101
|
Single-Cell-Genomics-Facilitated Read Binning of Candidate Phylum EM19 Genomes from Geothermal Spring Metagenomes. Appl Environ Microbiol 2015; 82:992-1003. [PMID: 26637598 DOI: 10.1128/aem.03140-15] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 11/12/2015] [Indexed: 12/17/2022] Open
Abstract
The vast majority of microbial life remains uncatalogued due to the inability to cultivate these organisms in the laboratory. This "microbial dark matter" represents a substantial portion of the tree of life and of the populations that contribute to chemical cycling in many ecosystems. In this work, we leveraged an existing single-cell genomic data set representing the candidate bacterial phylum "Calescamantes" (EM19) to calibrate machine learning algorithms and define metagenomic bins directly from pyrosequencing reads derived from Great Boiling Spring in the U.S. Great Basin. Compared to other assembly-based methods, taxonomic binning with a read-based machine learning approach yielded final assemblies with the highest predicted genome completeness of any method tested. Read-first binning subsequently was used to extract Calescamantes bins from all metagenomes with abundant Calescamantes populations, including metagenomes from Octopus Spring and Bison Pool in Yellowstone National Park and Gongxiaoshe Spring in Yunnan Province, China. Metabolic reconstruction suggests that Calescamantes are heterotrophic, facultative anaerobes, which can utilize oxidized nitrogen sources as terminal electron acceptors for respiration in the absence of oxygen and use proteins as their primary carbon source. Despite their phylogenetic divergence, the geographically separate Calescamantes populations were highly similar in their predicted metabolic capabilities and core gene content, respiring O2, or oxidized nitrogen species for energy conservation in distant but chemically similar hot springs.
Collapse
|
102
|
Contemporary molecular tools in microbial ecology and their application to advancing biotechnology. Biotechnol Adv 2015; 33:1755-73. [DOI: 10.1016/j.biotechadv.2015.09.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 09/19/2015] [Accepted: 09/20/2015] [Indexed: 12/30/2022]
|
103
|
Sträuber H, Lucas R, Kleinsteuber S. Metabolic and microbial community dynamics during the anaerobic digestion of maize silage in a two-phase process. Appl Microbiol Biotechnol 2015; 100:479-91. [PMID: 26411455 DOI: 10.1007/s00253-015-6996-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 08/30/2015] [Accepted: 09/08/2015] [Indexed: 01/22/2023]
Abstract
Two-phasic anaerobic digestion processes (hydrolysis/acidogenesis separated from acetogenesis/methanogenesis) can be used for biogas production on demand or a combined chemicals/bioenergy production. For an effective process control, detailed knowledge about the microbial catalysts and their correlation to process conditions is crucial. In this study, maize silage was digested in a two-phase process and interrelationships between process parameters and microbial communities were revealed. In the first-phase reactor, alternating metabolic periods were observed which emerged independently from the feeding frequency. During the L-period, up to 11.8 g L(-1) lactic acid was produced which significantly correlated to lactic acid bacteria of the genus Lactobacillus as the most abundant community members. During the alternating G-period, the production of volatile fatty acids (up to 5.3, 4.0 and 3.1 g L(-1) for propionic, n-butyric and n-caproic acid, respectively) dominated accompanied by a high gas production containing up to 28 % hydrogen. The relative abundance of various Clostridiales increased during this metabolic period. In the second-phase reactor, the metabolic fluctuations of the first phase were smoothed out resulting in a stable biogas production as well as stable bacterial and methanogenic communities. However, the biogas composition followed the metabolic dynamics of the first phase: the hydrogen content increased during the L-period whereas highest CH4/CO2 ratios (up to 2.8) were reached during the G-period. Aceticlastic Methanosaeta as well as hydrogenotrophic Methanoculleus and Methanobacteriaceae were identified as dominant methanogens. Consequently, a directed control of the first-phase stabilizing desired metabolic states can lead to an enhanced productivity regarding chemicals and bioenergy.
Collapse
Affiliation(s)
- Heike Sträuber
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research (UFZ), Permoserstr. 15, 04318, Leipzig, Germany.
| | - Rico Lucas
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research (UFZ), Permoserstr. 15, 04318, Leipzig, Germany
| | - Sabine Kleinsteuber
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research (UFZ), Permoserstr. 15, 04318, Leipzig, Germany
| |
Collapse
|
104
|
Monodisperse Picoliter Droplets for Low-Bias and Contamination-Free Reactions in Single-Cell Whole Genome Amplification. PLoS One 2015; 10:e0138733. [PMID: 26389587 PMCID: PMC4577099 DOI: 10.1371/journal.pone.0138733] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 09/02/2015] [Indexed: 12/30/2022] Open
Abstract
Whole genome amplification (WGA) is essential for obtaining genome sequences from single bacterial cells because the quantity of template DNA contained in a single cell is very low. Multiple displacement amplification (MDA), using Phi29 DNA polymerase and random primers, is the most widely used method for single-cell WGA. However, single-cell MDA usually results in uneven genome coverage because of amplification bias, background amplification of contaminating DNA, and formation of chimeras by linking of non-contiguous chromosomal regions. Here, we present a novel MDA method, termed droplet MDA, that minimizes amplification bias and amplification of contaminants by using picoliter-sized droplets for compartmentalized WGA reactions. Extracted DNA fragments from a lysed cell in MDA mixture are divided into 105 droplets (67 pL) within minutes via flow through simple microfluidic channels. Compartmentalized genome fragments can be individually amplified in these droplets without the risk of encounter with reagent-borne or environmental contaminants. Following quality assessment of WGA products from single Escherichia coli cells, we showed that droplet MDA minimized unexpected amplification and improved the percentage of genome recovery from 59% to 89%. Our results demonstrate that microfluidic-generated droplets show potential as an efficient tool for effective amplification of low-input DNA for single-cell genomics and greatly reduce the cost and labor investment required for determination of nearly complete genome sequences of uncultured bacteria from environmental samples.
Collapse
|
105
|
Hiras J, Wu YW, Eichorst SA, Simmons BA, Singer SW. Refining the phylum Chlorobi by resolving the phylogeny and metabolic potential of the representative of a deeply branching, uncultivated lineage. ISME JOURNAL 2015; 10:833-45. [PMID: 26325358 DOI: 10.1038/ismej.2015.158] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 07/22/2015] [Accepted: 07/28/2015] [Indexed: 01/29/2023]
Abstract
Recent studies have expanded the phylum Chlorobi, demonstrating that the green sulfur bacteria (GSB), the original cultured representatives of the phylum, are a part of a broader lineage whose members have more diverse metabolic capabilities that overlap with members of the phylum Bacteroidetes. The 16S rRNA gene of an uncultivated clone, OPB56, distantly related to the phyla Chlorobi and Bacteroidetes, was recovered from Obsidian Pool in Yellowstone National Park; however, the detailed phylogeny and function of OPB56 and related clones have remained unknown. Culturing of thermophilic bacterial consortia from compost by adaptation to grow on ionic-liquid pretreated switchgrass provided a consortium in which one of the most abundant members, NICIL-2, clustered with OPB56-related clones. Phylogenetic analysis using the full-length 16S rRNA gene from NICIL-2 demonstrated that it was part of a monophyletic clade, referred to as OPB56, distinct from the Bacteroidetes and Chlorobi. A near complete draft genome (>95% complete) was recovered from metagenomic data from the culture adapted to grow on ionic-liquid pretreated switchgrass using an automated binning algorithm, and this genome was used for marker gene-based phylogenetic analysis and metabolic reconstruction. Six additional genomes related to NICIL-2 were reconstructed from metagenomic data sets obtained from thermal springs at Yellowstone National Park and Nevada Great Boiling Spring. In contrast to the 16S rRNA gene phylogenetic analysis, protein phylogenetic analysis was most consistent with the clustering of the Chlorobea, Ignavibacteria and OPB56 into a single phylum level clade. Metabolic reconstruction of NICIL-2 demonstrated a close linkage with the class Ignavibacteria and the family Rhodothermaceae, a deeply branching Bacteroidetes lineage. The combined phylogenetic and functional analysis of the NICIL-2 genome has refined the membership in the phylum Chlorobi and emphasized the close evolutionary and metabolic relationship between the phyla Chlorobi and the Bacteroidetes.
Collapse
Affiliation(s)
- Jennifer Hiras
- Deconstruction Division, Joint BioEnergy Institute, Emeryville, CA, USA.,Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Yu-Wei Wu
- Deconstruction Division, Joint BioEnergy Institute, Emeryville, CA, USA.,Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Stephanie A Eichorst
- Deconstruction Division, Joint BioEnergy Institute, Emeryville, CA, USA.,Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Blake A Simmons
- Deconstruction Division, Joint BioEnergy Institute, Emeryville, CA, USA.,Sandia National Laboratories, Biofuels and Biomaterials Science and Technology Department, Livermore, CA, USA
| | - Steven W Singer
- Deconstruction Division, Joint BioEnergy Institute, Emeryville, CA, USA.,Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
106
|
Carr SA, Orcutt BN, Mandernack KW, Spear JR. Abundant Atribacteria in deep marine sediment from the Adélie Basin, Antarctica. Front Microbiol 2015; 6:872. [PMID: 26379647 PMCID: PMC4549626 DOI: 10.3389/fmicb.2015.00872] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 08/10/2015] [Indexed: 02/01/2023] Open
Abstract
Bacteria belonging to the newly classified candidate phylum “Atribacteria” (formerly referred to as “OP9” and “JS1”) are common in anoxic methane-rich sediments. However, the metabolic functions and biogeochemical role of these microorganisms in the subsurface remains unrealized due to the lack of pure culture representatives. In this study of deep sediment from Antarctica’s Adélie Basin, collected during Expedition 318 of the Integrated Ocean Drilling Program (IODP), Atribacteria-related sequences of the 16S rRNA gene were abundant (up to 51% of the sequences) and steadily increased in relative abundance with depth throughout the methane-rich zones. To better understand the metabolic potential of Atribacteria within this environment, and to compare with phylogenetically distinct Atribacteria from non-deep-sea environments, individual cells were sorted for single cell genomics from sediment collected from 97.41 m below the seafloor from IODP Hole U1357C. As observed for non-marine Atribacteria, a partial single cell genome suggests a heterotrophic metabolism, with Atribacteria potentially producing fermentation products such as acetate, ethanol, and CO2. These products may in turn support methanogens within the sediment microbial community and explain the frequent occurrence of Atribacteria in anoxic methane-rich sediments. This first report of a single cell genome from deep sediment broadens the known diversity within the Atribacteria phylum and highlights the potential role of Atribacteria in carbon cycling in deep sediment.
Collapse
Affiliation(s)
- Stephanie A Carr
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden CO, USA
| | - Beth N Orcutt
- Bigelow Laboratory for Ocean Sciences, East Boothbay ME, USA
| | - Kevin W Mandernack
- Department of Earth Sciences, Indiana University - Purdue University Indianapolis, Indianapolis IN, USA
| | - John R Spear
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden CO, USA
| |
Collapse
|
107
|
Inagaki F, Hinrichs KU, Kubo Y, Bowles MW, Heuer VB, Hong WL, Hoshino T, Ijiri A, Imachi H, Ito M, Kaneko M, Lever MA, Lin YS, Methé BA, Morita S, Morono Y, Tanikawa W, Bihan M, Bowden SA, Elvert M, Glombitza C, Gross D, Harrington GJ, Hori T, Li K, Limmer D, Liu CH, Murayama M, Ohkouchi N, Ono S, Park YS, Phillips SC, Prieto-Mollar X, Purkey M, Riedinger N, Sanada Y, Sauvage J, Snyder G, Susilawati R, Takano Y, Tasumi E, Terada T, Tomaru H, Trembath-Reichert E, Wang DT, Yamada Y. DEEP BIOSPHERE. Exploring deep microbial life in coal-bearing sediment down to ~2.5 km below the ocean floor. Science 2015. [PMID: 26206933 DOI: 10.1126/science.aaa6882] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Microbial life inhabits deeply buried marine sediments, but the extent of this vast ecosystem remains poorly constrained. Here we provide evidence for the existence of microbial communities in ~40° to 60°C sediment associated with lignite coal beds at ~1.5 to 2.5 km below the seafloor in the Pacific Ocean off Japan. Microbial methanogenesis was indicated by the isotopic compositions of methane and carbon dioxide, biomarkers, cultivation data, and gas compositions. Concentrations of indigenous microbial cells below 1.5 km ranged from <10 to ~10(4) cells cm(-3). Peak concentrations occurred in lignite layers, where communities differed markedly from shallower subseafloor communities and instead resembled organotrophic communities in forest soils. This suggests that terrigenous sediments retain indigenous community members tens of millions of years after burial in the seabed.
Collapse
Affiliation(s)
- F Inagaki
- Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Nankoku, Kochi 783-8502, Japan. Research and Development Center for Marine Resources, JAMSTEC, Yokosuka 237-0061, Japan
| | - K-U Hinrichs
- MARUM Center for Marine Environmental Sciences, University of Bremen, D-28359 Bremen, Germany
| | - Y Kubo
- Center for Deep-Earth Exploration, JAMSTEC, Yokohama 236-0061, Japan. Research and Development Center for Ocean Drilling Science, JAMSTEC, Yokohama 236-0001, Japan
| | - M W Bowles
- MARUM Center for Marine Environmental Sciences, University of Bremen, D-28359 Bremen, Germany
| | - V B Heuer
- MARUM Center for Marine Environmental Sciences, University of Bremen, D-28359 Bremen, Germany
| | - W-L Hong
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - T Hoshino
- Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Nankoku, Kochi 783-8502, Japan. Research and Development Center for Marine Resources, JAMSTEC, Yokosuka 237-0061, Japan
| | - A Ijiri
- Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Nankoku, Kochi 783-8502, Japan. Research and Development Center for Marine Resources, JAMSTEC, Yokosuka 237-0061, Japan
| | - H Imachi
- Research and Development Center for Marine Resources, JAMSTEC, Yokosuka 237-0061, Japan. Department of Subsurface Geobiological Analysis and Research, JAMSTEC, Yokosuka 237-0061, Japan
| | - M Ito
- Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Nankoku, Kochi 783-8502, Japan. Research and Development Center for Marine Resources, JAMSTEC, Yokosuka 237-0061, Japan
| | - M Kaneko
- Research and Development Center for Marine Resources, JAMSTEC, Yokosuka 237-0061, Japan. Department of Biogeochemistry, JAMSTEC, Yokosuka 237-0061, Japan
| | - M A Lever
- Center for Geomicrobiology, Department of Bioscience, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Y-S Lin
- MARUM Center for Marine Environmental Sciences, University of Bremen, D-28359 Bremen, Germany
| | - B A Methé
- Department of Environmental Genomics, J. Craig Venter Institute, Rockville, MD 20850, USA
| | - S Morita
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8567, Japan
| | - Y Morono
- Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Nankoku, Kochi 783-8502, Japan. Research and Development Center for Marine Resources, JAMSTEC, Yokosuka 237-0061, Japan
| | - W Tanikawa
- Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Nankoku, Kochi 783-8502, Japan. Research and Development Center for Marine Resources, JAMSTEC, Yokosuka 237-0061, Japan
| | - M Bihan
- Department of Environmental Genomics, J. Craig Venter Institute, Rockville, MD 20850, USA
| | - S A Bowden
- Department of Geology and Petroleum Geology, School of Geosciences, University of Aberdeen, Aberdeen AB2A 3UE, UK
| | - M Elvert
- MARUM Center for Marine Environmental Sciences, University of Bremen, D-28359 Bremen, Germany
| | - C Glombitza
- Center for Geomicrobiology, Department of Bioscience, Aarhus University, DK-8000 Aarhus C, Denmark
| | - D Gross
- Department of Applied Geosciences and Geophysics, Montanuniversität, 8700 Leoben, Austria
| | - G J Harrington
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - T Hori
- Environmental Management Research Institute, AIST, Tsukuba, Ibaraki 305-8569, Japan
| | - K Li
- Department of Environmental Genomics, J. Craig Venter Institute, Rockville, MD 20850, USA
| | - D Limmer
- Department of Geology and Petroleum Geology, School of Geosciences, University of Aberdeen, Aberdeen AB2A 3UE, UK
| | - C-H Liu
- The State Key Laboratory of Pharmaceutical Biotechnology, School of Life Science, Nanjing University, Nanjing, Jiangsu 210093, China
| | - M Murayama
- Center for Advanced Marine Core Research, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - N Ohkouchi
- Research and Development Center for Marine Resources, JAMSTEC, Yokosuka 237-0061, Japan. Department of Biogeochemistry, JAMSTEC, Yokosuka 237-0061, Japan
| | - S Ono
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Y-S Park
- Petroleum and Marine Resources Research Division, Korea Institute of Geoscience and Mineral Resources, Yuseong-gu, Daejeon 305-350, Korea
| | - S C Phillips
- Department of Earth Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - X Prieto-Mollar
- MARUM Center for Marine Environmental Sciences, University of Bremen, D-28359 Bremen, Germany
| | - M Purkey
- Department of Earth and Atmospheric Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - N Riedinger
- Department of Earth Sciences, University of California Riverside, Riverside, CA 92521, USA
| | - Y Sanada
- Center for Deep-Earth Exploration, JAMSTEC, Yokohama 236-0061, Japan. Research and Development Center for Ocean Drilling Science, JAMSTEC, Yokohama 236-0001, Japan
| | - J Sauvage
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI 02882, USA
| | - G Snyder
- Department of Earth Science, Rice University, Houston, TX 77005, USA
| | - R Susilawati
- School of Earth Science, University of Queensland, Brisbane Queensland 4072, Australia
| | - Y Takano
- Research and Development Center for Marine Resources, JAMSTEC, Yokosuka 237-0061, Japan. Department of Biogeochemistry, JAMSTEC, Yokosuka 237-0061, Japan
| | - E Tasumi
- Department of Subsurface Geobiological Analysis and Research, JAMSTEC, Yokosuka 237-0061, Japan
| | - T Terada
- Marine Works Japan, Yokosuka 237-0063, Japan
| | - H Tomaru
- Department of Earth Sciences, Graduate School of Science, Chiba University, Chiba 263-8522, Japan
| | - E Trembath-Reichert
- Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - D T Wang
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Y Yamada
- Research and Development Center for Ocean Drilling Science, JAMSTEC, Yokohama 236-0001, Japan. Department of Urban Management, Graduate School of Engineering, Kyoto University, Kyoto 615-8540, Japan
| |
Collapse
|
108
|
Hedlund BP, Murugapiran SK, Alba TW, Levy A, Dodsworth JA, Goertz GB, Ivanova N, Woyke T. Uncultivated thermophiles: current status and spotlight on 'Aigarchaeota'. Curr Opin Microbiol 2015; 25:136-45. [PMID: 26113243 DOI: 10.1016/j.mib.2015.06.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 06/03/2015] [Accepted: 06/03/2015] [Indexed: 01/28/2023]
Abstract
Meta-analysis of cultivation-independent sequence data shows that geothermal systems host an abundance of novel organisms, representing a vast unexplored phylogenetic and functional diversity among yet-uncultivated thermophiles. A number of thermophiles have recently been interrogated using metagenomic and/or single-cell genomic approaches, including members of taxonomic groups that inhabit both thermal and non-thermal environments, such as 'Acetothermia' (OP1) and 'Atribacteria' (OP9/JS1), as well as the exclusively thermophilic lineages 'Korarchaeota', 'Calescamantes' (EM19), 'Fervidibacteria' (OctSpA1-106), and 'Aigarchaeota' (HWCG-I). The 'Aigarchaeota', a sister lineage to the Thaumarchaeota, likely includes both hyperthermophiles and moderate thermophiles. They inhabit terrestrial, marine, and subsurface thermal environments and comprise at least nine genus-level lineages, several of which are globally distributed.
Collapse
Affiliation(s)
- Brian P Hedlund
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA; Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA.
| | | | - Timothy W Alba
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Asaf Levy
- DOE Joint Genome Institute, Walnut Creek, CA 94598, USA
| | - Jeremy A Dodsworth
- Department of Biology, California State University, San Bernardino, CA 92407, USA
| | - Gisele B Goertz
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | | | - Tanja Woyke
- DOE Joint Genome Institute, Walnut Creek, CA 94598, USA
| |
Collapse
|
109
|
Gasc C, Ribière C, Parisot N, Beugnot R, Defois C, Petit-Biderre C, Boucher D, Peyretaillade E, Peyret P. Capturing prokaryotic dark matter genomes. Res Microbiol 2015; 166:814-30. [PMID: 26100932 DOI: 10.1016/j.resmic.2015.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 06/02/2015] [Accepted: 06/03/2015] [Indexed: 11/18/2022]
Abstract
Prokaryotes are the most diverse and abundant cellular life forms on Earth. Most of them, identified by indirect molecular approaches, belong to microbial dark matter. The advent of metagenomic and single-cell genomic approaches has highlighted the metabolic capabilities of numerous members of this dark matter through genome reconstruction. Thus, linking functions back to the species has revolutionized our understanding of how ecosystem function is sustained by the microbial world. This review will present discoveries acquired through the illumination of prokaryotic dark matter genomes by these innovative approaches.
Collapse
Affiliation(s)
- Cyrielle Gasc
- Clermont Université, Université d'Auvergne, EA 4678 CIDAM, BP 10448, F-63001 Clermont-Ferrand, France.
| | - Céline Ribière
- Clermont Université, Université d'Auvergne, EA 4678 CIDAM, BP 10448, F-63001 Clermont-Ferrand, France.
| | - Nicolas Parisot
- Biologie Fonctionnelle Insectes et Interactions, UMR203 BF2I, INRA, INSA-Lyon, Université de Lyon, Villeurbanne, France.
| | - Réjane Beugnot
- Clermont Université, Université d'Auvergne, EA 4678 CIDAM, BP 10448, F-63001 Clermont-Ferrand, France.
| | - Clémence Defois
- Clermont Université, Université d'Auvergne, EA 4678 CIDAM, BP 10448, F-63001 Clermont-Ferrand, France.
| | - Corinne Petit-Biderre
- Université Blaise Pascal, Laboratoire Microorganismes, Génome et Environnement, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 6023, F-63171 Aubière, France.
| | - Delphine Boucher
- Clermont Université, Université d'Auvergne, EA 4678 CIDAM, BP 10448, F-63001 Clermont-Ferrand, France.
| | - Eric Peyretaillade
- Clermont Université, Université d'Auvergne, EA 4678 CIDAM, BP 10448, F-63001 Clermont-Ferrand, France.
| | - Pierre Peyret
- Clermont Université, Université d'Auvergne, EA 4678 CIDAM, BP 10448, F-63001 Clermont-Ferrand, France.
| |
Collapse
|
110
|
Phylogeny and physiology of candidate phylum 'Atribacteria' (OP9/JS1) inferred from cultivation-independent genomics. ISME JOURNAL 2015; 10:273-86. [PMID: 26090992 DOI: 10.1038/ismej.2015.97] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 04/09/2015] [Accepted: 05/08/2015] [Indexed: 12/31/2022]
Abstract
The 'Atribacteria' is a candidate phylum in the Bacteria recently proposed to include members of the OP9 and JS1 lineages. OP9 and JS1 are globally distributed, and in some cases abundant, in anaerobic marine sediments, geothermal environments, anaerobic digesters and reactors and petroleum reservoirs. However, the monophyly of OP9 and JS1 has been questioned and their physiology and ecology remain largely enigmatic due to a lack of cultivated representatives. Here cultivation-independent genomic approaches were used to provide a first comprehensive view of the phylogeny, conserved genomic features and metabolic potential of members of this ubiquitous candidate phylum. Previously available and heretofore unpublished OP9 and JS1 single-cell genomic data sets were used as recruitment platforms for the reconstruction of atribacterial metagenome bins from a terephthalate-degrading reactor biofilm and from the monimolimnion of meromictic Sakinaw Lake. The single-cell genomes and metagenome bins together comprise six species- to genus-level groups that represent most major lineages within OP9 and JS1. Phylogenomic analyses of these combined data sets confirmed the monophyly of the 'Atribacteria' inclusive of OP9 and JS1. Additional conserved features within the 'Atribacteria' were identified, including a gene cluster encoding putative bacterial microcompartments that may be involved in aldehyde and sugar metabolism, energy conservation and carbon storage. Comparative analysis of the metabolic potential inferred from these data sets revealed that members of the 'Atribacteria' are likely to be heterotrophic anaerobes that lack respiratory capacity, with some lineages predicted to specialize in either primary fermentation of carbohydrates or secondary fermentation of organic acids, such as propionate.
Collapse
|
111
|
Ravin NV, Mardanov AV, Skryabin KG. Metagenomics as a tool for the investigation of uncultured microorganisms. RUSS J GENET+ 2015. [DOI: 10.1134/s1022795415050063] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
112
|
Algora C, Vasileiadis S, Wasmund K, Trevisan M, Krüger M, Puglisi E, Adrian L. Manganese and iron as structuring parameters of microbial communities in Arctic marine sediments from the Baffin Bay. FEMS Microbiol Ecol 2015; 91:fiv056. [PMID: 25994158 DOI: 10.1093/femsec/fiv056] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2015] [Indexed: 11/14/2022] Open
Abstract
The Arctic Baffin Bay between Canada and Greenland is sea ice-covered during the majority of the year, restricting primary production to the summer months. Sediments receive low amounts of mostly terrestrial- and less marine-derived organic matter. To study microbial communities constrained by physicochemical conditions changing with distance from land and ocean depth, we applied high-throughput 16S rRNA gene sequencing and compared sequence diversity with biogeochemical parameters in 40 different sediment samples. Samples originated from seven cores down to 470 cm below seafloor along a shelf-to-basin transect. Bacterial diversity decreased faster with depth in basin than in shelf sediments, suggesting higher organic matter content sustained diversity into greater depths. All samples were dominated by Betaproteobacteria (mostly order Burkholderiales), which were especially abundant in basin sediments with low organic carbon and high Mn and Fe pore water concentrations. Strong statistical correlations between concentrations of reduced Mn and/or Fe and the relative abundances of Betaproteobacteria suggest that this group is involved in metal reduction in Baffin Bay sediments. Dehalococcoidia (phylum Chloroflexi) were abundant in all samples, especially in shelf sediments with high organic content. This study indicates that Mn and/or Fe play important roles structuring microbial communities in Arctic sediments poor in organic matter.
Collapse
Affiliation(s)
- Camelia Algora
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Sotirios Vasileiadis
- Istituto di Chimica Agraria ed Ambientale, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Kenneth Wasmund
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| | - Marco Trevisan
- Istituto di Chimica Agraria ed Ambientale, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Martin Krüger
- Department of Resource Geochemistry, Germany Federal Institute for Geosciences and Natural Resources (BGR), Stilleweg 2, 30655 Hannover; Germany
| | - Edoardo Puglisi
- Istituto di Microbiologia, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Lorenz Adrian
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318 Leipzig, Germany
| |
Collapse
|
113
|
Oni O, Miyatake T, Kasten S, Richter-Heitmann T, Fischer D, Wagenknecht L, Kulkarni A, Blumers M, Shylin SI, Ksenofontov V, Costa BFO, Klingelhöfer G, Friedrich MW. Distinct microbial populations are tightly linked to the profile of dissolved iron in the methanic sediments of the Helgoland mud area, North Sea. Front Microbiol 2015; 6:365. [PMID: 25983723 PMCID: PMC4416451 DOI: 10.3389/fmicb.2015.00365] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 04/10/2015] [Indexed: 11/17/2022] Open
Abstract
Iron reduction in subseafloor sulfate-depleted and methane-rich marine sediments is currently a subject of interest in subsurface geomicrobiology. While iron reduction and microorganisms involved have been well studied in marine surface sediments, little is known about microorganisms responsible for iron reduction in deep methanic sediments. Here, we used quantitative PCR-based 16S rRNA gene copy numbers and pyrosequencing-based relative abundances of bacteria and archaea to investigate covariance between distinct microbial populations and specific geochemical profiles in the top 5 m of sediment cores from the Helgoland mud area, North Sea. We found that gene copy numbers of bacteria and archaea were specifically higher around the peak of dissolved iron in the methanic zone (250–350 cm). The higher copy numbers at these depths were also reflected by the relative sequence abundances of members of the candidate division JS1, methanogenic and Methanohalobium/ANME-3 related archaea. The distribution of these populations was strongly correlated to the profile of pore-water Fe2+ while that of Desulfobacteraceae corresponded to the pore-water sulfate profile. Furthermore, specific JS1 populations also strongly co-varied with the distribution of Methanosaetaceae in the methanic zone. Our data suggest that the interplay among JS1 bacteria, methanogenic archaea and Methanohalobium/ANME-3-related archaea may be important for iron reduction and methane cycling in deep methanic sediments of the Helgoland mud area and perhaps in other methane-rich depositional environments.
Collapse
Affiliation(s)
- Oluwatobi Oni
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry, University of Bremen Bremen, Germany ; MARUM, Center for Marine Environmental Sciences, University of Bremen Bremen, Germany
| | - Tetsuro Miyatake
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry, University of Bremen Bremen, Germany
| | - Sabine Kasten
- MARUM, Center for Marine Environmental Sciences, University of Bremen Bremen, Germany ; Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research Bremerhaven, Germany
| | - Tim Richter-Heitmann
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry, University of Bremen Bremen, Germany
| | - David Fischer
- MARUM, Center for Marine Environmental Sciences, University of Bremen Bremen, Germany ; Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research Bremerhaven, Germany
| | - Laura Wagenknecht
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research Bremerhaven, Germany
| | - Ajinkya Kulkarni
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry, University of Bremen Bremen, Germany
| | - Mathias Blumers
- Institute for Inorganic and Analytical Chemistry, Johannes Gutenberg University Mainz, Germany
| | - Sergii I Shylin
- Institute for Inorganic and Analytical Chemistry, Johannes Gutenberg University Mainz, Germany ; Department of Chemistry, Taras Shevchenko National University of Kyiv Kyiv, Ukraine
| | - Vadim Ksenofontov
- Institute for Inorganic and Analytical Chemistry, Johannes Gutenberg University Mainz, Germany
| | - Benilde F O Costa
- CFisUC, Department of Physics, University of Coimbra, Coimbra Portugal
| | | | - Michael W Friedrich
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry, University of Bremen Bremen, Germany ; MARUM, Center for Marine Environmental Sciences, University of Bremen Bremen, Germany
| |
Collapse
|
114
|
Urbieta MS, Donati ER, Chan KG, Shahar S, Sin LL, Goh KM. Thermophiles in the genomic era: Biodiversity, science, and applications. Biotechnol Adv 2015; 33:633-47. [PMID: 25911946 DOI: 10.1016/j.biotechadv.2015.04.007] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 12/18/2014] [Accepted: 04/14/2015] [Indexed: 01/30/2023]
Abstract
Thermophiles and hyperthermophiles are present in various regions of the Earth, including volcanic environments, hot springs, mud pots, fumaroles, geysers, coastal thermal springs, and even deep-sea hydrothermal vents. They are also found in man-made environments, such as heated compost facilities, reactors, and spray dryers. Thermophiles, hyperthermophiles, and their bioproducts facilitate various industrial, agricultural, and medicinal applications and offer potential solutions to environmental damages and the demand for biofuels. Intensified efforts to sequence the entire genome of hyperthermophiles and thermophiles are increasing rapidly, as evidenced by the fact that over 120 complete genome sequences of the hyperthermophiles Aquificae, Thermotogae, Crenarchaeota, and Euryarchaeota are now available. In this review, we summarise the major current applications of thermophiles and thermozymes. In addition, emphasis is placed on recent progress in understanding the biodiversity, genomes, transcriptomes, metagenomes, and single-cell sequencing of thermophiles in the genomic era.
Collapse
Affiliation(s)
- M Sofía Urbieta
- CINDEFI (CCT La Plata-CONICET, UNLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 47 y 115, 1900 La Plata, Argentina
| | - Edgardo R Donati
- CINDEFI (CCT La Plata-CONICET, UNLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calle 47 y 115, 1900 La Plata, Argentina
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Saleha Shahar
- Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Malaysia
| | - Lee Li Sin
- Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Malaysia
| | - Kian Mau Goh
- Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Malaysia.
| |
Collapse
|
115
|
Hedlund BP, Dodsworth JA, Staley JT. The changing landscape of microbial biodiversity exploration and its implications for systematics. Syst Appl Microbiol 2015; 38:231-6. [PMID: 25921438 DOI: 10.1016/j.syapm.2015.03.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 03/18/2015] [Accepted: 03/19/2015] [Indexed: 12/31/2022]
Abstract
A vast diversity of Bacteria and Archaea exists in nature that has evaded axenic culture. Advancements in single-cell genomics, metagenomics, and molecular microbial ecology approaches provide ever-improving insight into the biology of this so-called "microbial dark matter"; however, due to the International Code of Nomenclature of Prokaryotes, yet-uncultivated microorganisms are not accommodated in formal taxonomy regardless of the quantity or quality of data. Meanwhile, efforts to calibrate the existing taxonomy with phylogenetic anchors and genomic data are increasingly robust. The current climate provides an exciting opportunity to leverage rapidly expanding single-cell genomics and metagenomics datasets to improve the taxonomy of Bacteria and Archaea. However, this opportunity must be weighted carefully in light of the strengths and limitations of these approaches. We propose to expand the definition of the Candidatus taxonomy to include taxa, from the phylum level to the species level, that are described genomically, particularly when genomic work is coupled with advanced molecular ecology approaches to probe metabolic functions in situ. This system would preserve the rigor and value of traditional microbial systematics while enabling growth of a provisional taxonomic structure to facilitate communication about "dark" lineages on the tree of life.
Collapse
Affiliation(s)
- Brian P Hedlund
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV 89154, USA; Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, NV 89154, USA.
| | - Jeremy A Dodsworth
- Department of Biology, California State University, San Bernardino, CA 92407, USA
| | - James T Staley
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
116
|
Kawai M, Uchiyama I, Takami H, Inagaki F. Low frequency of endospore-specific genes in subseafloor sedimentary metagenomes. ENVIRONMENTAL MICROBIOLOGY REPORTS 2015; 7:341-350. [PMID: 25472775 DOI: 10.1111/1758-2229.12254] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 11/04/2014] [Accepted: 11/23/2014] [Indexed: 06/04/2023]
Abstract
Spore formation is considered to be one of the microbial strategies for long-term survival in subseafloor sedimentary habitats. However, our knowledge of the genetic and physiological characteristics of subseafloor microbes is limited. Here, we studied the distribution and frequency of genes that are related to endospore formation in 10 subseafloor sedimentary metagenomes from Site C9001 off Japan and Site 1229 off Peru. None or very low frequencies of endospore-specific genes (e.g. dpaA, dpaB, sspA, spo0A, spoIIGA, spoIIM, spoIIIAB, spoIVA, spoIVB, yabP, yunB, spoVM) were observed in the subseafloor metagenomes. Based on the number of universally conserved single copy genes, the frequency ratio of putative endospore-formers was estimated to be < 10%, which is consistent with the frequency of Clostridia-derived genomes (2-4%) but is lower than previous estimates based on the concentration of dipicolinic acid. Conceivable explanations for this discrepancy are as follows: the efficiency of lysis and DNA extraction of subseafloor endospore cells may have been lower than those of vegetative cells, conversion factor of dipicolinic acid content per cell may differ, and/or sporulation-related genes and other functional strategies for long-term survival in the deep subseafloor biosphere are evolutionarily distinct from known spore-forming gene repertoires.
Collapse
Affiliation(s)
- Mikihiko Kawai
- Geomicrobiology Group, Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Monobe B200, Nankoku, Kochi, 783-8502, Japan
| | | | | | | |
Collapse
|
117
|
Luo H. The use of evolutionary approaches to understand single cell genomes. Front Microbiol 2015; 6:174. [PMID: 25806025 PMCID: PMC4354383 DOI: 10.3389/fmicb.2015.00191] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 02/20/2015] [Indexed: 11/13/2022] Open
Abstract
The vast majority of environmental bacteria and archaea remain uncultivated, yet their genome sequences are rapidly becoming available through single cell sequencing technologies. Reconstructing metabolism is one common way to make use of genome sequences of ecologically important bacteria, but molecular evolutionary analysis is another approach that, while currently underused, can reveal important insights into the function of these uncultivated microbes in nature. Because genome sequences from single cells are often incomplete, metabolic reconstruction based on genome content can be compromised. However, this problem does not necessarily impede the use of phylogenomic and population genomic approaches that are based on patterns of polymorphisms and substitutions at nucleotide and amino acid sites. These approaches explore how various evolutionary forces act to assemble genetic diversity within and between lineages. In this mini-review, I present examples illustrating the benefits of analyzing single cell genomes using evolutionary approaches.
Collapse
Affiliation(s)
- Haiwei Luo
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences, The Chinese University of Hong Kong Hong Kong, China
| |
Collapse
|
118
|
Lindner MS, Renard BY. Metagenomic profiling of known and unknown microbes with microbeGPS. PLoS One 2015; 10:e0117711. [PMID: 25643362 PMCID: PMC4314203 DOI: 10.1371/journal.pone.0117711] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 12/29/2014] [Indexed: 11/19/2022] Open
Abstract
Microbial community profiling identifies and quantifies organisms in metagenomic sequencing data using either reference based or unsupervised approaches. However, current reference based profiling methods only report the presence and abundance of single reference genomes that are available in databases. Since only a small fraction of environmental genomes is represented in genomic databases, these approaches entail the risk of false identifications and often suggest a higher precision than justified by the data. Therefore, we developed MicrobeGPS, a novel metagenomic profiling approach that overcomes these limitations. MicrobeGPS is the first method that identifies microbiota in the sample and estimates their genomic distances to known reference genomes. With this strategy, MicrobeGPS identifies organisms down to the strain level and highlights possibly inaccurate identifications when the correct reference genome is missing. We demonstrate on three metagenomic datasets with different origin that our approach successfully avoids misleading interpretation of results and additionally provides more accurate results than current profiling methods. Our results indicate that MicrobeGPS can enable reference based taxonomic profiling of complex and less characterized microbial communities. MicrobeGPS is open source and available from https://sourceforge.net/projects/microbegps/ as source code and binary distribution for Windows and Linux operating systems.
Collapse
Affiliation(s)
- Martin S. Lindner
- Research Group Bioinformatics (NG4), Robert Koch Institute, Berlin, Germany
| | - Bernhard Y. Renard
- Research Group Bioinformatics (NG4), Robert Koch Institute, Berlin, Germany
| |
Collapse
|
119
|
Hallam SJ, McCutcheon JP. Microbes don't play solitaire: how cooperation trumps isolation in the microbial world. ENVIRONMENTAL MICROBIOLOGY REPORTS 2015; 7:26-8. [PMID: 25721597 DOI: 10.1111/1758-2229.12248] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Affiliation(s)
- Steven J Hallam
- Department of Microbiology and Immunology, Genome Science and Technology Program, Graduate Program in Bioinformatics, University of British Columbia, Vancouver, BC, Canada; Canadian Institute for Advanced Research, CIFAR Program in Integrated Microbial Biodiversity, Toronto, ON, Canada
| | | |
Collapse
|
120
|
Clingenpeel S, Clum A, Schwientek P, Rinke C, Woyke T. Reconstructing each cell's genome within complex microbial communities-dream or reality? Front Microbiol 2015; 5:771. [PMID: 25620966 PMCID: PMC4287102 DOI: 10.3389/fmicb.2014.00771] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 12/17/2014] [Indexed: 11/24/2022] Open
Abstract
As the vast majority of microorganisms have yet to be cultivated in a laboratory setting, access to their genetic makeup has largely been limited to cultivation-independent methods. These methods, namely metagenomics and more recently single-cell genomics, have become cornerstones for microbial ecology and environmental microbiology. One ultimate goal is the recovery of genome sequences from each cell within an environment to move toward a better understanding of community metabolic potential and to provide substrate for experimental work. As single-cell sequencing has the ability to decipher all sequence information contained in an individual cell, this method holds great promise in tackling such challenge. Methodological limitations and inherent biases however do exist, which will be discussed here based on environmental and benchmark data, to assess how far we are from reaching this goal.
Collapse
Affiliation(s)
| | - Alicia Clum
- DOE Joint Genome Institute Walnut Creek, CA, USA
| | | | | | - Tanja Woyke
- DOE Joint Genome Institute Walnut Creek, CA, USA
| |
Collapse
|
121
|
Ghasimi DSM, Tao Y, de Kreuk M, Zandvoort MH, van Lier JB. Microbial population dynamics during long-term sludge adaptation of thermophilic and mesophilic sequencing batch digesters treating sewage fine sieved fraction at varying organic loading rates. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:171. [PMID: 26500697 PMCID: PMC4618146 DOI: 10.1186/s13068-015-0355-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 10/09/2015] [Indexed: 05/16/2023]
Abstract
BACKGROUND In this research, the feasibility of, and population dynamics in, one-step anaerobic sequencing batch reactor systems treating the fine sieved fraction (FSF) from raw municipal wastewater was studied under thermophilic (55 °C) and mesophilic (35 °C) conditions. FSF was sequestered from raw municipal wastewater, in the Netherlands, using a rotating belt filter (mesh size 350 micron). FSF is a heterogeneous substrate that mainly consists of fibres originating from toilet paper and thus contains a high cellulosic fraction (60-80 % of total solids content), regarded as an energy-rich material. RESULTS Results of the 656-day fed-batch operation clearly showed that thermophilic digestion was more stable, applying high organic loading rates (OLR) up to 22 kg COD/(m(3) day). In contrast, the mesophilic digester already failed applying an OLR of 5.5 kg COD/(m(3) day), indicated by a drop in pH and increase in volatile fatty acids (VFAs). The observed viscosity values of the mesophilic sludge were more than tenfold higher than the thermophilic sludge. 454-pyrosequencing of eight mesophilic and eight thermophilic biomass samples revealed that Bacteroides and aceticlastic methanogen Methanosaeta were the dominant genera in the mesophilic digester, whereas OP9 lineages, Clostridium and the hydrogenotrophic methanogen Methanothermobacter dominated the thermophilic one. CONCLUSIONS Our study suggests that applying thermophilic conditions for FSF digestion would result in a higher biogas production rate and/or a smaller required reactor volume, comparing to mesophilic conditions.
Collapse
Affiliation(s)
- Dara S. M. Ghasimi
- />Sanitary Engineering Section, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands
| | - Yu Tao
- />Sanitary Engineering Section, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands
- />Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ the UK
| | - Merle de Kreuk
- />Sanitary Engineering Section, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands
| | - Marcel H. Zandvoort
- />Waternet, Korte Ouderkerkerdijk 7, P.O. Box 94370, 1090 GJ Amsterdam, The Netherlands
| | - Jules B. van Lier
- />Sanitary Engineering Section, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands
| |
Collapse
|
122
|
Manor O, Levy R, Borenstein E. Mapping the inner workings of the microbiome: genomic- and metagenomic-based study of metabolism and metabolic interactions in the human microbiome. Cell Metab 2014; 20:742-752. [PMID: 25176148 PMCID: PMC4252837 DOI: 10.1016/j.cmet.2014.07.021] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The human gut microbiome is a major contributor to human metabolism and health, yet the metabolic processes that are carried out by various community members, the way these members interact with each other and with the host, and the impact of such interactions on the overall metabolic machinery of the microbiome have not yet been mapped. Here, we discuss recent efforts to study the metabolic inner workings of this complex ecosystem. We will specifically highlight two interrelated lines of work, the first aiming to deconvolve the microbiome and to characterize the metabolic capacity of various microbiome species and the second aiming to utilize computational modeling to infer and study metabolic interactions between these species.
Collapse
Affiliation(s)
- Ohad Manor
- Department of Genome Sciences, University of Washington, Seattle, WA 98102, USA
| | - Roie Levy
- Department of Genome Sciences, University of Washington, Seattle, WA 98102, USA
| | - Elhanan Borenstein
- Department of Genome Sciences, University of Washington, Seattle, WA 98102, USA; Department of Computer Science and Engineering, University of Washington, Seattle, WA 98102, USA; Santa Fe Institute, Santa Fe, NM 87501, USA.
| |
Collapse
|
123
|
Improved assemblies using a source-agnostic pipeline for MetaGenomic Assembly by Merging (MeGAMerge) of contigs. Sci Rep 2014; 4:6480. [PMID: 25270300 PMCID: PMC4180827 DOI: 10.1038/srep06480] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 08/27/2014] [Indexed: 11/08/2022] Open
Abstract
Assembly of metagenomic samples is a very complex process, with algorithms designed to address sequencing platform-specific issues, (read length, data volume, and/or community complexity), while also faced with genomes that differ greatly in nucleotide compositional biases and in abundance. To address these issues, we have developed a post-assembly process: MetaGenomic Assembly by Merging (MeGAMerge). We compare this process to the performance of several assemblers, using both real, and in-silico generated samples of different community composition and complexity. MeGAMerge consistently outperforms individual assembly methods, producing larger contigs with an increased number of predicted genes, without replication of data. MeGAMerge contigs are supported by read mapping and contig alignment data, when using synthetically-derived and real metagenomic data, as well as by gene prediction analyses and similarity searches. MeGAMerge is a flexible method that generates improved metagenome assemblies, with the ability to accommodate upcoming sequencing platforms, as well as present and future assembly algorithms.
Collapse
|
124
|
Comparison of the microbial communities in solid-state anaerobic digestion (SS-AD) reactors operated at mesophilic and thermophilic temperatures. Appl Microbiol Biotechnol 2014; 99:969-80. [DOI: 10.1007/s00253-014-6036-5] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 08/11/2014] [Accepted: 08/15/2014] [Indexed: 10/24/2022]
|
125
|
Lasken RS, McLean JS. Recent advances in genomic DNA sequencing of microbial species from single cells. Nat Rev Genet 2014; 15:577-84. [PMID: 25091868 PMCID: PMC4454502 DOI: 10.1038/nrg3785] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The vast majority of microbial species remain uncultivated and, until recently, about half of all known bacterial phyla were identified only from their 16S ribosomal RNA gene sequence. With the advent of single-cell sequencing, genomes of uncultivated species are rapidly filling in unsequenced branches of the microbial phylogenetic tree. The wealth of new insights gained from these previously inaccessible groups is providing a deeper understanding of their basic biology, taxonomy and evolution, as well as their diverse roles in environmental ecosystems and human health.
Collapse
Affiliation(s)
- Roger S Lasken
- J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, California 92037, USA
| | - Jeffrey S McLean
- 1] J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, California 92037, USA. [2] School of Dentistry, Department of Periodontics, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
126
|
Abstract
Despite recent advances in metagenomic and single-cell genomic sequencing to investigate uncultivated microbial diversity and metabolic potential, fundamental questions related to population structure, interactions, and biogeochemical roles of candidate divisions remain. Numerous molecular surveys suggest that stratified ecosystems manifesting anoxic, sulfidic, and/or methane-rich conditions are enriched in these enigmatic microbes. Here we describe diversity, abundance, and cooccurrence patterns of uncultivated microbial communities inhabiting the permanently stratified waters of meromictic Sakinaw Lake, British Columbia, Canada, using 454 sequencing of the small-subunit rRNA gene with three-domain resolution. Operational taxonomic units (OTUs) were affiliated with 64 phyla, including more than 25 candidate divisions. Pronounced trends in community structure were observed for all three domains with eukaryotic sequences vanishing almost completely below the mixolimnion, followed by a rapid and sustained increase in methanogen-affiliated (∼10%) and unassigned (∼60%) archaeal sequences as well as bacterial OTUs affiliated with Chloroflexi (∼22%) and candidate divisions (∼28%). Network analysis revealed highly correlated, depth-dependent cooccurrence patterns between Chloroflexi, candidate divisions WWE1, OP9/JS1, OP8, and OD1, methanogens, and unassigned archaeal OTUs indicating niche partitioning and putative syntrophic growth modes. Indeed, pathway reconstruction using recently published Sakinaw Lake single-cell genomes affiliated with OP9/JS1 and OP8 revealed complete coverage of the Wood-Ljungdahl pathway with potential to drive syntrophic acetate oxidation to hydrogen and carbon dioxide under methanogenic conditions. Taken together, these observations point to previously unrecognized syntrophic networks in meromictic lake ecosystems with the potential to inform design and operation of anaerobic methanogenic bioreactors.
Collapse
|
127
|
de Bourcy CFA, De Vlaminck I, Kanbar JN, Wang J, Gawad C, Quake SR. A quantitative comparison of single-cell whole genome amplification methods. PLoS One 2014; 9:e105585. [PMID: 25136831 PMCID: PMC4138190 DOI: 10.1371/journal.pone.0105585] [Citation(s) in RCA: 205] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 07/21/2014] [Indexed: 01/17/2023] Open
Abstract
Single-cell sequencing is emerging as an important tool for studies of genomic heterogeneity. Whole genome amplification (WGA) is a key step in single-cell sequencing workflows and a multitude of methods have been introduced. Here, we compare three state-of-the-art methods on both bulk and single-cell samples of E. coli DNA: Multiple Displacement Amplification (MDA), Multiple Annealing and Looping Based Amplification Cycles (MALBAC), and the PicoPLEX single-cell WGA kit (NEB-WGA). We considered the effects of reaction gain on coverage uniformity, error rates and the level of background contamination. We compared the suitability of the different WGA methods for the detection of copy-number variations, for the detection of single-nucleotide polymorphisms and for de-novo genome assembly. No single method performed best across all criteria and significant differences in characteristics were observed; the choice of which amplifier to use will depend strongly on the details of the type of question being asked in any given experiment.
Collapse
Affiliation(s)
- Charles F. A. de Bourcy
- Department of Applied Physics, Stanford University, Stanford, California, United States of America
| | - Iwijn De Vlaminck
- Department of Applied Physics, Stanford University, Stanford, California, United States of America
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
- Howard Hughes Medical Institute, Stanford, California, United States of America
| | - Jad N. Kanbar
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
- Howard Hughes Medical Institute, Stanford, California, United States of America
| | - Jianbin Wang
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
| | - Charles Gawad
- Department of Applied Physics, Stanford University, Stanford, California, United States of America
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
- Division of Hematology, Oncology, Stem Cell Transplantation and Cancer Biology, Department of Pediatrics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Stephen R. Quake
- Department of Applied Physics, Stanford University, Stanford, California, United States of America
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
- Howard Hughes Medical Institute, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
128
|
Impact of single-cell genomics and metagenomics on the emerging view of extremophile "microbial dark matter". Extremophiles 2014; 18:865-75. [PMID: 25113821 DOI: 10.1007/s00792-014-0664-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 06/05/2014] [Indexed: 10/24/2022]
Abstract
Despite >130 years of microbial cultivation studies, many microorganisms remain resistant to traditional cultivation approaches, including numerous candidate phyla of bacteria and archaea. Unraveling the mysteries of these candidate phyla is a grand challenge in microbiology and is especially important in habitats where they are abundant, including some extreme environments and low-energy ecosystems. Over the past decade, parallel advances in DNA amplification, DNA sequencing and computing have enabled rapid progress on this problem, particularly through metagenomics and single-cell genomics. Although each approach suffers limitations, metagenomics and single-cell genomics are particularly powerful when combined synergistically. Studies focused on extreme environments have revealed the first substantial genomic information for several candidate phyla, encompassing putative acidophiles (Parvarchaeota), halophiles (Nanohaloarchaeota), thermophiles (Acetothermia, Aigarchaeota, Atribacteria, Calescamantes, Korarchaeota, and Fervidibacteria), and piezophiles (Gracilibacteria). These data have enabled insights into the biology of these organisms, including catabolic and anabolic potential, molecular adaptations to life in extreme environments, unique genomic features such as stop codon reassignments, and predictions about cell ultrastructure. In addition, the rapid expansion of genomic coverage enabled by these studies continues to yield insights into the early diversification of microbial lineages and the relationships within and between the phyla of Bacteria and Archaea. In the next 5 years, the genomic foliage within the tree of life will continue to grow and the study of yet-uncultivated candidate phyla will firmly transition into the post-genomic era.
Collapse
|
129
|
Piceno YM, Reid FC, Tom LM, Conrad ME, Bill M, Hubbard CG, Fouke BW, Graff CJ, Han J, Stringfellow WT, Hanlon JS, Hu P, Hazen TC, Andersen GL. Temperature and injection water source influence microbial community structure in four Alaskan North Slope hydrocarbon reservoirs. Front Microbiol 2014; 5:409. [PMID: 25147549 PMCID: PMC4124708 DOI: 10.3389/fmicb.2014.00409] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Accepted: 07/18/2014] [Indexed: 11/29/2022] Open
Abstract
A fundamental knowledge of microbial community structure in petroleum reservoirs can improve predictive modeling of these environments. We used hydrocarbon profiles, stable isotopes, and high-density DNA microarray analysis to characterize microbial communities in produced water from four Alaskan North Slope hydrocarbon reservoirs. Produced fluids from Schrader Bluff (24–27°C), Kuparuk (47–70°C), Sag River (80°C), and Ivishak (80–83°C) reservoirs were collected, with paired soured/non-soured wells sampled from Kuparuk and Ivishak. Chemical and stable isotope data suggested Schrader Bluff had substantial biogenic methane, whereas methane was mostly thermogenic in deeper reservoirs. Acetoclastic methanogens (Methanosaeta) were most prominent in Schrader Bluff samples, and the combined δD and δ13C values of methane also indicated acetoclastic methanogenesis could be a primary route for biogenic methane. Conversely, hydrogenotrophic methanogens (e.g., Methanobacteriaceae) and sulfide-producing Archaeoglobus and Thermococcus were more prominent in Kuparuk samples. Sulfide-producing microbes were detected in all reservoirs, uncoupled from souring status (e.g., the non-soured Kuparuk samples had higher relative abundances of many sulfate-reducers compared to the soured sample, suggesting sulfate-reducers may be living fermentatively/syntrophically when sulfate is limited). Sulfate abundance via long-term seawater injection resulted in greater relative abundances of Desulfonauticus, Desulfomicrobium, and Desulfuromonas in the soured Ivishak well compared to the non-soured well. In the non-soured Ivishak sample, several taxa affiliated with Thermoanaerobacter and Halomonas predominated. Archaea were not detected in the deepest reservoirs. Functional group taxa differed in relative abundance among reservoirs, likely reflecting differing thermal and/or geochemical influences.
Collapse
Affiliation(s)
- Yvette M Piceno
- Earth Sciences Division, Lawrence Berkeley National Laboratory Berkeley, CA, USA ; Energy Biosciences Institute Berkeley, CA, USA
| | - Francine C Reid
- Earth Sciences Division, Lawrence Berkeley National Laboratory Berkeley, CA, USA ; Energy Biosciences Institute Berkeley, CA, USA
| | - Lauren M Tom
- Earth Sciences Division, Lawrence Berkeley National Laboratory Berkeley, CA, USA ; Energy Biosciences Institute Berkeley, CA, USA
| | - Mark E Conrad
- Earth Sciences Division, Lawrence Berkeley National Laboratory Berkeley, CA, USA ; Energy Biosciences Institute Berkeley, CA, USA
| | - Markus Bill
- Earth Sciences Division, Lawrence Berkeley National Laboratory Berkeley, CA, USA ; Energy Biosciences Institute Berkeley, CA, USA
| | - Christopher G Hubbard
- Earth Sciences Division, Lawrence Berkeley National Laboratory Berkeley, CA, USA ; Energy Biosciences Institute Berkeley, CA, USA
| | - Bruce W Fouke
- Energy Biosciences Institute Berkeley, CA, USA ; Department of Geology, University of Illinois at Urbana-Champaign, Urbana-Champaign IL, USA
| | - Craig J Graff
- Production Chemistry, BP Exploration Anchorage, AK, USA
| | - Jiabin Han
- Production Chemistry, BP Exploration Anchorage, AK, USA
| | - William T Stringfellow
- Earth Sciences Division, Lawrence Berkeley National Laboratory Berkeley, CA, USA ; Energy Biosciences Institute Berkeley, CA, USA ; Ecological Engineering Research Program, University of the Pacific Stockton, CA, USA
| | - Jeremy S Hanlon
- Earth Sciences Division, Lawrence Berkeley National Laboratory Berkeley, CA, USA ; Ecological Engineering Research Program, University of the Pacific Stockton, CA, USA
| | - Ping Hu
- Earth Sciences Division, Lawrence Berkeley National Laboratory Berkeley, CA, USA ; Energy Biosciences Institute Berkeley, CA, USA
| | - Terry C Hazen
- Department of Civil and Environmental Engineering, University of Tennessee Knoxville, TN, USA
| | - Gary L Andersen
- Earth Sciences Division, Lawrence Berkeley National Laboratory Berkeley, CA, USA ; Energy Biosciences Institute Berkeley, CA, USA
| |
Collapse
|
130
|
Patterns of Microbially Driven Carbon Cycling in the Ocean: Links between Extracellular Enzymes and Microbial Communities. ACTA ACUST UNITED AC 2014. [DOI: 10.1155/2014/706082] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Heterotrophic microbial communities play a central role in the marine carbon cycle. They are active in nearly all known environments, from the surface to the deep ocean, in the sediments, and from the equator to the Poles. In order to process complex organic matter, these communities produce extracellular enzymes of the correct structural specificity to hydrolyze substrates to sizes sufficiently small for uptake. Extracellular enzymatic hydrolysis thus initiates heterotrophic carbon cycling. Our knowledge of the enzymatic capabilities of microbial communities in the ocean is still underdeveloped. Recent studies, however, suggest that there may be large-scale patterns of enzymatic function in the ocean, patterns of community function that may be connected to emerging patterns of microbial community composition. Here I review some of these large-scale contrasts in microbial enzyme activities, between high-latitude and temperate surface ocean waters, contrasts between inshore and offshore waters, changes with depth gradients in the ocean, and contrasts between the water column and underlying sediments. These contrasting patterns are set in the context of recent studies of microbial communities and patterns of microbial biogeography. Focusing on microbial community function as well as composition and potential should yield clearer understanding of the factors driving carbon cycling in the ocean.
Collapse
|
131
|
Obtaining genomes from uncultivated environmental microorganisms using FACS-based single-cell genomics. Nat Protoc 2014; 9:1038-48. [PMID: 24722403 DOI: 10.1038/nprot.2014.067] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Single-cell genomics is a powerful tool for exploring the genetic makeup of environmental microorganisms, the vast majority of which are difficult, if not impossible, to cultivate with current approaches. Here we present a comprehensive protocol for obtaining genomes from uncultivated environmental microbes via high-throughput single-cell isolation by FACS. The protocol encompasses the preservation and pretreatment of differing environmental samples, followed by the physical separation, lysis, whole-genome amplification and 16S rRNA-based identification of individual bacterial and archaeal cells. The described procedure can be performed with standard molecular biology equipment and a FACS machine. It takes <12 h of bench time over a 4-d time period, and it generates up to 1 μg of genomic DNA from an individual microbial cell, which is suitable for downstream applications such as PCR amplification and shotgun sequencing. The completeness of the recovered genomes varies, with an average of ∼50%.
Collapse
|
132
|
Ning L, Liu G, Li G, Hou Y, Tong Y, He J. Current challenges in the bioinformatics of single cell genomics. Front Oncol 2014; 4:7. [PMID: 24478987 PMCID: PMC3902584 DOI: 10.3389/fonc.2014.00007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 01/12/2014] [Indexed: 11/13/2022] Open
Abstract
Single cell genomics is a rapidly growing field with many new techniques emerging in the past few years. However, few bioinformatics tools specific for single cell genomics analysis are available. Single cell DNA/RNA sequencing data usually have low genome coverage and high amplification bias, which makes bioinformatics analysis challenging. Many current bioinformatics tools developed for bulk cell sequencing do not work well with single cell sequencing data. Here, we summarize current challenges in the bioinformatics analysis of single cell genomic DNA sequencing and single cell transcriptomes. These challenges include calling copy number variations, identifying mutated genes in tumor samples, reconstructing cell lineages, recovering low abundant transcripts, and improving the accuracy of quantitative analysis of transcripts. Development in single cell genomics bioinformatics analysis will promote the application of this technology to basic biology and medical research.
Collapse
Affiliation(s)
- Luwen Ning
- Department of Biology, South University of Science and Technology of China , Shenzhen , China
| | | | | | | | - Yin Tong
- Department of Biology, South University of Science and Technology of China , Shenzhen , China
| | - Jiankui He
- Department of Biology, South University of Science and Technology of China , Shenzhen , China
| |
Collapse
|
133
|
Kallotenue papyrolyticum gen. nov., sp. nov., a cellulolytic and filamentous thermophile that represents a novel lineage (Kallotenuales ord. nov., Kallotenuaceae fam. nov.) within the class Chloroflexia. Int J Syst Evol Microbiol 2013; 63:4675-4682. [DOI: 10.1099/ijs.0.053348-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Several closely related, thermophilic and cellulolytic bacterial strains, designated JKG1T, JKG2, JKG3, JKG4 and JKG5, were isolated from a cellulolytic enrichment (corn stover) incubated in the water column of Great Boiling Spring, NV. Strain JKG1T had cells of diameter 0.7–0.9 µm and length ~2.0 µm that formed non-branched, multicellular filaments reaching >300 µm. Spores were not formed and dense liquid cultures were red. The temperature range for growth was 45–65 °C, with an optimum of 55 °C. The pH range for growth was pH 5.6–9.0, with an optimum of pH 7.5. JKG1T grew as an aerobic heterotroph, utilizing glucose, sucrose, xylose, arabinose, cellobiose, CM-cellulose, filter paper, microcrystalline cellulose, xylan, starch, Casamino acids, tryptone, peptone, yeast extract, acetate, citrate, lactate, pyruvate and glycerol as sole carbon sources, and was not observed to photosynthesize. The cells stained Gram-negative. Phylogenetic analysis using 16S rRNA gene sequences placed the new isolates in the class
Chloroflexia
, but distant from other cultivated members, with the highest sequence identity of 82.5 % to
Roseiflexus castenholzii
. The major quinone was menaquinone-9; no ubiquinones were detected. The major cellular fatty acids (>5 %) were C18 : 0, anteiso-C17 : 0, iso-C18 : 0, iso-C17 : 0, C16 : 0, iso-C16 : 0 and C17 : 0. The peptidoglycan amino acids were alanine, ornithine, glutamic acid, serine and asparagine. Whole-cell sugars included mannose, rhamnose, glucose, galactose, ribose, arabinose and xylose. Morphological, phylogenetic and chemotaxonomic results suggest that JKG1T is representative of a new lineage within the class
Chloroflexia
, which we propose to designate Kallotenue papyrolyticum gen. nov., sp. nov., Kallotenuaceae fam. nov., Kallotenuales ord. nov. The type strain of Kallotenue papyrolyticum gen. nov., sp. nov. is JKG1T ( = DSM 26889T = JCM 19132T).
Collapse
|
134
|
Ellegaard KM, Klasson L, Andersson SGE. Testing the reproducibility of multiple displacement amplification on genomes of clonal endosymbiont populations. PLoS One 2013; 8:e82319. [PMID: 24312412 PMCID: PMC3842359 DOI: 10.1371/journal.pone.0082319] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 10/31/2013] [Indexed: 12/11/2022] Open
Abstract
The multiple displacement amplification method has revolutionized genomic studies of uncultured bacteria, where the extraction of pure DNA in sufficient quantity for next-generation sequencing is challenging. However, the method is problematic in that it amplifies the target DNA unevenly, induces the formation of chimeric reads and also amplifies contaminating DNA. Here, we have tested the reproducibility of the multiple displacement amplification method using serial dilutions of extracted genomic DNA and intact cells from the cultured endosymbiont Bartonella australis. The amplified DNA was sequenced with the Illumina sequencing technology, and the results were compared to sequence data obtained from unamplified DNA in this study as well as from a previously published genome project. We show that artifacts such as the extent of the amplification bias, the percentage of chimeric reads and the relative fraction of contaminating DNA increase dramatically for the smallest amounts of template DNA. The pattern of read coverage was reproducibly obtained for samples with higher amounts of template DNA, suggesting that the bias is non-random and genome-specific. A re-analysis of previously published sequence data obtained after amplification from clonal endosymbiont populations confirmed these predictions. We conclude that many of the artifacts associated with the use of the multiple displacement amplification method can be alleviated or much reduced by using multiple cells as the template for the amplification. These findings should be particularly useful for researchers studying the genomes of endosymbionts and other uncultured bacteria, for which a small clonal population of cells can be isolated.
Collapse
Affiliation(s)
- Kirsten Maren Ellegaard
- Department of Molecular Evolution, Cell and Molecular Biology, Science for Life Laboratory, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Lisa Klasson
- Department of Molecular Evolution, Cell and Molecular Biology, Science for Life Laboratory, Biomedical Centre, Uppsala University, Uppsala, Sweden
| | - Siv G. E. Andersson
- Department of Molecular Evolution, Cell and Molecular Biology, Science for Life Laboratory, Biomedical Centre, Uppsala University, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
135
|
Chistoserdova L. Is metagenomics resolving identification of functions in microbial communities? Microb Biotechnol 2013; 7:1-4. [PMID: 23945370 PMCID: PMC3896935 DOI: 10.1111/1751-7915.12077] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 07/12/2013] [Indexed: 11/28/2022] Open
Abstract
We are coming up on the tenth anniversary of the broad use of the method involving whole metagenome shotgun sequencing, referred to as metagenomics. The application of this approach has definitely revolutionized microbiology and the related fields, including the realization of the importance of the human microbiome. As such, metagenomics has already provided a novel outlook on the complexity and dynamics of microbial communities that are an important part of the biosphere of the planet. Accumulation of massive amounts of sequence data also caused a surge in the development of bioinformatics tools specially designed to provide pipelines for data analysis and visualization. However, a critical outlook into the field is required to appreciate what could be and what has currently been gained from the massive sequence databases that are being generated with ever-increasing speed.
Collapse
Affiliation(s)
- Ludmila Chistoserdova
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
136
|
Hedlund BP, Paraiso JJ, Williams AJ, Huang Q, Wei Y, Dijkstra P, Hungate BA, Dong H, Zhang CL. Wide distribution of autochthonous branched glycerol dialkyl glycerol tetraethers (bGDGTs) in U.S. Great Basin hot springs. Front Microbiol 2013; 4:222. [PMID: 23964271 PMCID: PMC3737515 DOI: 10.3389/fmicb.2013.00222] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 07/21/2013] [Indexed: 11/18/2022] Open
Abstract
Branched glycerol dialkyl glycerol tetraethers (bGDGTs) are membrane-spanning lipids that likely stabilize membranes of some bacteria. Although bGDGTs have been reported previously in certain geothermal environments, it has been suggested that they may derive from surrounding soils since bGDGTs are known to be produced by soil bacteria. To test the hypothesis that bGDGTs can be produced by thermophiles in geothermal environments, we examined the distribution and abundance of bGDGTs, along with extensive geochemical data, in 40 sediment and mat samples collected from geothermal systems in the U.S. Great Basin (temperature: 31–95°C; pH: 6.8–10.7). bGDGTs were found in 38 out of 40 samples at concentrations up to 824 ng/g sample dry mass and comprised up to 99.5% of total GDGTs (branched plus isoprenoidal). The wide distribution of bGDGTs in hot springs, strong correlation between core and polar lipid abundances, distinctness of bGDGT profiles compared to nearby soils, and higher concentration of bGDGTs in hot springs compared to nearby soils provided evidence of in situ production, particularly for the minimally methylated bGDGTs I, Ib, and Ic. Polar bGDGTs were found almost exclusively in samples ≤70°C and the absolute abundance of polar bGDGTs correlated negatively with properties of chemically reduced, high temperature spring sources (temperature, H2S/HS−) and positively with properties of oxygenated, low temperature sites (O2, NO−3). Two-way cluster analysis and nonmetric multidimensional scaling based on relative abundance of polar bGDGTs supported these relationships and showed a negative relationship between the degree of methylation and temperature, suggesting a higher abundance for minimally methylated bGDGTs at high temperature. This study presents evidence of the widespread production of bGDGTs in mats and sediments of natural geothermal springs in the U.S. Great Basin, especially in oxygenated, low-temperature sites (≤70°C).
Collapse
Affiliation(s)
- Brian P Hedlund
- School of Life Sciences, University of Nevada, Las Vegas Las Vegas, NV, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Zhang CL, Wang J, Dodsworth JA, Williams AJ, Zhu C, Hinrichs KU, Zheng F, Hedlund BP. In situ production of branched glycerol dialkyl glycerol tetraethers in a great basin hot spring (USA). Front Microbiol 2013; 4:181. [PMID: 23847605 PMCID: PMC3705189 DOI: 10.3389/fmicb.2013.00181] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Accepted: 06/16/2013] [Indexed: 11/13/2022] Open
Abstract
Branched glycerol dialkyl glycerol tetraethers (bGDGTs) are predominantly found in soils and peat bogs. In this study, we analyzed core (C)-bGDGTs after hydrolysis of polar fractions using liquid chromatography-atmospheric pressure chemical ionization-mass spectrometry and analyzed intact P-bGDGTs using total lipid extract (TLE) without hydrolysis by liquid chromatography-electrospray ionization-multiple stage mass spectrometry. Our results show multiple lines of evidence for the production of bGDGTs in sediments and cellulolytic enrichments in a hot spring (62–86°C) in the Great Basin (USA). First, in situ cellulolytic enrichment led to an increase in the relative abundance of hydrolysis-derived P-bGDGTs over their C-bGDGT counterparts. Second, the hydrolysis-derived P- and C-bGDGT profiles in the hot spring were different from those of the surrounding soil samples; in particular, a monoglycosidic bGDGT Ib containing 13,16-dimethyloctacosane and one cyclopentane moiety was detected in the TLE but it was undetectable in surrounding soil samples even after sample enrichments. Third, previously published 16S rRNA gene pyrotag analysis from the same lignocellulose samples demonstrated the enrichment of thermophiles, rather than mesophiles, and total bGDGT abundance in cellulolytic enrichments correlated with the relative abundance of 16S rRNA gene pyrotags from thermophilic bacteria in the phyla Bacteroidetes, Dictyoglomi, EM3, and OP9 (“Atribacteria”). These observations conclusively demonstrate the production of bGDGTs in this hot spring; however, the identity of organisms that produce bGDGTs in the geothermal environment remains unclear.
Collapse
Affiliation(s)
- Chuanlun L Zhang
- Department of Marine Sciences, University of Georgia Athens, GA, USA ; State Key Laboratory of Marine Geology, Tongji University Shanghai, China
| | | | | | | | | | | | | | | |
Collapse
|
138
|
Landry ZC, Giovanonni SJ, Quake SR, Blainey PC. Optofluidic cell selection from complex microbial communities for single-genome analysis. Methods Enzymol 2013; 531:61-90. [PMID: 24060116 DOI: 10.1016/b978-0-12-407863-5.00004-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Genetic analysis of single cells is emerging as a powerful approach for studies of heterogeneous cell populations. Indeed, the notion of homogeneous cell populations is receding as approaches to resolve genetic and phenotypic variation between single cells are applied throughout the life sciences. A key step in single-cell genomic analysis today is the physical isolation of individual cells from heterogeneous populations, particularly microbial populations, which often exhibit high diversity. Here, we detail the construction and use of instrumentation for optical trapping inside microfluidic devices to select individual cells for analysis by methods including nucleic acid sequencing. This approach has unique advantages for analyses of rare community members, cells with irregular morphologies, small quantity samples, and studies that employ advanced optical microscopy.
Collapse
Affiliation(s)
- Zachary C Landry
- Department of Microbiology, Oregon State University, Corvallis, Oregon, USA
| | | | | | | |
Collapse
|