101
|
Eliades SJ, Colston TJ, Siler CD. Gut microbial ecology of Philippine gekkonids: ecoevolutionary effects on microbiome compositions. FEMS Microbiol Ecol 2022; 98:6763418. [PMID: 36259773 PMCID: PMC9681010 DOI: 10.1093/femsec/fiac124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 09/20/2022] [Accepted: 10/17/2022] [Indexed: 01/21/2023] Open
Abstract
Given the rapidly changing landscapes of habitats across the globe, a sound understanding of host-associated microbial communities and the ecoevolutionary forces that shape them is needed to assess general organismal adaptability. Knowledge of the symbiotic endogenous microbiomes of most reptilian species worldwide remains limited. We sampled gut microbiomes of geckos spanning nine species and four genera in the Philippines to (i) provide baseline data on gut microbiota in these host species, (ii) test for significant associations between host phylogenetic relationships and observed microbial assemblages, potentially indicative of phylosymbiosis, and (iii) identify correlations between multiple ecoevolutionary factors (e.g. species identity, habitat tendencies, range extents, and maximum body sizes) and gut microbiomes in Philippine gekkonids. We recovered no significant association between interspecific host genetic distances and observed gut microbiomes, providing limited evidence for phylosymbiosis in this group. Philippine gekkonid microbiomes were associated most heavily with host species identity, though marked variation among conspecifics at distinct sampling sites indicates that host locality influences gut microbiomes as well. Interestingly, individuals grouped as widespread and microendemic regardless of host species identity displayed significant differences in alpha and beta diversity metrics examined, likely driven by differences in rare OTU presence between groups. These results provide much needed insight in host-associated microbiomes in wild reptiles and the ecoevolutionary forces that structure such communities.
Collapse
Affiliation(s)
- Samuel J Eliades
- Corresponding author: 2401 Chautauqua Avenue, Norman, OK 73072, United States. E-mail:
| | - Timothy J Colston
- Biology Department, University of Puerto Rico at Mayagüez, Call Box 9000, 00681-9000 Mayagüez, Puerto Rico
| | - Cameron D Siler
- Sam Noble Oklahoma Museum of Natural History and Department of Biology, University of Oklahoma, 2401 Chautauqua Avenue, Norman, OK 73072, United States
| |
Collapse
|
102
|
Wang J, Zhu Y, Zhang C, Duan R, Kong F, Zheng X, Hua Y. A conserved role of bam in maintaining metabolic homeostasis via regulating intestinal microbiota in Drosophila. PeerJ 2022; 10:e14145. [PMID: 36248714 PMCID: PMC9559046 DOI: 10.7717/peerj.14145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/07/2022] [Indexed: 01/25/2023] Open
Abstract
Background Previous studies have proven that bag-of-marbles (bam) plays a pivotal role in promoting early germ cell differentiation in Drosophila ovary. However, whether it functions in regulating the metabolic state of the host remains largely unknown. Methods We utilized GC-MS, qPCR, and some classical kits to examine various metabolic profiles and gut microbial composition in bam loss-of-function mutants and age-paired controls. We performed genetic manipulations to explore the tissue/organ-specific role of bam in regulating energy metabolism in Drosophila. The DSS-induced mouse colitis was generated to identify the role of Gm114, the mammalian homolog of bam, in modulating intestinal homeostasis. Results We show that loss of bam leads to an increased storage of energy in Drosophila. Silence of bam in intestines results in commensal microbial dysbiosis and metabolic dysfunction of the host. Moreover, recovery of bam expression in guts almost rescues the obese phenotype in bam loss-of-function mutants. Further examinations of mammalian Gm114 imply a similar biological function in regulating the intestinal homeostasis and energy storage with its Drosophila homolog bam. Conclusion Our studies uncover a novel biological function of bam/Gm114 in regulating the host lipid homeostasis.
Collapse
Affiliation(s)
- Jiale Wang
- Anhui Agricultural University, Hefei, China
| | | | - Chao Zhang
- Anhui Agricultural University, Hefei, China
| | | | | | - Xianrui Zheng
- Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, China
| | | |
Collapse
|
103
|
Goes EC, Dal Pont GC, Maiorka A, Bittencourt LC, Bortoluzzi C, Fascina VB, Lopez-Ulibarri R, Calvo EP, Beirão BC, Caron LF. Effects of a microbial muramidase on the growth performance, intestinal permeability, nutrient digestibility, and welfare of broiler chickens. Poult Sci 2022; 101:102232. [PMID: 36334425 PMCID: PMC9627589 DOI: 10.1016/j.psj.2022.102232] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/14/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2022] Open
Abstract
The objective of these studies was to evaluate the inclusion of a microbial muramidase (MUR) in the diets of broiler chickens on the growth performance, intestinal permeability (IP), total blood carotenoid content, apparent ileal digestibility (AID), and foot pad dermatitis (FPD). In Experiment 1, a total of 1,000 one-day-old chicks were placed in floor-pens with reused litter, and randomly distributed into 4 treatments with 10 replicates each. Treatments were a basal diet (control), or basal diet supplemented with 15,000; 25,000 or 35,000 LSU (F)/kg of MUR. Feed intake (FI), body weight gain (BWG), and feed conversion ratio (FCR) were evaluated at d 21 and 43. Intestinal permeability was evaluated on d 35 by FITC-d, and FPD and AID on d 43. In Experiment 2, a total of 800 one-day-old chicks were placed in floor-pens with fresh litter, and randomly distributed into 4 treatments with 8 replicates each. Treatments were a basal diet (control), or basal diet supplemented with 25,000 or 35,000 LSU (F)/kg of MUR, and a fourth group where the basal diet was supplemented with enramycin. The birds were induced to a mild intestinal challenge. Feed intake, BWG, and FCR were evaluated on d 21 and d 42, and total blood concentration of carotenoids was evaluated on d 28. In experiment 1, 35,000 LSU (F)/kg of MUR promoted the best FCR (P < 0.05). Muramidase supplementation linearly increased the AID of dry matter, ash, and fat (P < 0.01), and regardless of the dose, MUR decreased the IP (P < 0.05). In Experiment 2, the supplementation of 35,000 LSU (F)/kg of MUR improved BWG and FCR in the entire cycle (1–42 d) and increased the concentration of carotenoids in the blood on d 28 compared to the control group (P < 0.05). These studies show that MUR improves growth performance of broilers by improving intestinal permeability, digestibility of dry matter, ash and fat, absorption of carotenoids, and reducing FPD.
Collapse
Affiliation(s)
| | | | - Alex Maiorka
- UFPR - Federal University of Paraná, Curitiba, Brazil
| | | | | | | | | | | | | | - Luiz F. Caron
- UFPR - Federal University of Paraná, Curitiba, Brazil
| |
Collapse
|
104
|
Adoni P, Romanyuk A, Overton TW, Fernandez-Trillo P. Polymer-induced biofilms for enhanced biocatalysis. MATERIALS HORIZONS 2022; 9:2592-2602. [PMID: 35912866 PMCID: PMC9528183 DOI: 10.1039/d2mh00607c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
The intrinsic resilience of biofilms to environmental conditions makes them an attractive platform for biocatalysis, bioremediation, agriculture or consumer health. However, one of the main challenges in these areas is that beneficial bacteria are not necessarily good at biofilm formation. Currently, this problem is solved by genetic engineering or experimental evolution, techniques that can be costly and time consuming, require expertise in molecular biology and/or microbiology and, more importantly, are not suitable for all types of microorganisms or applications. Here we show that synthetic polymers can be used as an alternative, working as simple additives to nucleate the formation of biofilms. Using a combination of controlled radical polymerization and dynamic covalent chemistry, we prepare a set of synthetic polymers carrying mildly cationic, aromatic, heteroaromatic or aliphatic moieties. We then demonstrate that hydrophobic polymers induce clustering and promote biofilm formation in MC4100, a strain of Escherichia coli that forms biofilms poorly, with aromatic and heteroaromatic moieties leading to the best performing polymers. Moreover, we compare the effect of the polymers on MC4100 against PHL644, an E. coli strain that forms biofilms well due to a single point mutation which increases expression of the adhesin curli. In the presence of selected polymers, MC4100 can reach levels of biomass production and curli expression similar or higher than PHL644, demonstrating that synthetic polymers promote similar changes in microbial physiology than those introduced following genetic modification. Finally, we demonstrate that these polymers can be used to improve the performance of MC4100 biofilms in the biocatalytic transformation of 5-fluoroindole into 5-fluorotryptophan. Our results show that incubation with these synthetic polymers helps MC4100 match and even outperform PHL644 in this biotransformation, demonstrating that synthetic polymers can underpin the development of beneficial applications of biofilms.
Collapse
Affiliation(s)
- Pavan Adoni
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Andrey Romanyuk
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Tim W Overton
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Paco Fernandez-Trillo
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
- Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Departamento de Química, Facultade de Ciencias and Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña, 15071 A Coruña, Spain
| |
Collapse
|
105
|
Cao Y, Aquino-Martinez R, Hutchison E, Allayee H, Lusis AJ, Rey FE. Role of gut microbe-derived metabolites in cardiometabolic diseases: Systems based approach. Mol Metab 2022; 64:101557. [PMID: 35870705 PMCID: PMC9399267 DOI: 10.1016/j.molmet.2022.101557] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/30/2022] [Accepted: 07/18/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The gut microbiome influences host physiology and cardiometabolic diseases by interacting directly with intestinal cells or by producing molecules that enter the host circulation. Given the large number of microbial species present in the gut and the numerous factors that influence gut bacterial composition, it has been challenging to understand the underlying biological mechanisms that modulate risk of cardiometabolic disease. SCOPE OF THE REVIEW Here we discuss a systems-based approach that involves simultaneously examining individuals in populations for gut microbiome composition, molecular traits using "omics" technologies, such as circulating metabolites quantified by mass spectrometry, and clinical traits. We summarize findings from landmark studies using this approach and discuss future applications. MAJOR CONCLUSIONS Population-based integrative approaches have identified a large number of microbe-derived or microbe-modified metabolites that are associated with cardiometabolic traits. The knowledge gained from these studies provide new opportunities for understanding the mechanisms involved in gut microbiome-host interactions and may have potentially important implications for developing novel therapeutic approaches.
Collapse
Affiliation(s)
- Yang Cao
- Departments of Medicine, Human Genetics, and Microbiology, Immunology, & Molecular Genetics, David Geffen School of Medicine of UCLA, Los Angeles, CA 90095, USA
| | - Ruben Aquino-Martinez
- Department of Bacteriology, University of Wisconsin, Madison, Madison, WI 53706, USA
| | - Evan Hutchison
- Department of Bacteriology, University of Wisconsin, Madison, Madison, WI 53706, USA
| | - Hooman Allayee
- Departments of Population & Public Health Sciences and Biochemistry & Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Aldons J Lusis
- Departments of Medicine, Human Genetics, and Microbiology, Immunology, & Molecular Genetics, David Geffen School of Medicine of UCLA, Los Angeles, CA 90095, USA.
| | - Federico E Rey
- Department of Bacteriology, University of Wisconsin, Madison, Madison, WI 53706, USA
| |
Collapse
|
106
|
Carregosa D, Pinto C, Ávila-Gálvez MÁ, Bastos P, Berry D, Santos CN. A look beyond dietary (poly)phenols: The low molecular weight phenolic metabolites and their concentrations in human circulation. Compr Rev Food Sci Food Saf 2022; 21:3931-3962. [PMID: 36037277 DOI: 10.1111/1541-4337.13006] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 01/28/2023]
Abstract
A large number of epidemiological studies have shown that consumption of fruits, vegetables, and beverages rich in (poly)phenols promote numerous health benefits from cardiovascular to neurological diseases. Evidence on (poly)phenols has been applied mainly to flavonoids, yet the role of phenolic acids has been largely overlooked. Such phenolics present in food combine with those resulting from gut microbiota catabolism of flavonoids and chlorogenic acids and those produced by endogenous pathways, resulting in large concentrations of low molecular weight phenolic metabolites in human circulation. Independently of the origin, in human intervention studies using diets rich in (poly)phenols, a total of 137 low molecular weight phenolic metabolites have been detected and quantified in human circulation with largely unknown biological function. In this review, we will pinpoint two main aspects of the low molecular weight phenolic metabolites: (i) the microbiota responsible for their generation, and (ii) the analysis (quali- and quantitative) in human circulation and their respective pharmacokinetics. In doing so, we aim to drive scientific advances regarding the ubiquitous roles of low molecular weight phenolic metabolites using physiologically relevant concentrations and under (patho)physiologically relevant conditions in humans.
Collapse
Affiliation(s)
- Diogo Carregosa
- iNOVA4Health, NOVA Medical School
- Faculdade Ciências Médicas, NMS
- FCM, Universidade Nova de Lisboa, Campo dos Mártires da Pátria, Lisboa, Portugal
| | - Catarina Pinto
- iNOVA4Health, NOVA Medical School
- Faculdade Ciências Médicas, NMS
- FCM, Universidade Nova de Lisboa, Campo dos Mártires da Pátria, Lisboa, Portugal
| | - María Ángeles Ávila-Gálvez
- iNOVA4Health, NOVA Medical School
- Faculdade Ciências Médicas, NMS
- FCM, Universidade Nova de Lisboa, Campo dos Mártires da Pátria, Lisboa, Portugal.,iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, Portugal
| | - Paulo Bastos
- iNOVA4Health, NOVA Medical School
- Faculdade Ciências Médicas, NMS
- FCM, Universidade Nova de Lisboa, Campo dos Mártires da Pátria, Lisboa, Portugal
| | - David Berry
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Djerassiplatz 1, Vienna, Austria
| | - Cláudia Nunes Santos
- iNOVA4Health, NOVA Medical School
- Faculdade Ciências Médicas, NMS
- FCM, Universidade Nova de Lisboa, Campo dos Mártires da Pátria, Lisboa, Portugal.,iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, Portugal
| |
Collapse
|
107
|
Fang F, Xiao C, Wan C, Li Y, Lu X, Lin Y, Gao J. Two Laminaria japonica polysaccharides with distinct structure characterization affect gut microbiota and metabolites in hyperlipidemic mice differently. Food Res Int 2022; 159:111615. [PMID: 35940764 DOI: 10.1016/j.foodres.2022.111615] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/14/2022] [Accepted: 07/01/2022] [Indexed: 02/07/2023]
Abstract
Our previous study found dietary mannogluconic acid (MA) and fucogalactan sulfate (FS) from Laminaria japonica have distinct structure characterization and potential hypolipidemic effects in vitro. Herein, we compared the benefits of MA and FS on hyperlipidemia. The result showed only FS treatment decreased body weight and serum cholesterol levels. Compared with MA, FS was more effective in mitigating hepatic fat accumulation, promoting GSH-Px activity, reducing the MDA formation, and lowering the level of TNF-α in liver. Gut microbiota and metabolism analysis revealed that FS increased the relative abundance of beneficial bacteria and boosted the level of short chain fatty acids. Particularly, taurine and 3α,7α,12α-trihydroxy-24-oxo-5-β-cholestanoyl CoA were upregulated by FS, which might attribute to the increased Oscillibacter and thus affect the enterohepatic circulation of bile acids and serum TC level. Therefore, FS with more branches and sulfate ester groups could be a good lipid-lowering dietary supplement.
Collapse
Affiliation(s)
- Fang Fang
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Chuqiao Xiao
- Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521031, China
| | - Chu Wan
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Yaqian Li
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Xingyu Lu
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Ying Lin
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
| | - Jie Gao
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
| |
Collapse
|
108
|
Meng Y, Li S, Zhang C, Zheng H. Strain-level profiling with picodroplet microfluidic cultivation reveals host-specific adaption of honeybee gut symbionts. MICROBIOME 2022; 10:140. [PMID: 36045431 PMCID: PMC9429759 DOI: 10.1186/s40168-022-01333-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Symbiotic gut microbes have a rich genomic and metabolic pool and are closely related to hosts' health. Traditional sequencing profiling masks the genomic and phenotypic diversity among strains from the same species. Innovative droplet-based microfluidic cultivation may help to elucidate the inter-strain interactions. A limited number of bacterial phylotypes colonize the honeybee gut, while individual strains possess unique genomic potential and critical capabilities, which provides a particularly good model for strain-level analyses. RESULTS Here, we construct a droplet-based microfluidic platform and generated ~ 6 × 108 droplets encapsulated with individual bacterial cells from the honeybee gut and cultivate in different media. Shotgun metagenomic analysis reveals significant changes in community structure after droplet-based cultivation, with certain species showing higher strain-level diversity than in gut samples. We obtain metagenome-assembled genomes, and comparative analysis reveal a potential novel cluster from Bifidobacterium in the honeybee. Interestingly, Lactobacillus panisapium strains obtained via droplet cultivation from Apis mellifera contain a unique set of genes encoding L-arabinofuranosidase, which is likely important for the survival of bacteria in competitive environments. CONCLUSIONS By encapsulating single bacteria cells inside microfluidic droplets, we exclude potential interspecific competition for the enrichment of rare strains by shotgun sequencing at high resolution. The comparative genomic analysis reveals underlying mechanisms for host-specific adaptations, providing intriguing insights into microbe-microbe interactions. The current approach may facilitate the hunting for elusive bacteria and paves the way for large-scale studies of more complex animal microbial communities. Video Abstract.
Collapse
Affiliation(s)
- Yujie Meng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Shuang Li
- Department of Chemical Engineering, Institute of Biochemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Chong Zhang
- Department of Chemical Engineering, Institute of Biochemical Engineering, Tsinghua University, Beijing, 100084, China.
| | - Hao Zheng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
109
|
The Effects of Bacillus licheniformis—Fermented Products on the Microbiota and Clinical Presentation of Cats with Chronic Diarrhea. Animals (Basel) 2022; 12:ani12172187. [PMID: 36077904 PMCID: PMC9454741 DOI: 10.3390/ani12172187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 11/17/2022] Open
Abstract
Bacillus licheniformis-fermented products (BLFP) are probiotics with antibacterial, antiviral, and anti-inflammatory properties that can improve growth performance. This study aimed to compare the fecal microbiota of diarrheal cats with chronic diarrhea (n = 8) with that of healthy cats (n = 4) from the same household using next-generation sequencing, and evaluate the effectiveness of oral administration of BLFP in relieving clinical signs and altering the intestinal microbiota in diarrheal cats. Six out of eight diarrheal cats showed clinical improvement after BLFP administration for 7 days, and the stool condition of the other two was normal. A higher Firmicutes/Bacteroidetes ratio was noted in the feces of diarrheal cats without clinical improvement as compared with those in the healthy cats and in the diarrheal cats with clinical improvement after receiving BLFP. The phylum Bacteroidetes and class Bacteroidia decreased significantly in diarrheal cats regardless of BLFP administration. Blautia spp., Ruminococcus torques, and Ruminococcus gnavus, which belong to the Clostridium cluster XIVa and have been reported as beneficial to intestinal health, increased significantly in feces after treatment. Furthermore, Clostridium perfringens also significantly decreased in diarrheal cats after BLFP administration. Overall, BLFP could be a potential probiotic to relieve gastrointestinal symptoms and improve fecal microbiota in cats with chronic diarrhea.
Collapse
|
110
|
Effect of Electroacupuncture on Short-Chain Fatty Acids in Peripheral Blood after Middle Cerebral Artery Occlusion/Reperfusion in Rats Based on Gas Chromatography–Mass Spectrometry. Mediators Inflamm 2022; 2022:3997947. [PMID: 36052308 PMCID: PMC9427317 DOI: 10.1155/2022/3997947] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/30/2022] [Indexed: 11/17/2022] Open
Abstract
Previous fundamental and clinical research has shown that electroacupuncture (EA) at the acupoints of Quchi (LI11) and Zusanli (ST36) can successfully alleviate motor dysfunction following stroke. Additionally, it has been discovered that gut microbiota and their metabolites play an essential role in stroke. However, the relationship between the metabolites of gut microbiota and the efficacy of EA is still unclear. Therefore, the aim of this study was to evaluate the mechanism of EA at LI11 and ST36 in the treatment of motor dysfunction after middle cerebral artery occlusion/reperfusion (MCAO/R) in model rats by comparing the differences and correlation between different short-chain fatty acids (SCFAs) and the recovery of motor function. The results indicated that EA at LI11 and ST36 acupoints enhanced the neurological function, motor function, and infarct volume of MCAO/R rats. The levels of acetic acid, propionic acid, and total SCFAs were considerably lower in the MCAO/R group than in the sham group (P < 0.05). Acetic acid, propionic acid, and total SCFA concentrations were substantially higher in the MCAO/R + EA group than in the MCAO/R group (P < 0.05). Finally, Pearson correlation analysis revealed that the propionic acid concentration was substantially favorably connected with the duration on the rotarod (r = 0.633 and P < 0.05) and highly negatively correlated with the modified neurological severity score (mNSS) (r = −0.698 and P < 0.05) and the percentage of cerebral infarct volume (r = −0.729 and P < 0.05). Taken together, these findings indicate that the increase in propionic acid may be one of the mechanisms and targets of EA at LI11 and ST36 acupoints to improve poststroke motor dysfunction in MCAO/R rats.
Collapse
|
111
|
The Association between Gut Microbiome Diversity and Composition and Heat Tolerance in Cattle. Microorganisms 2022; 10:microorganisms10081672. [PMID: 36014088 PMCID: PMC9414853 DOI: 10.3390/microorganisms10081672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
Cattle are raised around the world and are frequently exposed to heat stress, whether in tropical countries or in regions with temperate climates. It is universally acknowledged that compared to those in temperate areas, the cattle breeds developed in tropical and subtropical areas have better heat tolerance. However, the underlying mechanism of heat tolerance has not been fully studied, especially from the perspective of intestinal microbiomics. The present study collected fecal samples of cattle from four representative climatic regions of China, namely, the mesotemperate (HLJ), warm temperate (SD), subtropical (HK), and tropical (SS) regions. Then, the feces were analyzed using high-throughput 16S rRNA sequencing. The results showed that with increasing climatic temperature from HLJ to SS, the abundance of Firmicutes increased, accompanied by an increasing Firmicutes to Bacteroidota ratio. Proteobacteria showed a trend of reduction from HLJ to SS. Patescibacteria, Chloroflexi, and Actinobacteriota were particularly highest in SS for adapting to the tropical environment. The microbial phenotype in the tropics was characterized by an increase in Gram-positive bacteria and a decrease in Gram-negative bacteria, aerobic bacteria, and the forming of_biofilms. Consistently, the functional abundances of organismal systems and metabolism were decreased to reduce the material and energy demands in a hot environment. Genetic information processing and information storage and processing may be how gut flora deals with hot conditions. The present study revealed the differences in the structure and function of gut microbes of cattle from mesotemperate to tropical climates and provided an important reference for future research on the mechanism of heat tolerance regulated by the gut microbiota and a potential microbiota-based target to alleviate heat stress.
Collapse
|
112
|
Jia L, Wu J, Lei Y, Kong F, Zhang R, Sun J, Wang L, Li Z, Shi J, Wang Y, Wei Y, Zhang K, Lei Z. Oregano Essential Oils Mediated Intestinal Microbiota and Metabolites and Improved Growth Performance and Intestinal Barrier Function in Sheep. Front Immunol 2022; 13:908015. [PMID: 35903106 PMCID: PMC9314563 DOI: 10.3389/fimmu.2022.908015] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/20/2022] [Indexed: 11/17/2022] Open
Abstract
With the increased demand for safe and sustainable alternatives to growth promoting antibiotics in the livestock industry, oregano essential oils (OEO) and Lactobacillus reuteri (LR) have been examined as alternatives to antibiotics for growth promotion and to improve animal health and performance. However, the mechanism underlying the OEO and LR mediation of sheep growth remains unknown. In this study, 16S rRNA gene sequencing and untargeted metabolomics were used to determine the role of the gut microbiota in the growth improvements observed. The potential modulating roles of intestinal microbial metabolites of OEO and LR to intestinal health were systematically explored as well. It was observed that both OEO and LR had greater average daily gain (ADG) and lower F/G ratio. Furthermore, OEO also appeared to have produced a greater amylase enzyme activity and mucin gene expression in the jejunal mucosa. It was also observed that OEO reduced serum IL-2 and TNF-β as well as mRNA levels of NF-κB p65, toll-like receptor-4 (TLR-4), and IL-6 in the jejunal mucosa. Moreover, dietary OEO supplementation increased the abundances of Ruminococcus, Bifidobacterium and Enterococcus, while the relative abundances of Succiniclasticum, Marvinbryantia and Streptococcus were enriched in LR group. Spearman’s correlation analysis revealed that the abundances of Bifidobacterium, Ruminococcus and Enterococcus were positively correlated with the mRNA expression of mucins. Moreover, the relative abundance of Enterococcus was positively correlated with amylase activity. Metabolomics analysis indicated that OEO and LR increased the levels of indole acetaldehyde and indole-3-acetic acid through the tryptophan metabolism pathway. It was observed that LR also decreased the inflammatory metabolites including tryptamine and 5-hydroxyindole-3-acetic acid. Collectively, these results suggested that OEO exerted a beneficial effect on growth performance and the mucosal barrier, affected tryptophan metabolism and improved the intestinal microbiota of sheep.
Collapse
Affiliation(s)
- Li Jia
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jianping Wu
- Institute of Rural Development, Northwest Normal University, Lanzhou, China
| | - Yu Lei
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Fanyun Kong
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Rui Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jianxiang Sun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Liao Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Zemin Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jinping Shi
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Ying Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yubing Wei
- The Animal Husbandry and Veterinary Station in Pingshan Lake Mongolian Township of Ganzhou District, Zhangye, China
| | - Ke Zhang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Zhaomin Lei
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- *Correspondence: Zhaomin Lei,
| |
Collapse
|
113
|
Zhao D, Shan K, Xie Y, Zhang G, An Q, Yu X, Zhou G, Li C. Body weight index indicates the responses of the fecal microbiota, metabolome and proteome to beef/chicken-based diet alterations in Chinese volunteers. NPJ Biofilms Microbiomes 2022; 8:56. [PMID: 35821237 PMCID: PMC9276758 DOI: 10.1038/s41522-022-00319-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 06/13/2022] [Indexed: 12/15/2022] Open
Abstract
Relationships between meat consumption and gut diseases have been debated for decades, and the gut microbiota plays an important role in this interplay. It was speculated that the gut microbiota and relevant indicators of hosts with different body weight indexes (BMIs) might respond differentially to meat-based diet alterations, since lean and obese hosts have different gut microbiota composition. Forty-five young Chinese volunteers were recruited and assigned to high-, middle- and low-BMI groups. All of the volunteers were given a beef-based diet for 2 weeks and subsequently with a chicken-based diet for another 2 weeks. Body weight and blood indexes were measured, and fecal samples were obtained for 16S rRNA sequencing, metabolome and proteome analyses. The fecal metabolites of the low-BMI volunteers showed greater sensitivity to meat-based diet alterations. In contrast, the fecal proteome profiles and blood indexes of the high- and middle-BMI volunteers indicated greater sensitivity to meat-based diet alterations. Replacing the beef-based diet with the chicken-based diet largely changed operational taxonomic units of Bacteroides genus, and thus probably induced downregulation of immunoglobulins in feces. Compared with the beef-based diet, the chicken-based diet decreased inflammation-related blood indexes, especially in high- and middle-BMI volunteers. This work highlighted the role of BMI as an important factor predicting changes in gut homeostasis in response to meat consumption. Compared with the chicken-based diet, the beef-based diet may induce more allergic and inflammation-related responses in high- and middle- BMI Chinese at the current level.
Collapse
Affiliation(s)
- Di Zhao
- Key Laboratory of Meat Processing, MOA, Key Laboratory of Meat Processing and Quality Control, MOE, Jiang Synergetic Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, 210095, Nanjing, P. R. China
| | - Kai Shan
- Key Laboratory of Meat Processing, MOA, Key Laboratory of Meat Processing and Quality Control, MOE, Jiang Synergetic Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, 210095, Nanjing, P. R. China
| | - Yunting Xie
- Key Laboratory of Meat Processing, MOA, Key Laboratory of Meat Processing and Quality Control, MOE, Jiang Synergetic Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, 210095, Nanjing, P. R. China
| | - Guanghong Zhang
- Key Laboratory of Meat Processing, MOA, Key Laboratory of Meat Processing and Quality Control, MOE, Jiang Synergetic Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, 210095, Nanjing, P. R. China
| | - Qi An
- Key Laboratory of Meat Processing, MOA, Key Laboratory of Meat Processing and Quality Control, MOE, Jiang Synergetic Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, 210095, Nanjing, P. R. China
| | - Xiaobo Yu
- Key Laboratory of Meat Processing, MOA, Key Laboratory of Meat Processing and Quality Control, MOE, Jiang Synergetic Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, 210095, Nanjing, P. R. China
| | - Guanghong Zhou
- Key Laboratory of Meat Processing, MOA, Key Laboratory of Meat Processing and Quality Control, MOE, Jiang Synergetic Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, 210095, Nanjing, P. R. China
| | - Chunbao Li
- Key Laboratory of Meat Processing, MOA, Key Laboratory of Meat Processing and Quality Control, MOE, Jiang Synergetic Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, 210095, Nanjing, P. R. China.
| |
Collapse
|
114
|
Antibacterial Potential of 2-(-(2-Hydroxyphenyl)-methylidene)-amino)nicotinic Acid: Experimental, DFT Studies, and Molecular Docking Approach. Appl Biochem Biotechnol 2022; 194:5680-5701. [PMID: 35802239 DOI: 10.1007/s12010-022-04054-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2022] [Indexed: 11/02/2022]
Abstract
The problems associated with antibacterial drug discovery have kept the model of antibacterial drug to an extraordinary low level. Humans carry millions of bacteria; some species of bacteria can cause infectious disease, while some are pathogenic. Infectious bacteria which can reproduce quickly in the body can cause diseases such as tuberculosis, cholera, pneumonia, and typhoid, thus arises an urgent need to develop new drugs. Herein, 2-{[(2-hydroxyphenyl)methylidene]amino}nicotinic acid was synthesized from the condensation of o-phenylenediamine and 5-nitrosalicaldehyde followed by detailed characterization by ultraviolet-visible spectroscopy, vibrational studies FT-IR, nuclear magnetic resonance (1H-NMR, 13C-NMR), and gas chromatography coupled with mass spectroscopy (GC-MS). The complex synthesized was screened against selected microbes in order to establish their potential antimicrobial activity using selected known drugs as reference. From the results obtained, the Schiff base exhibited antimicrobial activity against all the tested microorganisms except Candida albicans isolate, which exhibited zero diameter zone of inhibition. The theoretical investigations of the synthesized compounds were computed using density functional theory (DFT) at the B3LYP/6-311 + + G(d, p) level of theory and in silico molecular docking simulation. By comparing binding affinity of the studied compound and the standard drug (ampicillin), the studied compound docked against bacterial protein showed a high binding affinity for E. coli 6.6 kcal/mol and makes it effective as an antibacterial agent for E. coli.
Collapse
|
115
|
Park I, Nam H, Goo D, Wickramasuriya SS, Zimmerman N, Smith AH, Rehberger TG, Lillehoj HS. Gut Microbiota-Derived Indole-3-Carboxylate Influences Mucosal Integrity and Immunity Through the Activation of the Aryl Hydrocarbon Receptors and Nutrient Transporters in Broiler Chickens Challenged With Eimeria maxima. Front Immunol 2022; 13:867754. [PMID: 35812452 PMCID: PMC9259858 DOI: 10.3389/fimmu.2022.867754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/26/2022] [Indexed: 11/23/2022] Open
Abstract
Two studies were conducted to evaluate the effects of indole-3-carboxylate (ICOOH) as a postbiotic on maintaining intestinal homeostasis against avian coccidiosis. In the first study, an in vitro culture system was used to investigate the effects of ICOOH on the proinflammatory cytokine response of chicken macrophage cells (CMCs), gut integrity of chicken intestinal epithelial cells (IECs), differentiation of quail muscle cells (QMCs), and primary chicken embryonic muscle cells (PMCs) and anti-parasitic effect against Eimeria maxima. Cells to be tested were seeded in the 24-well plates and treated with ICOOH at concentrations of 0.1, 1.0, and 10.0 µg. CMCs were first stimulated by lipopolysaccharide (LPS) to induce an innate immune response, and QMCs and PMCs were treated with 0.5% and 2% fetal bovine serum, respectively, before they were treated with ICOOH. After 18 h of incubation, cells were harvested, and RT-PCR was performed to measure gene expression of proinflammatory cytokines of CMCs, tight junction (TJ) proteins of IECs, and muscle cell growth markers of QMCs and PMCs. In the second study, in vivo trials were carried out to study the effect of dietary ICOOH on disease parameters in broiler chickens infected with E. maxima. One hundred twenty male broiler chickens (0-day-old) were allocated into the following four treatment groups: 1) basal diet without infection (CON), 2) basal diet with E. maxima (NC), 3) ICOOH at 10.0 mg/kg feed with E. maxima (HI), and 4) ICOOH at 1.0 mg/kg feed with E. maxima (LO). Body weights (BWs) were measured on 0, 7, 14, 20, and 22 days. All groups except the CON chickens were orally infected with E. maxima on day 14. Jejunal samples were collected for lesion score and the transcriptomic analysis of cytokines and TJ proteins. In vitro, ICOOH increased the expression of TJ proteins in IECs and decreased IL-1β and IL-8 transcripts in the LPS-stimulated CMCs. In vivo, chickens on the HI diet showed reduced jejunal IL-1β, IFN-γ, and IL-10 expression and increased expression of genes activated by aryl hydrocarbon receptors and nutrient transporters in E. maxima-infected chickens. In conclusion, these results demonstrate the beneficial effects of dietary ICOOH on intestinal immune responses and barrier integrity in broiler chickens challenged with E. maxima. Furthermore, the present finding supports the notion to use microbial metabolites as novel feed additives to enhance resilience in animal agriculture.
Collapse
Affiliation(s)
- Inkyung Park
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Hyoyoun Nam
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Doyun Goo
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Samiru S. Wickramasuriya
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Noah Zimmerman
- Arm & Hammer Animal and Food Production, Waukesha, WI, United States
| | | | | | - Hyun S. Lillehoj
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
- *Correspondence: Hyun S. Lillehoj,
| |
Collapse
|
116
|
Kang JW, Tang X, Walton CJ, Brown MJ, Brewer RA, Maddela RL, Zheng JJ, Agus JK, Zivkovic AM. Multi-Omic Analyses Reveal Bifidogenic Effect and Metabolomic Shifts in Healthy Human Cohort Supplemented With a Prebiotic Dietary Fiber Blend. Front Nutr 2022; 9:908534. [PMID: 35782954 PMCID: PMC9248813 DOI: 10.3389/fnut.2022.908534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/20/2022] [Indexed: 12/14/2022] Open
Abstract
Dietary fiber, a nutrient derived mainly from whole grains, vegetables, fruits, and legumes, is known to confer a number of health benefits, yet most Americans consume less than half of the daily recommended amount. Convenience and affordability are key factors determining the ability of individuals to incorporate fiber-rich foods into their diet, and many Americans struggle to access, afford, and prepare foods rich in fiber. The objective of this clinical study was to test the changes in microbial community composition, human metabolomics, and general health markers of a convenient, easy to use prebiotic supplement in generally healthy young participants consuming a diet low in fiber. Twenty healthy adults participated in this randomized, placebo-controlled, double-blind, crossover study which was registered at clinicaltrials.gov as NCT03785860. During the study participants consumed 12 g of a prebiotic fiber supplement and 12 g of placebo daily as a powder mixed with water as part of their habitual diet in randomized order for 4 weeks, with a 4-week washout between treatment arms. Fecal microbial DNA was extracted and sequenced by shallow shotgun sequencing on an Illumina NovaSeq. Plasma metabolites were detected using liquid chromatography–mass spectrometry with untargeted analysis. The phylum Actinobacteria, genus Bifidobacterium, and several Bifidobacterium species (B. bifidum, B. adolescentis, B. breve, B. catenulatum, and B. longum) significantly increased after prebiotic supplementation when compared to the placebo. The abundance of genes associated with the utilization of the prebiotic fiber ingredients (sacA, xfp, xpk) and the production of acetate (poxB, ackA) significantly changed with prebiotic supplementation. Additionally, the abundance of genes associated with the prebiotic utilization (xfp, xpk), acetate production (ackA), and choline to betaine oxidation (gbsB) were significantly correlated with changes in the abundance of the genus Bifidobacterium in the prebiotic group. Plasma concentrations of the bacterially produced metabolite indolepropionate significantly increased. The results of this study demonstrate that an easy to consume, low dose (12 g) of a prebiotic powder taken daily increases the abundance of beneficial bifidobacteria and the production of health-promoting bacteria-derived metabolites in healthy individuals with a habitual low-fiber diet.
Collapse
Affiliation(s)
- Jea Woo Kang
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Xinyu Tang
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | | | - Mark J. Brown
- USANA Health Sciences, Inc., Salt Lake City, UT, United States
| | | | | | - Jack Jingyuan Zheng
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Joanne K. Agus
- Department of Nutrition, University of California, Davis, Davis, CA, United States
| | - Angela M. Zivkovic
- Department of Nutrition, University of California, Davis, Davis, CA, United States
- *Correspondence: Angela M. Zivkovic
| |
Collapse
|
117
|
Wang K, Yang A, Peng X, Lv F, Wang Y, Cui Y, Wang Y, Zhou J, Si H. Linkages of Various Calcium Sources on Immune Performance, Diarrhea Rate, Intestinal Barrier, and Post-gut Microbial Structure and Function in Piglets. Front Nutr 2022; 9:921773. [PMID: 35782941 PMCID: PMC9248811 DOI: 10.3389/fnut.2022.921773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 05/20/2022] [Indexed: 01/08/2023] Open
Abstract
The purpose of this experiment was to investigate the effects of different sources of calcium on immune performance, diarrhea rate, intestinal barrier, and post-intestinal flora structure and function in weaned piglets. A total of 1,000 weaned piglets were randomly assigned to five groups 10 replicate pens per treatment, 20 piglets per pen and fed calcium carbonate, calcium citrate, multiple calcium, and organic trace minerals of different concentrations of acidifier diets. The results of the study showed that the replacement of calcium carbonate with calcium citrate and multiple calcium had almost no significant effect on immune indexes (IL-1β, IL-6, IL-10, TNF-α) of piglets compared with the control group (p > 0.05). The five groups did not show a change in the diarrhea rate and diarrhea index (p > 0.05). The diet containing multiple calcium dramatically decreased the TP compared to the C and L diet (p < 0.05). No significant difference in HDL was noted in the five groups (p > 0.05). However, the concentration of LDL in blood in the multiple calcium group was significantly higher than that in groups L and D (p < 0.05). Moreover, the concentration of Glu in blood in the multiple calcium group was significantly higher than that in group C (p < 0.05). Compared with the control group, calcium citrate plus organic trace minerals diet markedly increased UCG-005 abundance in the colon (p < 0.05). In addition, the relative abundance of Prevotellaceae_NK3B31_group had an upward trend in the colon of the M group compared to the D group (p = 0.070). Meanwhile, calcium citrate plus organic trace minerals diet markedly increased Clostridium_sensu_stricto_1 abundance in the colon (p < 0.05). Metagenomic predictions by PICRUSt suggested that the colonic and fecal microbiota was mainly involved in carbohydrate metabolism, amino acid metabolism, energy metabolism, and metabolism of cofactors and vitamins.
Collapse
Affiliation(s)
- Kaijun Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Anqi Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Xiaomin Peng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Feifei Lv
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Ying Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yao Cui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yuhan Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
| | | | - Hongbin Si
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, China
- *Correspondence: Hongbin Si,
| |
Collapse
|
118
|
Kawamura A, Nemoto K, Sugita M. Effect of 8-week intake of the n-3 fatty acid-rich perilla oil on the gut function and as a fuel source for female athletes: a randomised trial. Br J Nutr 2022; 129:1-11. [PMID: 35705194 PMCID: PMC9991858 DOI: 10.1017/s0007114522001805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 04/25/2022] [Accepted: 06/06/2022] [Indexed: 11/06/2022]
Abstract
Previous studies have examined the effects of n-3 fatty acid intake in supplement form or fish oil capsules, but there are few studies based on other foods. Perilla oil is a traditional Japanese seed oil rich in n-3 fatty acids. This randomised trial aimed to determine the appropriate n-3 fatty acid dose through consumption of perilla oil, which improves gut function and microbiota in trained athletes, and the amount of fat fuel required to provide energy to athletes involved in high-intensity training to improve athletic performance. Thirty-six female athletes training six times per week were randomly assigned to three groups according to perilla oil intake: 9 g/d (high oil intake (HOI)), 3 g/d (low oil intake (LOI)) and placebo-supplementation (PLA) groups. The HOI and LOI groups had perilla oil-containing jelly and the PLA group had placebo jelly for 8 weeks. Gut microbiota, constipation score and urinary biochemical index were measured pre- and post-intervention. The spoilage bacteria, Proteobacteria, significantly decreased (P = 0·036, d = 0·53), whereas Butyrate-producing bacteria, Lachnospiraceae, significantly increased (P = 0·007, d = 1·2) in the HOI group. Urinary indoxyl sulphate significantly decreased in the HOI group only (P = 0·010, d = 0·82). Changes in the constipation score were significantly lower in the HOI group (P = 0·020) and even lower in the LOI group (P = 0·073) than in the PLA group; there were significant differences between groups (P = 0·035). Therefore, perilla oil intake may improve gut function and microbiota in athletes, with higher doses resulting in further improvement.
Collapse
Affiliation(s)
- Aki Kawamura
- Faculty of Sport Science, Nippon Sport Science University, Tokyo1588508, Japan
| | - Ken Nemoto
- Faculty of Sport Science, Nippon Sport Science University, Tokyo1588508, Japan
| | - Masaaki Sugita
- Faculty of Sport Science, Nippon Sport Science University, Tokyo1588508, Japan
| |
Collapse
|
119
|
Augustine T, Kumar M, Al Khodor S, van Panhuys N. Microbial Dysbiosis Tunes the Immune Response Towards Allergic Disease Outcomes. Clin Rev Allergy Immunol 2022:10.1007/s12016-022-08939-9. [PMID: 35648372 DOI: 10.1007/s12016-022-08939-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2022] [Indexed: 02/07/2023]
Abstract
The hygiene hypothesis has been popularized as an explanation for the rapid increase in allergic disease observed over the past 50 years. Subsequent epidemiological studies have described the protective effects that in utero and early life exposures to an environment high in microbial diversity have in conferring protective benefits against the development of allergic diseases. The rapid advancement in next generation sequencing technology has allowed for analysis of the diverse nature of microbial communities present in the barrier organs and a determination of their role in the induction of allergic disease. Here, we discuss the recent literature describing how colonization of barrier organs during early life by the microbiota influences the development of the adaptive immune system. In parallel, mechanistic studies have delivered insight into the pathogenesis of disease, by demonstrating the comparative effects of protective T regulatory (Treg) cells, with inflammatory T helper 2 (Th2) cells in the development of immune tolerance or induction of an allergic response. More recently, a significant advancement in our understanding into how interactions between the adaptive immune system and microbially derived factors play a central role in the development of allergic disease has emerged. Providing a deeper understanding of the symbiotic relationship between our microbiome and immune system, which explains key observations made by the hygiene hypothesis. By studying how perturbations that drive dysbiosis of the microbiome can cause allergic disease, we stand to benefit by delineating the protective versus pathogenic aspects of human interactions with our microbial companions, allowing us to better harness the use of microbial agents in the design of novel prophylactic and therapeutic strategies.
Collapse
Affiliation(s)
- Tracy Augustine
- Laboratory of Immunoregulation, Sidra Medicine, PO BOX 26999, Doha, Qatar
| | - Manoj Kumar
- Microbiome and Host-Microbes Interactions Laboratory, Sidra Medicine, Doha, Qatar
| | - Souhaila Al Khodor
- Microbiome and Host-Microbes Interactions Laboratory, Sidra Medicine, Doha, Qatar
| | | |
Collapse
|
120
|
Du X, Li F, Kong F, Cui Z, Li D, Wang Y, Zhu Q, Shu G, Tian Y, Zhang Y, Zhao X. Altitude-adaption of gut microbiota in Tibetan chicken. Poult Sci 2022; 101:101998. [PMID: 35841636 PMCID: PMC9293635 DOI: 10.1016/j.psj.2022.101998] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 05/29/2022] [Accepted: 06/06/2022] [Indexed: 12/27/2022] Open
Abstract
Low oxygen levels and extremely cold weather in high-altitude environments requires more energy intake to maintain body temperature in animals. However, little is known about the characteristics of cecal and ileac microbiota in Tibetan chicken and how the high and low altitude environments affect the gut microbiota communities in Tibetan chicken. In the present study, In the present study, Tibetan chickens (Group HA, 3572 m, 578.5 Pa) and their introduced flatland counterparts (Group LA, 580 m, 894.6 Pa) in the cecum and ileum to identify the possible bacterial species that are helpful for their host in environmental adaption. High-throughput sequencing was used to sequence the V3 to V4 hypervariable regions of the bacterial 16S rRNA gene. By comparing the gut microbial diversity of HA chicken with that of LA, the results indicated that the microbial diversity of the cecum and ileum in group HA was significantly lower (P < 0.05) than those in group LA. The cecum microbiome maintained higher population diversity and richness than the ileum (P < 0.05). Four phyla Firmicutes, Bacterioidetes, Actinobacteria, and Proteobacteria were dominant in two groups. Interestingly, there were significant differences in abundance ratio among the four groups (P < 0.05). The predominant bacteria in HA and LA ileum belong to Proteobacteria and Firmicutes, whereas in cecum, Bacterioidetes and Actinobacteria were predominant in both groups (P < 0.05). Correlation analysis showed that Sporosarcina, Enterococcus, and Lactococcus were strongly related to air pressure, and Peptoclostridium and Ruminococcaceae_UCG-014 are related to altitude and gut microbiota of LA group was influenced by altitude, while HA group affected by air pressure. Meanwhile, the Ruminococcus-torques-group was negatively correlated with the relative abundance of Paenibacillus, and positive correlated with those of other microorganisms. Furthermore, HA has higher abundance of microbiota involved in energy and glycan biosynthesis metabolism pathway, while LA has higher abundance of microbiota involved in membrane transport, signal transduction, and xenobiotics biodegradation and metabolism. Generally, our results suggested that the composition and diversity of gut microbes changed after Tibetan chickens were introduced to the plain. Tibetan chicken may adapt to new environment via reshaping the gut microbiota. Gut microbes may contribute to the host adaption to high altitude environments by increasing host energy and glycan biosynthesis.
Collapse
Affiliation(s)
- Xiaxia Du
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Fugui Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Fanli Kong
- College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Zhifu Cui
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Diyan Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qing Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Gang Shu
- Department of Basic Veterinary Medicine, College of Veterinary medicine, Chengdu, Sichuan, China
| | - Yaofu Tian
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yao Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiaoling Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China.
| |
Collapse
|
121
|
He Z, Ma Y, Yang S, Zhang S, Liu S, Xiao J, Wang Y, Wang W, Yang H, Li S, Cao Z. Gut microbiota-derived ursodeoxycholic acid from neonatal dairy calves improves intestinal homeostasis and colitis to attenuate extended-spectrum β-lactamase-producing enteroaggregative Escherichia coli infection. MICROBIOME 2022; 10:79. [PMID: 35643532 PMCID: PMC9142728 DOI: 10.1186/s40168-022-01269-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 04/06/2022] [Indexed: 05/02/2023]
Abstract
BACKGROUND Antimicrobials are often used to prevent and treat diarrhea induced by enteroaggregative Escherichia coli (EAEC) in young ruminants. However, drug overuse or misuse accelerates the spread of multidrug-resistant extended-spectrum β-lactamase (ESBL)-producing E. coli. Thus, supplementary foods as alternatives to antibiotics are needed to prevent colibacillus diarrhea in neonatal dairy calves. Ursodeoxycholic acid (UDCA), a therapeutic bile acid, helps alleviate colitis. However, how UDCA helps alleviate ESBL-EAEC-induced clinical symptoms and colitis remains unclear. RESULTS We investigated the microbial profiles and metabolites of healthy and diarrheic neonatal calves to determine microbial and metabolite biomarkers in early-life development. Both the gut microbiota communities and their associated metabolites differed between healthy and diarrheic calves. Commensal Butyricicoccus, Faecalibacterium, Ruminococcus, Collinsella, and Coriobacterium were key microbial markers that distinguished healthy and diarrheic gut microbiomes. Random forest machine-learning algorithm and Spearman correlation results indicated that enriched UDCA, short-chain fatty acids (SCFAs), and other prebiotics were strongly positively correlated with these five bacterial genera. We explored the effect of ursodiol on bacterial growth, cell adherence, and lipopolysaccharide-treated Caco-2 cells. Adding ursodiol induced direct antibacterial effects, suppressed proinflammatory effects, and reduced cell integrity damage. Oral ursodiol delivery to neonatal mice exhibited significant antibacterial effects and helped maintain colonic barrier integrity in mouse models of peritonitis sepsis and oral infection. UDCA supplementation attenuated colitis and recovered colonic SCFA production. To validate this, we performed fecal microbiota transplantations to inoculate ESBL-EAEC-infected neonatal mice. Microbiotas from UDCA-treated neonatal mice ameliorated colitis and hindgut commensal bacterial damage compared with that of the microbiotas from the control and placebo mice, as evidenced by colonization of abundant bacteria, including Oscillospiraceae, Ruminococcaceae, Lachnospiraceae, and Clostridia_UCG-014, and upregulated SCFA production. CONCLUSIONS This study provided the first evidence that UDCA could confer diarrhea resistance in ESBL-EAEC-infected newborn dairy calves. UDCA blocked bacterial growth and invasion both in vitro and in vivo, alleviated commensal bacterial dysbiosis during ESBL-EAEC infection in neonatal mouse models of sepsis and colitis via the TGR5-NF-κB axis, and upregulated SCFA production in the hindgut digesta. Our findings provide insight into the UDCA-mediated remission of ESBL-EAEC infections and the potential role of UDCA as an antibiotic alternative. Video abstract.
Collapse
Affiliation(s)
- Zhiyuan He
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yulin Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Sirui Yang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Shuyuan Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Shuai Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jianxin Xiao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yajing Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Wei Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Hongjian Yang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Shengli Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
122
|
Du XQ, Shi LP, Chen ZW, Hu JY, Zuo B, Xiong Y, Cao WF. Astragaloside IV Ameliorates Isoprenaline-Induced Cardiac Fibrosis in Mice via Modulating Gut Microbiota and Fecal Metabolites. Front Cell Infect Microbiol 2022; 12:836150. [PMID: 35656031 PMCID: PMC9152365 DOI: 10.3389/fcimb.2022.836150] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/19/2022] [Indexed: 01/15/2023] Open
Abstract
Aim Gut microbiota is of crucial importance to cardiac health. Astragaloside IV (AS-IV) is a main active ingredient of Huangqi, a traditional edible and medicinal herb that has been shown to have beneficial effects on cardiac fibrosis (CF). However, it is still uncertain whether the consumption of AS-IV alleviates cardiac fibrosis through the gut microbiota and its metabolites. Therefore, we assessed whether the anti-fibrosis effect of AS-IV is associated with changes in intestinal microbiota and fecal metabolites and if so, whether some specific gut microbes are conducive to the benefits of AS-IV. Methods Male C57BL-6J mice were subcutaneously injected with isoprenaline (ISO) to induce cardiac fibrosis. AS-IV was administered to mice by gavage for 14 days. The effects of AS-IV on cardiac function, myocardial enzyme, cardiac weight index (CWI), and histopathology of ISO-induced CF mice were investigated. Moreover, 16S rRNA sequencing was used to establish gut-microbiota profiles. Fecal-metabolites profiles were established using the liquid chromatograph-mass spectrometry (LC-MS). Results AS-IV treatment prevented cardiac dysfunction, ameliorated myocardial damage, histopathological changes, and cardiac fibrosis induced by ISO. AS-IV consumption increased the richness of Akkermansia, Defluviitaleaceae_UCG-011, and Rikenella. AS-IV also modulated gut metabolites in their feces. Among 141 altered gut metabolites, amino acid production was sharply changed. Furthermore, noticeable correlations were found between several specific gut microbes and altered fecal metabolites. Conclusions An increase of Akkermansia, Defluviitaleaceae_UCG-011, and Rikenella abundance, and modulation of amino acid metabolism, may contribute to the anti-fibrosis and cardiac protective effects of Astragaloside IV.
Collapse
Affiliation(s)
- Xu-Qin Du
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing Medical University, Chongqing, China
| | - Li-Peng Shi
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing Medical University, Chongqing, China
| | - Zhi-Wei Chen
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing Medical University, Chongqing, China
| | - Jin-Yuan Hu
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing Medical University, Chongqing, China
| | - Biao Zuo
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing Medical University, Chongqing, China
| | - Yu Xiong
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing Medical University, Chongqing, China
| | - Wen-Fu Cao
- College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing Medical University, Chongqing, China
- Department of Chinese Traditional Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Wen-Fu Cao,
| |
Collapse
|
123
|
Lee JH, Kim TK, Cha JY, Jang HW, Yong HI, Choi YS. How to Develop Strategies to Use Insects as Animal Feed: Digestibility, Functionality, Safety, and Regulation. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2022; 64:409-431. [PMID: 35709133 PMCID: PMC9184698 DOI: 10.5187/jast.2022.e27] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 11/20/2022]
Abstract
Various insects have emerged as novel feed resources due to their economical,
eco-friendly, and nutritive characteristics. Fish, poultry, and pigs are
livestock that can feed on insects. The digestibility of insect-containing meals
were presented by the species, life stage, nutritional component, and processing
methods. Several studies have shown a reduced apparent digestibility coefficient
(ADC) when insects were supplied as a replacement for commercial meals related
to chitin. Although the expression of chitinase mRNA was present in several
livestock, indigestible components in insects, such as chitin or fiber, could be
a reason for the reduced ADC. However, various components can positively affect
livestock health. Although the bio-functional properties of these components
have been verified in vitro, they show positive health-promoting effects owing
to their functional expression when directly applied to animal diets. Changes in
the intestinal microbiota of animals, enhancement of immunity, and enhancement
of antibacterial activity were confirmed as positive effects that can be
obtained through insect diets. However, there are some issues with the safety of
insects as feed. To increase the utility of insects as feed, microbial hazards,
chemical hazards, and allergens should be regulated. The European Union, North
America, East Asia, Australia, and Nigeria have established regulations
regarding insect feed, which could enhance the utility of insects as novel feed
resources for the future.
Collapse
Affiliation(s)
- Jae-Hoon Lee
- Research Group of Food Processing, Korean
Food Research Institute, Wanju 55365, Korea
| | - Tae-Kyung Kim
- Research Group of Food Processing, Korean
Food Research Institute, Wanju 55365, Korea
| | - Ji Yoon Cha
- Research Group of Food Processing, Korean
Food Research Institute, Wanju 55365, Korea
| | - Hae Won Jang
- Department of Food Science and
Biotechnology, Sungshin Women’s University, Seoul
01133, Korea
| | - Hae In Yong
- Division of Animal and Dairy Science,
Chungnam National University, Daejeon 34134, Korea
- Corresponding author: Hae In Yong, Division of
Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea.
Tel: +82-42-821-5775, E-mail:
| | - Yun-Sang Choi
- Research Group of Food Processing, Korean
Food Research Institute, Wanju 55365, Korea
- Corresponding author: Yun-Sang Choi, Research Group
of Food Processing, Korean Food Research Institute, Wanju 55365, Korea. Tel:
+82-63-219-9387, E-mail:
| |
Collapse
|
124
|
Jourova L, Anzenbacherova E, Dostal Z, Anzenbacher P, Briolotti P, Rigal E, Daujat-Chavanieu M, Gerbal-Chaloin S. Butyrate, a typical product of gut microbiome, affects function of the AhR gene, being a possible agent of crosstalk between gut microbiome and hepatic drug metabolism. J Nutr Biochem 2022; 107:109042. [PMID: 35533897 DOI: 10.1016/j.jnutbio.2022.109042] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 01/11/2022] [Accepted: 03/21/2022] [Indexed: 02/06/2023]
Abstract
Modulation of gut microbiome composition seems to be a promising therapeutic strategy for a wide range of pathological states. However, these microbiota-targeted interventions may affect production of microbial metabolites, circulating factors in the gut-liver axis influencing hepatic drug metabolism with possible clinical relevance. Butyrate, a short-chain fatty acid produced through microbial fermentation of dietary fibers in the colon, has well established anti-inflammatory role in the intestine, while the effect of butyrate on the liver is unknown. In this study, we have evaluated the effect of butyrate on hepatic AhR activity and AhR-regulated gene expression. We have showed that AhR and its target genes were upregulated by butyrate in dose dependent manner in HepG2-C3 as well as in primary human hepatocytes. The involvement of AhR has been proved using specific AhR antagonist and siRNA-mediated AhR silencing. Experiments with AhR reporter cells have shown that butyrate regulates the expression of AhR target genes by modulating the AhR activity. Our results suggest also epigenetic action by butyrate on AhR and its repressor (AHRR) presumably through mechanisms based on HDAC inhibition in the liver. Our results demonstrate that butyrate may influence the drug metabolizing ability of liver enzymes e.g. through the interaction with AhR dependent pathways.
Collapse
Affiliation(s)
- Lenka Jourova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hněvotínská 3, Olomouc 775 15, Czech Republic.
| | - Eva Anzenbacherova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hněvotínská 3, Olomouc 775 15, Czech Republic
| | - Zdenek Dostal
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hněvotínská 3, Olomouc 775 15, Czech Republic
| | - Pavel Anzenbacher
- Department of Pharmacology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hněvotínská 3, Olomouc 775 15, Czech Republic
| | - Philippe Briolotti
- IRMB, University Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | - Emilie Rigal
- IRMB, University Montpellier, INSERM, CHU Montpellier, Montpellier, France
| | | | | |
Collapse
|
125
|
Wang J, Zhu Y, Tian S, Shi Q, Yang H, Wang J, Zhu W. Effects of Protein Restriction and Succedent Realimentation on Jejunal Function and Bacterial Composition of Different Colonic Niches in Weaned Piglets. Front Vet Sci 2022; 9:877130. [PMID: 35591867 PMCID: PMC9111176 DOI: 10.3389/fvets.2022.877130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/23/2022] [Indexed: 12/03/2022] Open
Abstract
Recent studies have proved that protein succedent realimentation could rescue the loss of growth performance in weaning piglets caused by a prior protein restriction. However, how the protein restriction and succedent realimentation influence the jejunal function and bacterial composition of different colonic niches microbiota in weaning piglets needs a further investigation. After protein succedent realimentation, we found that the treatment group (TRE) piglets had a higher IGF-1 content and IGF-1R gene expression level in jejunal mucosa than the control group (CON) piglets. The ZO-1 gene expression level was up-regulated in the jejunal mucosa of TRE piglets during protein restriction and succedent realimentation, while the jejunal permeability of TRE piglets was only decreased after protein succedent realimentation. In addition, we found that protein restriction and succedent realimentation increased the gene expression of Pept-1 and the fecal apparent digestibility of crude protein in TRE piglets, but decreased the fecal nitrogen content. After 16S rRNA MiSeq sequencing of bacteria in different colonic niches (mucosa and digesta), TRE piglets had a higher relative abundance of beneficial bacteria and a lower relative abundance of potential pathogens than CON piglets in different colonic niches after protein restriction and succedent realimentation. Our data showed that protein restriction and succedent realimentation decreased the concentrations of branch chain fatty acids and ammonia-N in the colon of TRE piglets. In addition, protein succedent realimentation increased the concentration of total short chain fatty acids in the colon of TRE piglets. All these findings demonstrated that the strategy of protein restriction and succedent realimentation is an effective way to improve intestinal health of weaning piglets, and provided new insights into the nutrition management of piglets during the weaning period.
Collapse
Affiliation(s)
- Jue Wang
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- Laboratory of Stem Cells and Translational Medicine, School of Medicine, Institutes for Life Sciences, South China University of Technology, Guangzhou, China
| | - Yizhi Zhu
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Shiyi Tian
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Qing Shi
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Huairong Yang
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jing Wang
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Jing Wang
| | - Weiyun Zhu
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, National Experimental Teaching Demonstration Center of Animal Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
126
|
Sharma A, Singh S, Mishra A, Rai AK, Ahmad I, Ahmad S, Gulzar F, Schertzer JD, Shrivastava A, Tamrakar AK. Insulin resistance corresponds with a progressive increase in NOD1 in high fat diet-fed mice. Endocrine 2022; 76:282-293. [PMID: 35112215 DOI: 10.1007/s12020-022-02995-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 01/24/2022] [Indexed: 02/08/2023]
Abstract
PURPOSE Innate immune components participate in obesity-induced inflammation, which can contribute to endocrine dysfunction during metabolic diseases. However, the chronological activation of specific immune proteins such as Nucleotide-binding oligomerization domain-containing protein 1 (NOD1) and relevance to cellular crosstalk during the progression of obesity-associated insulin resistance (IR) is not known. METHODS The NOD1 signaling in various insulin-sensitive metabolic tissues during the progression of diet-insulin resistance was assessed in C57BL/6J mice fed with 60% high-fat diet (HFD) for 4, 8, 12, and 16 weeks. Intestinal permeability was measured using FITC-dextran. NOD1 activating potential was analyzed using HEK-Blue mNOD1 cells. RESULTS HFD-fed mice showed progressive induction of glucose intolerance and impairment of insulin signaling in key metabolic tissues. We found a time-dependent increase in intestinal permeability coupled with transport and accumulation of NOD1 activating ligand in the serum of HFD-fed mice. We also observed a progressive accumulation of γ-D-glutamyl-meso-diaminopimelic acid (DAP), a microbial peptidoglycan ligand known to activate NOD1, in serum samples of the HFD-fed mice. There was also a progressive increase in transcripts levels of NOD1 in bone marrow-derived macrophages during HFD-feeding. In addition, skeletal muscle, adipose and liver, the key insulin sensitive metabolic tissues also had a time-dependent increase in transcripts of NOD1 and Rip2 and a corresponding activation of pro-inflammatory responses in these tissues. CONCLUSION These data highlight the correlation of inflammation and insulin resistance to NOD1 activation in the bone marrow derived macrophages and insulin responsive metabolic tissues during high fat diet feeding in mice.
Collapse
Affiliation(s)
- Aditya Sharma
- Division of Biochemistry, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Sushmita Singh
- Division of Biochemistry, CSIR-Central Drug Research Institute, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Alok Mishra
- Center for advanced Research, King George Medical University, Lucknow, 220001, India
| | - Amit K Rai
- Division of Biochemistry, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Ishbal Ahmad
- Division of Biochemistry, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Shadab Ahmad
- Division of Biochemistry, CSIR-Central Drug Research Institute, Lucknow, 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Farah Gulzar
- Division of Biochemistry, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Jonathan D Schertzer
- Department of Biochemistry and Biomedical Sciences and Farncombe Family Digestive Health Research Institute, Centre for Metabolism, Obesity and Diabetes Research, McMaster University, 1200 Main St. W., Hamilton, ON, L8N 3Z5, Canada
| | - Ashutosh Shrivastava
- Center for advanced Research, King George Medical University, Lucknow, 220001, India
| | - Akhilesh K Tamrakar
- Division of Biochemistry, CSIR-Central Drug Research Institute, Lucknow, 226031, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
127
|
Liu WC, Pan ZY, Zhao Y, Guo Y, Qiu SJ, Balasubramanian B, Jha R. Effects of Heat Stress on Production Performance, Redox Status, Intestinal Morphology and Barrier-Related Gene Expression, Cecal Microbiome, and Metabolome in Indigenous Broiler Chickens. Front Physiol 2022; 13:890520. [PMID: 35574439 PMCID: PMC9098996 DOI: 10.3389/fphys.2022.890520] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/01/2022] [Indexed: 12/19/2022] Open
Abstract
This study was done to evaluate the effects of heat stress (HS) on production performance, redox status, small intestinal barrier-related parameters, cecal microbiota, and metabolome of indigenous broilers. A total of forty female indigenous broilers (56-day-old) were randomly and equally divided into normal treatment group (NT group, 21.3 ± 1.2°C, 24 h/day) and HS group (32.5 ± 1.4°C, 8 h/day) with five replicates of each for 4 weeks feeding trial. The results showed that the body weight gain (BWG) of broilers in HS group was lower than those in NT group during 3–4 weeks and 1–4 weeks (p < 0.05). The HS exposure increased the abdominal fat rate (p < 0.05) but decreased the thigh muscle rate (p < 0.01). Besides, broilers in HS group had higher drip loss of breast muscle than NT group (p < 0.01). Broilers exposed to HS had lower total antioxidant capacity (T-AOC) in serum and jejunum, activities of total superoxide dismutase (T-SOD) in the jejunum, glutathione peroxidase (GSH-Px) in the thigh muscle, duodenum, and jejunum; and catalase (CAT) in breast muscle, duodenum, and jejunum (p < 0.05). Whereas the malondialdehyde (MDA) contents in breast muscle, duodenum, and jejunum was elevated by HS exposure (p < 0.05). Moreover, the relative mRNA expression of Occludin and ZO-1 in the duodenum, Occludin, Claudin-1, Claudin-4, ZO-1, Mucin-2 in the jejunum, and the Claudin-4 and Mucin-2 in the ileum was down-regulated by HS exposure (p < 0.05). The 16S rRNA sequencing results showed that the HS group increased the relative abundance of Anaerovorax in the cecum at the genus level (p < 0.05). Cecal metabolomics analysis indicated 19 differential metabolites between the two groups (p < 0.10, VIP >1). The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that the differential metabolites mainly enriched in 10 signaling pathways such as the Citrate cycle (TCA cycle) (p < 0.01). In summary, chronic HS exposure caused a decline of production performance, reduced antioxidant capacity, disrupted intestinal barrier function, and negatively affected cecal microbiota and metabolome in indigenous broilers.
Collapse
Affiliation(s)
- Wen-Chao Liu
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Zi-Yi Pan
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Yue Zhao
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Yan Guo
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Sheng-Jian Qiu
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Balamuralikrishnan Balasubramanian
- Department of Food Science and Biotechnology, College of Life Science, Sejong University, Seoul, South Korea
- *Correspondence: Balamuralikrishnan Balasubramanian, ; Rajesh Jha,
| | - Rajesh Jha
- Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, HI, United States
- *Correspondence: Balamuralikrishnan Balasubramanian, ; Rajesh Jha,
| |
Collapse
|
128
|
Yang Y, Li Y, Xie Y, Qiao S, Yang L, Pan H. Comparative Study on Jejunal Immunity and Microbial Composition of Growing-Period Tibetan Pigs and Duroc × (Landrace × Yorkshire) Pigs. Front Vet Sci 2022; 9:890585. [PMID: 35548051 PMCID: PMC9085446 DOI: 10.3389/fvets.2022.890585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
The gut microbiota plays vital roles in metabolizing nutrient, maintaining the intestinal epithelial barrier but also in modulating immunity. Host genetics and the pig breed are implicated in shaping gut microbiota. Tibetan pig is a unique native Chinese breed and has evolved to manifest a strong disease resistance. However, the immunity and microbiota of growing Tibetan (TP) pigs were still rarely understood. The jejunal immunity phenotype and microbial composition of TP and Duroc × (Landrace × Yorkshire) (DLY) pigs were explored through immunohistochemistry and 16S rRNA sequencing. Higher scores of clusters of differentiation 4 (CD4+) and Toll-like receptor 9 (TLR9) were observed in TP pigs than those of DLY pigs (p < 0.05), as were Interleukin 10 (IL-10) and zonular occludens 1 (ZO-1) (p < 0.01). Similar levels of bacterial richness and diversity were found in the jejunal microbiota of the TP and DLY pigs. However, the TP pigs showed a significantly different microbiome compared to DLY pigs at the genus level (ANOSIM; p < 0.05). Pseudomonas, Stenotrophomonas, Phenylobacterium, and Sandaracinobacter were enriched in DLY pigs (p < 0.05), while the Lactobacillus and Solibacillus had higher abundances in TP pigs than DLY pigs (p < 0.05). Tibetan pigs have “healthier” intestinal microbial communities than DLY pigs. Close relationships were found between jejunal immune performance and the differential bacteria, Lactobacillus can enhance porcine jejunal immunity, while Stenotrophomonas will have a negative impact on porcine gut immunity.
Collapse
Affiliation(s)
- Yuting Yang
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing, China
| | - Yongxiang Li
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Yanggang Xie
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Shiyan Qiao
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing, China
| | - Lijie Yang
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, China Agricultural University, Beijing, China
| | - Hongbin Pan
- Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
- *Correspondence: Hongbin Pan
| |
Collapse
|
129
|
Yadav M, Kapoor A, Verma A, Ambatipudi K. Functional Significance of Different Milk Constituents in Modulating the Gut Microbiome and Infant Health. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3929-3947. [PMID: 35324181 DOI: 10.1021/acs.jafc.2c00335] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Human milk, the gold standard for optimal nourishment, controls the microbial composition of infants by either enhancing or limiting bacterial growth. The milk fat globule membrane has gained interest in gut-related functions and cognitive development. The membrane proteins can directly interact with probiotic bacteria, influencing their survival and adhesion through gastrointestinal transit, whereas membrane phospholipids increase the residence time of probiotic bacteria in the gut. The commensal bacteria in milk act as the initial inoculum in building up the gut colonization of an infant, whereas oligosaccharides promote proliferation of beneficial microorganisms. Interestingly, milk extracellular vesicles are also involved in influencing the microbiota composition but are not well-explored. This review highlights the contribution of different milk components in modulating the infant gut microbiota, particularly the fat globule membrane, and the complex interplay between host- and brain-gut microbiota signaling affecting infant and adult health positively.
Collapse
Affiliation(s)
- Monica Yadav
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Ayushi Kapoor
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Aparna Verma
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Kiran Ambatipudi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee 247667, India
| |
Collapse
|
130
|
Zhou Z, Wu H, Li D, Zeng W, Huang J, Wu Z. Comparison of gut microbiome in the Chinese mud snail ( Cipangopaludina chinensis) and the invasive golden apple snail ( Pomacea canaliculata). PeerJ 2022; 10:e13245. [PMID: 35402093 PMCID: PMC8992660 DOI: 10.7717/peerj.13245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/18/2022] [Indexed: 01/13/2023] Open
Abstract
Background Gut microbiota play a critical role in nutrition absorption and environmental adaptation and can affect the biological characteristics of host animals. The invasive golden apple snail (Pomacea canaliculata) and native Chinese mud snail (Cipangopaludina chinensis) are two sympatric freshwater snails with similar ecological niche in southern China. However, gut microbiota comparison of interspecies remains unclear. Comparing the difference of gut microbiota between the invasive snail P. canaliculata and native snail C. chinensis could provide new insight into the invasion mechanism of P.canaliculata at the microbial level. Methods Gut samples from 20 golden apple snails and 20 Chinese mud snails from wild freshwater habitats were collected and isolated. The 16S rRNA gene V3-V4 region of the gut microbiota was analyzed using high throughput Illumina sequencing. Results The gut microbiota dominantly composed of Proteobacteria, Bacteroidetes, Firmicutes and Epsilonbacteraeota at phylum level in golden apple snail. Only Proteobacteria was the dominant phylum in Chinese mud snail. Alpha diversity analysis (Shannon and Simpson indices) showed there were no significant differences in gut microbial diversity, but relative abundances of the two groups differed significantly (P < 0.05). Beta diversity analysis (Bray Curtis and weighted UniFrac distance) showed marked differences in the gut microbiota structure (P < 0.05). Unique or high abundance microbial taxa were more abundant in the invasive snail compared to the native form. Functional prediction analysis indicated that the relative abundances of functions differed significantly regarding cofactor prosthetic group electron carrier and vitamin biosynthesis, amino acid biosynthesis, and nucleoside and nucleotide biosynthesis (P < 0.05). These results suggest an enhanced potential to adapt to new habitats in the invasive snail.
Collapse
Affiliation(s)
- Zihao Zhou
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, Guangxi, China,Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, Guangxi, China,Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin Institute for Sustainable Development and Innovation, Guangxi Normal University, Guilin, Guangxi, China
| | - Hongying Wu
- Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin Institute for Sustainable Development and Innovation, Guangxi Normal University, Guilin, Guangxi, China
| | - Dinghong Li
- Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin Institute for Sustainable Development and Innovation, Guangxi Normal University, Guilin, Guangxi, China
| | - Wenlong Zeng
- Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin Institute for Sustainable Development and Innovation, Guangxi Normal University, Guilin, Guangxi, China
| | - Jinlong Huang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, Guangxi, China,Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, Guangxi, China,Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin Institute for Sustainable Development and Innovation, Guangxi Normal University, Guilin, Guangxi, China,College of Life Sciences, Guangxi Normal University, Guilin, Guangxi, China
| | - Zhengjun Wu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin, Guangxi, China,Guangxi Key Laboratory of Rare and Endangered Animal Ecology, Guangxi Normal University, Guilin, Guangxi, China,Guangxi Key Laboratory of Landscape Resources Conservation and Sustainable Utilization in Lijiang River Basin Institute for Sustainable Development and Innovation, Guangxi Normal University, Guilin, Guangxi, China
| |
Collapse
|
131
|
Oña L, Kost C. Cooperation increases robustness to ecological disturbance in microbial cross-feeding networks. Ecol Lett 2022; 25:1410-1420. [PMID: 35384221 DOI: 10.1111/ele.14006] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 01/26/2022] [Accepted: 02/22/2022] [Indexed: 12/19/2022]
Abstract
Microorganisms mainly exist within complex networks of ecological interactions. Given that the growth and survival of community members frequently depend on an obligate exchange of essential metabolites, it is generally unclear how such communities can persist despite the destabilising force of ecological disturbance. Here we address this issue using a population dynamics model. In contrast to previous work that suggests the potential for obligate interaction networks to emerge is limited, we find the opposite pattern: ecological disturbance favours both specific network topologies and cooperative cross-feeding among community members. These results establish environmental perturbations as a key driver shaping the architecture of microbial interaction networks.
Collapse
Affiliation(s)
- Leonardo Oña
- Department of Ecology, School of Biology/Chemistry, Osnabrück University, Osnabrück, Germany
| | - Christian Kost
- Department of Ecology, School of Biology/Chemistry, Osnabrück University, Osnabrück, Germany
| |
Collapse
|
132
|
Chenhuichen C, Cabello-Olmo M, Barajas M, Izquierdo M, Ramírez-Vélez R, Zambom-Ferraresi F, Martínez-Velilla N. Impact of probiotics and prebiotics in the modulation of the major events of the aging process: A systematic review of randomized controlled trials. Exp Gerontol 2022; 164:111809. [DOI: 10.1016/j.exger.2022.111809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 11/27/2022]
|
133
|
Yang X, Zhang ZJ, Hang HC. Chemical proteomics for identifying short-chain fatty acid modified proteins in Salmonella. Methods Enzymol 2022; 664:135-150. [PMID: 35331371 DOI: 10.1016/bs.mie.2021.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Microbiota-metabolized small molecules play important roles to regulate host immunity and pathogen virulence. Specifically, microbiota generates millimolar concentration of short-chain fatty acid (SCFA) that can directly inhibit Salmonella virulence. Here, we describe chemical proteomic methods to identify SCFA-modified proteins in Salmonella using free fatty acids as well as their salicylic acid derivatives. In addition, we include CRISPR-Cas9 gene editing protocols for epitope-tagging of specific proteins to validate SCFA-modification in Salmonella. These protocols should facilitate the discovery and functional analysis of SCFA-modified proteins in Salmonella microbiology and pathogenesis.
Collapse
Affiliation(s)
- Xinglin Yang
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, United States
| | - Zhenrun J Zhang
- Duchossois Family Institute, The University of Chicago, Chicago, IL, United States
| | - Howard C Hang
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, United States; Department of Chemistry, Scripps Research, La Jolla, CA, United States.
| |
Collapse
|
134
|
Liu B, Cui Y, Ali Q, Zhu X, Li D, Ma S, Wang Z, Wang C, Shi Y. Gut Microbiota Modulate Rabbit Meat Quality in Response to Dietary Fiber. Front Nutr 2022; 9:849429. [PMID: 35392295 PMCID: PMC8982513 DOI: 10.3389/fnut.2022.849429] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/15/2022] [Indexed: 12/25/2022] Open
Abstract
Antibiotics are widely used in gastrointestinal diseases in meat rabbit breeding, which causes safety problems for meat products. Dietary fiber can regulate the gut microbiota of meat rabbits, but the mechanism of improving meat quality is largely unknown. The objective of this study was to evaluate the effects of adding different fiber sources to rabbit diets on the growth performance, gut microbiota composition, and muscle metabolite composition of meat rabbits. A total of 18 New Zealand white rabbits of similar weight (40 ± 1 day old) were randomly assigned to beet pulp treatment (BP), alfalfa meal treatment (AM), and peanut vine treatment (PV). There were 6 repeats in each treatment and all were raised in a single cage. The predictive period was 7 days and the experimental period was 40 days. The results revealed that AM and PV supplementation increased growth performance, slaughter performance, and intestinal development of meat rabbits compared with the BP treatment, and especially the effect of AM treatment was better. The content of butyric acid was increased in PV and AM treatments compared with the BP treatment. The expression of mitochondrial biosynthesis genes of liver, cecum, and muscle showed that AM treatment increased gene expression of CPT1b compared to the BP treatment. In addition, AM and PV treatments significantly increased the microbial diversity and richness compared with BP treatment, and their bacterial community composition was similar, and there were some differences between AM and PV treatments and BP treatment. Metabonomics analysis of muscle showed that AM treatment significantly increased amino acid and fatty acid metabolites compared with BP treatment, which were mainly concentrated in energy metabolism, amino acid metabolism, and fatty acid regulation pathways. Furthermore, through correlation analysis, it was found that there was a significant correlation between rumenococci in the cecum and amino acid metabolites in the muscle. Overall, these findings indicate that AM may affect the body's health by changing its gut microbiota, and then improving meat quality, and the intestinal–muscle axis provides a theoretical basis.
Collapse
Affiliation(s)
- Boshuai Liu
- The College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Yalei Cui
- The College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China
- Henan Forage Engineering Technology Research Center, Zhengzhou, China
| | - Qasim Ali
- The College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China
- Henan Forage Engineering Technology Research Center, Zhengzhou, China
| | - Xiaoyan Zhu
- The College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China
- Henan Forage Engineering Technology Research Center, Zhengzhou, China
| | - Defeng Li
- The College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China
- Henan Forage Engineering Technology Research Center, Zhengzhou, China
| | - Sen Ma
- The College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China
- Henan Forage Engineering Technology Research Center, Zhengzhou, China
| | - Zhichang Wang
- The College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China
- Henan Forage Engineering Technology Research Center, Zhengzhou, China
| | - Chengzhang Wang
- The College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China
- Henan Forage Engineering Technology Research Center, Zhengzhou, China
| | - Yinghua Shi
- The College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China
- Henan Forage Engineering Technology Research Center, Zhengzhou, China
- *Correspondence: Yinghua Shi
| |
Collapse
|
135
|
Organismal and cellular interactions in vertebrate-alga symbioses. Biochem Soc Trans 2022; 50:609-620. [PMID: 35225336 DOI: 10.1042/bst20210153] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 12/29/2022]
Abstract
Photosymbioses, intimate interactions between photosynthetic algal symbionts and heterotrophic hosts, are well known in invertebrate and protist systems. Vertebrate animals are an exception where photosynthetic microorganisms are not often considered part of the normal vertebrate microbiome, with a few exceptions in amphibian eggs. Here, we review the breadth of vertebrate diversity and explore where algae have taken hold in vertebrate fur, on vertebrate surfaces, in vertebrate tissues, and within vertebrate cells. We find that algae have myriad partnerships with vertebrate animals, from fishes to mammals, and that those symbioses range from apparent mutualisms to commensalisms to parasitisms. The exception in vertebrates, compared with other groups of eukaryotes, is that intracellular mutualisms and commensalisms with algae or other microbes are notably rare. We currently have no clear cell-in-cell (endosymbiotic) examples of a trophic mutualism in any vertebrate, while there is a broad diversity of such interactions in invertebrate animals and protists. This functional divergence in vertebrate symbioses may be related to vertebrate physiology or a byproduct of our adaptive immune system. Overall, we see that diverse algae are part of the vertebrate microbiome, broadly, with numerous symbiotic interactions occurring across all vertebrate and many algal clades. These interactions are being studied for their ecological, organismal, and cellular implications. This synthesis of vertebrate-algal associations may prove useful for the development of novel therapeutics: pairing algae with medical devices, tissue cultures, and artificial ecto- and endosymbioses.
Collapse
|
136
|
Sukul P, Grzegorzewski S, Broderius C, Trefz P, Mittlmeier T, Fischer DC, Miekisch W, Schubert JK. Physiological and metabolic effects of healthy female aging on exhaled breath biomarkers. iScience 2022; 25:103739. [PMID: 35141500 PMCID: PMC8810402 DOI: 10.1016/j.isci.2022.103739] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 11/12/2021] [Accepted: 01/05/2022] [Indexed: 11/30/2022] Open
Abstract
Healthy aging driven physio-metabolic events in females hold the key to complex in vivo mechanistic links and systemic cross talks. Effects from basic changes at genome, proteome, metabolome, and lipidome levels are often reflected at the upstream phenome (e.g., breath volatome) cascades. Here, we have analyzed exhaled volatile metabolites (measured via real time mass spectrometry based breathomics) data from 204 healthy females, aged between 07 and 80 years. Age related substance-specific differences were observed in breath biomarkers. Exhalation of blood-borne endogenous organosulfur, short-chain fatty acids, alcohols, aldehydes, alkene, ketones and exogenous nitriles, terpenes, and aromatics have denominated interplay between endocrine differences, energy homeostasis, systemic microbial diversity, oxidative stress, and lifestyle. Overall marker expressions were suppressed under daily oral contraception. Young homosexual/lesbian adults turned out as breathomic outliers. Previously proposed disease-specific breath biomarkers should be reevaluated upon aging effects. Breathomics offers a noninvasive window toward system-wide understanding and personalized monitoring of aging i.e., translatable to gerontology.
Collapse
Affiliation(s)
- Pritam Sukul
- Rostock Medical Breath Research Analytics and Technologies (ROMBAT), Department of Anesthesiology and Intensive Care, University Medicine Rostock, Schillingallee 35, 18057 Rostock, Germany
| | - Simon Grzegorzewski
- Department of Traumatology, Hand and Reconstructive Surgery, University Medicine Rostock, Schillingallee 35, 18057 Rostock, Germany
| | - Celine Broderius
- Department of Traumatology, Hand and Reconstructive Surgery, University Medicine Rostock, Schillingallee 35, 18057 Rostock, Germany
| | - Phillip Trefz
- Rostock Medical Breath Research Analytics and Technologies (ROMBAT), Department of Anesthesiology and Intensive Care, University Medicine Rostock, Schillingallee 35, 18057 Rostock, Germany
| | - Thomas Mittlmeier
- Department of Traumatology, Hand and Reconstructive Surgery, University Medicine Rostock, Schillingallee 35, 18057 Rostock, Germany
| | - Dagmar-Christiane Fischer
- Department of Pediatrics, University Medicine Rostock, Ernst-Heydemann-Str. 8, 18057 Rostock, Germany
| | - Wolfram Miekisch
- Rostock Medical Breath Research Analytics and Technologies (ROMBAT), Department of Anesthesiology and Intensive Care, University Medicine Rostock, Schillingallee 35, 18057 Rostock, Germany
| | - Jochen K. Schubert
- Rostock Medical Breath Research Analytics and Technologies (ROMBAT), Department of Anesthesiology and Intensive Care, University Medicine Rostock, Schillingallee 35, 18057 Rostock, Germany
| |
Collapse
|
137
|
Tang W, Liu J, Ma Y, Wei Y, Liu J, Wang H. Impairment of Intestinal Barrier Function Induced by Early Weaning via Autophagy and Apoptosis Associated With Gut Microbiome and Metabolites. Front Immunol 2022; 12:804870. [PMID: 34975919 PMCID: PMC8714829 DOI: 10.3389/fimmu.2021.804870] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/30/2021] [Indexed: 12/14/2022] Open
Abstract
Early weaning piglet is frequently accompanied by severe enteric inflammatory responses and microbiota dysbiosis. The links between the gut microbiome and the etiology of gut inflammation are not fully understood. The study is aimed to investigate the potential molecular mechanisms mediating inflammatory reactivity following early weaning, and to find whether these changes are correlated with gut microbiota and metabolite signatures by comparison between suckling piglets (SPs) and weaning piglets (WPs). Histopathology analysis showed a severe inflammatory response and the disruption of epithelial barrier function. Early weaning resulted in reduced autophagy indicated as the suppression of autophagic flux, whereas induced the TLR4/P38MAPK/IL-1β-mediated apoptotic pathway, as well as activation of the IL-1β precursor. The alpha-diversity and microbial composition were changed in WPs, such as the decreased abundances of Bifidobacterium, Bacteroides, Bacillus, Lactobacillus, and Ruminococcus. Microbial co-concurrence analysis revealed that early weaning significantly decreased network complexity, including network size, degree, average clustering coefficient and number of keystone species, as compared with the SP group. Differentially abundant metabolites were mainly associated with amino acid and purine metabolism. Strong correlations were detected between discrepant microbial taxa and multiple inflammatory parameters. In conclusion, we found that dysregulations of autophagy and apoptosis pathway were involved in colon inflammation during weaned period, which may result from gut microbiota dysbiosis. This study may provide possible intervention modalities for preventing or treating post-weaning infections through maintaining gut microbial ecosystem integrity.
Collapse
Affiliation(s)
- Wenjie Tang
- College of Animal Science, Zhejiang University, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
| | - Jingliang Liu
- College of Animal Science, Zhejiang University, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
| | - Yanfei Ma
- College of Animal Science, Zhejiang University, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
| | - Yusen Wei
- College of Animal Science, Zhejiang University, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
| | - Jianxin Liu
- College of Animal Science, Zhejiang University, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
| | - Haifeng Wang
- College of Animal Science, Zhejiang University, The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, Hangzhou, China
| |
Collapse
|
138
|
Mall A, Kasarlawar S, Saini S. Limited Pairwise Synergistic and Antagonistic Interactions Impart Stability to Microbial Communities. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.648997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
One of the central goals of ecology is to explain and predict coexistence of species. In this context, microbial communities provide a model system where community structure can be studied in environmental niches and in laboratory conditions. A community of microbial population is stabilized by interactions between participating species. However, the nature of these stabilizing interactions has remained largely unknown. Theory and experiments have suggested that communities are stabilized by antagonistic interactions between member species, and destabilized by synergistic interactions. However, experiments have also revealed that a large fraction of all the interactions between species in a community are synergistic in nature. To understand the relative significance of the two types of interactions (synergistic vs. antagonistic) between species, we perform simulations of microbial communities with a small number of participating species using two frameworks—a replicator equation and a Lotka-Volterra framework. Our results demonstrate that synergistic interactions between species play a critical role in maintaining diversity in cultures. These interactions are critical for the ability of the communities to survive perturbations and maintain diversity. We follow up the simulations with quantification of the extent to which synergistic and antagonistic interactions are present in a bacterial community present in a soil sample. Overall, our results show that community stability is largely achieved with the help of synergistic interactions between participating species. However, we perform experiments to demonstrate that antagonistic interactions, in specific circumstances, can also contribute toward community stability.
Collapse
|
139
|
Zhang Q, Yu Y, Jin M, Deng Y, Zheng B, Lu T, Qian H. Oral azoxystrobin driving the dynamic change in resistome by disturbing the stability of the gut microbiota of Enchytraeus crypticus. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127252. [PMID: 34844364 DOI: 10.1016/j.jhazmat.2021.127252] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/23/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
Pesticides are continually entering the soil ecosystem because of safety assurance of high-yield food in agricultural intensification. It is highly urgent to evaluate their effects on the soil biota. This study characterized the dose-dependent changes in the gut bacterial and fungal community of Enchytraeus crypticus after oral exposure to an environmental dose of the fungicide azoxystrobin (AZ; 0.5, 1, and 10 mg/L) for 21 days. AZ not only induced the growth opportunistic pathogens and reduced the relative abundance of beneficial bacteria in the E. crypticus gut, but also destroyed the stability of the gut microecology of E. crypticus. Meanwhile, the dose-dependent effects of AZ were observed on the number and normalized abundance of antibiotic resistance genes (ARGs; copies/bacterial cell), and trace dose of AZ (> 0 and < 0.085 μg/individual) might enrich the ARG numbers in the gut of E. crypticus. Moreover, we used structural equation modeling to speculate that apart from mobile genetic elements and the bacterial community, the microbial interaction of E. crypticus gut might be another key contributor that drived the emergence and dissemination of ARGs. This study provides new perspectives in assessing the gut health of soil fauna under pesticide pollution in intensive agricultural production.
Collapse
Affiliation(s)
- Qi Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Yitian Yu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Mingkang Jin
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Yu Deng
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Bingyu Zheng
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Tao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China.
| |
Collapse
|
140
|
Liu J, Zhai C, Rho JR, Lee S, Heo HJ, Kim S, Kim HJ, Hong ST. Treatment of Hyperammonemia by Transplanting a Symbiotic Pair of Intestinal Microbes. Front Cell Infect Microbiol 2022; 11:696044. [PMID: 35071025 PMCID: PMC8766988 DOI: 10.3389/fcimb.2021.696044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022] Open
Abstract
Hyperammonemia is a deleterious and inevitable consequence of liver failure. However, no adequate therapeutic agent is available for hyperammonemia. Although recent studies showed that the pharmabiotic approach could be a therapeutic option for hyperammonemia, its development is clogged with poor identification of etiological microbes and low transplantation efficiency of candidate microbes. In this study, we developed a pharmabiotic treatment for hyperammonemia that employs a symbiotic pair of intestinal microbes that are both able to remove ammonia from the surrounding environment. By a radioactive tracing experiment in mice, we elucidated how the removal of ammonia by probiotics in the intestinal lumen leads to lower blood ammonia levels. After determination of the therapeutic mechanism, ammonia-removing probiotic strains were identified by high-throughput screening of gut microbes. The symbiotic partners of ammonia-removing probiotic strains were identified by screening intestinal microbes of a human gut, and the pairs were administrated to hyperammonemic mice to evaluate therapeutic efficacy. Blood ammonia was in a chemical equilibrium relationship with intestinal ammonia. Lactobacillus reuteri JBD400 removed intestinal ammonia to shift the chemical equilibrium to lower the blood ammonia level. L. reuteri JBD400 was successfully transplanted with a symbiotic partner, Streptococcus rubneri JBD420, improving transplantation efficiency 2.3×103 times more compared to the sole transplantation while lowering blood ammonia levels significantly. This work provides new pharmabiotics for the treatment of hyperammonemia as well as explains its therapeutic mechanism. Also, this approach provides a concept of symbiotic pairs approach in the emerging field of pharmabiotics.
Collapse
Affiliation(s)
- Jing Liu
- Department of Biomedical Sciences and Institute for Medical Science, Chonbuk National University Medical School, Jeonju, South Korea
| | - Chongkai Zhai
- Department of Biomedical Sciences and Institute for Medical Science, Chonbuk National University Medical School, Jeonju, South Korea
| | - Jung-Rae Rho
- Department of Oceanography, Kunsan National University, Kunsan, South Korea
| | - Sangbum Lee
- Department of Oceanography, Kunsan National University, Kunsan, South Korea
| | - Ho Jin Heo
- Division of Applied Life Science [Brain Korea (BK) 21 Plus], Institute of Agriculture and Life Science, Gyeongsang National University, Jinju, South Korea
| | - Sangwoo Kim
- JINIS BDRD Institute, JINIS Biopharmaceuticals Inc., Wanju, South Korea
| | - Hyeon Jin Kim
- JINIS BDRD Institute, JINIS Biopharmaceuticals Inc., Wanju, South Korea.,SNJ Pharma Inc., BioLabs Los Angeles (LA) in the Lundquist Institute for Biomedical Innovation at Harbor-University of California, Los Angeles (UCLA) Medical Center, Torrance, CA, United States
| | - Seong-Tshool Hong
- Department of Biomedical Sciences and Institute for Medical Science, Chonbuk National University Medical School, Jeonju, South Korea
| |
Collapse
|
141
|
Zhu J, Li H, Jing ZZ, Zheng W, Luo YR, Chen SX, Guo F. Robust host source tracking building on the divergent and non-stochastic assembly of gut microbiomes in wild and farmed large yellow croaker. MICROBIOME 2022; 10:18. [PMID: 35081990 PMCID: PMC8790850 DOI: 10.1186/s40168-021-01214-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 12/12/2021] [Indexed: 05/08/2023]
Abstract
BACKGROUND Given the lack of genetic background, the source tracking unknown individuals of fish species with both farmed and wild populations often cannot be robustly achieved. The gut microbiome, which is shaped by both deterministic and stochastic processes, can serve as a molecular marker of fish host source tracking, particularly as an alternative to the yet-to-be-established host genetic marker. A candidate for testing the feasibility is the large yellow croaker, Larimichthys crocea, which is carnivorous and ranks the top mariculture fish in China. Wild resource of this fish was depleted decades ago and might have potential problematic estimation because of escaping of farmed individuals. RESULTS The rectums of wild (n = 212) and farmed (n = 79) croakers from multiple batches were collected for the profiling of their gut bacterial communities. The farmed individuals had a higher alpha diversity and lower bacterial load than the wild individuals. The gut microbiota of the two sources exhibited divergence and high inter-batch variation, as featured by the dominance of Psychrobacter spp. in the wild group. Predicted functional capacity of the gut microbiome and representative isolates showed differences in terms of host source. This difference can be linked to the potential diet divergence between farmed and wild fishes. The non-stochastic distribution pattern of the core gut microbiota of the wild and farmed individuals supports the feasibility of microbiota-based host source tracking via the machine learning algorithm. A random forest classifier based on the divergence and non-stochastic assembly of the gut microbiome was robust in terms of host source tracking the individuals from all batches of croaker, including a newly introduced batch. CONCLUSIONS Our study revealed the divergence of gut microbiota and related functional profiles between wild and farmed croakers. For the first time, with representative datasets and non-stochastic patterns, we have verified that gut microbiota can be robustly applied to the tracking of host source even in carnivorous fish. Video abstract.
Collapse
Affiliation(s)
- Jun Zhu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Hao Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Ze Zhou Jing
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Wei Zheng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yuan Rong Luo
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen, China
| | - Shi Xi Chen
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China.
| | - Feng Guo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.
| |
Collapse
|
142
|
Wickramasuriya SS, Park I, Lee K, Lee Y, Kim WH, Nam H, Lillehoj HS. Role of Physiology, Immunity, Microbiota, and Infectious Diseases in the Gut Health of Poultry. Vaccines (Basel) 2022; 10:vaccines10020172. [PMID: 35214631 PMCID: PMC8875638 DOI: 10.3390/vaccines10020172] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 01/10/2023] Open
Abstract
“Gut health” refers to the physical state and physiological function of the gastrointestinal tract and in the livestock system; this topic is often focused on the complex interacting components of the intestinal system that influence animal growth performance and host-microbial homeostasis. Regardless, there is an increasing need to better understand the complexity of the intestinal system and the various factors that influence gut health, since the intestine is the largest immune and neuroendocrine organ that interacts with the most complex microbiome population. As we face the post-antibiotic growth promoters (AGP) era in many countries of the world, livestock need more options to deal with food security, food safety, and antibiotic resilience to maintain agricultural sustainability to feed the increasing human population. Furthermore, developing novel antibiotic alternative strategies needs a comprehensive understanding of how this complex system maintains homeostasis as we face unpredictable changes in external factors like antibiotic-resistant microbes, farming practices, climate changes, and consumers’ preferences for food. In this review, we attempt to assemble and summarize all the relevant information on chicken gut health to provide deeper insights into various aspects of gut health. Due to the broad and complex nature of the concept of “gut health”, we have highlighted the most pertinent factors related to the field performance of broiler chickens.
Collapse
Affiliation(s)
- Samiru S. Wickramasuriya
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA; (S.S.W.); (I.P.); (K.L.); (Y.L.); (W.H.K.); (H.N.)
| | - Inkyung Park
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA; (S.S.W.); (I.P.); (K.L.); (Y.L.); (W.H.K.); (H.N.)
| | - Kyungwoo Lee
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA; (S.S.W.); (I.P.); (K.L.); (Y.L.); (W.H.K.); (H.N.)
- Department of Animal Science and Technology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| | - Youngsub Lee
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA; (S.S.W.); (I.P.); (K.L.); (Y.L.); (W.H.K.); (H.N.)
| | - Woo H. Kim
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA; (S.S.W.); (I.P.); (K.L.); (Y.L.); (W.H.K.); (H.N.)
- College of Veterinary Medicine and Institute of Animal Medicine, Gyeongsang National University, Jinju 52828, Korea
| | - Hyoyoun Nam
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA; (S.S.W.); (I.P.); (K.L.); (Y.L.); (W.H.K.); (H.N.)
| | - Hyun S. Lillehoj
- Animal Bioscience and Biotechnology Laboratory, Beltsville Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD 20705, USA; (S.S.W.); (I.P.); (K.L.); (Y.L.); (W.H.K.); (H.N.)
- Correspondence: ; Tel.: +1-301-504-8771
| |
Collapse
|
143
|
Cong X, Li X, Yang G, Guo D, Tian H, Li J. Effects of dietary starch sources on pellet‐processing characteristics, growth performance and caecal microflora of meat rabbits. J Anim Physiol Anim Nutr (Berl) 2022; 106:888-898. [DOI: 10.1111/jpn.13682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/14/2021] [Accepted: 01/03/2022] [Indexed: 01/10/2023]
Affiliation(s)
- Xueyan Cong
- College of Animal Science and Veterinary Medicine Shenyang Agricultural University Shenyang Liaoning Province China
| | - Xiuyi Li
- College of Animal Science and Veterinary Medicine Shenyang Agricultural University Shenyang Liaoning Province China
| | - Guiqin Yang
- College of Animal Science and Veterinary Medicine Shenyang Agricultural University Shenyang Liaoning Province China
| | - Dongxin Guo
- College of Animal Science and Veterinary Medicine Shenyang Agricultural University Shenyang Liaoning Province China
| | - He Tian
- College of Animal Science and Veterinary Medicine Shenyang Agricultural University Shenyang Liaoning Province China
| | - Jiantao Li
- College of Animal Science and Veterinary Medicine Shenyang Agricultural University Shenyang Liaoning Province China
| |
Collapse
|
144
|
Wang X, Zhang L, Qin L, Wang Y, Chen F, Qu C, Miao J. Physicochemical Properties of the Soluble Dietary Fiber from Laminaria japonica and Its Role in the Regulation of Type 2 Diabetes Mice. Nutrients 2022; 14:329. [PMID: 35057510 PMCID: PMC8779286 DOI: 10.3390/nu14020329] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/09/2022] [Accepted: 01/11/2022] [Indexed: 02/06/2023] Open
Abstract
Laminaria japonica is a large marine brown alga that is annually highly productive. However, due to its underutilization, its potential value is substantially wasted. For example, a lot of Laminaria japonica cellulose remains unused during production of algin. The soluble dietary fiber (SDF) was prepared from the byproducts of Laminaria japonica, and its physicochemical properties were explored. SDF exhibits good water-holding, oil-holding, water-absorbing swelling, glucose and cholesterol absorption capacity, and inhibitory activity of α-amylase and α-glucosidase. In addition, the beneficial effects of SDF in diabetic mice include reduced body weight, lower blood glucose, and relieved insulin resistance. Finally, the intestinal flora and metabolomic products were analyzed from feces using 16S amplicon and LC-MS/MS, respectively. SDF not only significantly changed the composition and structure of intestinal flora and intestinal metabolites, but also significantly increased the abundance of beneficial bacteria Akkermansia, Odoribacter and Bacteroides, decreased the abundance of harmful bacteria Staphylococcus, and increased the content of bioactive substances in intestinal tract, such as harmine, magnolol, arachidonic acid, prostaglandin E2, urimorelin and azelaic acid. Taken together, these findings suggest that dietary intake of SDF alleviates type 2 diabetes mellitus disease, and provides an important theoretical basis for SDF to be used as a functional food.
Collapse
Affiliation(s)
- Xixi Wang
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; (X.W.); (F.C.)
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resource, Qingdao 266061, China; (L.Z.); (L.Q.); (Y.W.); (C.Q.)
| | - Liping Zhang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resource, Qingdao 266061, China; (L.Z.); (L.Q.); (Y.W.); (C.Q.)
- Department of Special Medicine, School of Basic Medicine, Qingdao University, Qingdao 266000, China
| | - Ling Qin
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resource, Qingdao 266061, China; (L.Z.); (L.Q.); (Y.W.); (C.Q.)
| | - Yanfeng Wang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resource, Qingdao 266061, China; (L.Z.); (L.Q.); (Y.W.); (C.Q.)
| | - Fushan Chen
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; (X.W.); (F.C.)
| | - Changfeng Qu
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resource, Qingdao 266061, China; (L.Z.); (L.Q.); (Y.W.); (C.Q.)
- Laboratory for Marine Drugs and Bioproducts, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Jinlai Miao
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resource, Qingdao 266061, China; (L.Z.); (L.Q.); (Y.W.); (C.Q.)
- Laboratory for Marine Drugs and Bioproducts, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
145
|
Anti-obesity natural products and gut microbiota. Food Res Int 2022; 151:110819. [PMID: 34980371 DOI: 10.1016/j.foodres.2021.110819] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/15/2021] [Accepted: 11/21/2021] [Indexed: 12/18/2022]
Abstract
The link between gut microbiota and obesity or other metabolic syndromes is growing increasingly clear. Natural products are appreciated for their beneficial health effects in humans. Increasing investigations demonstrated that the anti-obesity bioactivities of many natural products are gut microbiota dependent. In this review, we summarized the current knowledge on anti-obesity natural products acting through gut microbiota according to their chemical structures and signaling metabolites. Manipulation of the gut microbiota by natural products may serve as a potential therapeutic strategy to prevent obesity.
Collapse
|
146
|
Sun J, Liu J, Ren G, Chen X, Cai H, Hong J, Kan J, Jin C, Niu F, Zhang W. Impact of purple sweet potato ( Ipomoea batatas L.) polysaccharides on the fecal metabolome in a murine colitis model. RSC Adv 2022; 12:11376-11390. [PMID: 35425052 PMCID: PMC9004255 DOI: 10.1039/d2ra00310d] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 04/06/2022] [Indexed: 11/21/2022] Open
Abstract
Purple sweet potato polysaccharides (PSPP) play an important role in regulating the gut microbiota, modulating intestinal immunity and ameliorating colonic inflammation. In this study, the impact of two PSPPs (PSWP-I and PSAP-I) on the metabolomic profiling of feces from dextran sulfate sodium (DSS)-induced colitis mice was evaluated by ultra-high performance liquid chromatography coupled with triple time-of-flight tandem mass spectrometry (UPLC-Triple-TOF-MS/MS). Results indicated that there were twenty-five metabolites with significant changes and four remarkable metabolic pathways, i.e., cutin, suberine and wax biosynthesis, biosynthesis of unsaturated fatty acids, fatty acid biosynthesis, and steroid hormone biosynthesis. Two key biomarkers of oleic acid and 17-hydroxyprogesterone were screened that responded to PSPPs in colitis mice. The identified metabolites were correlated with the amelioration of intestinal immune function and the modulation of the gut microbiota. Nine pro-inflammatory and eight anti-inflammatory compounds responded to PSPPs, which were related to Bacteroides, norank_f__Clostridiales_vadinBB60_group, unclassified_o__Bacteroidales, Rikenella and Lachnospiraceae_UCG-001. Moreover, PSWP-I and PSAP-I had different regulating effects on intestinal metabolites. Our results revealed a possible metabolomic mechanism of PSPPs to regulate intestinal inflammation function. Purple sweet potato polysaccharides (PSPP) play an important role in regulating the gut microbiota, modulating intestinal immunity and ameliorating colonic inflammation.![]()
Collapse
Affiliation(s)
- Jian Sun
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu, China
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai Area, Xuzhou 221131, Jiangsu, China
| | - Jun Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Ge Ren
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Xiaotong Chen
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Huahao Cai
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Jinhai Hong
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Juan Kan
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Changhai Jin
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Fuxiang Niu
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai Area, Xuzhou 221131, Jiangsu, China
| | - Wenting Zhang
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai Area, Xuzhou 221131, Jiangsu, China
| |
Collapse
|
147
|
Verstraete W, Yanuka‐Golub K, Driesen N, De Vrieze J. Engineering microbial technologies for environmental sustainability: choices to make. Microb Biotechnol 2022; 15:215-227. [PMID: 34875143 PMCID: PMC8719809 DOI: 10.1111/1751-7915.13986] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 11/21/2021] [Indexed: 11/27/2022] Open
Abstract
Microbial technologies have provided solutions to key challenges in our daily lives for over a century. In the debate about the ongoing climate change and the need for planetary sustainability, microbial ecology and microbial technologies are rarely considered. Nonetheless, they can bring forward vital solutions to decrease and even prevent long-term effects of climate change. The key to the success of microbial technologies is an effective, target-oriented microbiome management. Here, we highlight how microbial technologies can play a key role in both natural, i.e. soils and aquatic ecosystems, and semi-natural or even entirely human-made, engineered ecosystems, e.g. (waste) water treatment and bodily systems. First, we set forward fundamental guidelines for effective soil microbial resource management, especially with respect to nutrient loss and greenhouse gas abatement. Next, we focus on closing the water circle, integrating resource recovery. We also address the essential interaction of the human and animal host with their respective microbiomes. Finally, we set forward some key future potentials, such as microbial protein and the need to overcome microphobia for microbial products and services. Overall, we conclude that by relying on the wisdom of the past, we can tackle the challenges of our current era through microbial technologies.
Collapse
Affiliation(s)
- Willy Verstraete
- Center for Microbial Ecology and Technology (CMET)Faculty of Bioscience EngineeringGhent UniversityCoupure Links 653GentB‐9000Belgium
- Avecom NVIndustrieweg 122PWondelgem9032Belgium
| | - Keren Yanuka‐Golub
- The Institute of Applied ResearchThe Galilee SocietyP.O. Box 437Shefa‐AmrIsrael
| | | | - Jo De Vrieze
- Center for Microbial Ecology and Technology (CMET)Faculty of Bioscience EngineeringGhent UniversityCoupure Links 653GentB‐9000Belgium
| |
Collapse
|
148
|
Relationships among Indicators of Metabolism, Mammary Health and the Microbiomes of Periparturient Holstein Cows. Animals (Basel) 2021; 12:ani12010003. [PMID: 35011109 PMCID: PMC8749929 DOI: 10.3390/ani12010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 12/03/2022] Open
Abstract
Simple Summary Parturition is the most important physiological event in the lifecycle of dairy cows; it mediates changes in the microbiota composition. However, the complete picture of the dynamics of these phenomena and how they affect health and metabolism is unknown. This study documents the composition of the microbiota in the mammary gland, on reproductive surfaces and those associated with the rectum immediately after parturition. The microbiomes of different maternal niches were different, as predicted by their different functional roles in cows. Based on the results of this research, the conclusion that the microorganisms that colonize different mucosal tissues of cows were linked to the state of systemic energy metabolism and had an impact on the health of the mammary gland cows following calving was drawn. Abstract During the period called “transition”, from the ceasing of milk production to the reestablishment of full milk production, it is postulated that the microbiota of cows undergo changes in composition driven by the fluxes in systemic energetics and that these changes appear to impact the health of cows. The primary objective of this study was to document the make-up of the microbiota in the mammary gland compared with those in the vagina and in feces in an attempt to determine any correlations between the composition of the microbiota, the impact of blood indicators of energetic metabolites and the health of the mammary gland at the time of calving. Samples were collected from 20 Holstein dairy cows immediately following calving to assess their general health and measure the microbiomes associated with each cow using 16S rRNA sequencing. The results indicated that the microbiomes found within each maternal niche were different. A set of significant negative associations between the blood energetic biomarkers (NEFAs, BHB, triglycerides and cholesterol) and the taxa Pseudomonas, Christensenellaceae and Methanobrevibacter were observed in this study. In contrast, Escherichia and Romboutsia were positively correlated with the same energetic metabolites. Therefore, it was concluded that there appears to be a set of relationships between the microorganisms that colonize several niches of cows and the sufficiency of systemic energy metabolism. Furthermore, both the microbiome and energy dynamics impact the health of the mammary gland of the host.
Collapse
|
149
|
Ning S, Lu X, Zhao M, Wang X, Yang S, Shen Q, Wang H, Zhang W. Virome in Fecal Samples From Wild Giant Pandas ( Ailuropoda Melanoleuca). Front Vet Sci 2021; 8:767494. [PMID: 34869737 PMCID: PMC8636094 DOI: 10.3389/fvets.2021.767494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/12/2021] [Indexed: 11/13/2022] Open
Abstract
The giant panda (Ailuropoda melanoleuca) is one of the most endangered mammals in the world; anthropogenic habitat loss and poaching still threaten the survival of wild pandas. Viral infection has become one of the potential threats to the health of these animals, but the available information related to these infections is still limited. In order to detect possible vertebrate viruses, the virome in the fecal samples of seven wild giant pandas from Qinling Mountains was investigated by using the method of viral metagenomics. From the fecal virome of wild giant pandas, we determined six nearly complete genomes belonging to the order Picornavirales, two of which may be qualified as a novel virus family or genus. In addition, four complete genomes belonging to the Genomoviridae family were also fully characterized. This virological investigation has increased our understanding of the gut viral community in giant pandas. Whether these viruses detected in fecal samples can really infect giant panda needs further research.
Collapse
Affiliation(s)
- Songyi Ning
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xiang Lu
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Min Zhao
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xiaochun Wang
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Shixing Yang
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Quan Shen
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Hao Wang
- Department of Clinical Laboratory, The Affiliated Huai'an Hospital of Xuzhou Medical University, Xuzhou, China
| | - Wen Zhang
- School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
150
|
Skalny AV, Aschner M, Lei XG, Gritsenko VA, Santamaria A, Alekseenko SI, Prakash NT, Chang JS, Sizova EA, Chao JCJ, Aaseth J, Tinkov AA. Gut Microbiota as a Mediator of Essential and Toxic Effects of Zinc in the Intestines and Other Tissues. Int J Mol Sci 2021; 22:13074. [PMID: 34884881 PMCID: PMC8658153 DOI: 10.3390/ijms222313074] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/22/2021] [Accepted: 12/01/2021] [Indexed: 12/17/2022] Open
Abstract
The objective of the present study was to review the existing data on the association between Zn status and characteristics of gut microbiota in various organisms and the potential role of Zn-induced microbiota in modulating systemic effects. The existing data demonstrate a tight relationship between Zn metabolism and gut microbiota as demonstrated in Zn deficiency, supplementation, and toxicity studies. Generally, Zn was found to be a significant factor for gut bacteria biodiversity. The effects of physiological and nutritional Zn doses also result in improved gut wall integrity, thus contributing to reduced translocation of bacteria and gut microbiome metabolites into the systemic circulation. In contrast, Zn overexposure induced substantial alterations in gut microbiota. In parallel with intestinal effects, systemic effects of Zn-induced gut microbiota modulation may include systemic inflammation and acute pancreatitis, autism spectrum disorder and attention deficit hyperactivity disorder, as well as fetal alcohol syndrome and obesity. In view of both Zn and gut microbiota, as well as their interaction in the regulation of the physiological functions of the host organism, addressing these targets through the use of Zn-enriched probiotics may be considered an effective strategy for health management.
Collapse
Affiliation(s)
- Anatoly V. Skalny
- Laboratory of Molecular Dietetics, World-Class Research Center, Digital Biodesign and Personalized Healthcare, IM Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia; (A.V.S.); (M.A.); (J.A.)
- Department of Bioelementology, K.G. Razumovsky Moscow State University of Technologies and Management, 109004 Moscow, Russia
| | - Michael Aschner
- Laboratory of Molecular Dietetics, World-Class Research Center, Digital Biodesign and Personalized Healthcare, IM Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia; (A.V.S.); (M.A.); (J.A.)
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Xin Gen Lei
- Department of Animal Science, Cornell University, Ithaca, NY 14853, USA;
| | - Viktor A. Gritsenko
- Institute of Cellular and Intracellular Symbiosis, Russian Academy of Sciences, 460000 Orenburg, Russia;
| | - Abel Santamaria
- Laboratorio de Aminoácidos Excitadores/Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía, Mexico City 14269, Mexico;
| | - Svetlana I. Alekseenko
- Saint-Petersburg Research Institute of Ear, Throat, Nose and Speech, 190013 St. Petersburg, Russia;
- Department of Otorhinolaryngology, I.I. Mechnikov North-Western State Medical University, 195067 St. Petersburg, Russia
- K.A. Raukhfus Children’s City Multidisciplinary Clinical Center for High Medical Technologies, 191036 St. Petersburg, Russia
| | - Nagaraja Tejo Prakash
- School of Energy and Environment, Thapar Institute Engineering and Technology, Patiala 147004, Punjab, India;
| | - Jung-Su Chang
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan; (J.-S.C.); (J.C.J.C.)
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan
| | - Elena A. Sizova
- Federal Research Centre of Biological Systems and Agro-technologies of the Russian Academy of Sciences, 460000 Orenburg, Russia;
| | - Jane C. J. Chao
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei 110, Taiwan; (J.-S.C.); (J.C.J.C.)
- Nutrition Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Jan Aaseth
- Laboratory of Molecular Dietetics, World-Class Research Center, Digital Biodesign and Personalized Healthcare, IM Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia; (A.V.S.); (M.A.); (J.A.)
- Research Department, Innlandet Hospital Trust, 2380 Brumunddal, Norway
| | - Alexey A. Tinkov
- Laboratory of Molecular Dietetics, World-Class Research Center, Digital Biodesign and Personalized Healthcare, IM Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia; (A.V.S.); (M.A.); (J.A.)
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, Sovetskaya Str. 14, 150000 Yaroslavl, Russia
| |
Collapse
|