101
|
Abstract
Mitochondria accumulate significant amounts of calcium when cytosolic calcium is elevated above the resting levels of 50-100 nM during signaling events. This calcium uptake is primarily mediated by a macromolecular protein assembly called mitochondrial calcium uniporter (MCU) that resides in the mitochondrial inner membrane. In 2004, we applied patch-clamp technique for the first time to record calcium currents from the mitochondrial inner membrane and proved unequivocally that MCU is a highly selective calcium channel. This chapter describes how patch-clamp technique can be applied to record the Ca2+ uniporter currents from the mitochondrial inner membrane, isolation of mitochondria from the heart tissue, and preparation of mitoplast using French Press. We also discuss advantages of patch-clamp technique as compared to other methods of determining mitochondrial uniporter activity and important considerations in applying patch-clamp technique to such a small subcellular organelle. With small variations in the bath and pipette solution composition, the same methodology can be applied to study any other currents (e.g., H+ or Cl-) from the mitochondrial inner membrane.
Collapse
Affiliation(s)
- Vivek Garg
- Department of Physiology, University of California San Francisco, San Francisco, CA, USA
| | - Yuriy Y Kirichok
- Department of Physiology, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
102
|
Chamberland S, Zamora Moratalla A, Topolnik L. Calcium extrusion mechanisms in dendrites of mouse hippocampal CA1 inhibitory interneurons. Cell Calcium 2019; 77:49-57. [DOI: 10.1016/j.ceca.2018.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 11/25/2018] [Accepted: 12/03/2018] [Indexed: 12/18/2022]
|
103
|
Abstract
In the last few decades, a large body of experimental evidence has highlighted the complex role for mitochondria in eukaryotic cells: they are not only the site of aerobic metabolism (thus providing most of the ATP supply for endergonic processes) but also a crucial checkpoint of cell death processes (both necrosis and apoptosis) and autophagy. For this purpose, mitochondria must receive and decode the wide variety of physiological and pathological stimuli impacting on the cell. The “old” notion that mitochondria possess a sophisticated machinery for accumulating and releasing Ca
2+, the most common and versatile second messenger of eukaryotic cells, is thus no surprise. What may be surprising is that the identification of the molecules involved in mitochondrial Ca
2+ transport occurred only in the last decade for both the influx (the mitochondrial Ca
2+ uniporter, MCU) and the efflux (the sodium calcium exchanger, NCX) pathways. In this review, we will focus on the description of the amazing molecular complexity of the MCU complex, highlighting the numerous functional implications of the tissue-specific expression of the variants of the channel pore components (MCU/MCUb) and of the associated proteins (MICU 1, 2, and 3, EMRE, and MCUR1).
Collapse
Affiliation(s)
- Giorgia Pallafacchina
- Department of Biomedical Sciences, University of Padua, Padua, 35131, Italy.,Italian National Research Council (CNR), Neuroscience Institute, Padua, 35131, Italy
| | - Sofia Zanin
- Department of Medicine, University of Padua, Padua, 35128, Italy
| | - Rosario Rizzuto
- Department of Biomedical Sciences, University of Padua, Padua, 35131, Italy
| |
Collapse
|
104
|
Wang P, Fernandez-Sanz C, Wang W, Sheu SS. Why don't mice lacking the mitochondrial Ca 2+ uniporter experience an energy crisis? J Physiol 2018; 598:1307-1326. [PMID: 30218574 DOI: 10.1113/jp276636] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 08/28/2018] [Indexed: 01/15/2023] Open
Abstract
Current dogma holds that the heart balances energy demand and supply effectively and sustainably by sequestering enough Ca2+ into mitochondria during heartbeats to stimulate metabolic enzymes in the tricarboxylic acid (TCA) cycle and electron transport chain (ETC). This process is called excitation-contraction-bioenergetics (ECB) coupling. Recent breakthroughs in identifying the mitochondrial Ca2+ uniporter (MCU) and its associated proteins have opened up new windows for interrogating the molecular mechanisms of mitochondrial Ca2+ homeostasis regulation and its role in ECB coupling. Despite remarkable progress made in the past 7 years, it has been surprising, almost disappointing, that germline MCU deficiency in mice with certain genetic background yields viable pups, and knockout of the MCU in adult heart does not cause lethality. Moreover, MCU deficiency results in few adverse phenotypes, normal performance, and preserved bioenergetics in the heart at baseline. In this review, we briefly assess the existing literature on mitochondrial Ca2+ homeostasis regulation and then we consider possible explanations for why MCU-deficient mice are spared from energy crises under physiological conditions. We propose that MCU and/or mitochondrial Ca2+ may have limited ability to set ECB coupling, that other mitochondrial Ca2+ handling mechanisms may play a role, and that extra-mitochondrial Ca2+ may regulate ECB coupling. Since the heart needs to regenerate a significant amount of ATP to assure the perpetuation of heartbeats, multiple mechanisms are likely to work in concert to match energy supply with demand.
Collapse
Affiliation(s)
- Pei Wang
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, 98109, USA
| | - Celia Fernandez-Sanz
- Center for Translational Medicine, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Wang Wang
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, 98109, USA
| | - Shey-Shing Sheu
- Center for Translational Medicine, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| |
Collapse
|
105
|
Jaquenod De Giusti C, Roman B, Das S. The Influence of MicroRNAs on Mitochondrial Calcium. Front Physiol 2018; 9:1291. [PMID: 30298016 PMCID: PMC6160583 DOI: 10.3389/fphys.2018.01291] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/27/2018] [Indexed: 01/13/2023] Open
Abstract
Abnormal mitochondrial calcium ([Ca2+]m) handling and energy deficiency results in cellular dysfunction and cell death. Recent studies suggest that nuclear-encoded microRNAs (miRNA) are able to translocate in to the mitochondrial compartment, and modulate mitochondrial activities, including [Ca2+]m uptake. Apart from this subset of miRNAs, there are several miRNAs that have been reported to target genes that play a role in maintaining [Ca2+]m levels in the cytoplasm. It is imperative to validate miRNAs that alter [Ca2+]m handling, and thereby alter cellular fate. The focus of this review is to highlight the mitochondrial miRNAs (MitomiRs), and other cytosolic miRNAs that target mRNAs which play an important role in [Ca2+]m handling.
Collapse
Affiliation(s)
- Carolina Jaquenod De Giusti
- Centro de Investigaciones Cardiovasculares CIC-CONICET, Facultad de Ciencias Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Barbara Roman
- Department of Pathology, Johns Hopkins University, Baltimore, MD, United States
| | - Samarjit Das
- Department of Pathology, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
106
|
De La Fuente S, Lambert JP, Nichtova Z, Fernandez Sanz C, Elrod JW, Sheu SS, Csordás G. Spatial Separation of Mitochondrial Calcium Uptake and Extrusion for Energy-Efficient Mitochondrial Calcium Signaling in the Heart. Cell Rep 2018; 24:3099-3107.e4. [PMID: 30231993 PMCID: PMC6226263 DOI: 10.1016/j.celrep.2018.08.040] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 06/28/2018] [Accepted: 08/15/2018] [Indexed: 02/02/2023] Open
Abstract
Mitochondrial Ca2+ elevations enhance ATP production, but uptake must be balanced by efflux to avoid overload. Uptake is mediated by the mitochondrial Ca2+ uniporter channel complex (MCUC), and extrusion is controlled largely by the Na+/Ca2+ exchanger (NCLX), both driven electrogenically by the inner membrane potential (ΔΨm). MCUC forms hotspots at the cardiac mitochondria-junctional SR (jSR) association to locally receive Ca2+ signals; however, the distribution of NCLX is unknown. Our fractionation-based assays reveal that extensively jSR-associated mitochondrial segments contain a minor portion of NCLX and lack Na+-dependent Ca2+ extrusion. This pattern is retained upon in vivo NCLX overexpression, suggesting extensive targeting to non-jSR-associated submitochondrial domains and functional relevance. In cells with non-polarized MCUC distribution, upon NCLX overexpression the same given increase in matrix Ca2+ expends more ΔΨm. Thus, cardiac mitochondrial Ca2+ uptake and extrusion are reciprocally polarized, likely to optimize the energy efficiency of local calcium signaling in the beating heart.
Collapse
Affiliation(s)
- Sergio De La Fuente
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Jonathan P Lambert
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Zuzana Nichtova
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Celia Fernandez Sanz
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - John W Elrod
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Shey-Shing Sheu
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | - György Csordás
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
107
|
Ding L, Yang X, Tian H, Liang J, Zhang F, Wang G, Wang Y, Ding M, Shui G, Huang X. Seipin regulates lipid homeostasis by ensuring calcium-dependent mitochondrial metabolism. EMBO J 2018; 37:embj.201797572. [PMID: 30049710 DOI: 10.15252/embj.201797572] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/05/2018] [Accepted: 07/09/2018] [Indexed: 02/06/2023] Open
Abstract
Seipin, the gene that causes Berardinelli-Seip congenital lipodystrophy type 2 (BSCL2), is important for adipocyte differentiation and lipid homeostasis. Previous studies in Drosophila revealed that Seipin promotes ER calcium homeostasis through the Ca2+-ATPase SERCA, but little is known about the events downstream of perturbed ER calcium homeostasis that lead to decreased lipid storage in Drosophila dSeipin mutants. Here, we show that glycolytic metabolites accumulate and the downstream mitochondrial TCA cycle is impaired in dSeipin mutants. The impaired TCA cycle further leads to a decreased level of citrate, a critical component of lipogenesis. Mechanistically, Seipin/SERCA-mediated ER calcium homeostasis is important for maintaining mitochondrial calcium homeostasis. Reduced mitochondrial calcium in dSeipin mutants affects the TCA cycle and mitochondrial function. The lipid storage defects in dSeipin mutant fat cells can be rescued by replenishing mitochondrial calcium or by restoring the level of citrate through genetic manipulations or supplementation with exogenous metabolites. Together, our results reveal that Seipin promotes adipose tissue lipid storage via calcium-dependent mitochondrial metabolism.
Collapse
Affiliation(s)
- Long Ding
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xiao Yang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - He Tian
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jingjing Liang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Fengxia Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Guodong Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yingchun Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Mei Ding
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xun Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China .,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
108
|
Patron M, Granatiero V, Espino J, Rizzuto R, De Stefani D. MICU3 is a tissue-specific enhancer of mitochondrial calcium uptake. Cell Death Differ 2018; 26:179-195. [PMID: 29725115 DOI: 10.1038/s41418-018-0113-8] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 03/05/2018] [Accepted: 03/19/2018] [Indexed: 01/14/2023] Open
Abstract
The versatility and universality of Ca2+ as intracellular messenger is guaranteed by the compartmentalization of changes in [Ca2+]. In this context, mitochondrial Ca2+ plays a central role, by regulating both specific organelle functions and global cellular events. This versatility is also guaranteed by a cell type-specific Ca2+ signaling toolkit controlling specific cellular functions. Accordingly, mitochondrial Ca2+ uptake is mediated by a multimolecular structure, the MCU complex, which differs among various tissues. Its activity is indeed controlled by different components that cooperate to modulate specific channeling properties. We here investigate the role of MICU3, an EF-hand containing protein expressed at high levels, especially in brain. We show that MICU3 forms a disulfide bond-mediated dimer with MICU1, but not with MICU2, and it acts as enhancer of MCU-dependent mitochondrial Ca2+ uptake. Silencing of MICU3 in primary cortical neurons impairs Ca2+ signals elicited by synaptic activity, thus suggesting a specific role in regulating neuronal function.
Collapse
Affiliation(s)
- Maria Patron
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58B, 35131, Padova, Italy.,Max Planck Institute for Biology and Aging, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Veronica Granatiero
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58B, 35131, Padova, Italy.,Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, 401 East 61st Street, New York, NY, 10065, United States
| | - Javier Espino
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58B, 35131, Padova, Italy
| | - Rosario Rizzuto
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58B, 35131, Padova, Italy.
| | - Diego De Stefani
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58B, 35131, Padova, Italy.
| |
Collapse
|
109
|
Csordás G, Weaver D, Hajnóczky G. Endoplasmic Reticulum-Mitochondrial Contactology: Structure and Signaling Functions. Trends Cell Biol 2018; 28:523-540. [PMID: 29588129 DOI: 10.1016/j.tcb.2018.02.009] [Citation(s) in RCA: 376] [Impact Index Per Article: 62.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 02/23/2018] [Accepted: 02/23/2018] [Indexed: 02/08/2023]
Abstract
Interorganellar contacts are increasingly recognized as central to the control of cellular behavior. These contacts, which typically involve a small fraction of the endomembrane surface, are local communication hubs that resemble synapses. We propose the term contactology to denote the analysis of interorganellar contacts. Endoplasmic reticulum (ER) contacts with mitochondria were recognized several decades ago; major roles in ion and lipid transfer, signaling, and membrane dynamics have been established, while others continue to emerge. The functional diversity of ER-mitochondrial (ER-mito) contacts is mirrored in their structural heterogeneity, with subspecialization likely supported by multiple, different linker-forming protein structures. The nanoscale size of the contacts has made studying their structure, function, and dynamics difficult. This review focuses on the structure of the ER-mito contacts, methods for studying them, and the roles of contacts in Ca2+ and reactive oxygen species (ROS) signaling.
Collapse
Affiliation(s)
- György Csordás
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | - David Weaver
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| | - György Hajnóczky
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
110
|
Mammucari C, Raffaello A, Vecellio Reane D, Gherardi G, De Mario A, Rizzuto R. Mitochondrial calcium uptake in organ physiology: from molecular mechanism to animal models. Pflugers Arch 2018. [PMID: 29541860 PMCID: PMC6060757 DOI: 10.1007/s00424-018-2123-2] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mitochondrial Ca2+ is involved in heterogeneous functions, ranging from the control of metabolism and ATP production to the regulation of cell death. In addition, mitochondrial Ca2+ uptake contributes to cytosolic [Ca2+] shaping thus impinging on specific Ca2+-dependent events. Mitochondrial Ca2+ concentration is controlled by influx and efflux pathways: the former controlled by the activity of the mitochondrial Ca2+ uniporter (MCU), the latter by the Na+/Ca2+ exchanger (NCLX) and the H+/Ca2+ (mHCX) exchanger. The molecular identities of MCU and of NCLX have been recently unraveled, thus allowing genetic studies on their physiopathological relevance. After a general framework on the significance of mitochondrial Ca2+ uptake, this review discusses the structure of the MCU complex and the regulation of its activity, the importance of mitochondrial Ca2+ signaling in different physiological settings, and the consequences of MCU modulation on organ physiology.
Collapse
Affiliation(s)
| | - Anna Raffaello
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | | | - Gaia Gherardi
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Agnese De Mario
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Rosario Rizzuto
- Department of Biomedical Sciences, University of Padova, Padua, Italy.
| |
Collapse
|
111
|
Wu G, Li S, Zong G, Liu X, Fei S, Shen L, Guan X, Yang X, Shen Y. Single channel recording of a mitochondrial calcium uniporter. Biochem Biophys Res Commun 2018; 496:127-132. [PMID: 29307826 DOI: 10.1016/j.bbrc.2018.01.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 01/02/2018] [Indexed: 01/13/2023]
Abstract
Mitochondrial calcium uniporter (MCU) is the pore-forming subunit of the entire uniporter complex and plays an important role in mitochondrial calcium uptake. However, the single channel recording of MCU remains controversial. Here, we expressed and purified different MCU proteins and then reconstituted them into planar lipid bilayers for single channel recording. We showed that MCU alone from Pyronema omphalodes (pMCU) is active with prominent single channel Ca2+ currents. In sharp contrast, MCU alone from Homo sapiens (hMCU) is inactive. The essential MCU regulator (EMRE) activates hMCU, and therefore, the complex (hMCU-hEMRE) shows prominent single channel Ca2+ currents. These single channel currents are sensitive to the specific MCU inhibitor Ruthenium Red. Our results clearly demonstrate that active MCU can conduct large amounts of calcium into the mitochondria.
Collapse
Affiliation(s)
- Guangyan Wu
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Shunjin Li
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Guangning Zong
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China; College of Pharmacy, Nankai University, 38 Tongyan Road, Tianjin 300350, China
| | - Xiaofen Liu
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Shuang Fei
- College of Pharmacy, Nankai University, 38 Tongyan Road, Tianjin 300350, China
| | - Linda Shen
- Tianjin Nankai High School, 22 Nankaisima Road, Tianjin 300100, China
| | - Xiangchen Guan
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China
| | - Xue Yang
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China.
| | - Yuequan Shen
- State Key Laboratory of Medicinal Chemical Biology and College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, China; Synergetic Innovation Center of Chemical Science and Engineering, 94 Weijin Road, Tianjin 300071, China.
| |
Collapse
|
112
|
The MCU complex in cell death. Cell Calcium 2018; 69:73-80. [DOI: 10.1016/j.ceca.2017.08.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 08/21/2017] [Accepted: 08/21/2017] [Indexed: 01/01/2023]
|
113
|
Sommakia S, Houlihan PR, Deane SS, Simcox JA, Torres NS, Jeong MY, Winge DR, Villanueva CJ, Chaudhuri D. Mitochondrial cardiomyopathies feature increased uptake and diminished efflux of mitochondrial calcium. J Mol Cell Cardiol 2017; 113:22-32. [PMID: 28962857 PMCID: PMC5652072 DOI: 10.1016/j.yjmcc.2017.09.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 09/07/2017] [Accepted: 09/25/2017] [Indexed: 12/26/2022]
Abstract
Calcium (Ca2+) influx into the mitochondrial matrix stimulates ATP synthesis. Here, we investigate whether mitochondrial Ca2+ transport pathways are altered in the setting of deficient mitochondrial energy synthesis, as increased matrix Ca2+ may provide a stimulatory boost. We focused on mitochondrial cardiomyopathies, which feature such dysfunction of oxidative phosphorylation. We study a mouse model where the main transcription factor for mitochondrial DNA (transcription factor A, mitochondrial, Tfam) has been disrupted selectively in cardiomyocytes. By the second postnatal week (10-15day old mice), these mice have developed a dilated cardiomyopathy associated with impaired oxidative phosphorylation. We find evidence of increased mitochondrial Ca2+ during this period using imaging, electrophysiology, and biochemistry. The mitochondrial Ca2+ uniporter, the main portal for Ca2+ entry, displays enhanced activity, whereas the mitochondrial sodium-calcium (Na+-Ca2+) exchanger, the main portal for Ca2+ efflux, is inhibited. These changes in activity reflect changes in protein expression of the corresponding transporter subunits. While decreased transcription of Nclx, the gene encoding the Na+-Ca2+ exchanger, explains diminished Na+-Ca2+ exchange, the mechanism for enhanced uniporter expression appears to be post-transcriptional. Notably, such changes allow cardiac mitochondria from Tfam knockout animals to be far more sensitive to Ca2+-induced increases in respiration. In the absence of Ca2+, oxygen consumption declines to less than half of control values in these animals, but rebounds to control levels when incubated with Ca2+. Thus, we demonstrate a phenotype of enhanced mitochondrial Ca2+ in a mitochondrial cardiomyopathy model, and show that such Ca2+ accumulation is capable of rescuing deficits in energy synthesis capacity in vitro.
Collapse
Affiliation(s)
- Salah Sommakia
- Nora Eccles Harrison Cardiovascular Research and Training Institute, Cardiology Division, Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States
| | - Patrick R Houlihan
- Department of Cardiology, Boston Children's Hospital, Boston, MA, United States
| | - Sadiki S Deane
- Nora Eccles Harrison Cardiovascular Research and Training Institute, Cardiology Division, Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States
| | - Judith A Simcox
- Department of Biochemistry, University of Utah, Salt Lake City, UT, United States
| | - Natalia S Torres
- Nora Eccles Harrison Cardiovascular Research and Training Institute, Cardiology Division, Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States
| | - Mi-Young Jeong
- Department of Biochemistry, University of Utah, Salt Lake City, UT, United States; Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States
| | - Dennis R Winge
- Department of Biochemistry, University of Utah, Salt Lake City, UT, United States; Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States
| | - Claudio J Villanueva
- Department of Biochemistry, University of Utah, Salt Lake City, UT, United States
| | - Dipayan Chaudhuri
- Nora Eccles Harrison Cardiovascular Research and Training Institute, Cardiology Division, Department of Internal Medicine, University of Utah, Salt Lake City, UT, United States.
| |
Collapse
|
114
|
Wright LE, Vecellio Reane D, Milan G, Terrin A, Di Bello G, Belligoli A, Sanna M, Foletto M, Favaretto F, Raffaello A, Mammucari C, Nitti D, Vettor R, Rizzuto R. Increased mitochondrial calcium uniporter in adipocytes underlies mitochondrial alterations associated with insulin resistance. Am J Physiol Endocrinol Metab 2017; 313:E641-E650. [PMID: 28790027 PMCID: PMC6109647 DOI: 10.1152/ajpendo.00143.2016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 08/02/2017] [Accepted: 08/04/2017] [Indexed: 01/14/2023]
Abstract
Intracellular calcium influences an array of pathways and affects cellular processes. With the rapidly progressing research investigating the molecular identity and the physiological roles of the mitochondrial calcium uniporter (MCU) complex, we now have the tools to understand the functions of mitochondrial Ca2+ in the regulation of pathophysiological processes. Herein, we describe the role of key MCU complex components in insulin resistance in mouse and human adipose tissue. Adipose tissue gene expression was analyzed from several models of obese and diabetic rodents and in 72 patients with obesity as well as in vitro insulin-resistant adipocytes. Genetic manipulation of MCU activity in 3T3-L1 adipocytes allowed the investigation of the role of mitochondrial calcium uptake. In insulin-resistant adipocytes, mitochondrial calcium uptake increased and several MCU components were upregulated. Similar results were observed in mouse and human visceral adipose tissue (VAT) during the progression of obesity and diabetes. Intriguingly, subcutaneous adipose tissue (SAT) was spared from overt MCU fluctuations. Furthermore, MCU expression returned to physiological levels in VAT of patients after weight loss by bariatric surgery. Genetic manipulation of mitochondrial calcium uptake in 3T3-L1 adipocytes demonstrated that changes in mitochondrial calcium concentration ([Ca2+]mt) can affect mitochondrial metabolism, including oxidative enzyme activity, mitochondrial respiration, membrane potential, and reactive oxygen species formation. Finally, our data suggest a strong relationship between [Ca2+]mt and the release of IL-6 and TNFα in adipocytes. Altered mitochondrial calcium flux in fat cells may play a role in obesity and diabetes and may be associated with the differential metabolic profiles of VAT and SAT.
Collapse
Affiliation(s)
- Lauren E Wright
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | | | - Gabriella Milan
- Endocrine-Metabolic Laboratory, Department of Medicine, University of Padua, Padua, Italy; and
| | - Anna Terrin
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Giorgia Di Bello
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Anna Belligoli
- Endocrine-Metabolic Laboratory, Department of Medicine, University of Padua, Padua, Italy; and
| | - Marta Sanna
- Endocrine-Metabolic Laboratory, Department of Medicine, University of Padua, Padua, Italy; and
| | - Mirto Foletto
- Department of Surgical, Oncological and Gastroenterological Sciences, University of Padua, and Surgery Branch, Padua Hospital, Padua, Italy
| | - Francesca Favaretto
- Endocrine-Metabolic Laboratory, Department of Medicine, University of Padua, Padua, Italy; and
| | - Anna Raffaello
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | | | - Donato Nitti
- Department of Surgical, Oncological and Gastroenterological Sciences, University of Padua, and Surgery Branch, Padua Hospital, Padua, Italy
| | - Roberto Vettor
- Endocrine-Metabolic Laboratory, Department of Medicine, University of Padua, Padua, Italy; and
| | - Rosario Rizzuto
- Department of Biomedical Sciences, University of Padua, Padua, Italy;
- Neuroscience Institute, National Research Council, Padua, Italy
| |
Collapse
|
115
|
Tissue-Specific Mitochondrial Decoding of Cytoplasmic Ca 2+ Signals Is Controlled by the Stoichiometry of MICU1/2 and MCU. Cell Rep 2017; 18:2291-2300. [PMID: 28273446 PMCID: PMC5760244 DOI: 10.1016/j.celrep.2017.02.032] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 12/29/2016] [Accepted: 02/09/2017] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial Ca2+ uptake through the Ca2+ uniporter supports cell functions, including oxidative metabolism, while meeting tissue-specific calcium signaling patterns and energy needs. The molecular mechanisms underlying tissue-specific control of the uniporter are unknown. Here, we investigated a possible role for tissue-specific stoichiometry between the Ca2+-sensing regulators (MICUs) and pore unit (MCU) of the uniporter. Low MICU1:MCU protein ratio lowered the [Ca2+] threshold for Ca2+ uptake and activation of oxidative metabolism but decreased the cooperativity of uniporter activation in heart and skeletal muscle compared to liver. In MICU1-overexpressing cells, MICU1 was pulled down by MCU proportionally to MICU1 overexpression, suggesting that MICU1:MCU protein ratio directly reflected their association. Overexpressing MICU1 in the heart increased MICU1:MCU ratio, leading to liver-like mitochondrial Ca2+ uptake phenotype and cardiac contractile dysfunction. Thus, the proportion of MICU1-free and MICU1-associated MCU controls these tissue-specific uniporter phenotypes and downstream Ca2+ tuning of oxidative metabolism.
Collapse
|
116
|
Wacquier B, Romero Campos HE, González-Vélez V, Combettes L, Dupont G. Mitochondrial Ca2+dynamics in cells and suspensions. FEBS J 2017; 284:4128-4142. [DOI: 10.1111/febs.14296] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/17/2017] [Accepted: 10/17/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Benjamin Wacquier
- Unité de Chronobiologie Théorique; Université Libre de Bruxelles; Belgium
| | | | | | - Laurent Combettes
- Interactions Cellulaires et Physiopathologie Hépatique; UMR-S 1174; Université Paris Sud; Orsay France
| | - Geneviève Dupont
- Unité de Chronobiologie Théorique; Université Libre de Bruxelles; Belgium
| |
Collapse
|
117
|
Zand K, Pham TDA, Li J, Zhou W, Wallace DC, Burke PJ. Resistive flow sensing of vital mitochondria with nanoelectrodes. Mitochondrion 2017; 37:8-16. [PMID: 28655663 PMCID: PMC6377799 DOI: 10.1016/j.mito.2017.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 02/23/2017] [Accepted: 06/21/2017] [Indexed: 12/15/2022]
Abstract
We report label-free detection of single mitochondria with high sensitivity using nanoelectrodes. Measurements of the conductance of carbon nanotube transistors show discrete changes of conductance as individual mitochondria flow over the nanoelectrodes in a microfluidic channel. Altering the bioenergetic state of the mitochondria by adding metabolites to the flow buffer induces changes in the mitochondrial membrane potential detected by the nanoelectrodes. During the time when mitochondria are transiently passing over the nanoelectrodes, this (nano) technology is sensitive to fluctuations of the mitochondrial membrane potential with a resolution of 10mV with temporal resolution of order milliseconds. Fluorescence based assays (in ideal, photon shot noise limited setups) are shown to be an order of magnitude less sensitive than this nano-electronic measurement technology. This opens a new window into the dynamics of an organelle critical to cellular function and fate.
Collapse
Affiliation(s)
- Katayoun Zand
- Integrated Nanosystems Research Facility, Electrical Engineering and Computer Science, University of California, Irvine, Irvine, CA 92697, United States
| | - Ted D A Pham
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697, United States
| | - Jinfeng Li
- Integrated Nanosystems Research Facility, Electrical Engineering and Computer Science, University of California, Irvine, Irvine, CA 92697, United States
| | - Weiwei Zhou
- Integrated Nanosystems Research Facility, Electrical Engineering and Computer Science, University of California, Irvine, Irvine, CA 92697, United States
| | - Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine, Children's Hospital of Philadelphia and Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Peter J Burke
- Integrated Nanosystems Research Facility, Electrical Engineering and Computer Science, University of California, Irvine, Irvine, CA 92697, United States.
| |
Collapse
|
118
|
Fernández-Morales JC, Morad M. Regulation of Ca 2+ signaling by acute hypoxia and acidosis in rat neonatal cardiomyocytes. J Mol Cell Cardiol 2017; 114:58-71. [PMID: 29032102 DOI: 10.1016/j.yjmcc.2017.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 09/20/2017] [Accepted: 10/08/2017] [Indexed: 11/25/2022]
Abstract
Ischemic heart disease is an arrhythmogenic condition, accompanied by hypoxia, acidosis, and impaired Ca2+ signaling. Here we report on effects of acute hypoxia and acidification in rat neonatal cardiomyocytes cultures. RESULTS Two populations of neonatal cardiomyocyte were identified based on inactivation kinetics of L-type ICa: rapidly-inactivating ICa (τ~20ms) myocytes (prevalent in 3-4-day cultures), and slow-inactivating ICa (τ≥40ms) myocytes (dominant in 7-day cultures). Acute hypoxia (pO2<5mmHg for 50-100s) suppressed ICa reversibly in both cell-types to different extent and with different kinetics. This disparity disappeared when Ba2+ was the channel charge carrier, or when the intracellular Ca2+ buffering capacity was increased by dialysis of high concentrations of EGTA and BAPTA, suggesting critical role for calcium-dependent inactivation. Suppressive effect of acute acidosis on ICa (~40%, pH6.7), on the other hand, was not cell-type dependent. Isoproterenol enhanced ICa in both cell-types, but protected only against suppressive effects of acidosis and not hypoxia. Hypoxia and acidosis suppressed global Ca2+ transients by ~20%, but suppression was larger, ~35%, at the RyR2 microdomains, using GCaMP6-FKBP targeted probe. Hypoxia and acidosis also suppressed mitochondrial Ca2+ uptake by 40% and 10%, respectively, using mitochondrial targeted Ca2+ biosensor (mito-GCaMP6). CONCLUSION Our studies suggest that acute hypoxia suppresses ICa in rapidly inactivating cell population by a mechanism involving Ca2+-dependent inactivation, while compromised mitochondrial Ca2+ uptake seems also to contribute to ICa suppression in slowly inactivating cell population. Proximity of cellular Ca2+ pools to sarcolemmal Ca2+ channels may contribute to the variability of inactivation kinetics of ICa in the two cell populations, while acidosis suppression of ICa appears mediated by proton-induced block of the calcium channel.
Collapse
Affiliation(s)
| | - Martin Morad
- Cardiac Signaling Center of MUSC, USC and Clemson, Charleston, SC, USA; Department of Pharmacology, Georgetown University Medical Center, Washington, DC, USA.
| |
Collapse
|
119
|
Systematic Identification of MCU Modulators by Orthogonal Interspecies Chemical Screening. Mol Cell 2017; 67:711-723.e7. [PMID: 28820965 DOI: 10.1016/j.molcel.2017.07.019] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/05/2017] [Accepted: 07/19/2017] [Indexed: 12/31/2022]
Abstract
The mitochondrial calcium uniporter complex is essential for calcium (Ca2+) uptake into mitochondria of all mammalian tissues, where it regulates bioenergetics, cell death, and Ca2+ signal transduction. Despite its involvement in several human diseases, we currently lack pharmacological agents for targeting uniporter activity. Here we introduce a high-throughput assay that selects for human MCU-specific small-molecule modulators in primary drug screens. Using isolated yeast mitochondria, reconstituted with human MCU, its essential regulator EMRE, and aequorin, and exploiting a D-lactate- and mannitol/sucrose-based bioenergetic shunt that greatly minimizes false-positive hits, we identify mitoxantrone out of more than 600 clinically approved drugs as a direct selective inhibitor of human MCU. We validate mitoxantrone in orthogonal mammalian cell-based assays, demonstrating that our screening approach is an effective and robust tool for MCU-specific drug discovery and, more generally, for the identification of compounds that target mitochondrial functions.
Collapse
|
120
|
Liu JC, Parks RJ, Liu J, Stares J, Rovira II, Murphy E, Finkel T. The In Vivo Biology of the Mitochondrial Calcium Uniporter. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 982:49-63. [PMID: 28551781 DOI: 10.1007/978-3-319-55330-6_3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The identification of the molecular composition of the mitochondrial calcium uniporter has allowed for the genetic manipulation of its components and the creation of various in vivo genetic models. Here, we review the initial attempts to modulate the expression of components of the calcium uniporter in a range of organisms from plants to mammals. This analysis has confirmed the strict requirement for the uniporter for in vivo mitochondrial calcium uptake and for maintaining mitochondrial calcium homeostasis. We further discuss the physiological effects following genetic manipulation of the uniporter on tissue bioenergetics and the threshold for cell death. Finally, we analyze the limited information regarding the role of various uniporter components in human disease.
Collapse
Affiliation(s)
- Julia C Liu
- Center for Molecular Medicine, National Heart Lung and Blood Institute, Bethesda, MD, 20892, USA
| | - Randi J Parks
- Systems Biology Center, National Heart Lung and Blood Institute, Bethesda, MD, 20892, USA
| | - Jie Liu
- Center for Molecular Medicine, National Heart Lung and Blood Institute, Bethesda, MD, 20892, USA
| | - Justin Stares
- Center for Molecular Medicine, National Heart Lung and Blood Institute, Bethesda, MD, 20892, USA
| | - Ilsa I Rovira
- Center for Molecular Medicine, National Heart Lung and Blood Institute, Bethesda, MD, 20892, USA
| | - Elizabeth Murphy
- Systems Biology Center, National Heart Lung and Blood Institute, Bethesda, MD, 20892, USA
| | - Toren Finkel
- Center for Molecular Medicine, National Heart Lung and Blood Institute, Bethesda, MD, 20892, USA. .,NIH, Bldg 10/CRC 5-3330, Bethesda, MD, 20892, USA.
| |
Collapse
|
121
|
Wang X, Zhang X, Wu D, Huang Z, Hou T, Jian C, Yu P, Lu F, Zhang R, Sun T, Li J, Qi W, Wang Y, Gao F, Cheng H. Mitochondrial flashes regulate ATP homeostasis in the heart. eLife 2017; 6. [PMID: 28692422 PMCID: PMC5503511 DOI: 10.7554/elife.23908] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 05/16/2017] [Indexed: 01/01/2023] Open
Abstract
The maintenance of a constant ATP level (‘set-point’) is a vital homeostatic function shared by eukaryotic cells. In particular, mammalian myocardium exquisitely safeguards its ATP set-point despite 10-fold fluctuations in cardiac workload. However, the exact mechanisms underlying this regulation of ATP homeostasis remain elusive. Here we show mitochondrial flashes (mitoflashes), recently discovered dynamic activity of mitochondria, play an essential role for the auto-regulation of ATP set-point in the heart. Specifically, mitoflashes negatively regulate ATP production in isolated respiring mitochondria and, their activity waxes and wanes to counteract the ATP supply-demand imbalance caused by superfluous substrate and altered workload in cardiomyocytes. Moreover, manipulating mitoflash activity is sufficient to inversely shift the otherwise stable ATP set-point. Mechanistically, the Bcl-xL-regulated proton leakage through F1Fo-ATP synthase appears to mediate the coupling between mitoflash production and ATP set-point regulation. These findings indicate mitoflashes appear to constitute a digital auto-regulator for ATP homeostasis in the heart. DOI:http://dx.doi.org/10.7554/eLife.23908.001 A small molecule called ATP is often referred to as the primary “energy currency” of living cells. It is required to power tasks as diverse as the general housekeeping processes that keep all cells alive to the programmed cell death response that dismantles any cells that are no longer needed. It is also crucial that cells maintain a constant level of ATP at all times, even when the supply of and demand for ATP fluctuate. This control is particularly important in the mammalian heart where the rates of ATP production and consumption change ten-fold during intense exercise. Despite intensive research over the past decades, it was still not known how cells keep ATP levels constant. In many cell types, including heart muscle cells, ATP is mainly produced inside compartments called mitochondria. Each heart muscle cell contains between 5,000 and 8,000 mitochondria. Recent experiments have shown that ATP production in mitochondria is interrupted by ten-second bursts called “mitochondrial flashes” (or mitoflashes for short), during which the mitochondria release chemicals called reactive oxygen species. The mitoflashes are tightly linked with energy usage, and Wang, Zhang, Wu et al. have now explored if and how mitoflashes regulate ATP levels in the heart. Experiments on isolated mitochondria from mouse heart muscle cells showed that mitoflashes inhibit the production of ATP. When the intact heart muscle cells were given excess of the building blocks needed to produce ATP – mitoflashes occurred more often. Conversely, when the cells were forced to contract more quickly, which increased demand for ATP, the mitoflashes occurred less often. Importantly, the level of ATP inside the cells actually remained constant in the experiments. Furthermore, inhibiting mitoflashes with antioxidants increased the ATP concentration in heart muscle cells. Lastly, Wang et al. demonstrated that mitoflashes could be triggered under certain conditions. Overall, these experiments uncovered a way in which highly active cells can maintain a constant level of ATP. Future studies are needed to understand exactly how mitoflashes are initiated and how they in turn inhibit ATP production. A better understanding of these processes might uncover molecules that could be targeted by drugs to the control of the rate of ATP production to treat heart failure. DOI:http://dx.doi.org/10.7554/eLife.23908.002
Collapse
Affiliation(s)
- Xianhua Wang
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Xing Zhang
- Department of Aerospace Medicine, The Fourth Military Medical University, Xi'an, China
| | - Di Wu
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Zhanglong Huang
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Tingting Hou
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Chongshu Jian
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Peng Yu
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Fujian Lu
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Rufeng Zhang
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Tao Sun
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Jinghang Li
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Wenfeng Qi
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Yanru Wang
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Feng Gao
- Department of Aerospace Medicine, The Fourth Military Medical University, Xi'an, China
| | - Heping Cheng
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| |
Collapse
|
122
|
Mammucari C, Gherardi G, Rizzuto R. Structure, Activity Regulation, and Role of the Mitochondrial Calcium Uniporter in Health and Disease. Front Oncol 2017; 7:139. [PMID: 28740830 PMCID: PMC5502327 DOI: 10.3389/fonc.2017.00139] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 06/19/2017] [Indexed: 01/09/2023] Open
Abstract
Mitochondrial Ca2+ uptake plays a pivotal role both in cell energy balance and in cell fate determination. Studies on the role of mitochondrial Ca2+ signaling in pathophysiology have been favored by the identification of the genes encoding the mitochondrial calcium uniporter (MCU) and its regulatory subunits. Thus, research carried on in the last years on one hand has determined the structure of the MCU complex and its regulation, on the other has uncovered the consequences of dysregulated mitochondrial Ca2+ signaling in cell and tissue homeostasis. Whether mitochondrial Ca2+ uptake can be exploited as a weapon to counteract cancer progression is debated. In this review, we summarize recent research on the molecular structure of the MCU, the regulatory mechanisms that control its activity and its relevance in pathophysiology, focusing in particular on its role in cancer progression.
Collapse
Affiliation(s)
| | - Gaia Gherardi
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Rosario Rizzuto
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
123
|
Hou Y, Kitaguchi T, Kriszt R, Tseng YH, Raghunath M, Suzuki M. Ca 2+-associated triphasic pH changes in mitochondria during brown adipocyte activation. Mol Metab 2017; 6:797-808. [PMID: 28752044 PMCID: PMC5518710 DOI: 10.1016/j.molmet.2017.05.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/19/2017] [Accepted: 05/25/2017] [Indexed: 12/31/2022] Open
Abstract
Objective Brown adipocytes (BAs) are endowed with a high metabolic capacity for energy expenditure due to their high mitochondria content. While mitochondrial pH is dynamically regulated in response to stimulation and, in return, affects various metabolic processes, how mitochondrial pH is regulated during adrenergic stimulation-induced thermogenesis is unknown. We aimed to reveal the spatial and temporal dynamics of mitochondrial pH in stimulated BAs and the mechanisms behind the dynamic pH changes. Methods A mitochondrial targeted pH-sensitive protein, mito-pHluorin, was constructed and transfected to BAs. Transfected BAs were stimulated by an adrenergic agonist, isoproterenol. The pH changes in mitochondria were characterized by dual-color imaging with indicators that monitor mitochondrial membrane potential and heat production. The mechanisms of pH changes were studied by examining the involvement of electron transport chain (ETC) activity and Ca2+ profiles in mitochondria and the intracellular Ca2+ store, the endoplasmic reticulum (ER). Results A triphasic mitochondrial pH change in BAs upon adrenergic stimulation was revealed. In comparison to a thermosensitive dye, we reveal that phases 1 and 2 of the pH increase precede thermogenesis, while phase 3, characterized by a pH decrease, occurs during thermogenesis. The mechanism of pH increase is partially related to ETC. In addition, the pH increase occurs concurrently with an increase in mitochondrial Ca2+. This Ca2+ increase is contributed to by an influx from the ER, and it is further involved in mitochondrial pH regulation. Conclusions We demonstrate that an increase in mitochondrial pH is implicated as an early event in adrenergically stimulated BAs. We further suggest that this pH increase may play a role in the potentiation of thermogenesis. A triphasic mitochondrial pH changes in adrenergically stimulated BAs was revealed. Phases 1 and 2 of the pH increase precede thermogenesis. The pH increase is partially related to electron transport chain activity. Ca2+ was transmitted from endoplasmic reticulum to mitochondria during phase 1. The transmitted Ca2+ regulates pH increase in mitochondria.
Collapse
Key Words
- AMA, antimycin A
- BAs, brown adipocytes
- Brown adipocytes
- Ca2+
- Confocal microscopy
- EGTA, ethylene glycol tetraacetic acid
- ER, endoplasmic reticulum
- ETC, electron transport chain
- Endoplasmic reticulum
- FFAs, free fatty acids
- Fluorescence imaging
- IMS, intermembrane space
- ISO, isoproterenol
- MAM, mitochondria-associated ER membrane
- MCU, mitochondrial calcium uniporter
- Mitochondria-associated ER membrane
- Rot, rotenone
- SERCA, sarco/endoplasmic reticulum Ca2+-ATPase
- TG, thapsigargin
- TMRM, tetramethylrhodamine methyl ester
- UCP1, uncoupling protein 1
- β-AR, β-adrenergic receptor
Collapse
Affiliation(s)
- Yanyan Hou
- WASEDA Bioscience Research Institute in Singapore (WABIOS), 11 Biopolis Way, #05-02 Helios, Singapore 138667, Singapore
| | - Tetsuya Kitaguchi
- WASEDA Bioscience Research Institute in Singapore (WABIOS), 11 Biopolis Way, #05-02 Helios, Singapore 138667, Singapore; Comprehensive Research Organization, Waseda University, Tokyo, 162-0041, Japan
| | - Rókus Kriszt
- Department of Biomedical Engineering, National University of Singapore, 117583, Singapore; NUS Tissue Engineering Program, Life Sciences Institute, National University of Singapore, 117510, Singapore; Graduate School for Integrative Sciences and Engineering (NGS), National University of Singapore, 117456, Singapore
| | - Yu-Hua Tseng
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Michael Raghunath
- Department of Biomedical Engineering, National University of Singapore, 117583, Singapore; NUS Tissue Engineering Program, Life Sciences Institute, National University of Singapore, 117510, Singapore; Department of Biochemistry, Yong Loo Ling School of Medicine, National University of Singapore, 117597, Singapore
| | - Madoka Suzuki
- WASEDA Bioscience Research Institute in Singapore (WABIOS), 11 Biopolis Way, #05-02 Helios, Singapore 138667, Singapore; Comprehensive Research Organization, Waseda University, Tokyo, 162-0041, Japan; PRESTO, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
| |
Collapse
|
124
|
Valinsky WC, Touyz RM, Shrier A. Characterization of constitutive and acid-induced outwardly rectifying chloride currents in immortalized mouse distal tubular cells. Biochim Biophys Acta Gen Subj 2017; 1861:2007-2019. [PMID: 28483640 PMCID: PMC5482324 DOI: 10.1016/j.bbagen.2017.05.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 04/12/2017] [Accepted: 05/04/2017] [Indexed: 12/13/2022]
Abstract
Thiazides block Na+ reabsorption while enhancing Ca2+ reabsorption in the kidney. As previously demonstrated in immortalized mouse distal convoluted tubule (MDCT) cells, chlorothiazide application induced a robust plasma membrane hyperpolarization, which increased Ca2+ uptake. This essential thiazide-induced hyperpolarization was prevented by the Cl− channel inhibitor 5-Nitro-2-(3-phenylpropylamino) benzoic acid (NPPB), implicating NPPB-sensitive Cl− channels, however the nature of these Cl− channels has been rarely described in the literature. Here we show that MDCT cells express a dominant, outwardly rectifying Cl− current at extracellular pH 7.4. This constitutive Cl− current was more permeable to larger anions (Eisenman sequence I; I− > Br− ≥ Cl−) and was substantially inhibited by > 100 mM [Ca2+]o, which distinguished it from ClC-K2/barttin. Moreover, the constitutive Cl− current was blocked by NPPB, along with other Cl− channel inhibitors (4,4′-diisothiocyanatostilbene-2,2′-disulfonate, DIDS; flufenamic acid, FFA). Subjecting the MDCT cells to an acidic extracellular solution (pH < 5.5) induced a substantially larger outwardly rectifying NPPB-sensitive Cl− current. This acid-induced Cl− current was also anion permeable (I− > Br− > Cl−), but was distinguished from the constitutive Cl− current by its rectification characteristics, ion sensitivities, and response to FFA. In addition, we have identified similar outwardly rectifying and acid-sensitive currents in immortalized cells from the inner medullary collecting duct (mIMCD-3 cells). Expression of an acid-induced Cl− current would be particularly relevant in the acidic IMCD (pH < 5.5). To our knowledge, the properties of these Cl− currents are unique and provide the mechanisms to account for the Cl− efflux previously speculated to be present in MDCT cells. MDCT cells express a dominant NPPB-sensitive Cl− current at pH 7.4. The constitutive Cl− current (pH 7.4) does not arise from ClC-K2/barttin. MDCT cells also express an acid-induced NPPB-sensitive Cl− current (pH < 5.5). Both the constitutive and acid-induced Cl− currents are unique. mIMCD-3 cells express currents with similar biophysical properties.
Collapse
Affiliation(s)
- William C Valinsky
- Department of Physiology, McGill University, 3649 Promenade sir William Osler, Montreal, Quebec H3G 0B1, Canada
| | - Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, BHF GCRC, 126 University Place, Glasgow G12 8TA, United Kingdom
| | - Alvin Shrier
- Department of Physiology, McGill University, 3649 Promenade sir William Osler, Montreal, Quebec H3G 0B1, Canada.
| |
Collapse
|
125
|
Mitochondrial Patch Clamp of Beige Adipocytes Reveals UCP1-Positive and UCP1-Negative Cells Both Exhibiting Futile Creatine Cycling. Cell Metab 2017; 25:811-822.e4. [PMID: 28380374 PMCID: PMC5448977 DOI: 10.1016/j.cmet.2017.03.002] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 12/27/2016] [Accepted: 03/04/2017] [Indexed: 11/27/2022]
Abstract
Cold and other environmental factors induce "browning" of white fat depots-development of beige adipocytes with morphological and functional resemblance to brown fat. Similar to brown fat, beige adipocytes are assumed to express mitochondrial uncoupling protein 1 (UCP1) and are thermogenic due to the UCP1-mediated H+ leak across the inner mitochondrial membrane. However, this assumption has never been tested directly. Herein we patch clamped the inner mitochondrial membrane of beige and brown fat to provide a direct comparison of their thermogenic H+ leak (IH). All inguinal beige adipocytes had robust UCP1-dependent IH comparable to brown fat, but it was about three times less sensitive to purine nucleotide inhibition. Strikingly, only ∼15% of epididymal beige adipocytes had IH, while in the rest UCP1-dependent IH was undetectable. Despite the absence of UCP1 in the majority of epididymal beige adipocytes, these cells employ prominent creatine cycling as a UCP1-independent thermogenic mechanism.
Collapse
|
126
|
Li PA, Hou X, Hao S. Mitochondrial biogenesis in neurodegeneration. J Neurosci Res 2017; 95:2025-2029. [DOI: 10.1002/jnr.24042] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 01/15/2017] [Accepted: 02/01/2017] [Indexed: 01/08/2023]
Affiliation(s)
- P. Andy Li
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute Technology Enterprise (BRITE); North Carolina Central University; Durham North Carolina
| | - Xiaolin Hou
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute Technology Enterprise (BRITE); North Carolina Central University; Durham North Carolina
- Department of Neurology; General Hospital of Ningxia Medical University, Ningxia Key Laboratory for Cerebrocranial Diseases, Ningxia Medical University; Yinchuan PR China
| | - Shaocai Hao
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute Technology Enterprise (BRITE); North Carolina Central University; Durham North Carolina
- Department of Neurosurgery; General Hospital of Ningxia Medical University, Ningxia Key Laboratory for Cerebrocranial Diseases, Ningxia Medical University; Yinchuan PR China
| |
Collapse
|
127
|
Kohlhaas M, Nickel AG, Maack C. Mitochondrial energetics and calcium coupling in the heart. J Physiol 2017; 595:3753-3763. [PMID: 28105746 DOI: 10.1113/jp273609] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 12/22/2016] [Indexed: 12/21/2022] Open
Abstract
Contraction and relaxation of the heart consume large amounts of energy that need to be replenished by oxidative phosphorylation in mitochondria, and matching energy supply to demand involves the complimentary control of respiration through ADP and Ca2+ . In heart failure, an imbalance between ADP and Ca2+ leads to oxidation of mitochondrial pyridine nucleotides, where NADH oxidation may limit ATP production and contractile function, while NADPH oxidation can induce oxidative stress with consecutive maladaptive remodelling. Understanding the complex mechanisms that disturb this finely tuned equilibrium may aid the development of drugs that could ameliorate the progression of heart failure beyond the classical neuroendocrine inhibition.
Collapse
Affiliation(s)
- Michael Kohlhaas
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, Homburg/Saar, Germany
| | - Alexander G Nickel
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, Homburg/Saar, Germany
| | - Christoph Maack
- Klinik für Innere Medizin III, Universitätsklinikum des Saarlandes, Homburg/Saar, Germany
| |
Collapse
|
128
|
Lopez-Crisosto C, Pennanen C, Vasquez-Trincado C, Morales PE, Bravo-Sagua R, Quest AFG, Chiong M, Lavandero S. Sarcoplasmic reticulum-mitochondria communication in cardiovascular pathophysiology. Nat Rev Cardiol 2017; 14:342-360. [PMID: 28275246 DOI: 10.1038/nrcardio.2017.23] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Repetitive, calcium-mediated contractile activity renders cardiomyocytes critically dependent on a sustained energy supply and adequate calcium buffering, both of which are provided by mitochondria. Moreover, in vascular smooth muscle cells, mitochondrial metabolism modulates cell growth and proliferation, whereas cytosolic calcium levels regulate the arterial vascular tone. Physical and functional communication between mitochondria and sarco/endoplasmic reticulum and balanced mitochondrial dynamics seem to have a critical role for optimal calcium transfer to mitochondria, which is crucial in calcium homeostasis and mitochondrial metabolism in both types of muscle cells. Moreover, mitochondrial dysfunction has been associated with myocardial damage and dysregulation of vascular smooth muscle proliferation. Therefore, sarco/endoplasmic reticulum-mitochondria coupling and mitochondrial dynamics are now viewed as relevant factors in the pathogenesis of cardiac and vascular diseases, including coronary artery disease, heart failure, and pulmonary arterial hypertension. In this Review, we summarize the evidence related to the role of sarco/endoplasmic reticulum-mitochondria communication in cardiac and vascular muscle physiology, with a focus on how perturbations contribute to the pathogenesis of cardiovascular disorders.
Collapse
Affiliation(s)
- Camila Lopez-Crisosto
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas &Facultad de Medicina, Universidad de Chile, Sergio Livingstone 1007, Santiago 8380492, Chile
| | - Christian Pennanen
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas &Facultad de Medicina, Universidad de Chile, Sergio Livingstone 1007, Santiago 8380492, Chile
| | - Cesar Vasquez-Trincado
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas &Facultad de Medicina, Universidad de Chile, Sergio Livingstone 1007, Santiago 8380492, Chile
| | - Pablo E Morales
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas &Facultad de Medicina, Universidad de Chile, Sergio Livingstone 1007, Santiago 8380492, Chile
| | - Roberto Bravo-Sagua
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas &Facultad de Medicina, Universidad de Chile, Sergio Livingstone 1007, Santiago 8380492, Chile.,Instituto de Nutricion y Tecnologia de los Alimentos (INTA), Universidad de Chile, Avenida El Líbano 5524, Santiago 7830490, Chile
| | - Andrew F G Quest
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas &Facultad de Medicina, Universidad de Chile, Sergio Livingstone 1007, Santiago 8380492, Chile.,Centro de Estudios Moleculares de la Celula (CEMC), Instituto de Ciencias Biomedicas, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago 8380453, Chile
| | - Mario Chiong
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas &Facultad de Medicina, Universidad de Chile, Sergio Livingstone 1007, Santiago 8380492, Chile
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Quimicas y Farmaceuticas &Facultad de Medicina, Universidad de Chile, Sergio Livingstone 1007, Santiago 8380492, Chile.,Centro de Estudios Moleculares de la Celula (CEMC), Instituto de Ciencias Biomedicas, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago 8380453, Chile.,Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, Texas 75235, USA
| |
Collapse
|
129
|
Kwong JQ. The mitochondrial calcium uniporter in the heart: energetics and beyond. J Physiol 2017; 595:3743-3751. [PMID: 27991671 DOI: 10.1113/jp273059] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 11/21/2016] [Indexed: 01/11/2023] Open
Abstract
Ca2+ and mitochondria are inextricably linked to cardiac function and dysfunction. Ca2+ is central to cardiac excitation-contraction coupling and stimulates mitochondrial energy production to fuel contraction. Under pathological conditions of dysregulated Ca2+ cycling, mitochondrial Ca2+ overload activates cellular death pathways. Thus, in the cardiomyocyte, the mitochondrial Ca2+ microdomain is where contraction, energy and death collide. A key component of mitochondrial Ca2+ signalling is the mitochondrial Ca2+ uniporter complex (uniplex), an inner membrane Ca2+ transporter and major pathway of mitochondrial Ca2+ entry. Once known only as the unidentified target for ruthenium red and related compounds, in recent years, the uniplex has evolved into a complex multiprotein assembly. The identification of the molecular constituents of the uniplex has made possible the generation of targeted genetic models to interrogate uniplex function in vivo. This review will summarize our current understanding of the molecular structure of the uniplex, its impact on mitochondrial energetics and cardiac physiology, its contribution to cardiomyocyte death, and its expanding roles in cardiac biology.
Collapse
Affiliation(s)
- Jennifer Q Kwong
- Department of Pediatrics, Division of Cardiovascular Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| |
Collapse
|
130
|
Mishra J, Jhun BS, Hurst S, O-Uchi J, Csordás G, Sheu SS. The Mitochondrial Ca 2+ Uniporter: Structure, Function, and Pharmacology. Handb Exp Pharmacol 2017; 240:129-156. [PMID: 28194521 PMCID: PMC5554456 DOI: 10.1007/164_2017_1] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Mitochondrial Ca2+ uptake is crucial for an array of cellular functions while an imbalance can elicit cell death. In this chapter, we briefly reviewed the various modes of mitochondrial Ca2+ uptake and our current understanding of mitochondrial Ca2+ homeostasis in regards to cell physiology and pathophysiology. Further, this chapter focuses on the molecular identities, intracellular regulators as well as the pharmacology of mitochondrial Ca2+ uniporter complex.
Collapse
Affiliation(s)
- Jyotsna Mishra
- Center for Translational Medicine, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, 1020 Locust Street, Suite 543D, Philadelphia, PA, 19107, USA
| | - Bong Sook Jhun
- Cardiovascular Research Center, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, 02903, USA
| | - Stephen Hurst
- Center for Translational Medicine, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, 1020 Locust Street, Suite 543D, Philadelphia, PA, 19107, USA
| | - Jin O-Uchi
- Cardiovascular Research Center, Department of Medicine, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, 02903, USA.
| | - György Csordás
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| | - Shey-Shing Sheu
- Center for Translational Medicine, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, 1020 Locust Street, Suite 543D, Philadelphia, PA, 19107, USA.
| |
Collapse
|
131
|
Mitochondrial Calcium Handling in Physiology and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 982:25-47. [PMID: 28551780 DOI: 10.1007/978-3-319-55330-6_2] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Calcium (Ca2+) accumulation inside mitochondria represents a pleiotropic signal controlling a wide range of cellular functions, including key metabolic pathways and life/death decisions. This phenomenon has been first described in the 1960s, but the identity of the molecules controlling this process remained a mystery until just few years ago, when both mitochondrial Ca2+ uptake and release systems were genetically dissected. This finally opened the possibility to develop genetic models to directly test the contribution of mitochondrial Ca2+ homeostasis to cellular functions. Here we summarize our current understanding of the molecular machinery that controls mitochondrial Ca2+ handling and critically evaluate the physiopathological role of mitochondrial Ca2+ signaling, based on recent evidences obtained through in vitro and in vivo models.
Collapse
|
132
|
Malli R, Graier WF. The Role of Mitochondria in the Activation/Maintenance of SOCE: The Contribution of Mitochondrial Ca 2+ Uptake, Mitochondrial Motility, and Location to Store-Operated Ca 2+ Entry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 993:297-319. [PMID: 28900921 DOI: 10.1007/978-3-319-57732-6_16] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In most cell types, the depletion of internal Ca2+ stores triggers the activation of Ca2+ entry. This crucial phenomenon is known since the 1980s and referred to as store-operated Ca2+ entry (SOCE). With the discoveries of the stromal-interacting molecules (STIMs) and the Ca2+-permeable Orai channels as the long-awaited molecular constituents of SOCE, the role of mitochondria in controlling the activity of this particular Ca2+ entry pathway is kind of buried in oblivion. However, the capability of mitochondria to locally sequester Ca2+ at sites of Ca2+ release and entry was initially supposed to rule SOCE by facilitating the Ca2+ depletion of the endoplasmic reticulum and removing entering Ca2+ from the Ca2+-inhibitable channels, respectively. Moreover, the central role of these organelles in controlling the cellular energy metabolism has been linked to the activity of SOCE. Nevertheless, the exact molecular mechanisms by which mitochondria actually determine SOCE are still pretty obscure. In this essay we describe the complexity of the mitochondrial Ca2+ uptake machinery and its regulation, molecular components, and properties, which open new ways for scrutinizing the contribution of mitochondria to SOCE. Moreover, data concerning the variability of the morphology and cellular distribution of mitochondria as putative determinants of SOCE activation, maintenance, and termination are summarized.
Collapse
Affiliation(s)
- Roland Malli
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/6, 8010, Graz, Austria
| | - Wolfgang F Graier
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/6, 8010, Graz, Austria.
| |
Collapse
|
133
|
Open-Loop Control of Oxidative Phosphorylation in Skeletal and Cardiac Muscle Mitochondria by Ca(2.). Biophys J 2016; 110:954-61. [PMID: 26910432 DOI: 10.1016/j.bpj.2015.12.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 09/29/2015] [Accepted: 12/14/2015] [Indexed: 01/16/2023] Open
Abstract
In cardiac muscle, mitochondrial ATP synthesis is driven by demand for ATP through feedback from the products of ATP hydrolysis. However, in skeletal muscle at higher workloads there is an apparent contribution of open-loop stimulation of ATP synthesis. Open-loop control is defined as modulation of flux through a biochemical pathway by a moiety, which is not a reactant or a product of the biochemical reactions in the pathway. The role of calcium, which is known to stimulate the activity of mitochondrial dehydrogenases, as an open-loop controller, was investigated in isolated cardiac and skeletal muscle mitochondria. The kinetics of NADH synthesis and respiration, feedback from ATP hydrolysis products, and stimulation by calcium were characterized in isolated mitochondria to test the hypothesis that calcium has a stimulatory role in skeletal muscle mitochondria not apparent in cardiac mitochondria. A range of respiratory states were obtained in cardiac and skeletal muscle mitochondria utilizing physiologically relevant concentrations of pyruvate and malate, and flux of respiration, NAD(P)H fluorescence, and rhodamine 123 fluorescence were measured over a range of extra mitochondrial calcium concentrations. We found that under these conditions calcium stimulates NADH synthesis in skeletal muscle mitochondria but not in cardiac mitochondria.
Collapse
|
134
|
A MICU1 Splice Variant Confers High Sensitivity to the Mitochondrial Ca 2+ Uptake Machinery of Skeletal Muscle. Mol Cell 2016; 64:760-773. [PMID: 27818145 DOI: 10.1016/j.molcel.2016.10.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 09/06/2016] [Accepted: 09/30/2016] [Indexed: 01/28/2023]
Abstract
Skeletal muscle is a dynamic organ, characterized by an incredible ability to rapidly increase its rate of energy consumption to sustain activity. Muscle mitochondria provide most of the ATP required for contraction via oxidative phosphorylation. Here we found that skeletal muscle mitochondria express a unique MCU complex containing an alternative splice isoform of MICU1, MICU1.1, characterized by the addition of a micro-exon that is sufficient to greatly modify the properties of the MCU. Indeed, MICU1.1 binds Ca2+ one order of magnitude more efficiently than MICU1 and, when heterodimerized with MICU2, activates MCU current at lower Ca2+ concentrations than MICU1-MICU2 heterodimers. In skeletal muscle in vivo, MICU1.1 is required for sustained mitochondrial Ca2+ uptake and ATP production. These results highlight a novel mechanism of the molecular plasticity of the MCU Ca2+ uptake machinery that allows skeletal muscle mitochondria to be highly responsive to sarcoplasmic [Ca2+] responses.
Collapse
|
135
|
De La Fuente S, Fernandez-Sanz C, Vail C, Agra EJ, Holmstrom K, Sun J, Mishra J, Williams D, Finkel T, Murphy E, Joseph SK, Sheu SS, Csordás G. Strategic Positioning and Biased Activity of the Mitochondrial Calcium Uniporter in Cardiac Muscle. J Biol Chem 2016; 291:23343-23362. [PMID: 27637331 PMCID: PMC5087749 DOI: 10.1074/jbc.m116.755496] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Indexed: 11/06/2022] Open
Abstract
Control of myocardial energetics by Ca2+ signal propagation to the mitochondrial matrix includes local Ca2+ delivery from sarcoplasmic reticulum (SR) ryanodine receptors (RyR2) to the inner mitochondrial membrane (IMM) Ca2+ uniporter (mtCU). mtCU activity in cardiac mitochondria is relatively low, whereas the IMM surface is large, due to extensive cristae folding. Hence, stochastically distributed mtCU may not suffice to support local Ca2+ transfer. We hypothesized that mtCU concentrated at mitochondria-SR associations would promote the effective Ca2+ transfer. mtCU distribution was determined by tracking MCU and EMRE, the proteins essential for channel formation. Both proteins were enriched in the IMM-outer mitochondrial membrane (OMM) contact point submitochondrial fraction and, as super-resolution microscopy revealed, located more to the mitochondrial periphery (inner boundary membrane) than inside the cristae, indicating high accessibility to cytosol-derived Ca2+ inputs. Furthermore, MCU immunofluorescence distribution was biased toward the mitochondria-SR interface (RyR2), and this bias was promoted by Ca2+ signaling activity in intact cardiomyocytes. The SR fraction of heart homogenate contains mitochondria with extensive SR associations, and these mitochondria are highly enriched in EMRE. Size exclusion chromatography suggested for EMRE- and MCU-containing complexes a wide size range and also revealed MCU-containing complexes devoid of EMRE (thus disabled) in the mitochondrial but not the SR fraction. Functional measurements suggested more effective mtCU-mediated Ca2+ uptake activity by the mitochondria of the SR than of the mitochondrial fraction. Thus, mtCU "hot spots" can be formed at the cardiac muscle mitochondria-SR associations via localization and assembly bias, serving local Ca2+ signaling and the excitation-energetics coupling.
Collapse
Affiliation(s)
- Sergio De La Fuente
- From the MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Celia Fernandez-Sanz
- the Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, and
| | - Caitlin Vail
- From the MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Elorm J Agra
- From the MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Kira Holmstrom
- the Center for Molecular Medicine, Laboratory of Molecular Biology, and
| | - Junhui Sun
- the Systems Biology Center, Laboratory of Cardiac Physiology, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| | - Jyotsna Mishra
- the Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, and
| | - Dewight Williams
- the Penn EM Resource Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Toren Finkel
- the Center for Molecular Medicine, Laboratory of Molecular Biology, and
| | - Elizabeth Murphy
- the Systems Biology Center, Laboratory of Cardiac Physiology, NHLBI, National Institutes of Health, Bethesda, Maryland 20892
| | - Suresh K Joseph
- From the MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Shey-Shing Sheu
- the Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, and
| | - György Csordás
- From the MitoCare Center for Mitochondrial Imaging Research and Diagnostics, Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107,
| |
Collapse
|
136
|
Raffaello A, Mammucari C, Gherardi G, Rizzuto R. Calcium at the Center of Cell Signaling: Interplay between Endoplasmic Reticulum, Mitochondria, and Lysosomes. Trends Biochem Sci 2016; 41:1035-1049. [PMID: 27692849 DOI: 10.1016/j.tibs.2016.09.001] [Citation(s) in RCA: 356] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 08/31/2016] [Accepted: 09/07/2016] [Indexed: 12/29/2022]
Abstract
In recent years, rapid discoveries have been made relating to Ca2+ handling at specific organelles that have important implications for whole-cell Ca2+ homeostasis. In particular, the structures of the endoplasmic reticulum (ER) Ca2+ channels revealed by electron cryomicroscopy (cryo-EM), continuous updates on the structure, regulation, and role of the mitochondrial calcium uniporter (MCU) complex, and the analysis of lysosomal Ca2+ signaling are milestones on the route towards a deeper comprehension of the complexity of global Ca2+ signaling. In this review we summarize recent discoveries on the regulation of interorganellar Ca2+ homeostasis and its role in pathophysiology.
Collapse
Affiliation(s)
- Anna Raffaello
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy.
| | - Cristina Mammucari
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy.
| | - Gaia Gherardi
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy
| | - Rosario Rizzuto
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy; Neuroscience Institute, National Research Council, 35131 Padua, Italy.
| |
Collapse
|
137
|
Madreiter-Sokolowski CT, Klec C, Parichatikanond W, Stryeck S, Gottschalk B, Pulido S, Rost R, Eroglu E, Hofmann NA, Bondarenko AI, Madl T, Waldeck-Weiermair M, Malli R, Graier WF. PRMT1-mediated methylation of MICU1 determines the UCP2/3 dependency of mitochondrial Ca(2+) uptake in immortalized cells. Nat Commun 2016; 7:12897. [PMID: 27642082 PMCID: PMC5031806 DOI: 10.1038/ncomms12897] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 08/12/2016] [Indexed: 12/18/2022] Open
Abstract
Recent studies revealed that mitochondrial Ca2+ channels, which control energy flow, cell signalling and death, are macromolecular complexes that basically consist of the pore-forming mitochondrial Ca2+ uniporter (MCU) protein, the essential MCU regulator (EMRE), and the mitochondrial Ca2+ uptake 1 (MICU1). MICU1 is a regulatory subunit that shields mitochondria from Ca2+ overload. Before the identification of these core elements, the novel uncoupling proteins 2 and 3 (UCP2/3) have been shown to be fundamental for mitochondrial Ca2+ uptake. Here we clarify the molecular mechanism that determines the UCP2/3 dependency of mitochondrial Ca2+ uptake. Our data demonstrate that mitochondrial Ca2+ uptake is controlled by protein arginine methyl transferase 1 (PRMT1) that asymmetrically methylates MICU1, resulting in decreased Ca2+ sensitivity. UCP2/3 normalize Ca2+ sensitivity of methylated MICU1 and, thus, re-establish mitochondrial Ca2+ uptake activity. These data provide novel insights in the complex regulation of the mitochondrial Ca2+ uniporter by PRMT1 and UCP2/3. MICU1 is a regulatory subunit of mitochondrial Ca2+ channels that shields mitochondria from Ca2+ overload. Here the authors show that MICU1 methylation by PRMT1 reduces Ca2+ sensitivity, which is normalized by UCP2/3, re-establishing mitochondrial Ca2+ uptake activity.
Collapse
Affiliation(s)
- Corina T Madreiter-Sokolowski
- Center for Molecular Medicine, Institute of Molecular Biology and Biochemistry, Medical University of Graz, Harrachgasse 21/III, Graz 8010, Austria
| | - Christiane Klec
- Center for Molecular Medicine, Institute of Molecular Biology and Biochemistry, Medical University of Graz, Harrachgasse 21/III, Graz 8010, Austria
| | - Warisara Parichatikanond
- Center for Molecular Medicine, Institute of Molecular Biology and Biochemistry, Medical University of Graz, Harrachgasse 21/III, Graz 8010, Austria
| | - Sarah Stryeck
- Center for Molecular Medicine, Institute of Molecular Biology and Biochemistry, Medical University of Graz, Harrachgasse 21/III, Graz 8010, Austria
| | - Benjamin Gottschalk
- Center for Molecular Medicine, Institute of Molecular Biology and Biochemistry, Medical University of Graz, Harrachgasse 21/III, Graz 8010, Austria
| | - Sergio Pulido
- Institute of Chemistry, University of Graz, Graz 8010, Austria
| | - Rene Rost
- Center for Molecular Medicine, Institute of Molecular Biology and Biochemistry, Medical University of Graz, Harrachgasse 21/III, Graz 8010, Austria
| | - Emrah Eroglu
- Center for Molecular Medicine, Institute of Molecular Biology and Biochemistry, Medical University of Graz, Harrachgasse 21/III, Graz 8010, Austria
| | - Nicole A Hofmann
- Center for Molecular Medicine, Institute of Molecular Biology and Biochemistry, Medical University of Graz, Harrachgasse 21/III, Graz 8010, Austria
| | - Alexander I Bondarenko
- Center for Molecular Medicine, Institute of Molecular Biology and Biochemistry, Medical University of Graz, Harrachgasse 21/III, Graz 8010, Austria
| | - Tobias Madl
- Center for Molecular Medicine, Institute of Molecular Biology and Biochemistry, Medical University of Graz, Harrachgasse 21/III, Graz 8010, Austria.,Center for Integrated Protein Science, Department Chemistry, Technical University Munich, Garching 85748, Germany.,Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg 85764, Germany
| | - Markus Waldeck-Weiermair
- Center for Molecular Medicine, Institute of Molecular Biology and Biochemistry, Medical University of Graz, Harrachgasse 21/III, Graz 8010, Austria
| | - Roland Malli
- Center for Molecular Medicine, Institute of Molecular Biology and Biochemistry, Medical University of Graz, Harrachgasse 21/III, Graz 8010, Austria
| | - Wolfgang F Graier
- Center for Molecular Medicine, Institute of Molecular Biology and Biochemistry, Medical University of Graz, Harrachgasse 21/III, Graz 8010, Austria
| |
Collapse
|
138
|
Kwon SK, Hirabayashi Y, Polleux F. Organelle-Specific Sensors for Monitoring Ca 2+ Dynamics in Neurons. Front Synaptic Neurosci 2016; 8:29. [PMID: 27695411 PMCID: PMC5025517 DOI: 10.3389/fnsyn.2016.00029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 08/30/2016] [Indexed: 11/16/2022] Open
Abstract
Calcium (Ca2+) plays innumerable critical functions in neurons ranging from regulation of neurotransmitter release and synaptic plasticity to activity-dependent transcription. Therefore, more than any other cell types, neurons are critically dependent on spatially and temporally controlled Ca2+ dynamics. This is achieved through an exquisite level of compartmentalization of Ca2+ storage and release from various organelles. The function of these organelles in the regulation of Ca2+ dynamics has been studied for decades using electrophysiological and optical methods combined with pharmacological and genetic alterations. Mitochondria and the endoplasmic reticulum (ER) are among the organelles playing the most critical roles in Ca2+ dynamics in neurons. At presynaptic boutons, Ca2+ triggers neurotransmitter release and synaptic plasticity, and postsynaptically, Ca2+ mobilization mediates long-term synaptic plasticity. To explore Ca2+ dynamics in live cells and intact animals, various synthetic and genetically encoded fluorescent Ca2+ sensors were developed, and recently, many groups actively increased the sensitivity and diversity of genetically encoded Ca2+ indicators (GECIs). Following conjugation with various signal peptides, these improved GECIs can be targeted to specific subcellular compartments, allowing monitoring of organelle-specific Ca2+ dynamics. Here, we review recent findings unraveling novel roles for mitochondria- and ER-dependent Ca2+ dynamics in neurons and at synapses.
Collapse
Affiliation(s)
- Seok-Kyu Kwon
- Department of Neuroscience, Mortimer B. Zuckerman Mind Brain Behavior Institute, Kavli Institute for Brain Science, Columbia University Medical Center New York, NY, USA
| | - Yusuke Hirabayashi
- Department of Neuroscience, Mortimer B. Zuckerman Mind Brain Behavior Institute, Kavli Institute for Brain Science, Columbia University Medical Center New York, NY, USA
| | - Franck Polleux
- Department of Neuroscience, Mortimer B. Zuckerman Mind Brain Behavior Institute, Kavli Institute for Brain Science, Columbia University Medical Center New York, NY, USA
| |
Collapse
|
139
|
Liu JC, Liu J, Holmström KM, Menazza S, Parks RJ, Fergusson MM, Yu ZX, Springer DA, Halsey C, Liu C, Murphy E, Finkel T. MICU1 Serves as a Molecular Gatekeeper to Prevent In Vivo Mitochondrial Calcium Overload. Cell Rep 2016; 16:1561-1573. [PMID: 27477272 DOI: 10.1016/j.celrep.2016.07.011] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 03/24/2016] [Accepted: 07/03/2016] [Indexed: 01/10/2023] Open
Abstract
MICU1 is a component of the mitochondrial calcium uniporter, a multiprotein complex that also includes MICU2, MCU, and EMRE. Here, we describe a mouse model of MICU1 deficiency. MICU1(-/-) mitochondria demonstrate altered calcium uptake, and deletion of MICU1 results in significant, but not complete, perinatal mortality. Similar to afflicted patients, viable MICU1(-/-) mice manifest marked ataxia and muscle weakness. Early in life, these animals display a range of biochemical abnormalities, including increased resting mitochondrial calcium levels, altered mitochondrial morphology, and reduced ATP. Older MICU1(-/-) mice show marked, spontaneous improvement coincident with improved mitochondrial calcium handling and an age-dependent reduction in EMRE expression. Remarkably, deleting one allele of EMRE helps normalize calcium uptake while simultaneously rescuing the high perinatal mortality observed in young MICU1(-/-) mice. Together, these results demonstrate that MICU1 serves as a molecular gatekeeper preventing calcium overload and suggests that modulating the calcium uniporter could have widespread therapeutic benefits.
Collapse
Affiliation(s)
- Julia C Liu
- Center for Molecular Medicine, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Jie Liu
- Center for Molecular Medicine, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Kira M Holmström
- Center for Molecular Medicine, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Sara Menazza
- Systems Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Randi J Parks
- Systems Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Maria M Fergusson
- Center for Molecular Medicine, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Zu-Xi Yu
- Pathology Core, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Danielle A Springer
- Murine Phenotyping Core, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Charles Halsey
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Chengyu Liu
- Transgenic Core, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Elizabeth Murphy
- Systems Biology Center, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA
| | - Toren Finkel
- Center for Molecular Medicine, National Heart, Lung, and Blood Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
140
|
Zhou J, Dhakal K, Yi J. Mitochondrial Ca(2+) uptake in skeletal muscle health and disease. SCIENCE CHINA-LIFE SCIENCES 2016; 59:770-6. [PMID: 27430885 PMCID: PMC6168075 DOI: 10.1007/s11427-016-5089-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 06/07/2016] [Indexed: 11/09/2022]
Abstract
Muscle uses Ca2+ as a messenger to control contraction and relies on ATP to maintain the intracellular Ca2+ homeostasis. Mitochondria are the major sub-cellular organelle of ATP production. With a negative inner membrane potential, mitochondria take up Ca2+ from their surroundings, a process called mitochondrial Ca2+ uptake. Under physiological conditions, Ca2+ uptake into mitochondria promotes ATP production. Excessive uptake causes mitochondrial Ca2+ overload, which activates downstream adverse responses leading to cell dysfunction. Moreover, mitochondrial Ca2+ uptake could shape spatio-temporal patterns of intracellular Ca2+ signaling. Malfunction of mitochondrial Ca2+ uptake is implicated in muscle degeneration. Unlike non-excitable cells, mitochondria in muscle cells experience dramatic changes of intracellular Ca2+ levels. Besides the sudden elevation of Ca2+ level induced by action potentials, Ca2+ transients in muscle cells can be as short as a few milliseconds during a single twitch or as long as minutes during tetanic contraction, which raises the question whether mitochondrial Ca2+ uptake is fast and big enough to shape intracellular Ca2+ signaling during excitation-contraction coupling and creates technical challenges for quantification of the dynamic changes of Ca2+ inside mitochondria. This review focuses on characterization of mitochondrial Ca2+ uptake in skeletal muscle and its role in muscle physiology and diseases.
Collapse
Affiliation(s)
- Jingsong Zhou
- Kansas City University of Medicine and Bioscience, Dybedal Research Center, Kansas City, MO, 64106, USA.
| | - Kamal Dhakal
- Kansas City University of Medicine and Bioscience, Dybedal Research Center, Kansas City, MO, 64106, USA
| | - Jianxun Yi
- Kansas City University of Medicine and Bioscience, Dybedal Research Center, Kansas City, MO, 64106, USA
| |
Collapse
|
141
|
Wagner S, De Bortoli S, Schwarzländer M, Szabò I. Regulation of mitochondrial calcium in plants versus animals. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3809-29. [PMID: 27001920 DOI: 10.1093/jxb/erw100] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Ca(2+) acts as an important cellular second messenger in eukaryotes. In both plants and animals, a wide variety of environmental and developmental stimuli trigger Ca(2+) transients of a specific signature that can modulate gene expression and metabolism. In animals, mitochondrial energy metabolism has long been considered a hotspot of Ca(2+) regulation, with a range of pathophysiology linked to altered Ca(2+) control. Recently, several molecular players involved in mitochondrial Ca(2+) signalling have been identified, including those of the mitochondrial Ca(2+) uniporter. Despite strong evidence for sophisticated Ca(2+) regulation in plant mitochondria, the picture has remained much less clear. This is currently changing aided by live imaging and genetic approaches which allow dissection of subcellular Ca(2+) dynamics and identification of the proteins involved. We provide an update on our current understanding in the regulation of mitochondrial Ca(2+) and signalling by comparing work in plants and animals. The significance of mitochondrial Ca(2+) control is discussed in the light of the specific metabolic and energetic needs of plant and animal cells.
Collapse
Affiliation(s)
- Stephan Wagner
- Plant Energy Biology Lab, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113 Bonn, Germany
| | - Sara De Bortoli
- Department of Biology and CNR Institute of Neurosciences, University of Padova, Viale G. Colombo 3, 35121 Padova, Italy
| | - Markus Schwarzländer
- Plant Energy Biology Lab, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113 Bonn, Germany
| | - Ildikò Szabò
- Department of Biology and CNR Institute of Neurosciences, University of Padova, Viale G. Colombo 3, 35121 Padova, Italy
| |
Collapse
|
142
|
Xu Z, Zhang D, He X, Huang Y, Shao H. Transport of Calcium Ions into Mitochondria. Curr Genomics 2016; 17:215-9. [PMID: 27252588 PMCID: PMC4869008 DOI: 10.2174/1389202917666160202215748] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 08/09/2015] [Accepted: 08/14/2015] [Indexed: 01/06/2023] Open
Abstract
To uptake calcium ions of mitochondria is of significant functional connotation for cells, because calcium ions in mitochondria are involved in energy production, regulatory signals transfer, and mitochondrial permeability transition pore opening and even programmed cell death of apoptosis, further playing more roles in plant productivity and quality. Cytoplasmic calcium ions access into outer mitochondrial membrane (OMM) from voltage dependent anion-selective channel (VDAC) and were absorbed into inner mitochondrial membrane (IMM) by mitochondrial calcium uniporter (MCU), rapid mitochondrial calcium uptake (RaM) or mitochondrial ryanodine receptor (mRyR). Although both mitochondria and the mechanisms of calcium transport have been extensively studied, but there are still long-standing or even new challenges. Here we review the history and recent discoveries of the mitochondria calcium ions channel complex involved calcium assimilation, and discuss the role of calcium ions into mitochondria.
Collapse
Affiliation(s)
- Zhaolong Xu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Provincial Key Laboratory of Agrobiology, Institute of Agro-biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Dayong Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Provincial Key Laboratory of Agrobiology, Institute of Agro-biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xiaolan He
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Provincial Key Laboratory of Agrobiology, Institute of Agro-biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yihong Huang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Provincial Key Laboratory of Agrobiology, Institute of Agro-biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Hongbo Shao
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Provincial Key Laboratory of Agrobiology, Institute of Agro-biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences (CAS), Yantai, China
| |
Collapse
|
143
|
MCUR1 Is a Scaffold Factor for the MCU Complex Function and Promotes Mitochondrial Bioenergetics. Cell Rep 2016; 15:1673-85. [PMID: 27184846 DOI: 10.1016/j.celrep.2016.04.050] [Citation(s) in RCA: 175] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/05/2016] [Accepted: 04/12/2016] [Indexed: 11/21/2022] Open
Abstract
Mitochondrial Ca(2+) Uniporter (MCU)-dependent mitochondrial Ca(2+) uptake is the primary mechanism for increasing matrix Ca(2+) in most cell types. However, a limited understanding of the MCU complex assembly impedes the comprehension of the precise mechanisms underlying MCU activity. Here, we report that mouse cardiomyocytes and endothelial cells lacking MCU regulator 1 (MCUR1) have severely impaired [Ca(2+)]m uptake and IMCU current. MCUR1 binds to MCU and EMRE and function as a scaffold factor. Our protein binding analyses identified the minimal, highly conserved regions of coiled-coil domain of both MCU and MCUR1 that are necessary for heterooligomeric complex formation. Loss of MCUR1 perturbed MCU heterooligomeric complex and functions as a scaffold factor for the assembly of MCU complex. Vascular endothelial deletion of MCU and MCUR1 impaired mitochondrial bioenergetics, cell proliferation, and migration but elicited autophagy. These studies establish the existence of a MCU complex that assembles at the mitochondrial integral membrane and regulates Ca(2+)-dependent mitochondrial metabolism.
Collapse
|
144
|
Abstract
In the last 5 years, most of the molecules that control mitochondrial Ca(2+) homeostasis have been finally identified. Mitochondrial Ca(2+) uptake is mediated by the Mitochondrial Calcium Uniporter (MCU) complex, a macromolecular structure that guarantees Ca(2+) accumulation inside mitochondrial matrix upon increases in cytosolic Ca(2+). Conversely, Ca(2+) release is under the control of the Na(+)/Ca(2+) exchanger, encoded by the NCLX gene, and of a H(+)/Ca(2+) antiporter, whose identity is still debated. The low affinity of the MCU complex, coupled to the activity of the efflux systems, protects cells from continuous futile cycles of Ca(2+) across the inner mitochondrial membrane and consequent massive energy dissipation. In this review, we discuss the basic principles that govern mitochondrial Ca(2+) homeostasis and the methods used to investigate the dynamics of Ca(2+) concentration within the organelles. We discuss the functional and structural role of the different molecules involved in mitochondrial Ca(2+) handling and their pathophysiological role.
Collapse
Affiliation(s)
- Diego De Stefani
- Department of Biomedical Sciences, University of Padova, 35121 Padova, Italy; , ,
| | - Rosario Rizzuto
- Department of Biomedical Sciences, University of Padova, 35121 Padova, Italy; , , .,National Research Council (CNR) Neuroscience Institute, 35121 Padova, Italy
| | - Tullio Pozzan
- Department of Biomedical Sciences, University of Padova, 35121 Padova, Italy; , , .,National Research Council (CNR) Neuroscience Institute, 35121 Padova, Italy.,Venetian Institute of Molecular Medicine, 35121 Padova, Italy
| |
Collapse
|
145
|
Carraretto L, Checchetto V, De Bortoli S, Formentin E, Costa A, Szabó I, Teardo E. Calcium Flux across Plant Mitochondrial Membranes: Possible Molecular Players. FRONTIERS IN PLANT SCIENCE 2016; 7:354. [PMID: 27065186 PMCID: PMC4814809 DOI: 10.3389/fpls.2016.00354] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 03/07/2016] [Indexed: 05/24/2023]
Abstract
Plants, being sessile organisms, have evolved the ability to integrate external stimuli into metabolic and developmental signals. A wide variety of signals, including abiotic, biotic, and developmental stimuli, were observed to evoke specific spatio-temporal Ca(2+) transients which are further transduced by Ca(2+) sensor proteins into a transcriptional and metabolic response. Most of the research on Ca(2+) signaling in plants has been focused on the transport mechanisms for Ca(2+) across the plasma- and the vacuolar membranes as well as on the components involved in decoding of cytoplasmic Ca(2+) signals, but how intracellular organelles such as mitochondria are involved in the process of Ca(2+) signaling is just emerging. The combination of the molecular players and the elicitors of Ca(2+) signaling in mitochondria together with newly generated detection systems for measuring organellar Ca(2+) concentrations in plants has started to provide fruitful grounds for further discoveries. In the present review we give an updated overview of the currently identified/hypothesized pathways, such as voltage-dependent anion channels, homologs of the mammalian mitochondrial uniporter (MCU), LETM1, a plant glutamate receptor family member, adenine nucleotide/phosphate carriers and the permeability transition pore (PTP), that may contribute to the transport of Ca(2+) across the outer and inner mitochondrial membranes in plants. We briefly discuss the relevance of the mitochondrial Ca(2+) homeostasis for ensuring optimal bioenergetic performance of this organelle.
Collapse
Affiliation(s)
| | - Vanessa Checchetto
- Department of Biology, University of PadovaPadova, Italy
- Department of Biomedical Sciences, University of PadovaPadova, Italy
| | | | - Elide Formentin
- Department of Biology, University of PadovaPadova, Italy
- Department of Life Science and Biotechnology, University of FerraraFerrara, Italy
| | - Alex Costa
- Department of Biosciences, University of MilanMilan, Italy
- CNR, Institute of Biophysics, Consiglio Nazionale delle RicercheMilan, Italy
| | - Ildikó Szabó
- Department of Biology, University of PadovaPadova, Italy
- CNR, Institute of NeurosciencesPadova, Italy
| | - Enrico Teardo
- Department of Biology, University of PadovaPadova, Italy
- CNR, Institute of NeurosciencesPadova, Italy
| |
Collapse
|
146
|
Mammucari C, Raffaello A, Vecellio Reane D, Rizzuto R. Molecular structure and pathophysiological roles of the Mitochondrial Calcium Uniporter. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:2457-64. [PMID: 26968367 DOI: 10.1016/j.bbamcr.2016.03.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 02/24/2016] [Accepted: 03/01/2016] [Indexed: 01/21/2023]
Abstract
Mitochondrial Ca(2+) uptake regulates a wide array of cell functions, from stimulation of aerobic metabolism and ATP production in physiological settings, to induction of cell death in pathological conditions. The molecular identity of the Mitochondrial Calcium Uniporter (MCU), the highly selective channel responsible for Ca(2+) entry through the IMM, has been described less than five years ago. Since then, research has been conducted to clarify the modulation of its activity, which relies on the dynamic interaction with regulatory proteins, and its contribution to the pathophysiology of organs and tissues. Particular attention has been placed on characterizing the role of MCU in cardiac and skeletal muscles. In this review we summarize the molecular structure and regulation of the MCU complex in addition to its pathophysiological role, with particular attention to striated muscle tissues. This article is part of a Special Issue entitled: Mitochondrial Channels edited by Pierre Sonveaux, Pierre Maechler and Jean-Claude Martinou.
Collapse
Affiliation(s)
| | - Anna Raffaello
- Department of Biomedical Sciences, University of Padua, 35131, Italy.
| | | | - Rosario Rizzuto
- Department of Biomedical Sciences, University of Padua, 35131, Italy; Neuroscience Institute, National Research Council, Padua 35131, Italy.
| |
Collapse
|
147
|
Motloch LJ, Larbig R, Gebing T, Reda S, Schwaiger A, Leitner J, Wolny M, Eckardt L, Hoppe UC. By Regulating Mitochondrial Ca2+-Uptake UCP2 Modulates Intracellular Ca2+. PLoS One 2016; 11:e0148359. [PMID: 26849136 PMCID: PMC4746117 DOI: 10.1371/journal.pone.0148359] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/19/2016] [Indexed: 12/31/2022] Open
Abstract
Introduction The possible role of UCP2 in modulating mitochondrial Ca2+-uptake (mCa2+-uptake) via the mitochondrial calcium uniporter (MCU) is highly controversial. Methods Thus, we analyzed mCa2+-uptake in isolated cardiac mitochondria, MCU single-channel activity in cardiac mitoplasts, dual Ca2+-transients from mitochondrial ((Ca2+)m) and intracellular compartment ((Ca2+)c) in the whole-cell configuration in cardiomyocytes of wild-type (WT) and UCP2-/- mice. Results Isolated mitochondria showed a Ru360 sensitive mCa2+-uptake, which was significantly decreased in UCP2-/- (229.4±30.8 FU vs. 146.3±23.4 FU, P<0.05). Single-channel registrations confirmed a Ru360 sensitive voltage-gated Ca2+-channel in mitoplasts, i.e. mCa1, showing a reduced single-channel activity in UCP2-/- (Po,total: 0.34±0.05% vs. 0.07±0.01%, P<0.05). In UCP2-/- cardiomyocytes (Ca2+)m was decreased (0.050±0.009 FU vs. 0.021±0.005 FU, P<0.05) while (Ca2+)c was unchanged (0.032±0.002 FU vs. 0.028±0.004 FU, P>0.05) and transsarcolemmal Ca2+-influx was inhibited suggesting a possible compensatory mechanism. Additionally, we observed an inhibitory effect of ATP on mCa2+-uptake in WT mitoplasts and (Ca2+)m of cardiomyocytes leading to an increase of (Ca2+)c while no ATP dependent effect was observed in UCP2-/-. Conclusion Our results indicate regulatory effects of UCP2 on mCa2+-uptake. Furthermore, we propose, that previously described inhibitory effects on MCU by ATP may be mediated via UCP2 resulting in changes of excitation contraction coupling.
Collapse
Affiliation(s)
- Lukas Jaroslaw Motloch
- Department of Internal Medicine II, Paracelsus Medical University, Salzburg, Austria
- * E-mail:
| | - Robert Larbig
- Department of Internal Medicine II, Paracelsus Medical University, Salzburg, Austria
- Division of Electrophysiology, Department of Cardiovascular Medicine, University Hospital Muenster, Muenster, Germany
| | - Tina Gebing
- Department of Internal Medicine II, Paracelsus Medical University, Salzburg, Austria
| | - Sara Reda
- Department of Internal Medicine II, Paracelsus Medical University, Salzburg, Austria
| | - Astrid Schwaiger
- Department of Internal Medicine II, Paracelsus Medical University, Salzburg, Austria
| | - Johannes Leitner
- Department of Internal Medicine II, Paracelsus Medical University, Salzburg, Austria
| | - Martin Wolny
- Department of Internal Medicine II, Paracelsus Medical University, Salzburg, Austria
| | - Lars Eckardt
- Division of Electrophysiology, Department of Cardiovascular Medicine, University Hospital Muenster, Muenster, Germany
| | - Uta C. Hoppe
- Department of Internal Medicine II, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
148
|
Vais H, Mallilankaraman K, Mak DOD, Hoff H, Payne R, Tanis JE, Foskett JK. EMRE Is a Matrix Ca(2+) Sensor that Governs Gatekeeping of the Mitochondrial Ca(2+) Uniporter. Cell Rep 2016; 14:403-410. [PMID: 26774479 DOI: 10.1016/j.celrep.2015.12.054] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/30/2015] [Accepted: 12/09/2015] [Indexed: 11/29/2022] Open
Abstract
The mitochondrial uniporter (MCU) is an ion channel that mediates Ca(2+) uptake into the matrix to regulate metabolism, cell death, and cytoplasmic Ca(2+) signaling. Matrix Ca(2+) concentration is similar to that in cytoplasm, despite an enormous driving force for entry, but the mechanisms that prevent mitochondrial Ca(2+) overload are unclear. Here, we show that MCU channel activity is governed by matrix Ca(2+) concentration through EMRE. Deletion or charge neutralization of its matrix-localized acidic C terminus abolishes matrix Ca(2+) inhibition of MCU Ca(2+) currents, resulting in MCU channel activation, enhanced mitochondrial Ca(2+) uptake, and constitutively elevated matrix Ca(2+) concentration. EMRE-dependent regulation of MCU channel activity requires intermembrane space-localized MICU1, MICU2, and cytoplasmic Ca(2+). Thus, mitochondria are protected from Ca(2+) depletion and Ca(2+) overload by a unique molecular complex that involves Ca(2+) sensors on both sides of the inner mitochondrial membrane, coupled through EMRE.
Collapse
Affiliation(s)
- Horia Vais
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Karthik Mallilankaraman
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Don-On Daniel Mak
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Henry Hoff
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Riley Payne
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jessica E Tanis
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - J Kevin Foskett
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
149
|
Santo-Domingo J, Wiederkehr A, De Marchi U. Modulation of the matrix redox signaling by mitochondrial Ca 2+. World J Biol Chem 2015; 6:310-323. [PMID: 26629314 PMCID: PMC4657127 DOI: 10.4331/wjbc.v6.i4.310] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 09/04/2015] [Accepted: 10/13/2015] [Indexed: 02/05/2023] Open
Abstract
Mitochondria sense, shape and integrate signals, and thus function as central players in cellular signal transduction. Ca2+ waves and redox reactions are two such intracellular signals modulated by mitochondria. Mitochondrial Ca2+ transport is of utmost physio-pathological relevance with a strong impact on metabolism and cell fate. Despite its importance, the molecular nature of the proteins involved in mitochondrial Ca2+ transport has been revealed only recently. Mitochondrial Ca2+ promotes energy metabolism through the activation of matrix dehydrogenases and down-stream stimulation of the respiratory chain. These changes also alter the mitochondrial NAD(P)H/NAD(P)+ ratio, but at the same time will increase reactive oxygen species (ROS) production. Reducing equivalents and ROS are having opposite effects on the mitochondrial redox state, which are hard to dissect. With the recent development of genetically encoded mitochondrial-targeted redox-sensitive sensors, real-time monitoring of matrix thiol redox dynamics has become possible. The discoveries of the molecular nature of mitochondrial transporters of Ca2+ combined with the utilization of the novel redox sensors is shedding light on the complex relation between mitochondrial Ca2+ and redox signals and their impact on cell function. In this review, we describe mitochondrial Ca2+ handling, focusing on a number of newly identified proteins involved in mitochondrial Ca2+ uptake and release. We further discuss our recent findings, revealing how mitochondrial Ca2+ influences the matrix redox state. As a result, mitochondrial Ca2+ is able to modulate the many mitochondrial redox-regulated processes linked to normal physiology and disease.
Collapse
|
150
|
MCUR1, CCDC90A, Is a Regulator of the Mitochondrial Calcium Uniporter. Cell Metab 2015; 22:533-5. [PMID: 26445506 PMCID: PMC5384258 DOI: 10.1016/j.cmet.2015.09.015] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 07/25/2015] [Accepted: 09/16/2015] [Indexed: 11/20/2022]
|