and Engineering, Annandale, New Jersey 08801, United States
| | - Yuriy Román-Leshkov
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Kyle M. Lancaster
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853, United States
| | - Mircea Dincă
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
112
|
Suh BL, Kim J. Reverse shape selectivity of hexane isomer in ligand inserted MOF-74. RSC Adv 2020; 10:22601-22605. [PMID: 35514558 PMCID: PMC9054571 DOI: 10.1039/d0ra03377d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/06/2020] [Indexed: 11/29/2022] Open
Abstract
Separation of linear, mono-branched, and di-branched isomers is critically important in the petrochemical industry. In this computational study, we demonstrate that the ligand inserted Mg-MOF-74 structure leads to a reverse selectivity effect (i.e. phenomenon that preferentially allows larger species molecules to permeate in a gas mixture) of hexane isomers in the resulting material. Molecular dynamics simulations suggest that strong confinement of the di-branched hydrocarbons in the small pores lead to reverse selectivity. Over a magnitude difference in diffusivity between linear alkanes and their di-branched isomers was observed, clearly showing the steric effects imposed by the pore structure.
Collapse
Affiliation(s)
- Bong Lim Suh
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST) 291 Daehak-ro, Yuseong-gu Daejeon 34141 Republic of Korea
- Materials and Life Science Research Division, Korea Institute of Science and Technology Seoul 02792 Republic of Korea
| | - Jihan Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST) 291 Daehak-ro, Yuseong-gu Daejeon 34141 Republic of Korea
| |
Collapse
|
113
|
Rosen AS, Notestein JM, Snurr RQ. High‐Valent Metal–Oxo Species at the Nodes of Metal–Triazolate Frameworks: The Effects of Ligand Exchange and Two‐State Reactivity for C−H Bond Activation. Angew Chem Int Ed Engl 2020; 59:19494-19502. [DOI: 10.1002/anie.202004458] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Indexed: 01/18/2023]
Affiliation(s)
- Andrew S. Rosen
- Department of Chemical and Biological Engineering Northwestern University 2145 Sheridan Rd. Evanston IL 60208 USA
| | - Justin M. Notestein
- Department of Chemical and Biological Engineering Northwestern University 2145 Sheridan Rd. Evanston IL 60208 USA
| | - Randall Q. Snurr
- Department of Chemical and Biological Engineering Northwestern University 2145 Sheridan Rd. Evanston IL 60208 USA
| |
Collapse
|
114
|
Rosen AS, Notestein JM, Snurr RQ. High‐Valent Metal–Oxo Species at the Nodes of Metal–Triazolate Frameworks: The Effects of Ligand Exchange and Two‐State Reactivity for C−H Bond Activation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004458] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Andrew S. Rosen
- Department of Chemical and Biological Engineering Northwestern University 2145 Sheridan Rd. Evanston IL 60208 USA
| | - Justin M. Notestein
- Department of Chemical and Biological Engineering Northwestern University 2145 Sheridan Rd. Evanston IL 60208 USA
| | - Randall Q. Snurr
- Department of Chemical and Biological Engineering Northwestern University 2145 Sheridan Rd. Evanston IL 60208 USA
| |
Collapse
|
115
|
Wei YS, Zhang M, Zou R, Xu Q. Metal-Organic Framework-Based Catalysts with Single Metal Sites. Chem Rev 2020; 120:12089-12174. [PMID: 32356657 DOI: 10.1021/acs.chemrev.9b00757] [Citation(s) in RCA: 425] [Impact Index Per Article: 106.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Metal-organic frameworks (MOFs) are a class of distinctive porous crystalline materials constructed by metal ions/clusters and organic linkers. Owing to their structural diversity, functional adjustability, and high surface area, different types of MOF-based single metal sites are well exploited, including coordinately unsaturated metal sites from metal nodes and metallolinkers, as well as active metal species immobilized to MOFs. Furthermore, controllable thermal transformation of MOFs can upgrade them to nanomaterials functionalized with active single-atom catalysts (SACs). These unique features of MOFs and their derivatives enable them to serve as a highly versatile platform for catalysis, which has actually been becoming a rapidly developing interdisciplinary research area. In this review, we overview the recent developments of catalysis at single metal sites in MOF-based materials with emphasis on their structures and applications for thermocatalysis, electrocatalysis, and photocatalysis. We also compare the results and summarize the major insights gained from the works in this review, providing the challenges and prospects in this emerging field.
Collapse
Affiliation(s)
- Yong-Sheng Wei
- AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Sakyo-ku, Kyoto 606-8501, Japan
| | - Mei Zhang
- AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Sakyo-ku, Kyoto 606-8501, Japan
| | - Ruqiang Zou
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, PR China
| | - Qiang Xu
- AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL), National Institute of Advanced Industrial Science and Technology (AIST), Sakyo-ku, Kyoto 606-8501, Japan.,School of Chemistry and Chemical Engineering, and Institute for Innovative Materials and Energy, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
116
|
Chen L, Wang HF, Li C, Xu Q. Bimetallic metal-organic frameworks and their derivatives. Chem Sci 2020; 11:5369-5403. [PMID: 34094065 PMCID: PMC8159423 DOI: 10.1039/d0sc01432j] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/24/2020] [Indexed: 12/13/2022] Open
Abstract
Bimetallic metal-organic frameworks (MOFs) have two different metal ions in the inorganic nodes. According to the metal distribution, the architecture of bimetallic MOFs can be classified into two main categories namely solid solution and core-shell structures. Various strategies have been developed to prepare bimetallic MOFs with controlled compositions and structures. Bimetallic MOFs show a synergistic effect and enhanced properties compared to their monometallic counterparts and have found many applications in the fields of gas adsorption, catalysis, energy storage and conversion, and luminescence sensing. Moreover, bimetallic MOFs can serve as excellent precursors/templates for the synthesis of functional nanomaterials with controlled sizes, compositions, and structures. Bimetallic MOF derivatives show exposed active sites, good stability and conductivity, enabling them to extend their applications to the catalysis of more challenging reactions and electrochemical energy storage and conversion. This review provides an overview of the significant advances in the development of bimetallic MOFs and their derivatives with special emphases on their preparation and applications.
Collapse
Affiliation(s)
- Liyu Chen
- AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL), National Institute of Advanced Industrial Science and Technology (AIST) Yoshida, Sakyo-ku Kyoto 606-8501 Japan
| | - Hao-Fan Wang
- AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL), National Institute of Advanced Industrial Science and Technology (AIST) Yoshida, Sakyo-ku Kyoto 606-8501 Japan
| | - Caixia Li
- AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL), National Institute of Advanced Industrial Science and Technology (AIST) Yoshida, Sakyo-ku Kyoto 606-8501 Japan
| | - Qiang Xu
- AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL), National Institute of Advanced Industrial Science and Technology (AIST) Yoshida, Sakyo-ku Kyoto 606-8501 Japan
- School of Chemistry and Chemical Engineering, Yangzhou University Yangzhou 225002 China
| |
Collapse
|
117
|
Feng S, Zhang X, Shi D, Wang Z. Zeolitic imidazolate framework-8 (ZIF-8) for drug delivery: A critical review. Front Chem Sci Eng 2020. [DOI: 10.1007/s11705-020-1927-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
118
|
Affiliation(s)
- Anuvab Das
- Department of Chemistry, Texas A&M University, College Station, Texas, USA
| | | | - David C. Powers
- Department of Chemistry, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
119
|
Zhang X, Liu H, An P, Shi Y, Han J, Yang Z, Long C, Guo J, Zhao S, Zhao K, Yin H, Zheng L, Zhang B, Liu X, Zhang L, Li G, Tang Z. Delocalized electron effect on single metal sites in ultrathin conjugated microporous polymer nanosheets for boosting CO 2 cycloaddition. SCIENCE ADVANCES 2020; 6:eaaz4824. [PMID: 32426463 PMCID: PMC7182427 DOI: 10.1126/sciadv.aaz4824] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 01/24/2020] [Indexed: 05/15/2023]
Abstract
CO2 cycloaddition with epoxides at low temperature and pressure has been broadly recognized as an ambitious but challenging goal, which requires the catalysts to have precisely controlled Lewis acid sites. Here, we demonstrate that both stereochemical environment and oxidation state of single cobalt active sites in cobalt tetraaminophthalocyanine [CoPc(NH2)4] are finely tuned via molecular engineering with 2,5-di-tert-butyl-1,4-benzoquinone (DTBBQ). Notably, DTBBQ incorporation not only enables formation of 5-nm-thick conjugated microporous polymer (CMP) nanosheets due to the steric hindrance effect of tert-butyl groups but also makes isolated cobalt sites with high oxidation state due to the presence of delocalized electron-withdrawing effect of alkene groups in DTBBQ via conjugated skeleton. Notably, when used as heterogeneous catalysts for CO2 cycloaddition with different epoxides, single cobalt active sites on the ultrathin CMP nanosheets exhibit unprecedentedly high activity and excellent stability under mild reaction conditions.
Collapse
Affiliation(s)
- Xiaofei Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Haitao Liu
- Laboratory of Computational Physics, Institute of Applied Physics and Computational Mathematics, Beijing 100088, P. R. China
| | - Pengfei An
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yanan Shi
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Jianyu Han
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Zhongjie Yang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Chang Long
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Jun Guo
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Shenlong Zhao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Kun Zhao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Huajie Yin
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Binhao Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Xiaoping Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Lijuan Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150080, P. R. China
| | - Guodong Li
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
| | - Zhiyong Tang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150080, P. R. China
| |
Collapse
|
120
|
Gao X, Cui R, Song L, Liu Z. Hollow structural metal-organic frameworks exhibit high drug loading capacity, targeted delivery and magnetic resonance/optical multimodal imaging. Dalton Trans 2020; 48:17291-17297. [PMID: 31714562 DOI: 10.1039/c9dt03287h] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Metal-organic frameworks (MOFs) are attractive in designing drug delivery systems for the treatment of cancer because of their unique porous properties. However, the search for multifunctional MOFs with high drug loading and magnetic resonance/fluorescence imaging capacities is still a challenge and they have rarely been reported. In this article, using the intrinsic advantages of MOFs, hollow Fe-MOFs with biomolecular grafting were fabricated and shown to be capable of loading much more drugs and exhibiting targeted drug delivery, pH-controlled drug release and magnetic resonance/fluorescence imaging. Benefiting from their hollow structures, the drug loading capacity is as high as 35%. Due to post-modification with folic acid (FA) and the fluorescent reagent (5-FAM) and the existence of Fe(iii), in vitro experiments indicate that Fe-MOF-5-NH2-FA-5-FAM/5-FU can target cancer cells HepG-2 and display excellent magnetic resonance/fluorescence imaging. Furthermore, in vivo biodistribution indicates that Fe-MOF-5-NH2-FA-5-FAM/5-FU can accumulate in the tumor. Taken together, our work integrates high drug loading and bioimaging into a single MOF successfully and reveals the enormous potential of the functionalized MOF for drug delivery and bioimaging.
Collapse
Affiliation(s)
- Xuechuan Gao
- College of Chemical Engineering, Inner Mongolia University of Technology, Hohhot, 010051, P. R. China
| | | | | | | |
Collapse
|
121
|
Wang L, Zhang F, Wang C, Li Y, Yang J, Li L, Li J. Ethylenediamine-functionalized metal organic frameworks MIL-100(Cr) for efficient CO2/N2O separation. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116219] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
122
|
Barona M, Gaggioli CA, Gagliardi L, Snurr RQ. DFT Study on the Catalytic Activity of ALD-Grown Diiron Oxide Nanoclusters for Partial Oxidation of Methane to Methanol. J Phys Chem A 2020; 124:1580-1592. [PMID: 32017850 DOI: 10.1021/acs.jpca.9b11835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Using density functional theory (DFT), we studied the catalytic activity of iron oxide nanoclusters that mimic the structure of the active site in the soluble form of methane monooxygenase (sMMO) for the partial oxidation of methane to methanol. Using N2O as the oxidant, we consider a radical-rebound mechanism and a concerted mechanism for the oxidation of methane on either a bridging oxygen (Ob) or a terminal oxygen (Ot) active site. We find that the radical-rebound pathway is preferred over the concerted pathway by 40-50 kJ/mol, but the desorption of methanol and the regeneration of the oxygen site are found to be the highest barriers for the direct conversion of methane to methanol with these catalysts. As demonstrated by a population analysis, the Ox (x = b or t) site behaves as an oxygen radical during the H abstraction, and the [Fe+-Ox-] site behaves as a Lewis acid-base pair during the concerted C-H cleavage. Molecular orbital decomposition analysis further demonstrates electron transfer during the oxidation and reduction steps of the reaction. High-level multireference calculations were also carried out to further assess the DFT results. Understanding how these systems behave during the proposed reaction pathways provides new insights into how they can be tuned for methane partial oxidation.
Collapse
Affiliation(s)
- Melissa Barona
- Department of Chemical and Biological Engineering , Northwestern University , Evanston , Illinois 60208 , United States
| | - Carlo Alberto Gaggioli
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute , University of Minnesota-Twin Cities , Minneapolis , Minnesota 55455 , United States
| | - Laura Gagliardi
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute , University of Minnesota-Twin Cities , Minneapolis , Minnesota 55455 , United States
| | - Randall Q Snurr
- Department of Chemical and Biological Engineering , Northwestern University , Evanston , Illinois 60208 , United States
| |
Collapse
|
123
|
Song Y, Feng X, Chen JS, Brzezinski C, Xu Z, Lin W. Multistep Engineering of Synergistic Catalysts in a Metal–Organic Framework for Tandem C–O Bond Cleavage. J Am Chem Soc 2020; 142:4872-4882. [DOI: 10.1021/jacs.0c00073] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Yang Song
- Department of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Xuanyu Feng
- Department of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Justin S. Chen
- Department of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Carter Brzezinski
- Department of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Ziwan Xu
- Department of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Wenbin Lin
- Department of Chemistry, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| |
Collapse
|
124
|
Rosen AS, Mian MR, Islamoglu T, Chen H, Farha OK, Notestein JM, Snurr RQ. Tuning the Redox Activity of Metal–Organic Frameworks for Enhanced, Selective O2 Binding: Design Rules and Ambient Temperature O2 Chemisorption in a Cobalt–Triazolate Framework. J Am Chem Soc 2020; 142:4317-4328. [DOI: 10.1021/jacs.9b12401] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Andrew S. Rosen
- Department of Chemical & Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - M. Rasel Mian
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Timur Islamoglu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Haoyuan Chen
- Department of Chemical & Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Omar K. Farha
- Department of Chemical & Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Justin M. Notestein
- Department of Chemical & Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Randall Q. Snurr
- Department of Chemical & Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
125
|
Mason JL, Gupta AK, McMahon AJ, Folluo CN, Raghavachari K, Jarrold CC. The striking influence of oxophilicity differences in heterometallic Mo–Mn oxide cluster reactions with water. J Chem Phys 2020; 152:054301. [DOI: 10.1063/1.5142398] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Jarrett L. Mason
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, USA
| | - Ankur K. Gupta
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, USA
| | - Abbey J. McMahon
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, USA
| | - Carley N. Folluo
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, USA
| | - Krishnan Raghavachari
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, USA
| | - Caroline Chick Jarrold
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405, USA
| |
Collapse
|
126
|
Dutta S, Kumari N, Dubbu S, Jang SW, Kumar A, Ohtsu H, Kim J, Cho SH, Kawano M, Lee IS. Highly Mesoporous Metal‐Organic Frameworks as Synergistic Multimodal Catalytic Platforms for Divergent Cascade Reactions. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916578] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Soumen Dutta
- Center for Nanospace-confined Chemical Reactions (NCCR)Pohang University of Science and Technology (POSTECH) Pohang 37673 South Korea
- Department of ChemistryPohang University of Science and Technology (POSTECH) Pohang 37673 South Korea
| | - Nitee Kumari
- Center for Nanospace-confined Chemical Reactions (NCCR)Pohang University of Science and Technology (POSTECH) Pohang 37673 South Korea
- Department of ChemistryPohang University of Science and Technology (POSTECH) Pohang 37673 South Korea
| | - Sateesh Dubbu
- Center for Nanospace-confined Chemical Reactions (NCCR)Pohang University of Science and Technology (POSTECH) Pohang 37673 South Korea
- Department of ChemistryPohang University of Science and Technology (POSTECH) Pohang 37673 South Korea
| | - Sun Woo Jang
- Center for Nanospace-confined Chemical Reactions (NCCR)Pohang University of Science and Technology (POSTECH) Pohang 37673 South Korea
- Department of ChemistryPohang University of Science and Technology (POSTECH) Pohang 37673 South Korea
| | - Amit Kumar
- Center for Nanospace-confined Chemical Reactions (NCCR)Pohang University of Science and Technology (POSTECH) Pohang 37673 South Korea
- Department of ChemistryPohang University of Science and Technology (POSTECH) Pohang 37673 South Korea
| | - Hiroyoshi Ohtsu
- Department of ChemistrySchool of ScienceTokyo Institute of Technology Tokyo 152-8550 Japan
| | - Junghoon Kim
- Department of ChemistryPohang University of Science and Technology (POSTECH) Pohang 37673 South Korea
| | - Seung Hwan Cho
- Department of ChemistryPohang University of Science and Technology (POSTECH) Pohang 37673 South Korea
| | - Masaki Kawano
- Department of ChemistrySchool of ScienceTokyo Institute of Technology Tokyo 152-8550 Japan
| | - In Su Lee
- Center for Nanospace-confined Chemical Reactions (NCCR)Pohang University of Science and Technology (POSTECH) Pohang 37673 South Korea
- Department of ChemistryPohang University of Science and Technology (POSTECH) Pohang 37673 South Korea
| |
Collapse
|
127
|
Dutta S, Kumari N, Dubbu S, Jang SW, Kumar A, Ohtsu H, Kim J, Cho SH, Kawano M, Lee IS. Highly Mesoporous Metal‐Organic Frameworks as Synergistic Multimodal Catalytic Platforms for Divergent Cascade Reactions. Angew Chem Int Ed Engl 2020; 59:3416-3422. [DOI: 10.1002/anie.201916578] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Indexed: 01/10/2023]
Affiliation(s)
- Soumen Dutta
- Center for Nanospace-confined Chemical Reactions (NCCR)Pohang University of Science and Technology (POSTECH) Pohang 37673 South Korea
- Department of ChemistryPohang University of Science and Technology (POSTECH) Pohang 37673 South Korea
| | - Nitee Kumari
- Center for Nanospace-confined Chemical Reactions (NCCR)Pohang University of Science and Technology (POSTECH) Pohang 37673 South Korea
- Department of ChemistryPohang University of Science and Technology (POSTECH) Pohang 37673 South Korea
| | - Sateesh Dubbu
- Center for Nanospace-confined Chemical Reactions (NCCR)Pohang University of Science and Technology (POSTECH) Pohang 37673 South Korea
- Department of ChemistryPohang University of Science and Technology (POSTECH) Pohang 37673 South Korea
| | - Sun Woo Jang
- Center for Nanospace-confined Chemical Reactions (NCCR)Pohang University of Science and Technology (POSTECH) Pohang 37673 South Korea
- Department of ChemistryPohang University of Science and Technology (POSTECH) Pohang 37673 South Korea
| | - Amit Kumar
- Center for Nanospace-confined Chemical Reactions (NCCR)Pohang University of Science and Technology (POSTECH) Pohang 37673 South Korea
- Department of ChemistryPohang University of Science and Technology (POSTECH) Pohang 37673 South Korea
| | - Hiroyoshi Ohtsu
- Department of ChemistrySchool of ScienceTokyo Institute of Technology Tokyo 152-8550 Japan
| | - Junghoon Kim
- Department of ChemistryPohang University of Science and Technology (POSTECH) Pohang 37673 South Korea
| | - Seung Hwan Cho
- Department of ChemistryPohang University of Science and Technology (POSTECH) Pohang 37673 South Korea
| | - Masaki Kawano
- Department of ChemistrySchool of ScienceTokyo Institute of Technology Tokyo 152-8550 Japan
| | - In Su Lee
- Center for Nanospace-confined Chemical Reactions (NCCR)Pohang University of Science and Technology (POSTECH) Pohang 37673 South Korea
- Department of ChemistryPohang University of Science and Technology (POSTECH) Pohang 37673 South Korea
| |
Collapse
|
128
|
Bour JR, Wright AM, He X, Dincă M. Bioinspired chemistry at MOF secondary building units. Chem Sci 2020; 11:1728-1737. [PMID: 32180923 PMCID: PMC7047978 DOI: 10.1039/c9sc06418d] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 01/23/2020] [Indexed: 01/08/2023] Open
Abstract
This perspective describes recent developments and future directions in bioinorganic chemistry and biomimetic catalysis centered at metal–organic framework secondary building units.
The secondary building units (SBUs) in metal–organic frameworks (MOFs) support metal ions in well-defined and site-isolated coordination environments with ligand fields similar to those found in metalloenzymes. This burgeoning class of materials has accordingly been recognized as an attractive platform for metalloenzyme active site mimicry and biomimetic catalysis. Early progress in this area was slowed by challenges such as a limited range of hydrolytic stability and a relatively poor diversity of redox-active metals that could be incorporated into SBUs. However, recent progress with water-stable MOFs and the development of more sophisticated synthetic routes such as postsynthetic cation exchange have largely addressed these challenges. MOF SBUs are being leveraged to interrogate traditionally unstable intermediates and catalytic processes involving small gaseous molecules. This perspective describes recent advances in the use of metal centers within SBUs for biomimetic chemistry and discusses key future developments in this area.
Collapse
Affiliation(s)
- James R Bour
- Department of Chemistry , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , USA .
| | - Ashley M Wright
- Department of Chemistry , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , USA .
| | - Xin He
- Department of Chemistry , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , USA .
| | - Mircea Dincă
- Department of Chemistry , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , USA .
| |
Collapse
|
129
|
Quan Y, Lan G, Fan Y, Shi W, You E, Lin W. Metal-Organic Layers for Synergistic Lewis Acid and Photoredox Catalysis. J Am Chem Soc 2020; 142:1746-1751. [PMID: 31927920 DOI: 10.1021/jacs.9b12593] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We report the design of a new multifunctional metal-organic layer (MOL), Hf12-Ir-OTf, comprising triflate (OTf)-capped Hf12 secondary building units (SBUs) and photosensitizing Ir(DBB)[dF(CF3)ppy]2+ [DBB-Ir-F, DBB = 4,4'-di(4-benzoato)-2,2'-bipyridine; dF(CF3)ppy = 2-(2,4-difluorophenyl)-5-(trifluoromethyl)pyridine] bridging ligands. Hf12-Ir-OTf effectively catalyzed dehydrogenative cross-couplings of heteroarenes with ethers, amines, and unactivated alkanes with turnover numbers of 930, 790, and 950, respectively. Hf12-Ir-OTf also competently catalyzed late-stage functionalization of bioactive and drug molecules such as caffeine, Fasudil, and Metyrapone. The superior catalytic performance of Hf12-Ir-OTf over a mixture of photoredox catalyst and stoichiometric amounts of Brønsted acids or substoichiometric amounts (20 mol %) of Lewis acids is attributed to the close proximity (1.2 nm) between photoredox and Lewis acid catalysts in Hf12-Ir-OTf, which not only facilitates the reaction between the carbon radical and the activated heteroarene but also accelerates the electron transfer from the nitrogen radical intermediate to the Ir(IV) species in the catalytic cycle.
Collapse
Affiliation(s)
- Yangjian Quan
- Department of Chemistry , The University of Chicago , Chicago , Illinois 60637 , United States
| | - Guangxu Lan
- Department of Chemistry , The University of Chicago , Chicago , Illinois 60637 , United States
| | - Yingjie Fan
- Department of Chemistry , The University of Chicago , Chicago , Illinois 60637 , United States
| | - Wenjie Shi
- Department of Chemistry , The University of Chicago , Chicago , Illinois 60637 , United States
| | - Eric You
- Department of Chemistry , The University of Chicago , Chicago , Illinois 60637 , United States
| | - Wenbin Lin
- Department of Chemistry , The University of Chicago , Chicago , Illinois 60637 , United States
| |
Collapse
|
130
|
Quarez É, Jouhara A, Grolleau S, Dolhem F, Dupré N, Poizot P. From partial to complete neutralization of 2,5-dihydroxyterephthalic acid in the Li–Na system: crystal chemistry and electrochemical behavior of Na2Li2C8H2O6vs.Li. CrystEngComm 2020. [DOI: 10.1039/c9ce01674k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The 2,5-dihydroxyterephthalic acid (H4-p-DHT) is of special interest in the field of materials science because of the two symmetric sets of oxygen donor functional groups (i.e., β-hydroxy acid moieties).
Collapse
Affiliation(s)
- Éric Quarez
- Université de Nantes
- CNRS
- Institut des Matériaux Jean Rouxel, IMN
- F-44000 Nantes
- France
| | - Alia Jouhara
- Université de Nantes
- CNRS
- Institut des Matériaux Jean Rouxel, IMN
- F-44000 Nantes
- France
| | - Stéphane Grolleau
- Université de Nantes
- CNRS
- Institut des Matériaux Jean Rouxel, IMN
- F-44000 Nantes
- France
| | - Franck Dolhem
- Laboratoire de Glycochimie, des Antimicrobiens et des Agroressources (LG2A)
- UMR CNRS 7378
- Université de Picardie Jules Verne
- 80039 Amiens Cedex
- France
| | - Nicolas Dupré
- Université de Nantes
- CNRS
- Institut des Matériaux Jean Rouxel, IMN
- F-44000 Nantes
- France
| | - Philippe Poizot
- Université de Nantes
- CNRS
- Institut des Matériaux Jean Rouxel, IMN
- F-44000 Nantes
- France
| |
Collapse
|
131
|
Rivera-Torrente M, Mandemaker LDB, Filez M, Delen G, Seoane B, Meirer F, Weckhuysen BM. Spectroscopy, microscopy, diffraction and scattering of archetypal MOFs: formation, metal sites in catalysis and thin films. Chem Soc Rev 2020; 49:6694-6732. [DOI: 10.1039/d0cs00635a] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A comprehensive overview of characterization tools for the analysis of well-known metal–organic frameworks and physico-chemical phenomena associated to their applications.
Collapse
Affiliation(s)
- Miguel Rivera-Torrente
- Inorganic Chemistry and Catalysis
- Debye Institute for Nanomaterials Science
- Utrecht University
- 3584 CG Utrecht
- The Netherlands
| | - Laurens D. B. Mandemaker
- Inorganic Chemistry and Catalysis
- Debye Institute for Nanomaterials Science
- Utrecht University
- 3584 CG Utrecht
- The Netherlands
| | - Matthias Filez
- Inorganic Chemistry and Catalysis
- Debye Institute for Nanomaterials Science
- Utrecht University
- 3584 CG Utrecht
- The Netherlands
| | - Guusje Delen
- Inorganic Chemistry and Catalysis
- Debye Institute for Nanomaterials Science
- Utrecht University
- 3584 CG Utrecht
- The Netherlands
| | - Beatriz Seoane
- Inorganic Chemistry and Catalysis
- Debye Institute for Nanomaterials Science
- Utrecht University
- 3584 CG Utrecht
- The Netherlands
| | - Florian Meirer
- Inorganic Chemistry and Catalysis
- Debye Institute for Nanomaterials Science
- Utrecht University
- 3584 CG Utrecht
- The Netherlands
| | - Bert M. Weckhuysen
- Inorganic Chemistry and Catalysis
- Debye Institute for Nanomaterials Science
- Utrecht University
- 3584 CG Utrecht
- The Netherlands
| |
Collapse
|
132
|
Jin Y, Zhang Q, Zhang Y, Duan C. Electron transfer in the confined environments of metal–organic coordination supramolecular systems. Chem Soc Rev 2020; 49:5561-5600. [DOI: 10.1039/c9cs00917e] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In this review, we overview regulatory factors and diverse applications of electron transfer in confined environments of supramolecular host–guest systems.
Collapse
Affiliation(s)
- Yunhe Jin
- State Key Laboratory of Fine Chemicals
- Zhang Dayu School of Chemistry
- Dalian University of Technology
- Dalian 116024
- China
| | - Qingqing Zhang
- State Key Laboratory of Fine Chemicals
- Zhang Dayu School of Chemistry
- Dalian University of Technology
- Dalian 116024
- China
| | - Yongqiang Zhang
- State Key Laboratory of Fine Chemicals
- Zhang Dayu School of Chemistry
- Dalian University of Technology
- Dalian 116024
- China
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals
- Zhang Dayu School of Chemistry
- Dalian University of Technology
- Dalian 116024
- China
| |
Collapse
|
133
|
Zhang J, Chen YY, Tan C, Ma X, Wang XF, Ou G. Hydrogen bonding-tuned hydroxo-bridged tetra-copper Cu 4(bipy) 4-cluster supramolecular network to layered coordination polymer. CrystEngComm 2020. [DOI: 10.1039/d0ce00985g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Hydrogen bonds influence the transformation of the Cu4-cluster⋯ligand hydrogen net to the layered coordination polymer.
Collapse
Affiliation(s)
- Jian Zhang
- School of Chemistry and Chemical Engineering
- University of South China
- Hengyang 421001
- P. R. China
| | - Yang-Yang Chen
- School of Chemistry and Chemical Engineering
- University of South China
- Hengyang 421001
- P. R. China
| | - Chunhong Tan
- School of Chemistry and Chemical Engineering
- University of South China
- Hengyang 421001
- P. R. China
| | - Xiao Ma
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology
- Advanced Catalysis and Green Manufacturing Collaborative Innovation Center
- School of Petrochemical Engineering
- Changzhou University
- Changzhou 213164
| | - Xiao-Feng Wang
- School of Chemistry and Chemical Engineering
- University of South China
- Hengyang 421001
- P. R. China
- Hunan Key Laboratory for the Design and Application of Actinide Complexes
| | - Guangchuan Ou
- Department of Biology and Chemistry
- Hunan University of Science and Engineering
- Yongzhou 425199
- P. R. China
| |
Collapse
|
134
|
Lenzen D, Eggebrecht JG, Mileo PGM, Fröhlich D, Henninger S, Atzori C, Bonino F, Lieb A, Maurin G, Stock N. Unravelling the water adsorption in a robust iron carboxylate metal–organic framework. Chem Commun (Camb) 2020; 56:9628-9631. [DOI: 10.1039/d0cc03489d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Scale-up of an Fe-MOF and elucidation of its water adsorption properties by PXRD, sorption measurements and molecular simulations are reported.
Collapse
Affiliation(s)
- Dirk Lenzen
- Institute of Inorganic Chemistry
- Christian-Albrechts-Universität Kiel
- 24118 Kiel
- Germany
| | - Jakob G. Eggebrecht
- Otto-von-Guericke-Universität Magdeburg
- Institut für Chemie
- 39106 Magdeburg
- Germany
| | | | - Dominik Fröhlich
- Department Heating and Cooling Technologies
- Group Sorption Materials
- Fraunhofer-Institut für Solare Energiesysteme ISE
- 79110 Freiburg
- Germany
| | - Stefan Henninger
- Department Heating and Cooling Technologies
- Group Sorption Materials
- Fraunhofer-Institut für Solare Energiesysteme ISE
- 79110 Freiburg
- Germany
| | - Cesare Atzori
- Department of Chemistry
- NIS and INSTM Reference Centre
- Università di Torino
- I-10125 Torino
- Italy
| | - Francesca Bonino
- Department of Chemistry
- NIS and INSTM Reference Centre
- Università di Torino
- I-10125 Torino
- Italy
| | - Alexandra Lieb
- Otto-von-Guericke-Universität Magdeburg
- Institut für Chemie
- 39106 Magdeburg
- Germany
| | | | - Norbert Stock
- Institute of Inorganic Chemistry
- Christian-Albrechts-Universität Kiel
- 24118 Kiel
- Germany
| |
Collapse
|
135
|
Barona M, Ahn S, Morris W, Hoover W, Notestein JM, Farha OK, Snurr RQ. Computational Predictions and Experimental Validation of Alkane Oxidative Dehydrogenation by Fe2M MOF Nodes. ACS Catal 2019. [DOI: 10.1021/acscatal.9b03932] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
| | | | - William Morris
- NuMat Technologies, 8025 Lamon Avenue, Skokie, Illinois 60077, United States
| | - William Hoover
- NuMat Technologies, 8025 Lamon Avenue, Skokie, Illinois 60077, United States
| | | | - Omar K. Farha
- NuMat Technologies, 8025 Lamon Avenue, Skokie, Illinois 60077, United States
| | | |
Collapse
|
136
|
Kidanemariam A, Lee J, Park J. Recent Innovation of Metal-Organic Frameworks for Carbon Dioxide Photocatalytic Reduction. Polymers (Basel) 2019; 11:E2090. [PMID: 31847223 PMCID: PMC6960843 DOI: 10.3390/polym11122090] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/06/2019] [Accepted: 12/09/2019] [Indexed: 01/11/2023] Open
Abstract
The accumulation of carbon dioxide (CO2) pollutants in the atmosphere begets global warming, forcing us to face tangible catastrophes worldwide. Environmental affability, affordability, and efficient CO2 metamorphotic capacity are critical factors for photocatalysts; metal-organic frameworks (MOFs) are one of the best candidates. MOFs, as hybrid organic ligand and inorganic nodal metal with tailorable morphological texture and adaptable electronic structure, are contemporary artificial photocatalysts. The semiconducting nature and porous topology of MOFs, respectively, assists with photogenerated multi-exciton injection and adsorption of substrate proximate to void cavities, thereby converting CO2. The vitality of the employment of MOFs in CO2 photolytic reaction has emerged from the fact that they are not only an inherently eco-friendly weapon for pollutant extermination, but also a potential tool for alleviating foreseeable fuel crises. The excellent synergistic interaction between the central metal and organic linker allows decisive implementation for the design, integration, and application of the catalytic bundle. In this review, we presented recent MOF headway focusing on reports of the last three years, exhaustively categorized based on central metal-type, and novel discussion, from material preparation to photocatalytic, simulated performance recordings of respective as-synthesized materials. The selective CO2 reduction capacities into syngas or formate of standalone or composite MOFs with definite photocatalytic reaction conditions was considered and compared.
Collapse
Affiliation(s)
| | | | - Juhyun Park
- School of Chemical Engineering and Materials Science, Institute of Energy-Converting Soft Materials, Chung-Ang University, Seoul 06974, Korea; (A.K.); (J.L.)
| |
Collapse
|
137
|
Ding CW, Luo W, Zhou JY, Ma XJ, Chen GH, Zhou XP, Li D. Hydroxo Iron(III) Sites in a Metal-Organic Framework: Proton-Coupled Electron Transfer and Catalytic Oxidation of Alcohol with Molecular Oxygen. ACS APPLIED MATERIALS & INTERFACES 2019; 11:45621-45628. [PMID: 31724842 DOI: 10.1021/acsami.9b15311] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Metalloenzymes are powerful biocatalysts that can catalyze particular chemical reactions with high activity, selectivity, and specificity under mild conditions. Metal-organic frameworks (MOFs) composed of metal ions or metal clusters and organic ligands with defined cavities have the potential to impart enzyme-like catalytic activity and mimic metalloenzymes. Here, a new metal-organic framework implanted with hydroxo iron(III) sites with the structural and reactivity characteristics of iron-containing lipoxygenases is reported. Similar to lipoxygenases, the hydrogen atoms and electrons of the substrate can transfer to the hydroxo iron(III) sites, showing typical proton-coupled electron transfer behavior. In the reactivity mimicking biology system, similar to alcohol oxidase, the material also catalyses the oxidation of alcohol into aldehyde by using O2 with a high yield and 100% selectivity under mild conditions, without the use of a radical cocatalyst or photoexcitation. These results provide strong evidence for the high structural fidelity of enzymatically active sites in MOF materials, verifying that MOFs provide an ideal platform for designing biomimetic heterogeneous catalysts with high conversion efficiency and product selectivity.
Collapse
Affiliation(s)
- Chong-Wei Ding
- College of Chemistry and Materials Science , Jinan University , Guangzhou , Guangdong 510632 , P. R. China
- Department of Chemistry , Shantou University , Shantou , Guangdong 515063 , P. R. China
| | - Wenzhi Luo
- Department of Chemistry , Shantou University , Shantou , Guangdong 515063 , P. R. China
| | - Jie-Yi Zhou
- College of Chemistry and Materials Science , Jinan University , Guangzhou , Guangdong 510632 , P. R. China
- Department of Chemistry , Shantou University , Shantou , Guangdong 515063 , P. R. China
| | - Xin-Jie Ma
- Department of Chemistry , Shantou University , Shantou , Guangdong 515063 , P. R. China
| | - Guang-Hui Chen
- Department of Chemistry , Shantou University , Shantou , Guangdong 515063 , P. R. China
| | - Xiao-Ping Zhou
- College of Chemistry and Materials Science , Jinan University , Guangzhou , Guangdong 510632 , P. R. China
| | - Dan Li
- College of Chemistry and Materials Science , Jinan University , Guangzhou , Guangdong 510632 , P. R. China
| |
Collapse
|
138
|
Simons MC, Vitillo JG, Babucci M, Hoffman AS, Boubnov A, Beauvais ML, Chen Z, Cramer CJ, Chapman KW, Bare SR, Gates BC, Lu CC, Gagliardi L, Bhan A. Structure, Dynamics, and Reactivity for Light Alkane Oxidation of Fe(II) Sites Situated in the Nodes of a Metal–Organic Framework. J Am Chem Soc 2019; 141:18142-18151. [DOI: 10.1021/jacs.9b08686] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Matthew C. Simons
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
| | - Jenny G. Vitillo
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Melike Babucci
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Adam S. Hoffman
- SSRL, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Alexey Boubnov
- SSRL, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Michelle L. Beauvais
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794, United States
| | - Zhihengyu Chen
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794, United States
| | - Christopher J. Cramer
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Karena W. Chapman
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794, United States
| | - Simon R. Bare
- SSRL, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Bruce C. Gates
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| | - Connie C. Lu
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Laura Gagliardi
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Aditya Bhan
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
139
|
Gyton MR, Leforestier B, Chaplin AB. Rhodium(I) Pincer Complexes of Nitrous Oxide. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201908333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Matthew R. Gyton
- Department of Chemistry University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Baptiste Leforestier
- Department of Chemistry University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Adrian B. Chaplin
- Department of Chemistry University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| |
Collapse
|
140
|
Gyton MR, Leforestier B, Chaplin AB. Rhodium(I) Pincer Complexes of Nitrous Oxide. Angew Chem Int Ed Engl 2019; 58:15295-15298. [PMID: 31513331 PMCID: PMC6856677 DOI: 10.1002/anie.201908333] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Indexed: 12/04/2022]
Abstract
The synthesis of two well-defined rhodium(I) complexes of nitrous oxide (N2 O) is reported. These normally elusive adducts are stable in the solid state and persist in solution at ambient temperature, enabling comprehensive structural interrogation by 15 N NMR and IR spectroscopy, and single-crystal X-ray diffraction. These methods evidence coordination of N2 O through the terminal nitrogen atom in a linear fashion and are supplemented by a computational energy decomposition analysis, which provides further insights into the nature of the Rh-N2 O interaction.
Collapse
Affiliation(s)
- Matthew R. Gyton
- Department of ChemistryUniversity of WarwickGibbet Hill RoadCoventryCV4 7ALUK
| | | | - Adrian B. Chaplin
- Department of ChemistryUniversity of WarwickGibbet Hill RoadCoventryCV4 7ALUK
| |
Collapse
|
141
|
Kim H, Lee HY, Kang DW, Kang M, Choe JH, Lee WR, Hong CS. Control of the Metal Composition in Bimetallic Mg/Zn(dobpdc) Constructed from a One-Dimensional Zn-Based Template. Inorg Chem 2019; 58:14107-14111. [DOI: 10.1021/acs.inorgchem.9b02126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hyojin Kim
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Hwa Young Lee
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Dong Won Kang
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Minjung Kang
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Jong Hyeak Choe
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Woo Ram Lee
- Department of Chemistry, Sejong University, Seoul 05006, Republic of Korea
| | - Chang Seop Hong
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
142
|
Guda AA, Guda SA, Lomachenko KA, Soldatov MA, Pankin IA, Soldatov AV, Braglia L, Bugaev AL, Martini A, Signorile M, Groppo E, Piovano A, Borfecchia E, Lamberti C. Quantitative structural determination of active sites from in situ and operando XANES spectra: From standard ab initio simulations to chemometric and machine learning approaches. Catal Today 2019. [DOI: 10.1016/j.cattod.2018.10.071] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
143
|
Yadav A, Kanoo P. Metal-Organic Frameworks as Platform for Lewis-Acid-Catalyzed Organic Transformations. Chem Asian J 2019; 14:3531-3551. [PMID: 31509343 DOI: 10.1002/asia.201900876] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/10/2019] [Indexed: 11/05/2022]
Abstract
Metal-organic frameworks (MOFs) are highly promising Lewis acid catalysts; they either inherently possess Lewis acid sites (LASs) on it or the LASs can be generated through various post-synthetic methods, the later can be performed in MOFs in a trivial fashion. MOFs are suitable platform for catalysis because of its highly crystalline and porous nature. Moreover, with recent advancements, thermal and chemical stability is not a problem with many MOFs. In this Minireview, an enormous versatility of MOFs, in terms of their microporosity/mesoporosity, size/shape selectivity, chirality, pore size, etc., has been highlighted. These are advantageous for designing and performing various targeted organic transformations. Although, many organic transformations catalyzed by MOFs with LASs have been reported in the recent past. In this Minireview, we have restricted ourselves to four important organic reactions: (i) cyanosilylation, (ii) Diels-Alder reaction, (iii) C-H activation, and (iv) CO2 -addition. The discussion focuses mostly on the recent reports (42 examples).
Collapse
Affiliation(s)
- Anand Yadav
- Department of Chemistry, School of Chemical Sciences, Central University of Haryana, Jant-Pali, Mahendergarh, 123031, Haryana, India
| | - Prakash Kanoo
- Department of Chemistry, School of Chemical Sciences, Central University of Haryana, Jant-Pali, Mahendergarh, 123031, Haryana, India
| |
Collapse
|
144
|
Moi R, Nath K, Biradha K. Tailoring Coordination Polymers by Substituent Effect: A Bifunctional Co
II
‐Doped 1D‐Coordination Network with Electrochemical Water Oxidation and Nitroaromatics Sensing. Chem Asian J 2019; 14:3742-3747. [DOI: 10.1002/asia.201901123] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/12/2019] [Indexed: 01/27/2023]
Affiliation(s)
- Rajib Moi
- Department of ChemistryIndian Institute of Technology Kharagpur 721302 India
| | - Karabi Nath
- Department of ChemistryIndian Institute of Technology Kharagpur 721302 India
| | - Kumar Biradha
- Department of ChemistryIndian Institute of Technology Kharagpur 721302 India
| |
Collapse
|
145
|
Corella-Ochoa MN, Tapia JB, Rubin HN, Lillo V, González-Cobos J, Núñez-Rico JL, Balestra SR, Almora-Barrios N, Lledós M, Güell-Bara A, Cabezas-Giménez J, Escudero-Adán EC, Vidal-Ferran A, Calero S, Reynolds M, Martí-Gastaldo C, Galán-Mascarós JR. Homochiral Metal–Organic Frameworks for Enantioselective Separations in Liquid Chromatography. J Am Chem Soc 2019; 141:14306-14316. [DOI: 10.1021/jacs.9b06500] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- M. Nieves Corella-Ochoa
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institut of Science and Technology (BIST), Av. Països Catalans 16, Tarragona E-43007, Spain
| | | | | | - Vanesa Lillo
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institut of Science and Technology (BIST), Av. Països Catalans 16, Tarragona E-43007, Spain
| | - Jesús González-Cobos
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institut of Science and Technology (BIST), Av. Països Catalans 16, Tarragona E-43007, Spain
| | - José Luis Núñez-Rico
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institut of Science and Technology (BIST), Av. Països Catalans 16, Tarragona E-43007, Spain
| | - Salvador R.G. Balestra
- Departament of Physical, Chemical and Natural Systems, Universidad Pablo de Olavide, Ctra. Utrera km 1, Sevilla 41013, Spain
| | - Neyvis Almora-Barrios
- Instituto de Ciencia Molecular, Universidad de Valencia, Calle Catedrático José Beltrán 2, Paterna 46980, Spain
| | - Marina Lledós
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institut of Science and Technology (BIST), Av. Països Catalans 16, Tarragona E-43007, Spain
| | - Arnau Güell-Bara
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institut of Science and Technology (BIST), Av. Països Catalans 16, Tarragona E-43007, Spain
| | - Juanjo Cabezas-Giménez
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institut of Science and Technology (BIST), Av. Països Catalans 16, Tarragona E-43007, Spain
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Marcel.lí Domingo s/n, Tarragona E-43007, Spain
| | - Eduardo C. Escudero-Adán
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institut of Science and Technology (BIST), Av. Països Catalans 16, Tarragona E-43007, Spain
| | - Anton Vidal-Ferran
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institut of Science and Technology (BIST), Av. Països Catalans 16, Tarragona E-43007, Spain
- ICREA, Passeig Lluís Companys, 23, Barcelona E-08010, Spain
| | - Sofía Calero
- Departament of Physical, Chemical and Natural Systems, Universidad Pablo de Olavide, Ctra. Utrera km 1, Sevilla 41013, Spain
- Department of Applied Physics, Eindhoven University of Technology, Eindhoven 5600 MB, The Netherlands
| | | | - Carlos Martí-Gastaldo
- Instituto de Ciencia Molecular, Universidad de Valencia, Calle Catedrático José Beltrán 2, Paterna 46980, Spain
| | - José Ramón Galán-Mascarós
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institut of Science and Technology (BIST), Av. Països Catalans 16, Tarragona E-43007, Spain
- ICREA, Passeig Lluís Companys, 23, Barcelona E-08010, Spain
| |
Collapse
|
146
|
Desai SP, Ye J, Islamoglu T, Farha OK, Lu CC. Mechanistic Study on the Origin of the Trans Selectivity in Alkyne Semihydrogenation by a Heterobimetallic Rhodium–Gallium Catalyst in a Metal–Organic Framework. Organometallics 2019. [DOI: 10.1021/acs.organomet.9b00331] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | - Timur Islamoglu
- International Institute of Nanotechnology and Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Omar K. Farha
- International Institute of Nanotechnology and Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | | |
Collapse
|
147
|
Gaggioli CA, Stoneburner SJ, Cramer CJ, Gagliardi L. Beyond Density Functional Theory: The Multiconfigurational Approach To Model Heterogeneous Catalysis. ACS Catal 2019. [DOI: 10.1021/acscatal.9b01775] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Carlo Alberto Gaggioli
- Department of Chemistry, Chemical Theory Center and Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States
| | - Samuel J. Stoneburner
- Department of Chemistry, Chemical Theory Center and Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States
| | - Christopher J. Cramer
- Department of Chemistry, Chemical Theory Center and Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States
| | - Laura Gagliardi
- Department of Chemistry, Chemical Theory Center and Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
148
|
Goncalves TJ, Plessow PN, Studt F. On the Accuracy of Density Functional Theory in Zeolite Catalysis. ChemCatChem 2019. [DOI: 10.1002/cctc.201900791] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tiago J. Goncalves
- Institute of Catalysis Research and TechnologyKarlsruhe Institute of Technology Hermann-von-Helmholtz Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Philipp N. Plessow
- Institute of Catalysis Research and TechnologyKarlsruhe Institute of Technology Hermann-von-Helmholtz Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Felix Studt
- Institute of Catalysis Research and TechnologyKarlsruhe Institute of Technology Hermann-von-Helmholtz Platz 1 76344 Eggenstein-Leopoldshafen Germany
- Institute for Chemical Technology and Polymer ChemistryKarlsruhe Institute of Technology Engesserstrasse 18 76131 Karlsruhe Germany
| |
Collapse
|
149
|
Peng L, Yang S, Jawahery S, Moosavi SM, Huckaba AJ, Asgari M, Oveisi E, Nazeeruddin MK, Smit B, Queen WL. Preserving Porosity of Mesoporous Metal–Organic Frameworks through the Introduction of Polymer Guests. J Am Chem Soc 2019; 141:12397-12405. [DOI: 10.1021/jacs.9b05967] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Li Peng
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Rue de l’Industrie 17, CH-1951 Sion, Switzerland
| | - Shuliang Yang
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Rue de l’Industrie 17, CH-1951 Sion, Switzerland
| | - Sudi Jawahery
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Seyed Mohamad Moosavi
- Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie Chimiques, Valais, Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de l’Industrie 17, CH-1951 Sion, Switzerland
| | - Aron J. Huckaba
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Rue de l’Industrie 17, CH-1951 Sion, Switzerland
| | - Mehrdad Asgari
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Rue de l’Industrie 17, CH-1951 Sion, Switzerland
| | - Emad Oveisi
- Interdiciplinary Center for Electron Microscopy, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Mohammad Khaja Nazeeruddin
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Rue de l’Industrie 17, CH-1951 Sion, Switzerland
| | - Berend Smit
- Laboratory of Molecular Simulation (LSMO), Institut des Sciences et Ingénierie Chimiques, Valais, Ecole Polytechnique Fédérale de Lausanne (EPFL), Rue de l’Industrie 17, CH-1951 Sion, Switzerland
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Wendy L. Queen
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Rue de l’Industrie 17, CH-1951 Sion, Switzerland
| |
Collapse
|
150
|
Liu P, Redekop E, Gao X, Liu WC, Olsbye U, Somorjai GA. Oligomerization of Light Olefins Catalyzed by Brønsted-Acidic Metal-Organic Framework-808. J Am Chem Soc 2019; 141:11557-11564. [PMID: 31264857 DOI: 10.1021/jacs.9b03867] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sulfated metal-organic framework-808 (S-MOF-808) exhibits strong Brønsted-acidic character which makes it a potential candidate for the heterogeneous acid catalysis. Here, we report the isomerization and oligomerization reactions of light olefins (C3-C6) over S-MOF-808 at relatively low temperatures and ambient pressure. Different products (dimers, isomers, and heavier oligomers) were obtained for different olefins, and effective C-C coupling was observed between isobutene and isopentene. Among the substrates investigated, facile oligomerization occurred very specifically for the structures with an α-double bond and two substituents at the second carbon atom of the main carbon chain. The possible oligomerization mechanism of light olefins was discussed based on the reactivity and selectivity trends. Moreover, the deactivation and regeneration of S-MOF-808 were investigated. The catalyst deactivates via two mechanisms which predominance depends on the substrate and reaction conditions. Above 110 °C, a loss of acidic sites was observed due to water desorption, and the deactivated catalyst could be regenerated by a simple treatment with water vapor. For C5 substrates and unsaturated ethers, the oligomers with increased molecular weight caused deactivation via blocking of the active sites, which could not be readily reversed. These findings offer the first systematic report on carbocation-mediated olefin coupling within MOFs in which the Brønsted acidity is associated with the secondary building units of the MOF itself and is not related to any guest substance hosted within its pore system.
Collapse
Affiliation(s)
- Ping Liu
- Materials Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States.,Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering , Changzhou University , Changzhou , Jiangsu 213164 , China
| | - Evgeniy Redekop
- Centre for Materials Science and Nanotechnology (SMN), Department of Chemistry , University of Oslo , P.O. Box 1033, Blindern , N-0315 Oslo , Norway
| | - Xiang Gao
- Materials Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States.,Department of Chemistry, Kavli Energy NanoSciences Institute at Berkeley, and Berkeley Global Science Institute , University of California-Berkeley , Berkeley , California 94720 , United States
| | - Wen-Chi Liu
- Materials Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States.,Department of Chemistry, Kavli Energy NanoSciences Institute at Berkeley, and Berkeley Global Science Institute , University of California-Berkeley , Berkeley , California 94720 , United States
| | - Unni Olsbye
- Centre for Materials Science and Nanotechnology (SMN), Department of Chemistry , University of Oslo , P.O. Box 1033, Blindern , N-0315 Oslo , Norway
| | - Gabor A Somorjai
- Materials Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States.,Department of Chemistry, Kavli Energy NanoSciences Institute at Berkeley, and Berkeley Global Science Institute , University of California-Berkeley , Berkeley , California 94720 , United States
| |
Collapse
|