101
|
Conjunctival fibrosis and the innate barriers to Chlamydia trachomatis intracellular infection: a genome wide association study. Sci Rep 2015; 5:17447. [PMID: 26616738 PMCID: PMC4663496 DOI: 10.1038/srep17447] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 10/29/2015] [Indexed: 01/26/2023] Open
Abstract
Chlamydia trachomatis causes both trachoma and sexually transmitted
infections. These diseases have similar pathology and potentially similar genetic
predisposing factors. We aimed to identify polymorphisms and pathways associated
with pathological sequelae of ocular Chlamydia trachomatis infections in The
Gambia. We report a discovery phase genome-wide association study (GWAS) of scarring
trachoma (1090 cases, 1531 controls) that identified 27 SNPs with strong, but not
genome-wide significant, association with disease
(5 × 10−6 > P > 5 × 10−8).
The most strongly associated SNP (rs111513399,
P = 5.38 × 10−7)
fell within a gene (PREX2) with homology to factors known to facilitate
chlamydial entry to the host cell. Pathway analysis of GWAS data was significantly
enriched for mitotic cell cycle processes (P = 0.001), the
immune response (P = 0.00001) and for multiple cell surface
receptor signalling pathways. New analyses of published transcriptome data sets from
Gambia, Tanzania and Ethiopia also revealed that the same cell cycle and immune
response pathways were enriched at the transcriptional level in various disease
states. Although unconfirmed, the data suggest that genetic associations with
chlamydial scarring disease may be focussed on processes relating to the immune
response, the host cell cycle and cell surface receptor signalling.
Collapse
|
102
|
Redmond SN, Eiglmeier K, Mitri C, Markianos K, Guelbeogo WM, Gneme A, Isaacs AT, Coulibaly B, Brito-Fravallo E, Maslen G, Mead D, Niare O, Traore SF, Sagnon N, Kwiatkowski D, Riehle MM, Vernick KD. Association mapping by pooled sequencing identifies TOLL 11 as a protective factor against Plasmodium falciparum in Anopheles gambiae. BMC Genomics 2015; 16:779. [PMID: 26462916 PMCID: PMC4603968 DOI: 10.1186/s12864-015-2009-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 10/03/2015] [Indexed: 11/16/2022] Open
Abstract
Background The genome-wide association study (GWAS) techniques that have been used for genetic mapping in other organisms have not been successfully applied to mosquitoes, which have genetic characteristics of high nucleotide diversity, low linkage disequilibrium, and complex population stratification that render population-based GWAS essentially unfeasible at realistic sample size and marker density. Methods We designed a novel mapping strategy for the mosquito system that combines the power of linkage mapping with the resolution afforded by genetic association. We established founder colonies from West Africa, controlled for diversity, linkage disequilibrium and population stratification. Colonies were challenged by feeding on the infectious stage of the human malaria parasite, Plasmodium falciparum, mosquitoes were phenotyped for parasite load, and DNA pools for phenotypically similar mosquitoes were Illumina sequenced. Phenotype-genotype mapping was carried out in two stages, coarse and fine. Results In the first mapping stage, pooled sequences were analysed genome-wide for intervals displaying relativereduction in diversity between phenotype pools, and candidate genomic loci were identified for influence upon parasite infection levels. In the second mapping stage, focused genotyping of SNPs from the first mapping stage was carried out in unpooled individual mosquitoes and replicates. The second stage confirmed significant SNPs in a locus encoding two Toll-family proteins. RNAi-mediated gene silencing and infection challenge revealed that TOLL 11 protects mosquitoes against P. falciparum infection. Conclusions We present an efficient and cost-effective method for genetic mapping using natural variation segregating in defined recent Anopheles founder colonies, and demonstrate its applicability for mapping in a complex non-model genome. This approach is a practical and preferred alternative to population-based GWAS for first-pass mapping of phenotypes in Anopheles. This design should facilitate mapping of other traits involved in physiology, epidemiology, and behaviour. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2009-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Seth N Redmond
- Department of Parasites and Insect Vectors, Institut Pasteur, Unit of Insect Vector Genetics and Genomics, 28 rue du Docteur Roux, Paris, 75015, France. .,CNRS Unit of Hosts, Vectors and Pathogens, Paris, France (URA3012), 28 rue du Docteur Roux, Paris, 75015, France.
| | - Karin Eiglmeier
- Department of Parasites and Insect Vectors, Institut Pasteur, Unit of Insect Vector Genetics and Genomics, 28 rue du Docteur Roux, Paris, 75015, France. .,CNRS Unit of Hosts, Vectors and Pathogens, Paris, France (URA3012), 28 rue du Docteur Roux, Paris, 75015, France.
| | - Christian Mitri
- Department of Parasites and Insect Vectors, Institut Pasteur, Unit of Insect Vector Genetics and Genomics, 28 rue du Docteur Roux, Paris, 75015, France. .,CNRS Unit of Hosts, Vectors and Pathogens, Paris, France (URA3012), 28 rue du Docteur Roux, Paris, 75015, France.
| | - Kyriacos Markianos
- Program in Genomics, Boston Children's Hospital, Harvard Medical School, 3 Blackfan Street, Boston, MA, 02115, USA.
| | - Wamdaogo M Guelbeogo
- Centre National de Recherche et de Formation sur le Paludisme, 1487 Avenue de l'Oubritenga, 01 BP 2208, Ouagadougou, Burkina Faso.
| | - Awa Gneme
- Centre National de Recherche et de Formation sur le Paludisme, 1487 Avenue de l'Oubritenga, 01 BP 2208, Ouagadougou, Burkina Faso.
| | - Alison T Isaacs
- Department of Parasites and Insect Vectors, Institut Pasteur, Unit of Insect Vector Genetics and Genomics, 28 rue du Docteur Roux, Paris, 75015, France. .,CNRS Unit of Hosts, Vectors and Pathogens, Paris, France (URA3012), 28 rue du Docteur Roux, Paris, 75015, France.
| | - Boubacar Coulibaly
- Malaria Research and Training Centre, Faculty of Medicine and Dentistry, University of Mali, Point G, Bamako, Mali.
| | - Emma Brito-Fravallo
- Department of Parasites and Insect Vectors, Institut Pasteur, Unit of Insect Vector Genetics and Genomics, 28 rue du Docteur Roux, Paris, 75015, France. .,CNRS Unit of Hosts, Vectors and Pathogens, Paris, France (URA3012), 28 rue du Docteur Roux, Paris, 75015, France.
| | - Gareth Maslen
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK. .,Wellcome Trust Centre for Human Genetics, Oxford, UK.
| | - Daniel Mead
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK. .,Wellcome Trust Centre for Human Genetics, Oxford, UK.
| | - Oumou Niare
- Malaria Research and Training Centre, Faculty of Medicine and Dentistry, University of Mali, Point G, Bamako, Mali.
| | - Sekou F Traore
- Malaria Research and Training Centre, Faculty of Medicine and Dentistry, University of Mali, Point G, Bamako, Mali.
| | - N'Fale Sagnon
- Centre National de Recherche et de Formation sur le Paludisme, 1487 Avenue de l'Oubritenga, 01 BP 2208, Ouagadougou, Burkina Faso.
| | - Dominic Kwiatkowski
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK. .,Wellcome Trust Centre for Human Genetics, Oxford, UK.
| | - Michelle M Riehle
- Department of Microbiology, University of Minnesota, 1500 Gortner Avenue, Saint Paul, MN 55108, USA.
| | - Kenneth D Vernick
- Department of Parasites and Insect Vectors, Institut Pasteur, Unit of Insect Vector Genetics and Genomics, 28 rue du Docteur Roux, Paris, 75015, France. .,CNRS Unit of Hosts, Vectors and Pathogens, Paris, France (URA3012), 28 rue du Docteur Roux, Paris, 75015, France. .,Malaria Research and Training Centre, Faculty of Medicine and Dentistry, University of Mali, Point G, Bamako, Mali.
| |
Collapse
|
103
|
Band G, Rockett KA, Spencer CCA, Kwiatkowski DP. A novel locus of resistance to severe malaria in a region of ancient balancing selection. Nature 2015; 526:253-7. [PMID: 26416757 PMCID: PMC4629224 DOI: 10.1038/nature15390] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 08/10/2015] [Indexed: 12/13/2022]
Abstract
The high prevalence of sickle haemoglobin in Africa shows that malaria has been a major force for human evolutionary selection, but surprisingly few other polymorphisms have been proven to confer resistance to malaria in large epidemiological studies. To address this problem, we conducted a multi-centre genome-wide association study (GWAS) of life-threatening Plasmodium falciparum infection (severe malaria) in over 11,000 African children, with replication data in a further 14,000 individuals. Here we report a novel malaria resistance locus close to a cluster of genes encoding glycophorins that are receptors for erythrocyte invasion by P. falciparum. We identify a haplotype at this locus that provides 33% protection against severe malaria (odds ratio = 0.67, 95% confidence interval = 0.60-0.76, P value = 9.5 × 10(-11)) and is linked to polymorphisms that have previously been shown to have features of ancient balancing selection, on the basis of haplotype sharing between humans and chimpanzees. Taken together with previous observations on the malaria-protective role of blood group O, these data reveal that two of the strongest GWAS signals for severe malaria lie in or close to genes encoding the glycosylated surface coat of the erythrocyte cell membrane, both within regions of the genome where it appears that evolution has maintained diversity for millions of years. These findings provide new insights into the host-parasite interactions that are critical in determining the outcome of malaria infection.
Collapse
|
104
|
do Sambo MR, Penha-Gonçalves C, Trovoada MJ, Costa J, Lardoeyt R, Coutinho A. Quantitative trait locus analysis of parasite density reveals that HbS gene carriage protects severe malaria patients against Plasmodium falciparum hyperparasitaemia. Malar J 2015; 14:393. [PMID: 26445879 PMCID: PMC4596417 DOI: 10.1186/s12936-015-0920-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 09/26/2015] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Haemoglobin S (HbS) is the gene known to confer the strongest advantage against malaria morbidity and mortality. Multiple HbS effects have been described resulting in protection against parasitaemia and reduction of severe malaria risk. This study aimed to explore HbS protection against severe malaria and Plasmodium falciparum parasitaemia in Angolan children exhibiting different severe malaria syndromes. METHODS A case-control study was designed with 430 malaria cases (n = 288 severe malaria and n = 142 uncomplicated malaria) and 319 uninfected controls, attending a central paediatric hospital in Luanda. Severe malaria syndromes were cerebral malaria (n = 130), severe malaria anaemia (n = 30) and hyperparasitaemia (n = 128). Quantitative trait locus analysis was carried out to study HbS association to parasite densities. RESULTS Previously reported HbS protection against severe malaria was confirmed in case-control analysis (P = 2 × 10(-13)) and corroborated by transmission disequilibrium test (P = 4 × 10(-3)). High parasite density protection conferred by HbS was detectable within severe malaria patients (P = 0.04). Stratifying severe malaria patients according parasite densities, it was found that HbS was highly associated to hyperparasitaemia protection (P = 1.9 × 10(-9)) but did not protect non-hyperparasitaemic children against severe malaria complications, namely cerebral malaria and severe malaria anaemia. Many studies have shown that HbS protects from severe malaria and controls parasite densities but the analysis further suggests that HbS protection against severe malaria syndromes was at a large extent correlated with control of parasitaemia levels. CONCLUSIONS This study supports the hypothesis that HbS confers resistance to hyperparasitaemia in patients exhibiting severe malaria syndromes and highlights that parasitaemia should be taken into account when evaluating HbS protection in severe malaria.
Collapse
Affiliation(s)
- Maria Rosário do Sambo
- Instituto Gulbenkian de Ciência, Oeiras, Portugal. .,Hospital Pediátrico David Bernardino, Luanda, Angola. .,Faculdade de Medicina, Universidade Agostinho Neto, Luanda, Angola.
| | | | - Maria Jesus Trovoada
- Instituto Gulbenkian de Ciência, Oeiras, Portugal. .,Centro Nacional de Endemias, São Tomé, São Tomé and Príncipe.
| | - João Costa
- Instituto Gulbenkian de Ciência, Oeiras, Portugal.
| | - Roberto Lardoeyt
- Faculdade de Medicina, Universidade Katyavala Bwila, Benguela, Angola.
| | | |
Collapse
|
105
|
Neglected Tropical Diseases in the Post-Genomic Era. Trends Genet 2015; 31:539-555. [DOI: 10.1016/j.tig.2015.06.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 06/01/2015] [Accepted: 06/03/2015] [Indexed: 01/22/2023]
|
106
|
Ren N, Kuang YM, Tang QL, Cheng L, Zhang CH, Yang ZQ, He YS, Zhu YC. High Incidence of Malaria Along the Sino-Burmese Border Is Associated With Polymorphisms of CR1, IL-1A, IL-4R, IL-4, NOS, and TNF, But Not With G6PD Deficiency. Medicine (Baltimore) 2015; 94:e1681. [PMID: 26448013 PMCID: PMC4616751 DOI: 10.1097/md.0000000000001681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Malaria is highly endemic in Yunnan Province, China, with the incidence of malaria being highest along the Sino-Burmese border. The aim of our study was to determine whether genetic polymorphisms are associated with the prevalence of malaria among Chinese residents of the Sino-Burmese border region. Fourteen otherwise healthy people with glucose-6-phosphate dehydrogenase (G6PD) deficiency, 50 malaria patients, and 67 healthy control subjects were included in our cross-sectional study. We analyzed the frequency of the G3093T and T520C single-nucleotide polymorphisms (SNPs) of CR1. Logistic regression was used to calculate the prevalence odds ratio (POR) and 95% confidence interval (CI) of malaria for the T520C SNP of CR1 and SNPs of G6PD, IL-4, IL-4R, IL-1A, NOS, CD40LG, TNF, and LUC7L. The frequency of the 3093T/3093T genotype of CR1 in the malaria group (0.16) was significantly higher than that in the control group (0.045, P < 0.05), and significantly lower than that in the G6PD deficiency group (0.43, P < 0.01). The frequency of the 520T/520T genotype of CR1 was significantly higher in the malaria patients (0.78) than that in the control group (0.67, P < 0.05) and G6PD-deficiency group (0.36, P < 0.05). The T allele of the T520C variant of CR1 was significantly associated with the prevalence of malaria (POR: 1.460; 95% CI: 0.703-3.034). Polymorphisms of G6PD did not significantly influence the prevalence malaria (P > 0.05). A GTGTGTC haplotype consisting of IL-1A (rs17561), IL-4 (rs2243250), TNF (rs1800750), IL-4R (rs1805015), NOS (rs8078340), CD40LG (rs1126535), and LUC7L (rs1211375) was significantly associated with the prevalence of malaria (POR: 1.822, 95% CI: 0.998-3.324). The 3093G/3093G and 520T/520T genotypes are the predominant genetic variants of CR1 among Chinese residents near the Sino-Burmese border, and the T allele of T520C is associated with the prevalence of malaria in this region. Although G6PD deficiency does not protect against malaria, it may diminish the association between malaria and the CR1 polymorphisms in this population. The GTGTGTC haplotype is also associated with the prevalence of malaria in this region.
Collapse
Affiliation(s)
- Na Ren
- From the Department of Biochemistry and Molecular Biology (NR, LC, C-HZ, Q-LT, Z-QY, Y-SH, Y-CZ); and First Affiliated Hospital, Kunming Medical University, Kunming, Yunnan, PR China (Y-MK)
| | | | | | | | | | | | | | | |
Collapse
|
107
|
Manjurano A, Sepúlveda N, Nadjm B, Mtove G, Wangai H, Maxwell C, Olomi R, Reyburn H, Drakeley CJ, Riley EM, Clark TG. USP38, FREM3, SDC1, DDC, and LOC727982 Gene Polymorphisms and Differential Susceptibility to Severe Malaria in Tanzania. J Infect Dis 2015; 212:1129-39. [PMID: 25805752 PMCID: PMC4559194 DOI: 10.1093/infdis/jiv192] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 03/16/2015] [Indexed: 12/20/2022] Open
Abstract
Populations exposed to Plasmodium falciparum infection develop genetic mechanisms of protection against severe malarial disease. Despite decades of genetic epidemiological research, the sickle cell trait (HbAS) sickle cell polymorphism, ABO blood group, and other hemoglobinopathies remain the few major determinants in severe malaria to be replicated across different African populations and study designs. Within a case-control study in a region of high transmission in Tanzania (n = 983), we investigated the role of 40 new loci identified in recent genome-wide studies. In 32 loci passing quality control procedures, we found polymorphisms in USP38, FREM3, SDC1, DDC, and LOC727982 genes to be putatively associated with differential susceptibility to severe malaria. Established candidates explained 7.4% of variation in severe malaria risk (HbAS polymorphism, 6.3%; α-thalassemia, 0.3%; ABO group, 0.3%; and glucose-6-phosphate dehydrogenase deficiency, 0.5%) and the new polymorphisms, another 4.3%. The regions encompassing the loci identified are promising targets for the design of future treatment and control interventions.
Collapse
Affiliation(s)
- Alphaxard Manjurano
- Joint Malaria Programme,Kilimanjaro Christian Medical College, Moshi
- National Institute for Medical Research, Dar es Salaam, Tanzania
| | - Nuno Sepúlveda
- Departments ofImmunology and Infection
- Centre of Statistics and Applications, University of Lisbon, Portugal
| | | | - George Mtove
- Joint Malaria Programme,Kilimanjaro Christian Medical College, Moshi
- National Institute for Medical Research, Dar es Salaam, Tanzania
| | - Hannah Wangai
- Joint Malaria Programme,Kilimanjaro Christian Medical College, Moshi
| | - Caroline Maxwell
- Joint Malaria Programme,Kilimanjaro Christian Medical College, Moshi
| | - Raimos Olomi
- Joint Malaria Programme,Kilimanjaro Christian Medical College, Moshi
| | - Hugh Reyburn
- Joint Malaria Programme,Kilimanjaro Christian Medical College, Moshi
- Departments ofImmunology and Infection
| | - Christopher J. Drakeley
- Joint Malaria Programme,Kilimanjaro Christian Medical College, Moshi
- Departments ofImmunology and Infection
| | - Eleanor M. Riley
- Joint Malaria Programme,Kilimanjaro Christian Medical College, Moshi
- Departments ofImmunology and Infection
| | - Taane G. Clark
- Pathogen Molecular Biology
- Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, United Kingdom
| |
Collapse
|
108
|
Chertow JH, Alkaitis MS, Nardone G, Ikeda AK, Cunnington AJ, Okebe J, Ebonyi AO, Njie M, Correa S, Jayasooriya S, Casals-Pascual C, Billker O, Conway DJ, Walther M, Ackerman H. Plasmodium Infection Is Associated with Impaired Hepatic Dimethylarginine Dimethylaminohydrolase Activity and Disruption of Nitric Oxide Synthase Inhibitor/Substrate Homeostasis. PLoS Pathog 2015; 11:e1005119. [PMID: 26407009 PMCID: PMC4583463 DOI: 10.1371/journal.ppat.1005119] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 07/29/2015] [Indexed: 12/04/2022] Open
Abstract
Inhibition of nitric oxide (NO) signaling may contribute to pathological activation of the vascular endothelium during severe malaria infection. Dimethylarginine dimethylaminohydrolase (DDAH) regulates endothelial NO synthesis by maintaining homeostasis between asymmetric dimethylarginine (ADMA), an endogenous NO synthase (NOS) inhibitor, and arginine, the NOS substrate. We carried out a community-based case-control study of Gambian children to determine whether ADMA and arginine homeostasis is disrupted during severe or uncomplicated malaria infections. Circulating plasma levels of ADMA and arginine were determined at initial presentation and 28 days later. Plasma ADMA/arginine ratios were elevated in children with acute severe malaria compared to 28-day follow-up values and compared to children with uncomplicated malaria or healthy children (p<0.0001 for each comparison). To test the hypothesis that DDAH1 is inactivated during Plasmodium infection, we examined DDAH1 in a mouse model of severe malaria. Plasmodium berghei ANKA infection inactivated hepatic DDAH1 via a post-transcriptional mechanism as evidenced by stable mRNA transcript number, decreased DDAH1 protein concentration, decreased enzyme activity, elevated tissue ADMA, elevated ADMA/arginine ratio in plasma, and decreased whole blood nitrite concentration. Loss of hepatic DDAH1 activity and disruption of ADMA/arginine homeostasis may contribute to severe malaria pathogenesis by inhibiting NO synthesis. During a malaria infection, the vascular endothelium becomes more adhesive, permeable, and prone to trigger blood clotting. These changes help the parasite adhere to blood vessels, but endanger the host by obstructing blood flow through small vessels. Endothelial nitric oxide (NO) would normally counteract these pathological changes, but NO signalling is diminished malaria. NO synthesis is inhibited by asymmetric dimethylarginine (ADMA), a methylated derivative of arginine that is released during normal protein turnover. We found the ratio of ADMA to arginine to be elevated in Gambian children with severe malaria, a metabolic disturbance known to inhibit NO synthesis. ADMA was associated with markers of endothelial activation and impaired tissue perfusion. In parallel experiments using mice, the enzyme responsible for metabolizing ADMA, dimethylarginine dimethylaminohydrolase (DDAH), was inactivated after infection with a rodent malaria. Based on these studies, we propose that decreased metabolism of ADMA by DDAH might contribute to the elevated ADMA/arginine ratio observed during an acute episode of malaria. Strategies to preserve or increase DDAH activity might improve NO synthesis and help to prevent the vascular manifestations of severe malaria.
Collapse
Affiliation(s)
- Jessica H. Chertow
- Laboratory of Malaria and Vector Research, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Matthew S. Alkaitis
- Laboratory of Malaria and Vector Research, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
- Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Headington Oxford, United Kingdom
| | - Glenn Nardone
- Research Technology Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | - Allison K. Ikeda
- Laboratory of Malaria and Vector Research, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
| | | | | | | | | | | | | | | | - Oliver Billker
- Wellcome Trust Sanger Institute, Hinxton Cambridge, United Kingdom
| | - David J. Conway
- MRC Unit, Fajara, The Gambia
- London School of Hygiene and Tropical Medicine, Bloomsbury, London, United Kingdom
| | | | - Hans Ackerman
- Laboratory of Malaria and Vector Research, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, United States of America
- * E-mail:
| |
Collapse
|
109
|
Derrick T, Roberts CH, Last AR, Burr SE, Holland MJ. Trachoma and Ocular Chlamydial Infection in the Era of Genomics. Mediators Inflamm 2015; 2015:791847. [PMID: 26424969 PMCID: PMC4573990 DOI: 10.1155/2015/791847] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 08/05/2015] [Indexed: 12/19/2022] Open
Abstract
Trachoma is a blinding disease usually caused by infection with Chlamydia trachomatis (Ct) serovars A, B, and C in the upper tarsal conjunctiva. Individuals in endemic regions are repeatedly infected with Ct throughout childhood. A proportion of individuals experience prolonged or severe inflammatory episodes that are known to be significant risk factors for ocular scarring in later life. Continued scarring often leads to trichiasis and in-turning of the eyelashes, which causes pain and can eventually cause blindness. The mechanisms driving the chronic immunopathology in the conjunctiva, which largely progresses in the absence of detectable Ct infection in adults, are likely to be multifactorial. Socioeconomic status, education, and behavior have been identified as contributing to the risk of scarring and inflammation. We focus on the contribution of host and pathogen genetic variation, bacterial ecology of the conjunctiva, and host epigenetic imprinting including small RNA regulation by both host and pathogen in the development of ocular pathology. Each of these factors or processes contributes to pathogenic outcomes in other inflammatory diseases and we outline their potential role in trachoma.
Collapse
Affiliation(s)
- Tamsyn Derrick
- Department of Clinical Research, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Chrissy h. Roberts
- Department of Clinical Research, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Anna R. Last
- Department of Clinical Research, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Sarah E. Burr
- Department of Clinical Research, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Martin J. Holland
- Department of Clinical Research, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| |
Collapse
|
110
|
Wang X, Cheng CY, Liao J, Sim X, Liu J, Chia KS, Tai ES, Little P, Khor CC, Aung T, Wong TY, Teo YY. Evaluation of transethnic fine mapping with population-specific and cosmopolitan imputation reference panels in diverse Asian populations. Eur J Hum Genet 2015; 24:592-9. [PMID: 26130488 DOI: 10.1038/ejhg.2015.150] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 05/13/2015] [Accepted: 05/26/2015] [Indexed: 12/13/2022] Open
Abstract
There has been limited success in identifying causal variants underlying association signals observed in genome-wide association studies (GWAS). The use of 1000 Genomes Project (1KGP) allows the imputation to estimate the genetic information at untyped variants. However, long stretches of high linkage disequilibrium within the genome prevent us from differentiating between causal variants and perfect surrogates, thus limiting our ability to identify causal variants. Transethnic strategies have been proposed as a possible solution to mitigate this. However, these studies generally rely on imputing genotypes from multiple ancestries from 1KGP but not against population-specific reference panels. Here, we perform the first transethnic fine-mapping study across three Asian cohorts from diverse ancestries at the loci implicated with eye and blood lipid traits, using population-specific reference panels that have been generated by whole-genome sequencing samples from the same ancestry groups. Our study outlines several challenges faced in a fine-mapping exercise where one simply aims to meta-analyse existing GWAS that have been imputed against reference haplotypes from the 1KGP.
Collapse
Affiliation(s)
- Xu Wang
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Ching-Yu Cheng
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore.,Singapore Eye Research Institute, Singapore National Eye Center, Singapore, Singapore.,Department of Ophthalmology, National University of Singapore, Singapore, Singapore.,Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Jiemin Liao
- Singapore Eye Research Institute, Singapore National Eye Center, Singapore, Singapore
| | - Xueling Sim
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Jianjun Liu
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Kee-Seng Chia
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - E-Shyong Tai
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Peter Little
- Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Chiea-Chuen Khor
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Tin Aung
- Singapore Eye Research Institute, Singapore National Eye Center, Singapore, Singapore.,Department of Ophthalmology, National University of Singapore, Singapore, Singapore
| | - Tien-Yin Wong
- Singapore Eye Research Institute, Singapore National Eye Center, Singapore, Singapore.,Department of Ophthalmology, National University of Singapore, Singapore, Singapore.,Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Yik-Ying Teo
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore.,Singapore Eye Research Institute, Singapore National Eye Center, Singapore, Singapore.,Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore.,Life Sciences Institute, National University of Singapore, Singapore, Singapore.,NUS Graduate School for Integrative Science and Engineering, National University of Singapore, Singapore, Singapore.,Department of Statistics and Applied Probability, National University of Singapore, Singapore, Singapore
| |
Collapse
|
111
|
Egan ES, Jiang RHY, Moechtar MA, Barteneva NS, Weekes MP, Nobre LV, Gygi SP, Paulo JA, Frantzreb C, Tani Y, Takahashi J, Watanabe S, Goldberg J, Paul AS, Brugnara C, Root DE, Wiegand RC, Doench JG, Duraisingh MT. Malaria. A forward genetic screen identifies erythrocyte CD55 as essential for Plasmodium falciparum invasion. Science 2015; 348:711-4. [PMID: 25954012 DOI: 10.1126/science.aaa3526] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Efforts to identify host determinants for malaria have been hindered by the absence of a nucleus in erythrocytes, which precludes genetic manipulation in the cell in which the parasite replicates. We used cultured red blood cells derived from hematopoietic stem cells to carry out a forward genetic screen for Plasmodium falciparum host determinants. We found that CD55 is an essential host factor for P. falciparum invasion. CD55-null erythrocytes were refractory to invasion by all isolates of P. falciparum because parasites failed to attach properly to the erythrocyte surface. Thus, CD55 is an attractive target for the development of malaria therapeutics. Hematopoietic stem cell-based forward genetic screens may be valuable for the identification of additional host determinants of malaria pathogenesis.
Collapse
Affiliation(s)
- Elizabeth S Egan
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA. Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
| | - Rays H Y Jiang
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA. Department of Global Health and Center for Drug Discovery and Innovation, University of South Florida, Tampa, FL, USA
| | - Mischka A Moechtar
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Natasha S Barteneva
- Department of Pediatrics, Harvard Medical School and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Michael P Weekes
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Luis V Nobre
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Charles Frantzreb
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Yoshihiko Tani
- Japanese Red Cross Kinki Block Blood Center, Osaka, Japan
| | | | - Seishi Watanabe
- Japanese Red Cross Kyushu Block Blood Center, Fukuoka, Japan
| | - Jonathan Goldberg
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Aditya S Paul
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Carlo Brugnara
- Department of Laboratory Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - David E Root
- The Broad Institute of Harvard and Massachussetts Insititute of Technology, Cambridge, MA, USAA
| | - Roger C Wiegand
- The Broad Institute of Harvard and Massachussetts Insititute of Technology, Cambridge, MA, USAA
| | - John G Doench
- The Broad Institute of Harvard and Massachussetts Insititute of Technology, Cambridge, MA, USAA
| | - Manoj T Duraisingh
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA. The Broad Institute of Harvard and Massachussetts Insititute of Technology, Cambridge, MA, USAA.
| |
Collapse
|
112
|
Abstract
Sickle cell disease (SCD) is a genetic disorder that poses a serious health threat in tropical Africa, which the World Health Organization has declared a public health priority. Its persistence in human populations has been attributed to the resistance it provides to Plasmodium falciparum malaria in its heterozygous state, called sickle cell trait (SCT). Because of migration, SCT is becoming common outside tropical countries: It is now the most important genetic disorder in France, affecting one birth for every 2,400, and one of the most common in the United States. We assess the strength of the association between SCT and malaria, using current data for both SCT and malaria infections. A total of 3,959 blood samples from 195 villages distributed over the entire Republic of Gabon were analyzed. Hemoglobin variants were identified by using HPLCy (HPLC). Infections by three species of Plasmodium were detected by PCR followed by sequencing of a 201-bp fragment of cytochrome b. An increase of 10% in P. falciparum malaria prevalence is associated with an increase by 4.3% of SCT carriers. An increase of 10 y of age is associated with an increase by 5.5% of SCT carriers. Sex is not associated with SCT. These strong associations show that malaria remains a selective factor in current human populations, despite the progress of medicine and the actions undertaken to fight this disease. Our results provide evidence that evolution is still present in humans, although this is sometimes questioned by scientific, political, or religious personalities.
Collapse
|
113
|
Silver MJ, Corbin KD, Hellenthal G, da Costa KA, Dominguez-Salas P, Moore SE, Owen J, Prentice AM, Hennig BJ, Zeisel SH. Evidence for negative selection of gene variants that increase dependence on dietary choline in a Gambian cohort. FASEB J 2015; 29:3426-35. [PMID: 25921832 PMCID: PMC4511208 DOI: 10.1096/fj.15-271056] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 04/16/2015] [Indexed: 01/26/2023]
Abstract
Choline is an essential nutrient, and the amount needed in the diet is modulated by
several factors. Given geographical differences in dietary choline intake and
disparate frequencies of single-nucleotide polymorphisms (SNPs) in choline metabolism
genes between ethnic groups, we tested the hypothesis that 3 SNPs that increase
dependence on dietary choline would be under negative selection pressure in settings
where choline intake is low: choline dehydrogenase (CHDH) rs12676,
methylenetetrahydrofolate reductase 1 (MTHFD1) rs2236225, and
phosphatidylethanolamine-N-methyltransferase
(PEMT) rs12325817. Evidence of negative selection was assessed in
2 populations: one in The Gambia, West Africa, where there is historic evidence of a
choline-poor diet, and the other in the United States, with a comparatively
choline-rich diet. We used 2 independent methods, and confirmation of our hypothesis
was sought via a comparison with SNP data from the Maasai, an East
African population with a genetic background similar to that of Gambians but with a
traditional diet that is higher in choline. Our results show that frequencies of SNPs
known to increase dependence on dietary choline are significantly reduced in the
low-choline setting of The Gambia. Our findings suggest that adequate intake levels
of choline may have to be reevaluated in different ethnic groups and highlight a
possible approach for identifying novel functional SNPs under the influence of
dietary selective pressure.—Silver, M. J., Corbin, K. D., Hellenthal, G., da
Costa, K.-A., Dominguez-Salas, P., Moore, S. E., Owen, J., Prentice, A. M., Hennig,
B. J., Zeisel, S. H. Evidence for negative selection of gene variants that increase
dependence on dietary choline in a Gambian cohort.
Collapse
Affiliation(s)
- Matt J Silver
- *Medical Research Council International Nutrition Group, London School of Hygiene and Tropical Medicine, London, United Kingdom; Medical Research Council Unit, Banjul, The Gambia; Nutrition Research Institute, North Carolina Research Campus, Kannapolis, North Carolina, USA; Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; University College London Genetics Institute, University College London, United Kingdom; Toxicology Services, Incorporated, Chapel Hill, North Carolina, USA; and Maternal and Child Nutrition Group, Medical Research Council Human Nutrition Research, Cambridge, United Kingdom
| | - Karen D Corbin
- *Medical Research Council International Nutrition Group, London School of Hygiene and Tropical Medicine, London, United Kingdom; Medical Research Council Unit, Banjul, The Gambia; Nutrition Research Institute, North Carolina Research Campus, Kannapolis, North Carolina, USA; Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; University College London Genetics Institute, University College London, United Kingdom; Toxicology Services, Incorporated, Chapel Hill, North Carolina, USA; and Maternal and Child Nutrition Group, Medical Research Council Human Nutrition Research, Cambridge, United Kingdom
| | - Garrett Hellenthal
- *Medical Research Council International Nutrition Group, London School of Hygiene and Tropical Medicine, London, United Kingdom; Medical Research Council Unit, Banjul, The Gambia; Nutrition Research Institute, North Carolina Research Campus, Kannapolis, North Carolina, USA; Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; University College London Genetics Institute, University College London, United Kingdom; Toxicology Services, Incorporated, Chapel Hill, North Carolina, USA; and Maternal and Child Nutrition Group, Medical Research Council Human Nutrition Research, Cambridge, United Kingdom
| | - Kerry-Ann da Costa
- *Medical Research Council International Nutrition Group, London School of Hygiene and Tropical Medicine, London, United Kingdom; Medical Research Council Unit, Banjul, The Gambia; Nutrition Research Institute, North Carolina Research Campus, Kannapolis, North Carolina, USA; Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; University College London Genetics Institute, University College London, United Kingdom; Toxicology Services, Incorporated, Chapel Hill, North Carolina, USA; and Maternal and Child Nutrition Group, Medical Research Council Human Nutrition Research, Cambridge, United Kingdom
| | - Paula Dominguez-Salas
- *Medical Research Council International Nutrition Group, London School of Hygiene and Tropical Medicine, London, United Kingdom; Medical Research Council Unit, Banjul, The Gambia; Nutrition Research Institute, North Carolina Research Campus, Kannapolis, North Carolina, USA; Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; University College London Genetics Institute, University College London, United Kingdom; Toxicology Services, Incorporated, Chapel Hill, North Carolina, USA; and Maternal and Child Nutrition Group, Medical Research Council Human Nutrition Research, Cambridge, United Kingdom
| | - Sophie E Moore
- *Medical Research Council International Nutrition Group, London School of Hygiene and Tropical Medicine, London, United Kingdom; Medical Research Council Unit, Banjul, The Gambia; Nutrition Research Institute, North Carolina Research Campus, Kannapolis, North Carolina, USA; Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; University College London Genetics Institute, University College London, United Kingdom; Toxicology Services, Incorporated, Chapel Hill, North Carolina, USA; and Maternal and Child Nutrition Group, Medical Research Council Human Nutrition Research, Cambridge, United Kingdom
| | - Jennifer Owen
- *Medical Research Council International Nutrition Group, London School of Hygiene and Tropical Medicine, London, United Kingdom; Medical Research Council Unit, Banjul, The Gambia; Nutrition Research Institute, North Carolina Research Campus, Kannapolis, North Carolina, USA; Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; University College London Genetics Institute, University College London, United Kingdom; Toxicology Services, Incorporated, Chapel Hill, North Carolina, USA; and Maternal and Child Nutrition Group, Medical Research Council Human Nutrition Research, Cambridge, United Kingdom
| | - Andrew M Prentice
- *Medical Research Council International Nutrition Group, London School of Hygiene and Tropical Medicine, London, United Kingdom; Medical Research Council Unit, Banjul, The Gambia; Nutrition Research Institute, North Carolina Research Campus, Kannapolis, North Carolina, USA; Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; University College London Genetics Institute, University College London, United Kingdom; Toxicology Services, Incorporated, Chapel Hill, North Carolina, USA; and Maternal and Child Nutrition Group, Medical Research Council Human Nutrition Research, Cambridge, United Kingdom
| | - Branwen J Hennig
- *Medical Research Council International Nutrition Group, London School of Hygiene and Tropical Medicine, London, United Kingdom; Medical Research Council Unit, Banjul, The Gambia; Nutrition Research Institute, North Carolina Research Campus, Kannapolis, North Carolina, USA; Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; University College London Genetics Institute, University College London, United Kingdom; Toxicology Services, Incorporated, Chapel Hill, North Carolina, USA; and Maternal and Child Nutrition Group, Medical Research Council Human Nutrition Research, Cambridge, United Kingdom
| | - Steven H Zeisel
- *Medical Research Council International Nutrition Group, London School of Hygiene and Tropical Medicine, London, United Kingdom; Medical Research Council Unit, Banjul, The Gambia; Nutrition Research Institute, North Carolina Research Campus, Kannapolis, North Carolina, USA; Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; University College London Genetics Institute, University College London, United Kingdom; Toxicology Services, Incorporated, Chapel Hill, North Carolina, USA; and Maternal and Child Nutrition Group, Medical Research Council Human Nutrition Research, Cambridge, United Kingdom
| |
Collapse
|
114
|
Risk factors for Plasmodium falciparum gametocyte positivity in a longitudinal cohort. PLoS One 2015; 10:e0123102. [PMID: 25830351 PMCID: PMC4382284 DOI: 10.1371/journal.pone.0123102] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 02/27/2015] [Indexed: 12/03/2022] Open
Abstract
Malaria transmission intensity is highly heterogeneous even at a very small scale. Implementing targeted intervention in malaria transmission hotspots offers the potential to reduce the burden of disease both locally and in adjacent areas. Transmission of malaria parasites from man to mosquito requires the production of gametocyte stage parasites. Cluster analysis of a 19-year long cohort study for gametocyte carriage revealed spatially defined gametocyte hotspots that occurred during the time when chloroquine was the drug used for clinical case treatment. In addition to known risk factors for gametocyte carriage, notably young age (<15 years old) and associated with a clinical episode, blood groups B and O increased risk compared to groups A and AB. A hotspot of clinical P. falciparum clinical episodes that overlapped the gametocyte hotspots was also identified. Gametocyte positivity was found to be increased in individuals who had been treated with chloroquine, as opposed to other drug treatment regimens, for a clinical P. falciparum episode up to 30 days previously. It seems likely the hotspots were generated by a vicious circle of ineffective treatment of clinical cases and concomitant gametocyte production in a sub-population characterized by an increased prevalence of all the identified risk factors. While rapid access to treatment with an effective anti-malarial can reduce the duration of gametocyte carriage and onward parasite transmission, localised hotspots represent a challenge to malaria control and eventual eradication.
Collapse
|
115
|
Grant AV, Roussilhon C, Paul R, Sakuntabhai A. The genetic control of immunity to Plasmodium infection. BMC Immunol 2015; 16:14. [PMID: 25887595 PMCID: PMC4374205 DOI: 10.1186/s12865-015-0078-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 02/20/2015] [Indexed: 12/17/2022] Open
Abstract
Background Malaria remains a major worldwide public health problem with ~207 million cases and ~627,000 deaths per year, mainly affecting children under five years of age in Africa. Recent efforts at elaborating a genetic architecture of malaria have focused on severe malaria, leading to the identification of two new genes and confirmation of previously known variants in HBB, ABO and G6PD, by exploring the whole human genome in genome-wide association (GWA) studies. Molecular pathways controlling phenotypes representing effectiveness of host immunity, notably parasitemia and IgG levels, are of particular interest given the current lack of an efficacious vaccine and the need for new treatment options. Results We propose a global causal framework of malaria phenotypes implicating progression from the initial infection with Plasmodium spp. to the development of the infection through liver and blood-stage multiplication cycles (parasitemia as a quantitative trait), to clinical malaria attack, and finally to severe malaria. Genetic polymorphism may control any of these stages, such that preceding stages act as mediators of subsequent stages. A biomarker of humoral immunity, IgG levels, can also be integrated into the framework, potentially mediating the impact of polymorphism by limiting parasitemia levels. Current knowledge of the genetic basis of parasitemia levels and IgG levels is reviewed through key examples including the hemoglobinopathies, showing that the protective effect of HBB variants on malaria clinical phenotypes may partially be mediated through parasitemia and cytophilic IgG levels. Another example is the IgG receptor FcγRIIa, encoded by FCGR2A, such that H131 homozygotes displayed higher IgG2 levels and were protective against high parasitemia and onset of malaria symptoms as shown in a causal diagram. Conclusions We thus underline the value of parasitemia and IgG levels as phenotypes in the understanding of the human genetic architecture of malaria, and the need for applying GWA approaches to these phenotypes.
Collapse
Affiliation(s)
- Audrey V Grant
- Unité de la Génétique Fonctionnelle des Maladies Infectieuses, Institut Pasteur, Paris, France. .,Centre National de la Recherche Scientifique, URA3012, Paris, France.
| | - Christian Roussilhon
- Unité de la Génétique Fonctionnelle des Maladies Infectieuses, Institut Pasteur, Paris, France. .,Centre National de la Recherche Scientifique, URA3012, Paris, France.
| | - Richard Paul
- Unité de la Génétique Fonctionnelle des Maladies Infectieuses, Institut Pasteur, Paris, France. .,Centre National de la Recherche Scientifique, URA3012, Paris, France.
| | - Anavaj Sakuntabhai
- Unité de la Génétique Fonctionnelle des Maladies Infectieuses, Institut Pasteur, Paris, France. .,Centre National de la Recherche Scientifique, URA3012, Paris, France.
| |
Collapse
|
116
|
Schmidt CQ, Kennedy AT, Tham WH. More than just immune evasion: Hijacking complement by Plasmodium falciparum. Mol Immunol 2015; 67:71-84. [PMID: 25816986 DOI: 10.1016/j.molimm.2015.03.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Revised: 03/04/2015] [Accepted: 03/04/2015] [Indexed: 12/24/2022]
Abstract
Malaria remains one of the world's deadliest diseases. Plasmodium falciparum is responsible for the most severe and lethal form of human malaria. P. falciparum's life cycle involves two obligate hosts: human and mosquito. From initial entry into these hosts, malaria parasites face the onslaught of the first line of host defence, the complement system. In this review, we discuss the complex interaction between complement and malaria infection in terms of hosts immune responses, parasite survival and pathogenesis of severe forms of malaria. We will focus on the role of complement receptor 1 and its associated polymorphisms in malaria immune complex clearance, as a mediator of parasite rosetting and as an entry receptor for P. falciparum invasion. Complement evasion strategies of P. falciparum parasites will also be highlighted. The sexual forms of the malaria parasites recruit the soluble human complement regulator Factor H to evade complement-mediated killing within the mosquito host. A novel evasion strategy is the deployment of parasite organelles to divert complement attack from infective blood stage parasites. Finally we outline the future challenge to understand the implications of these exploitation mechanisms in the interplay between successful infection of the host and pathogenesis observed in severe malaria.
Collapse
Affiliation(s)
- Christoph Q Schmidt
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Helmholtzstraße 20, Ulm, Germany.
| | - Alexander T Kennedy
- Department of Medical Biology, University of Melbourne and Division of Infection and Immunity, The Walter and Eliza Hall Institute, Parkville, Victoria 3052, Australia
| | - Wai-Hong Tham
- Department of Medical Biology, University of Melbourne and Division of Infection and Immunity, The Walter and Eliza Hall Institute, Parkville, Victoria 3052, Australia.
| |
Collapse
|
117
|
Duru KC, Noble JA, Guindo A, Yi L, Imumorin IG, Diallo DA, Thomas BN. Extensive genomic variability of knops blood group polymorphisms is associated with sickle cell disease in Africa. Evol Bioinform Online 2015; 11:25-33. [PMID: 25788827 PMCID: PMC4357628 DOI: 10.4137/ebo.s23132] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 01/27/2015] [Accepted: 02/02/2015] [Indexed: 01/21/2023] Open
Abstract
Sickle cell disease (SCD) is a multisystem disorder characterized by chronic hemolytic anemia, vaso-occlusive crises, and marked variability in disease severity. Patients require transfusions to manage disease complications, with complements, directed by complement regulatory genes (CR1) and its polymorphisms, implicated in the development of alloantibodies. We hypothesize that CR1 polymorphisms affect complement regulation and function, leading to adverse outcome in SCD. To this end, we determined the genomic diversity of complement regulatory genes by examining single nucleotide polymorphisms associated with Knops blood group antigens. Genomic DNA samples from 130 SCD cases and 356 control Africans, 331 SCD cases and 497 control African Americans, and 254 Caucasians were obtained and analyzed, utilizing a PCR-RFLP (polymerase chain reaction-restriction fragment length polymorphism) assay. Analyzing for ethnic diversity, we found significant differences in the genotypic and allelic frequencies of Sl1/Sl2 (rs17047661) and McCa/b (rs17047660) polymorphisms between Africans, African Americans, and Caucasians (P < 0.05). The homozygote mutant variants had significantly higher frequencies in Africans and African Americans but were insignificant in Caucasians (80.2% and 59.6% vs 5.9% for Sl1/2; and 36% and 24% vs 1.8% for McCa/b). With SCD, we did not detect any difference among cases and controls either in Africa or in the United States. However, we found significant difference in genotypic (P < 0.0001) and allelic frequencies (P < 0.0001) of Sl1/Sl2 (rs17047661) and McCa/b (rs17047660) polymorphisms between SCD groups from Africa and the United States. There was no difference in haplotype frequencies of these polymorphisms among or between groups. The higher frequency of CR1 homozygote mutant variants in Africa but not United States indicates a potential pathogenic role, possibly associated with complicated disease pathophysiology in the former and potentially protective in the latter. The difference between sickle cell groups suggests potential genetic drift or founder effect imposed on the disease in the United States, but not in Africa, and a possible confirmation of the ancestral susceptibility hypothesis. The lower haplotype frequencies among sickle cell and control populations in the United States may be due to the admixture and the dilution of African genetic ancestry in the African American population.
Collapse
Affiliation(s)
- Kimberley C Duru
- Department of Biomedical Sciences, College of Health Sciences and Technology, Rochester Institute of Technology, Rochester, NY, USA
| | - Jenelle A Noble
- Department of Biomedical Sciences, College of Health Sciences and Technology, Rochester Institute of Technology, Rochester, NY, USA
| | - Aldiouma Guindo
- Centre de Recherche et de Lutte contre la Drepanocytose (CRLD), Bamako, Mali
| | - Li Yi
- School of Statistics, Shanxi University of Finance and Economics, Shanxi, China
| | - Ikhide G Imumorin
- Animal Genetics and Genomics Lab, Office of International Programs, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, USA
| | - Dapa A Diallo
- Centre de Recherche et de Lutte contre la Drepanocytose (CRLD), Bamako, Mali
| | - Bolaji N Thomas
- Department of Biomedical Sciences, College of Health Sciences and Technology, Rochester Institute of Technology, Rochester, NY, USA
| |
Collapse
|
118
|
Noble JA, Duru KC, Guindo A, Yi L, Imumorin IG, Diallo DA, Thomas BN. Interethnic diversity of the CD209 (rs4804803) gene promoter polymorphism in African but not American sickle cell disease. PeerJ 2015; 3:e799. [PMID: 25755928 PMCID: PMC4349147 DOI: 10.7717/peerj.799] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 02/03/2015] [Indexed: 12/27/2022] Open
Abstract
Elucidating the genomic diversity of CD209 gene promoter polymorphism could assist in clarifying disease pathophysiology as well as contribution to co-morbidities. CD209 gene promoter polymorphism has been shown to be associated with susceptibility to infection. We hypothesize that CD209 mutant variants occur at a higher frequency among Africans and in sickle cell disease. We analyzed the frequency of the CD209 gene (rs4804803) in healthy control and sickle cell disease (SCD) populations and determined association with disease. Genomic DNA was extracted from blood samples collected from 145 SCD and 231 control Africans (from Mali), 331 SCD and 379 control African Americans and 159 Caucasians. Comparative analysis among and between groups was carried out by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Per ethnic diversification, we found significant disparity in genotypic (23.4% versus 16.9% versus 3.2%) and allelic frequencies (48.7% versus 42.1% versus 19.8%) of the homozygote mutant variant of the CD209 (snp 309A/G) gene promoter between Africans, African Americans and Caucasians respectively. Comparative evaluation between disease and control groups reveal a significant difference in genotypic (10.4% versus 23.4%; p = 0.002) and allelic frequencies (39.7% versus 48.7%; p = 0.02) of the homozygote mutant variant in African SCD and healthy controls respectively, an observation that is completely absent among Americans. Comparing disease groups, we found no difference in the genotypic (p = 0.19) or allelic (p = 0.72) frequencies of CD209 homozygote mutant variant between Africans and Americans with sickle cell disease. The higher frequency of CD209 homozygote mutant variants in the African control group reveals a potential impairment of the capacity to mount an immune response to infectious diseases, and possibly delineate susceptibility to or severity of infectious co-morbidities within and between groups.
Collapse
Affiliation(s)
- Jenelle A Noble
- Department of Biomedical Sciences, College of Health Sciences and Technology, Rochester Institute of Technology , Rochester, NY , USA
| | - Kimberley C Duru
- Department of Biomedical Sciences, College of Health Sciences and Technology, Rochester Institute of Technology , Rochester, NY , USA
| | - Aldiouma Guindo
- Centre de Recherche et de Lutte contre la Drepanocytose , Bamako , Mali
| | - Li Yi
- School of Statistics, Shanxi University of Finance and Economics , Shanxi , China
| | - Ikhide G Imumorin
- Animal Genetics and Genomics Lab, Office of International Programs, Cornell University , Ithaca, NY , USA
| | - Dapa A Diallo
- Centre de Recherche et de Lutte contre la Drepanocytose , Bamako , Mali
| | - Bolaji N Thomas
- Department of Biomedical Sciences, College of Health Sciences and Technology, Rochester Institute of Technology , Rochester, NY , USA
| |
Collapse
|
119
|
Mangano VD, Kabore Y, Bougouma EC, Verra F, Sepulveda N, Bisseye C, Santolamazza F, Avellino P, Tiono AB, Diarra A, Nebie I, Rockett KA, Sirima SB, Modiano D. Novel Insights Into the Protective Role of Hemoglobin S and C Against Plasmodium falciparum Parasitemia. J Infect Dis 2015; 212:626-34. [PMID: 25712976 PMCID: PMC4512610 DOI: 10.1093/infdis/jiv098] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 02/13/2015] [Indexed: 02/04/2023] Open
Abstract
Although hemoglobin S (HbS) and hemoglobin C (HbC) are well known to protect against severe Plasmodium falciparum malaria, conclusive evidence on their role against infection has not yet been obtained. Here we show, in 2 populations from Burkina Faso (2007-2008), that HbS is associated with a 70% reduction of harboring P. falciparum parasitemia at the heterozygous state (odds ratio [OR] for AS vs AA, 0.27; 95% confidence interval [CI], .11-.66; P = .004). There is no evidence of protection for HbC in the heterozygous state (OR for AC vs AA, 1.49; 95% CI, .69-3.21; P = .31), whereas protection even higher than that observed with AS is observed in the homozygous and double heterozygous states (OR for CC + SC vs AA, 0.04; 95% CI, .01-.29; P = .002). The abnormal display of parasite-adhesive molecules on the surface of HbS and HbC infected erythrocytes, disrupting the pathogenic process of sequestration, might displace the parasite from the deep to the peripheral circulation, promoting its elimination at the spleen level.
Collapse
Affiliation(s)
- Valentina D Mangano
- Department of Public Health and Infectious Diseases Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Italy
| | - Youssouf Kabore
- Centre National de Recherche et Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Edith C Bougouma
- Centre National de Recherche et Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | | | - Nuno Sepulveda
- London School of Hygiene and Tropical Medicine Center of Statistics and Applications of University of Lisbon, Portugal
| | - Cyrille Bisseye
- Department of Public Health and Infectious Diseases Centre National de Recherche et Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | | | | | - Alfred B Tiono
- Centre National de Recherche et Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Amidou Diarra
- Centre National de Recherche et Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Issa Nebie
- Centre National de Recherche et Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Kirk A Rockett
- Wellcome Trust Centre for Human Genetics, University of Oxford Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Sodiomon B Sirima
- Centre National de Recherche et Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - David Modiano
- Department of Public Health and Infectious Diseases Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Italy
| | | |
Collapse
|
120
|
Sepúlveda N, Manjurano A, Drakeley C, Clark TG. On the performance of multiple imputation based on chained equations in tackling missing data of the African α3.7 -globin deletion in a malaria association study. Ann Hum Genet 2015; 78:277-89. [PMID: 24942080 PMCID: PMC4140543 DOI: 10.1111/ahg.12065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 03/23/2014] [Indexed: 11/30/2022]
Abstract
Multiple imputation based on chained equations (MICE) is an alternative missing genotype method that can use genetic and nongenetic auxiliary data to inform the imputation process. Previously, MICE was successfully tested on strongly linked genetic data. We have now tested it on data of the HBA2 gene which, by the experimental design used in a malaria association study in Tanzania, shows a high missing data percentage and is weakly linked with the remaining genetic markers in the data set. We constructed different imputation models and studied their performance under different missing data conditions. Overall, MICE failed to accurately predict the true genotypes. However, using the best imputation model for the data, we obtained unbiased estimates for the genetic effects, and association signals of the HBA2 gene on malaria positivity. When the whole data set was analyzed with the same imputation model, the association signal increased from 0.80 to 2.70 before and after imputation, respectively. Conversely, postimputation estimates for the genetic effects remained the same in relation to the complete case analysis but showed increased precision. We argue that these postimputation estimates are reasonably unbiased, as a result of a good study design based on matching key socio-environmental factors.
Collapse
Affiliation(s)
- Nuno Sepúlveda
- London School of Hygiene and Tropical Medicine, London, UK; Centre of Statistics and Applications of University of Lisbon, Lisbon, Portugal
| | | | | | | |
Collapse
|
121
|
Sobota RS, Shriner D, Kodaman N, Goodloe R, Zheng W, Gao YT, Edwards TL, Amos CI, Williams SM. Addressing population-specific multiple testing burdens in genetic association studies. Ann Hum Genet 2015; 79:136-47. [PMID: 25644736 DOI: 10.1111/ahg.12095] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 10/06/2014] [Indexed: 01/06/2023]
Abstract
The number of effectively independent tests performed in genome-wide association studies (GWAS) varies by population, making a universal P-value threshold inappropriate. We estimated the number of independent SNPs in Phase 3 HapMap samples by: (1) the LD-pruning function in PLINK, and (2) an autocorrelation-based approach. Autocorrelation was also used to estimate the number of independent SNPs in whole genome sequences from 1000 Genomes. Both approaches yielded consistent estimates of numbers of independent SNPs, which were used to calculate new population-specific thresholds for genome-wide significance. African populations had the most stringent thresholds (1.49 × 10(-7) for YRI at r(2) = 0.3), East Asian populations the least (3.75 × 10(-7) for JPT at r(2) = 0.3). We also assessed how using population-specific significance thresholds compared to using a single multiple testing threshold at the conventional 5 × 10(-8) cutoff. Applied to a previously published GWAS of melanoma in Caucasians, our approach identified two additional genes, both previously associated with the phenotype. In a Chinese breast cancer GWAS, our approach identified 48 additional genes, 19 of which were in or near genes previously associated with the phenotype. We conclude that the conventional genome-wide significance threshold generates an excess of Type 2 errors, particularly in GWAS performed on more recently founded populations.
Collapse
Affiliation(s)
- Rafal S Sobota
- Center for Human Genetics Research, Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Genetics, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire
| | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Mersha TB, Abebe T. Self-reported race/ethnicity in the age of genomic research: its potential impact on understanding health disparities. Hum Genomics 2015; 9:1. [PMID: 25563503 PMCID: PMC4307746 DOI: 10.1186/s40246-014-0023-x] [Citation(s) in RCA: 268] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Accepted: 12/01/2014] [Indexed: 12/02/2022] Open
Abstract
This review explores the limitations of self-reported race, ethnicity, and genetic ancestry in biomedical research. Various terminologies are used to classify human differences in genomic research including race, ethnicity, and ancestry. Although race and ethnicity are related, race refers to a person's physical appearance, such as skin color and eye color. Ethnicity, on the other hand, refers to communality in cultural heritage, language, social practice, traditions, and geopolitical factors. Genetic ancestry inferred using ancestry informative markers (AIMs) is based on genetic/genomic data. Phenotype-based race/ethnicity information and data computed using AIMs often disagree. For example, self-reporting African Americans can have drastically different levels of African or European ancestry. Genetic analysis of individual ancestry shows that some self-identified African Americans have up to 99% of European ancestry, whereas some self-identified European Americans have substantial admixture from African ancestry. Similarly, African ancestry in the Latino population varies between 3% in Mexican Americans to 16% in Puerto Ricans. The implication of this is that, in African American or Latino populations, self-reported ancestry may not be as accurate as direct assessment of individual genomic information in predicting treatment outcomes. To better understand human genetic variation in the context of health disparities, we suggest using "ancestry" (or biogeographical ancestry) to describe actual genetic variation, "race" to describe health disparity in societies characterized by racial categories, and "ethnicity" to describe traditions, lifestyle, diet, and values. We also suggest using ancestry informative markers for precise characterization of individuals' biological ancestry. Understanding the sources of human genetic variation and the causes of health disparities could lead to interventions that would improve the health of all individuals.
Collapse
Affiliation(s)
- Tesfaye B Mersha
- Division of Asthma Research, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, USA.
| | - Tilahun Abebe
- Department of Biology, University of Northern Iowa, Cedar Falls, IA, USA.
| |
Collapse
|
123
|
Abstract
Parasites still impose a high death and disability burden on human populations, and are therefore likely to act as selective factors for genetic adaptations. Genetic epidemiological investigation of parasitic diseases is aimed at disentangling the mechanisms underlying immunity and pathogenesis by looking for associations or linkages between loci and susceptibility phenotypes. Until recently, most studies used a candidate gene approach and were relatively underpowered, with few attempts at replicating findings in different populations. However, in the last 5 years, genome-wide and/or multicentre studies have been conducted for severe malaria, visceral leishmaniasis, and cardiac Chagas disease, providing some novel important insights. Furthermore, studies of helminth infections have repeatedly shown the involvement of common loci in regulating susceptibility to distinct diseases such as schistosomiasis, ascariasis, trichuriasis, and onchocherciasis. As more studies are conducted, evidence is increasing that at least some of the identified susceptibility loci are shared not only among parasitic diseases but also with immunological disorders such as allergy or autoimmune disease, suggesting that parasites may have played a role in driving the evolution of the immune system.
Collapse
Affiliation(s)
- V D Mangano
- Department of Public Health and Infectious Diseases, University of Rome 'La Sapienza', Rome, Italy; Istituto Pasteur, Fondazione Cenci Bolognetti, University of Rome 'La Sapienza', Rome, Italy
| | | |
Collapse
|
124
|
Gurdasani D, Carstensen T, Tekola-Ayele F, Pagani L, Tachmazidou I, Hatzikotoulas K, Karthikeyan S, Iles L, Pollard MO, Choudhury A, Ritchie GRS, Xue Y, Asimit J, Nsubuga RN, Young EH, Pomilla C, Kivinen K, Rockett K, Kamali A, Doumatey AP, Asiki G, Seeley J, Sisay-Joof F, Jallow M, Tollman S, Mekonnen E, Ekong R, Oljira T, Bradman N, Bojang K, Ramsay M, Adeyemo A, Bekele E, Motala A, Norris SA, Pirie F, Kaleebu P, Kwiatkowski D, Tyler-Smith C, Rotimi C, Zeggini E, Sandhu MS. The African Genome Variation Project shapes medical genetics in Africa. Nature 2014; 517:327-32. [PMID: 25470054 PMCID: PMC4297536 DOI: 10.1038/nature13997] [Citation(s) in RCA: 378] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 10/23/2014] [Indexed: 12/27/2022]
Abstract
Given the importance of Africa to studies of human origins and disease susceptibility, detailed characterization of African genetic diversity is needed. The African Genome Variation Project provides a resource with which to design, implement and interpret genomic studies in sub-Saharan Africa and worldwide. The African Genome Variation Project represents dense genotypes from 1,481 individuals and whole-genome sequences from 320 individuals across sub-Saharan Africa. Using this resource, we find novel evidence of complex, regionally distinct hunter-gatherer and Eurasian admixture across sub-Saharan Africa. We identify new loci under selection, including loci related to malaria susceptibility and hypertension. We show that modern imputation panels (sets of reference genotypes from which unobserved or missing genotypes in study sets can be inferred) can identify association signals at highly differentiated loci across populations in sub-Saharan Africa. Using whole-genome sequencing, we demonstrate further improvements in imputation accuracy, strengthening the case for large-scale sequencing efforts of diverse African haplotypes. Finally, we present an efficient genotype array design capturing common genetic variation in Africa.
Collapse
Affiliation(s)
- Deepti Gurdasani
- 1] Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, UK [2] Department of Public Health and Primary Care, University of Cambridge, 2 Wort's Causeway, Cambridge, CB1 8RN, UK
| | - Tommy Carstensen
- 1] Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, UK [2] Department of Public Health and Primary Care, University of Cambridge, 2 Wort's Causeway, Cambridge, CB1 8RN, UK
| | - Fasil Tekola-Ayele
- Centre for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, 12 South Drive, MSC 5635, Bethesda, Maryland 20891-5635, USA
| | - Luca Pagani
- 1] Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, UK [2] Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| | - Ioanna Tachmazidou
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | | | - Savita Karthikeyan
- 1] Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, UK [2] Department of Public Health and Primary Care, University of Cambridge, 2 Wort's Causeway, Cambridge, CB1 8RN, UK
| | - Louise Iles
- 1] Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, UK [2] Department of Public Health and Primary Care, University of Cambridge, 2 Wort's Causeway, Cambridge, CB1 8RN, UK [3] Department of Archaeology, University of York, King's Manor, York YO1 7EP, UK
| | - Martin O Pollard
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Ananyo Choudhury
- Sydney Brenner Institute of Molecular Bioscience (SBIMB), University of the Witwatersrand, The Mount, 9 Jubilee Road, Parktown 2193, Johannesburg, Gauteng, South Africa
| | - Graham R S Ritchie
- 1] Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, UK [2] Vertebrate Genomics, European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Yali Xue
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Jennifer Asimit
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Rebecca N Nsubuga
- Medical Research Council/Uganda Virus Research Institute, Plot 51-57 Nakiwogo Road, Uganda
| | - Elizabeth H Young
- 1] Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, UK [2] Department of Public Health and Primary Care, University of Cambridge, 2 Wort's Causeway, Cambridge, CB1 8RN, UK
| | - Cristina Pomilla
- 1] Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, UK [2] Department of Public Health and Primary Care, University of Cambridge, 2 Wort's Causeway, Cambridge, CB1 8RN, UK
| | - Katja Kivinen
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Kirk Rockett
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Headington, Oxford OX3 7BN, UK
| | - Anatoli Kamali
- Medical Research Council/Uganda Virus Research Institute, Plot 51-57 Nakiwogo Road, Uganda
| | - Ayo P Doumatey
- Centre for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, 12 South Drive, MSC 5635, Bethesda, Maryland 20891-5635, USA
| | - Gershim Asiki
- Medical Research Council/Uganda Virus Research Institute, Plot 51-57 Nakiwogo Road, Uganda
| | - Janet Seeley
- Medical Research Council/Uganda Virus Research Institute, Plot 51-57 Nakiwogo Road, Uganda
| | - Fatoumatta Sisay-Joof
- Medical Research Council Unit, Atlantic Boulevard, SerrekundaPO Box 273, Banjul, The Gambia
| | - Muminatou Jallow
- Medical Research Council Unit, Atlantic Boulevard, SerrekundaPO Box 273, Banjul, The Gambia
| | - Stephen Tollman
- 1] Medical Research Council/Wits Rural Public Health and Health Transitions Unit, School of Public Health, Education Campus, 27 St Andrew's Road, Parktown 2192, Johannesburg, Gauteng, South Africa [2] INDEPTH Network, 38/40 Mensah Wood Street, East Legon, PO Box KD 213, Kanda, Accra, Ghana
| | - Ephrem Mekonnen
- Institute of Biotechnology, Addis Ababa University, Entoto Avenue, Arat Kilo, 16087 Addis Ababa, Ethiopia
| | - Rosemary Ekong
- Department of Genetics Evolution and Environment, University College, London, Gower Street, London WC1E 6BT, UK
| | - Tamiru Oljira
- University of Haramaya, Department of Biology, PO Box 138, Dire Dawa, Ethiopia
| | - Neil Bradman
- Henry Stewart Group, 28/30 Little Russell Street, London WC1A 2HN, UK
| | - Kalifa Bojang
- Medical Research Council Unit, Atlantic Boulevard, SerrekundaPO Box 273, Banjul, The Gambia
| | - Michele Ramsay
- 1] Sydney Brenner Institute of Molecular Bioscience (SBIMB), University of the Witwatersrand, The Mount, 9 Jubilee Road, Parktown 2193, Johannesburg, Gauteng, South Africa [2] Division of Human Genetics, National Health Laboratory Service, C/O Hospital and de Korte Streets, Braamfontein 2000, Johannesburg, South Africa [3] School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Braamfontein 2000, Johannesburg, South Africa
| | - Adebowale Adeyemo
- Centre for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, 12 South Drive, MSC 5635, Bethesda, Maryland 20891-5635, USA
| | - Endashaw Bekele
- Department of Microbial, Cellular and Molecular Biology, College of Natural Sciences, Arat Kilo Campus, Addis Ababa University, PO Box 1176, Addis Ababa, Ethiopia
| | - Ayesha Motala
- Department of Diabetes and Endocrinology, University of KwaZulu-Natal, 719 Umbilo Road, Congella, Durban 4013, South Africa
| | - Shane A Norris
- Department of Paediatrics, University of Witwatersrand, 7 York Road, Parktown 2198, Johannesburg, Gauteng, South Africa
| | - Fraser Pirie
- Department of Diabetes and Endocrinology, University of KwaZulu-Natal, 719 Umbilo Road, Congella, Durban 4013, South Africa
| | - Pontiano Kaleebu
- Medical Research Council/Uganda Virus Research Institute, Plot 51-57 Nakiwogo Road, Uganda
| | - Dominic Kwiatkowski
- 1] Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, UK [2] Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Headington, Oxford OX3 7BN, UK
| | - Chris Tyler-Smith
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Charles Rotimi
- Centre for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, 12 South Drive, MSC 5635, Bethesda, Maryland 20891-5635, USA
| | - Eleftheria Zeggini
- Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Manjinder S Sandhu
- 1] Wellcome Trust Sanger Institute, Genome Campus, Hinxton, Cambridge CB10 1SA, UK [2] Department of Public Health and Primary Care, University of Cambridge, 2 Wort's Causeway, Cambridge, CB1 8RN, UK
| |
Collapse
|
125
|
Peprah E, Xu H, Tekola-Ayele F, Royal CD. Genome-wide association studies in Africans and African Americans: expanding the framework of the genomics of human traits and disease. Public Health Genomics 2014; 18:40-51. [PMID: 25427668 DOI: 10.1159/000367962] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 08/29/2014] [Indexed: 01/11/2023] Open
Abstract
Genomic research is one of the tools for elucidating the pathogenesis of diseases of global health relevance and paving the research dimension to clinical and public health translation. Recent advances in genomic research and technologies have increased our understanding of human diseases, genes associated with these disorders, and the relevant mechanisms. Genome-wide association studies (GWAS) have proliferated since the first studies were published several years ago and have become an important tool in helping researchers comprehend human variation and the role genetic variants play in disease. However, the need to expand the diversity of populations in GWAS has become increasingly apparent as new knowledge is gained about genetic variation. Inclusion of diverse populations in genomic studies is critical to a more complete understanding of human variation and elucidation of the underpinnings of complex diseases. In this review, we summarize the available data on GWAS in recent African ancestry populations within the western hemisphere (i.e. African Americans and peoples of the Caribbean) and continental African populations. Furthermore, we highlight ways in which genomic studies in populations of recent African ancestry have led to advances in the areas of malaria, HIV, prostate cancer, and other diseases. Finally, we discuss the advantages of conducting GWAS in recent African ancestry populations in the context of addressing existing and emerging global health conditions.
Collapse
|
126
|
Crompton PD, Moebius J, Portugal S, Waisberg M, Hart G, Garver LS, Miller LH, Barillas-Mury C, Pierce SK. Malaria immunity in man and mosquito: insights into unsolved mysteries of a deadly infectious disease. Annu Rev Immunol 2014; 32:157-87. [PMID: 24655294 DOI: 10.1146/annurev-immunol-032713-120220] [Citation(s) in RCA: 207] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Malaria is a mosquito-borne disease caused by parasites of the obligate intracellular Apicomplexa phylum the most deadly of which, Plasmodium falciparum, prevails in Africa. Malaria imposes a huge health burden on the world's most vulnerable populations, claiming the lives of nearly one million children and pregnant women each year. Although there is keen interest in eradicating malaria, we do not yet have the necessary tools to meet this challenge, including an effective malaria vaccine and adequate vector control strategies. Here we review what is known about the mechanisms at play in immune resistance to malaria in both the human and mosquito hosts at each step in the parasite's complex life cycle with a view toward developing the tools that will contribute to the prevention of disease and death and, ultimately, to the goal of malaria eradication. In so doing, we hope to inspire immunologists to participate in defeating this devastating disease.
Collapse
|
127
|
Hanchard NA, Moulds JM, Belmont JW, Chen A. A Genome-Wide Screen for Large-Effect Alloimmunization Susceptibility Loci among Red Blood Cell Transfusion Recipients with Sickle Cell Disease. ACTA ACUST UNITED AC 2014; 41:453-61. [PMID: 25670933 DOI: 10.1159/000369079] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 10/01/2014] [Indexed: 01/11/2023]
Abstract
BACKGROUND A selective susceptibility of certain individuals to form multiple alloantibodies in response to red cell transfusion is well-recognized in clinical practice, and is a particular problem in persons with sickle cell disease (SCD). The reason for this differential susceptibility is unclear, but inter-individual genetic differences are likely to contribute. METHODS We conducted a pilot case-control genome-wide association study using 1,000,000 SNPs in 94 alloimmune responders (cases) and non-responders (controls) with SCD in order to identify loci of large effect size associated with alloimmunization. RESULTS No loci showed evidence of association at a genome-wide significance cut-off (p < 0.5 × 10(-8)). SNPs in the ARAP1/STARD10 region showed suggestive association (p < 1 × 10(-6)), but no association was observed at previously implicated loci TRIM21 or HLA. In analyses of the number of accumulated antibodies, a modest association was found with SNPs in the Toll-like receptor gene TLR10 (p < 1 × 10(-4)). CONCLUSIONS Alloimmunization in persons with SCD is unlikely to be mediated by loci of very large effect size; however, larger and more comprehensive studies are required to fully evaluate loci with more moderate effects. This study provides a working approach to such future studies in SCD.
Collapse
Affiliation(s)
- Neil A Hanchard
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA ; ARS/USDA/Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Joann M Moulds
- Scientific Support Services, LifeShare Blood Centers, Shreveport, LA, USA
| | - John W Belmont
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA ; ARS/USDA/Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Alice Chen
- Department of Pathology, Texas Heart Institute, Baylor St. Luke's Medical Center, Houston, TX, USA
| |
Collapse
|
128
|
Panoutsopoulou K, Hatzikotoulas K, Xifara DK, Colonna V, Farmaki AE, Ritchie GRS, Southam L, Gilly A, Tachmazidou I, Fatumo S, Matchan A, Rayner NW, Ntalla I, Mezzavilla M, Chen Y, Kiagiadaki C, Zengini E, Mamakou V, Athanasiadis A, Giannakopoulou M, Kariakli VE, Nsubuga RN, Karabarinde A, Sandhu M, McVean G, Tyler-Smith C, Tsafantakis E, Karaleftheri M, Xue Y, Dedoussis G, Zeggini E. Genetic characterization of Greek population isolates reveals strong genetic drift at missense and trait-associated variants. Nat Commun 2014; 5:5345. [PMID: 25373335 PMCID: PMC4242463 DOI: 10.1038/ncomms6345] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 09/22/2014] [Indexed: 11/09/2022] Open
Abstract
Isolated populations are emerging as a powerful study design in the search for low-frequency and rare variant associations with complex phenotypes. Here we genotype 2,296 samples from two isolated Greek populations, the Pomak villages (HELIC-Pomak) in the North of Greece and the Mylopotamos villages (HELIC-MANOLIS) in Crete. We compare their genomic characteristics to the general Greek population and establish them as genetic isolates. In the MANOLIS cohort, we observe an enrichment of missense variants among the variants that have drifted up in frequency by more than fivefold. In the Pomak cohort, we find novel associations at variants on chr11p15.4 showing large allele frequency increases (from 0.2% in the general Greek population to 4.6% in the isolate) with haematological traits, for example, with mean corpuscular volume (rs7116019, P=2.3 × 10(-26)). We replicate this association in a second set of Pomak samples (combined P=2.0 × 10(-36)). We demonstrate significant power gains in detecting medical trait associations.
Collapse
Affiliation(s)
| | | | - Dionysia Kiara Xifara
- 1] Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK [2] Department of Statistics, University of Oxford, Oxford OX1 3TG, UK
| | - Vincenza Colonna
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', National Research Council (CNR), Naples 80131, Italy
| | - Aliki-Eleni Farmaki
- Department of Nutrition and Dietetics, Harokopio University of Athens, Athens 17671, Greece
| | - Graham R S Ritchie
- 1] Department of Human Genetics, Wellcome Trust Sanger Institute, Hinxton CB10 1HH, UK [2] European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridge CB10 1SD, UK
| | - Lorraine Southam
- 1] Department of Human Genetics, Wellcome Trust Sanger Institute, Hinxton CB10 1HH, UK [2] Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Arthur Gilly
- Department of Human Genetics, Wellcome Trust Sanger Institute, Hinxton CB10 1HH, UK
| | - Ioanna Tachmazidou
- Department of Human Genetics, Wellcome Trust Sanger Institute, Hinxton CB10 1HH, UK
| | - Segun Fatumo
- 1] Department of Human Genetics, Wellcome Trust Sanger Institute, Hinxton CB10 1HH, UK [2] H3Africa Bioinformatics Network (H3ABioNet) Node, National Biotechnology Development Agency (NABDA), Federal Ministry of Science and Technology (FMST), Abuja 900107, Nigeria [3] International Health Research Group, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8NR, UK
| | - Angela Matchan
- Department of Human Genetics, Wellcome Trust Sanger Institute, Hinxton CB10 1HH, UK
| | - Nigel W Rayner
- 1] Department of Human Genetics, Wellcome Trust Sanger Institute, Hinxton CB10 1HH, UK [2] Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK [3] Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford OX3 7LJ, UK
| | - Ioanna Ntalla
- 1] Department of Nutrition and Dietetics, Harokopio University of Athens, Athens 17671, Greece [2] Department of Health Sciences, University of Leicester, Leicester LE1 7RH, UK
| | - Massimo Mezzavilla
- 1] Department of Human Genetics, Wellcome Trust Sanger Institute, Hinxton CB10 1HH, UK [2] Division of Medical Genetics, Department of Reproductive Sciences and Development, IRCCS-Burlo Garofolo, University of Trieste, Trieste 34137, Italy
| | - Yuan Chen
- Department of Human Genetics, Wellcome Trust Sanger Institute, Hinxton CB10 1HH, UK
| | | | - Eleni Zengini
- 1] Dromokaiteio Psychiatric Hospital of Athens, Chaidari, Athens 12461, Greece [2] Department of Human Metabolism, University of Sheffield, Sheffield S10 2TN, UK
| | - Vasiliki Mamakou
- 1] Dromokaiteio Psychiatric Hospital of Athens, Chaidari, Athens 12461, Greece [2] School of Medicine, National and Kapodistrian University of Athens, Goudi, Athens 11527, Greece
| | | | - Margarita Giannakopoulou
- School of Health Sciences, Faculty of Nursing, National and Kapodistrian University of Athens, Goudi, Athens 11527, Greece
| | | | - Rebecca N Nsubuga
- Medical Research Council/Uganda Virus Research Institute, Uganda Research Unit on AIDS, PO Box 49, Entebbe, Uganda
| | - Alex Karabarinde
- Medical Research Council/Uganda Virus Research Institute, Uganda Research Unit on AIDS, PO Box 49, Entebbe, Uganda
| | - Manjinder Sandhu
- 1] Department of Human Genetics, Wellcome Trust Sanger Institute, Hinxton CB10 1HH, UK [2] International Health Research Group, Department of Public Health and Primary Care, University of Cambridge, Cambridge CB1 8NR, UK
| | - Gil McVean
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Chris Tyler-Smith
- Department of Human Genetics, Wellcome Trust Sanger Institute, Hinxton CB10 1HH, UK
| | | | | | - Yali Xue
- Department of Human Genetics, Wellcome Trust Sanger Institute, Hinxton CB10 1HH, UK
| | - George Dedoussis
- Department of Nutrition and Dietetics, Harokopio University of Athens, Athens 17671, Greece
| | - Eleftheria Zeggini
- Department of Human Genetics, Wellcome Trust Sanger Institute, Hinxton CB10 1HH, UK
| |
Collapse
|
129
|
Shah SS, Macharia A, Makale J, Uyoga S, Kivinen K, Craik R, Hubbart C, Wellems TE, Rockett KA, Kwiatkowski DP, Williams TN. Genetic determinants of glucose-6-phosphate dehydrogenase activity in Kenya. BMC MEDICAL GENETICS 2014; 15:93. [PMID: 25201310 PMCID: PMC4236593 DOI: 10.1186/s12881-014-0093-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 07/31/2014] [Indexed: 11/20/2022]
Abstract
Background The relationship between glucose-6-phosphate dehydrogenase (G6PD) deficiency and clinical phenomena such as primaquine-sensitivity and protection from severe malaria remains poorly defined, with past association studies yielding inconsistent and conflicting results. One possibility is that examination of a single genetic variant might underestimate the presence of true effects in the presence of unrecognized functional allelic diversity. Methods We systematically examined this possibility in Kenya, conducting a fine-mapping association study of erythrocyte G6PD activity in 1828 Kenyan children across 30 polymorphisms at or around the G6PD locus. Results We demonstrate a strong functional role for c.202G>A (rs1050828), which accounts for the majority of variance in enzyme activity observed (P=1.5×10−200, additive model). Additionally, we identify other common variants that exert smaller, intercorrelated effects independent of c.202G>A, and haplotype analyses suggest that each variant tags one of two haplotype motifs that are opposite in sequence identity and effect direction. We posit that these effects are of biological and possible clinical significance, specifically noting that c.376A>G (rs1050829) augments 202AG heterozygote risk for deficiency trait by two-fold (OR = 2.11 [1.12 - 3.84], P=0.014). Conclusions Our results suggest that c.202G>A is responsible for the majority of the observed prevalence of G6PD deficiency trait in Kenya, but also identify a novel role for c.376A>G as a genetic modifier which marks a common haplotype that augments the risk conferred to 202AG heterozygotes, suggesting that variation at both loci merits consideration in genetic association studies probing G6PD deficiency-associated clinical phenotypes.
Collapse
Affiliation(s)
- Shivang S Shah
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
130
|
Kodaman N, Sobota RS, Mera R, Schneider BG, Williams SM. Disrupted human-pathogen co-evolution: a model for disease. Front Genet 2014; 5:290. [PMID: 25202324 PMCID: PMC4142859 DOI: 10.3389/fgene.2014.00290] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 08/05/2014] [Indexed: 02/06/2023] Open
Abstract
A major goal in infectious disease research is to identify the human and pathogenic genetic variants that explain differences in microbial pathogenesis. However, neither pathogenic strain nor human genetic variation in isolation has proven adequate to explain the heterogeneity of disease pathology. We suggest that disrupted co-evolution between a pathogen and its human host can explain variation in disease outcomes, and that genome-by-genome interactions should therefore be incorporated into genetic models of disease caused by infectious agents. Genetic epidemiological studies that fail to take both the pathogen and host into account can lead to false and misleading conclusions about disease etiology. We discuss our model in the context of three pathogens, Helicobacter pylori, Mycobacterium tuberculosis and human papillomavirus, and generalize the conditions under which it may be applicable.
Collapse
Affiliation(s)
- Nuri Kodaman
- Department of Genetics, Geisel School of Medicine, Dartmouth College Hanover, NH, USA ; Department of Molecular Physiology and Biophysics, Center for Human Genetics Research, Vanderbilt University Medical Center Nashville, TN, USA
| | - Rafal S Sobota
- Department of Genetics, Geisel School of Medicine, Dartmouth College Hanover, NH, USA ; Department of Molecular Physiology and Biophysics, Center for Human Genetics Research, Vanderbilt University Medical Center Nashville, TN, USA
| | - Robertino Mera
- Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center Nashville, TN, USA
| | - Barbara G Schneider
- Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center Nashville, TN, USA
| | - Scott M Williams
- Department of Genetics, Geisel School of Medicine, Dartmouth College Hanover, NH, USA
| |
Collapse
|
131
|
Nasr A, Allam G, Hamid O, Al-Ghamdi A. IFN-gamma and TNF associated with severe falciparum malaria infection in Saudi pregnant women. Malar J 2014; 13:314. [PMID: 25124540 PMCID: PMC4137072 DOI: 10.1186/1475-2875-13-314] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 08/07/2014] [Indexed: 11/18/2022] Open
Abstract
Background Tumour necrosis factor (TNF) and interferon gamma (IFN-γ), encoded by TNF-836 C/A (rs 1800630) and IFN-γ -1616 C/T (rs2069705) genes, are key immunological mediators that are believed to both play protective and pathological roles in malaria. The aim of this study was to investigate the relationship between TNF-836 C/A and IFN-γ-1616 C/T polymorphism and susceptibility to severe malaria in pregnant women. Methods A prospective cohort (cross-sectional) study was conducted in pregnant women attending the out-patient clinic in King Fahad Specialist Hospital in Jazan (KFSHJ), with a clinical diagnosis of malaria. A total of one hundred and eighty six pregnant women were genotyped for single nucleotide polymorphism (SNP) for TNF and IFN-γ using Taqman® MGB Probes. Serum cytokine concentrations were measured by sandwich ELISA method. Results A hospital case–control study of severe malaria in a Saudi population identified strong associations with individual single-nucleotide polymorphisms in the TNF and IFN-γ genes, and defined TNF-836 C and IFN-γ-1616 T genotypes and alleles which were statistically significantly associated with severe malaria infection. Furthermore, TNF-836 CC and IFN-γ-1616 TT genotypes were associated with higher serum concentration of TNF and IFN-γ, respectively, and with susceptibility to severe malaria. Conclusions This data provides a starting point for functional and genetic analysis of the TNF and IFN-γ genomic region in malaria infection affecting Saudi populations.
Collapse
Affiliation(s)
| | - Gamal Allam
- Department of Microbiology, College of Medicine, Taif University, PO Box 888, Taif, Saudi Arabia.
| | | | | |
Collapse
|
132
|
Abel L, Alcaïs A, Schurr E. The dissection of complex susceptibility to infectious disease: bacterial, viral and parasitic infections. Curr Opin Immunol 2014; 30:72-8. [PMID: 25083600 DOI: 10.1016/j.coi.2014.07.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 06/17/2014] [Accepted: 07/06/2014] [Indexed: 01/01/2023]
Abstract
Infectious diseases are the result of the exposure of susceptible hosts to pathogenic microbes. Genetic factors are important determinants of host susceptibility and efforts are being made to establish the molecular identity of such genetic susceptibility variants by genome-wide association studies. Results obtained to date partly confirm already known genetic vulnerabilities, but also point to new and unexpected mechanisms of susceptibility that extend from classical innate and acquired immunity to weaknesses in constitutional resistance. These studies also revealed an overlap in genetic control between infectious disease and other common immune and inflammatory disorders.
Collapse
Affiliation(s)
- Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U.980, University Paris Descartes, Necker Enfants-Malades Hospital, Paris 75015, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA
| | - Alexandre Alcaïs
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U.980, University Paris Descartes, Necker Enfants-Malades Hospital, Paris 75015, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY 10065, USA; URC, CIC, Necker and Cochin Hospitals, Paris, France
| | - Erwin Schurr
- McGill International TB Centre & Departments of Human Genetics and Medicine, McGill University, Montreal, Quebec, Canada; Program in Immunology and Infectious Diseases in Global Health, The Research Institute of the McGill University Health Centre, Canada.
| |
Collapse
|
133
|
Bedu-Addo G, Gai PP, Meese S, Eggelte TA, Thangaraj K, Mockenhaupt FP. Reduced prevalence of placental malaria in primiparae with blood group O. Malar J 2014; 13:289. [PMID: 25066505 PMCID: PMC4119177 DOI: 10.1186/1475-2875-13-289] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 07/21/2014] [Indexed: 11/23/2022] Open
Abstract
Background Blood group O protects African children against severe malaria and has reached high prevalence in malarious regions. However, its role in malaria in pregnancy is ambiguous. In 839 delivering Ghanaian women, associations of ABO blood groups with Plasmodium falciparum infection were examined. Methods Plasmodium falciparum infection was diagnosed in placental blood samples by microscopy and PCR assays. Present or past infection was defined as the detection of parasitaemia or haemozoin by microscopy, or a positive PCR result. Blood groups were inferred from genotyping rs8176719 (indicating the O allele) and rs8176746/rs8176747 (distinguishing the B allele from the A allele). Results The majority of women had blood group O (55.4%); present or past P. falciparum infection was seen in 62.3% of all women. Among multiparae, the blood groups had no influence on P. falciparum infection. In contrast, primiparae with blood group O had significantly less present or past infection than women with non-O blood groups (61.5 vs 76.2%, P = 0.007). In multivariate analysis, the odds of present or past placental P. falciparum infection were reduced by 45% in blood group O primiparae (aOR, 0.55 [95% CI, 0.33–0.94]). Conclusions The present study shows a clear protective effect of blood group O against malaria in primiparae. This accords with findings in severe malaria and in vitro results. The data underline the relevance of host genetic protection among primiparae, i.e. the high-risk group for malaria in pregnancy, and contribute to the understanding of high O allele frequencies in Africa.
Collapse
Affiliation(s)
| | | | | | | | | | - Frank P Mockenhaupt
- Institute of Tropical Medicine and International Health, Charité - University Medicine Berlin, Berlin, Germany.
| |
Collapse
|
134
|
Jäger G, Peltzer A, Nieselt K. inPHAP: interactive visualization of genotype and phased haplotype data. BMC Bioinformatics 2014; 15:200. [PMID: 25002076 PMCID: PMC4083868 DOI: 10.1186/1471-2105-15-200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 06/10/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To understand individual genomes it is necessary to look at the variations that lead to changes in phenotype and possibly to disease. However, genotype information alone is often not sufficient and additional knowledge regarding the phase of the variation is needed to make correct interpretations. Interactive visualizations, that allow the user to explore the data in various ways, can be of great assistance in the process of making well informed decisions. But, currently there is a lack for visualizations that are able to deal with phased haplotype data. RESULTS We present inPHAP, an interactive visualization tool for genotype and phased haplotype data. inPHAP features a variety of interaction possibilities such as zooming, sorting, filtering and aggregation of rows in order to explore patterns hidden in large genetic data sets. As a proof of concept, we apply inPHAP to the phased haplotype data set of Phase 1 of the 1000 Genomes Project. Thereby, inPHAP's ability to show genetic variations on the population as well as on the individuals level is demonstrated for several disease related loci. CONCLUSIONS As of today, inPHAP is the only visual analytical tool that allows the user to explore unphased and phased haplotype data interactively. Due to its highly scalable design, inPHAP can be applied to large datasets with up to 100 GB of data, enabling users to visualize even large scale input data. inPHAP closes the gap between common visualization tools for unphased genotype data and introduces several new features, such as the visualization of phased data. inPHAP is available for download at http://bit.ly/1iJgKmX.
Collapse
Affiliation(s)
- Günter Jäger
- Integrative Transcriptomics, Center for Bioinformatics, University of Tübingen, Sand 14, 72076 Tübingen, Germany
| | - Alexander Peltzer
- Integrative Transcriptomics, Center for Bioinformatics, University of Tübingen, Sand 14, 72076 Tübingen, Germany
| | - Kay Nieselt
- Integrative Transcriptomics, Center for Bioinformatics, University of Tübingen, Sand 14, 72076 Tübingen, Germany
| |
Collapse
|
135
|
Cobat A, Abel L, Alcaïs A, Schurr E. A general efficient and flexible approach for genome-wide association analyses of imputed genotypes in family-based designs. Genet Epidemiol 2014; 38:560-71. [PMID: 25044438 DOI: 10.1002/gepi.21842] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 05/13/2014] [Accepted: 05/19/2014] [Indexed: 01/10/2023]
Abstract
Genotype imputation is a critical technique for following up genome-wide association studies. Efficient methods are available for dealing with the probabilistic nature of imputed single nucleotide polymorphisms (SNPs) in population-based designs, but not for family-based studies. We have developed a new analytical approach (FBATdosage), using imputed allele dosage in the general framework of family-based association tests to bridge this gap. Simulation studies showed that FBATdosage yielded highly consistent type I error rates, whatever the level of genotype uncertainty, and a much higher power than the best-guess genotype approach. FBATdosage allows fast linkage and association testing of several million of imputed variants with binary or quantitative phenotypes in nuclear families of arbitrary size with arbitrary missing data for the parents. The application of this approach to a family-based association study of leprosy susceptibility successfully refined the association signal at two candidate loci, C1orf141-IL23R on chromosome 1 and RAB32-C6orf103 on chromosome 6.
Collapse
Affiliation(s)
- Aurélie Cobat
- Departments of Human Genetics and Medicine, McGill International TB Center, McGill University Health Center, Montreal, QC, Canada
| | | | | | | |
Collapse
|
136
|
Mangano VD, Modiano D. An evolutionary perspective of how infection drives human genome diversity: the case of malaria. Curr Opin Immunol 2014; 30:39-47. [PMID: 24996199 DOI: 10.1016/j.coi.2014.06.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 05/31/2014] [Accepted: 06/04/2014] [Indexed: 11/26/2022]
Abstract
Infection with malaria parasites has imposed a strong selective pressure on the human genome, promoting the convergent evolution of a diverse range of genetic adaptations, many of which are harboured by the red blood cell, which hosts the pathogenic stage of the Plasmodium life cycle. Recent genome-wide and multi-centre association studies of severe malaria have consistently identified ATP2B4, encoding the major Ca(2+) pump of erythrocytes, as a novel resistance locus. Evidence is also accumulating that interaction occurs among resistance loci, the most recent example being negative epistasis among alpha-thalassemia and haptoglobin type 2. Finally, studies on the effect of haemoglobin S and C on parasite transmission to mosquitoes have suggested that protective variants could increase in frequency enhancing parasite fitness.
Collapse
Affiliation(s)
- Valentina D Mangano
- Department of Public Health and Infectious Diseases, University of Rome 'La Sapienza', Rome, Italy; Istituto Pasteur, Fondazione Cenci Bolognetti, University of Rome 'La Sapienza', Rome, Italy.
| | - David Modiano
- Department of Public Health and Infectious Diseases, University of Rome 'La Sapienza', Rome, Italy; Istituto Pasteur, Fondazione Cenci Bolognetti, University of Rome 'La Sapienza', Rome, Italy.
| |
Collapse
|
137
|
Ciesielski TH, Pendergrass SA, White MJ, Kodaman N, Sobota RS, Huang M, Bartlett J, Li J, Pan Q, Gui J, Selleck SB, Amos CI, Ritchie MD, Moore JH, Williams SM. Diverse convergent evidence in the genetic analysis of complex disease: coordinating omic, informatic, and experimental evidence to better identify and validate risk factors. BioData Min 2014; 7:10. [PMID: 25071867 PMCID: PMC4112852 DOI: 10.1186/1756-0381-7-10] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 06/08/2014] [Indexed: 11/10/2022] Open
Abstract
In omic research, such as genome wide association studies, researchers seek to repeat their results in other datasets to reduce false positive findings and thus provide evidence for the existence of true associations. Unfortunately this standard validation approach cannot completely eliminate false positive conclusions, and it can also mask many true associations that might otherwise advance our understanding of pathology. These issues beg the question: How can we increase the amount of knowledge gained from high throughput genetic data? To address this challenge, we present an approach that complements standard statistical validation methods by drawing attention to both potential false negative and false positive conclusions, as well as providing broad information for directing future research. The Diverse Convergent Evidence approach (DiCE) we propose integrates information from multiple sources (omics, informatics, and laboratory experiments) to estimate the strength of the available corroborating evidence supporting a given association. This process is designed to yield an evidence metric that has utility when etiologic heterogeneity, variable risk factor frequencies, and a variety of observational data imperfections might lead to false conclusions. We provide proof of principle examples in which DiCE identified strong evidence for associations that have established biological importance, when standard validation methods alone did not provide support. If used as an adjunct to standard validation methods this approach can leverage multiple distinct data types to improve genetic risk factor discovery/validation, promote effective science communication, and guide future research directions.
Collapse
Affiliation(s)
- Timothy H Ciesielski
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA.,Institute for Quantitative Biomedical Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Sarah A Pendergrass
- Center for Systems Genomics, Pennsylvania State University, University Park, PA 16802, USA.,Department of Biochemistry & Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Marquitta J White
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA.,Institute for Quantitative Biomedical Sciences, Dartmouth College, Hanover, NH 03755, USA.,Center for Human Genetics Research, Vanderbilt University, Nashville, TN 37232-0700, USA
| | - Nuri Kodaman
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA.,Institute for Quantitative Biomedical Sciences, Dartmouth College, Hanover, NH 03755, USA.,Center for Human Genetics Research, Vanderbilt University, Nashville, TN 37232-0700, USA
| | - Rafal S Sobota
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA.,Institute for Quantitative Biomedical Sciences, Dartmouth College, Hanover, NH 03755, USA.,Center for Human Genetics Research, Vanderbilt University, Nashville, TN 37232-0700, USA
| | - Minjun Huang
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Jacquelaine Bartlett
- Institute for Quantitative Biomedical Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Jing Li
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Qinxin Pan
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Jiang Gui
- Institute for Quantitative Biomedical Sciences, Dartmouth College, Hanover, NH 03755, USA.,Community and Family Medicine, Section of Biostatistics & Epidemiology, Geisel School of Medicine, Hanover, NH 03766, USA
| | - Scott B Selleck
- Department of Biochemistry & Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Christopher I Amos
- Institute for Quantitative Biomedical Sciences, Dartmouth College, Hanover, NH 03755, USA.,Community and Family Medicine, Section of Biostatistics & Epidemiology, Geisel School of Medicine, Hanover, NH 03766, USA
| | - Marylyn D Ritchie
- Center for Systems Genomics, Pennsylvania State University, University Park, PA 16802, USA.,Department of Biochemistry & Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Jason H Moore
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA.,Institute for Quantitative Biomedical Sciences, Dartmouth College, Hanover, NH 03755, USA.,Community and Family Medicine, Section of Biostatistics & Epidemiology, Geisel School of Medicine, Hanover, NH 03766, USA
| | - Scott M Williams
- Department of Genetics, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA.,Institute for Quantitative Biomedical Sciences, Dartmouth College, Hanover, NH 03755, USA
| |
Collapse
|
138
|
Apinjoh TO, Anchang-Kimbi JK, Njua-Yafi C, Ngwai AN, Mugri RN, Clark TG, Rockett KA, Kwiatkowski DP, Achidi EA. Association of candidate gene polymorphisms and TGF-beta/IL-10 levels with malaria in three regions of Cameroon: a case-control study. Malar J 2014; 13:236. [PMID: 24934404 PMCID: PMC4077225 DOI: 10.1186/1475-2875-13-236] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 06/07/2014] [Indexed: 11/11/2022] Open
Abstract
Background Plasmodium falciparum malaria is one of the most widespread and deadliest infectious diseases in children under five years in endemic areas. The disease has been a strong force for evolutionary selection in the human genome, and uncovering the critical host genetic factors that confer resistance to the disease would provide clues to the molecular basis of protective immunity and improve vaccine development initiatives. Methods The effect of single nucleotide polymorphisms (SNPs) and plasma transforming growth factor beta (TGF-β) and interleukin 10 (IL-10) levels on malaria pathology was investigated in a case–control study of 1862 individuals from two major ethnic groups in three regions with intense perennial P. falciparum transmission in Cameroon. Thirty-four malaria candidate polymorphisms, including the sickle cell trait (HbS), were assayed on the Sequenom iPLEX platform while plasma TGF-β and IL-10 levels were measured by sandwich ELISA. Results The study confirms the known protective effect of HbS against severe malaria and also reveals a protective effect of SNPs in the nitrogen oxide synthase 2 (NOS2) gene against malaria infection, anaemia and uncomplicated malaria. Furthermore, ADCY9 rs10775349 (additive G) and ABO rs8176746 AC individuals were associated with protection from hyperpyrexia and hyperparasitaemia, respectively. Meanwhile, individuals with the EMR1 rs373533 GT, EMR1 rs461645 CT and RTN3 rs542998 (additive C) genotypes were more susceptible to hyperpyrexia while both females and males with the rs1050828 and rs1050829 SNPs of G6PD, respectively, were more vulnerable to anaemia. Plasma TGF-β levels were strongly correlated with heterozygosity for the ADCY9 rs2230739 and HBB rs334 SNPs while individuals with the ABO rs8176746 AC genotype had lower IL-10 levels. Conclusion Taken together, this study suggests that some rare polymorphisms in candidate genes may have important implications for the susceptibility of Cameroonians to severe malaria. Moreover using the uncomplicated malaria phenotype may permit the identification of novel pathways in the early development of the disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Eric A Achidi
- Department of Biochemistry and Molecular Biology, University of Buea, Buea, Cameroon.
| | | |
Collapse
|
139
|
Olaniyan SA, Amodu OK, Yindom LM, Conway DJ, Aka P, Bakare AA, Omotade OO. Killer-cell immunoglobulin-like receptors and falciparum malaria in southwest Nigeria. Hum Immunol 2014; 75:816-21. [PMID: 24929143 DOI: 10.1016/j.humimm.2014.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 06/03/2014] [Accepted: 06/03/2014] [Indexed: 11/30/2022]
Abstract
Killer-cell immunoglobulin-like receptors (KIRs) are a group of natural killer cell receptors (NKRs) that regulate NK-cell-mediated production of interferon gamma (IFN-γ) in response to infection. These receptors have recently been suggested to influence the severity of clinical Plasmodium falciparum malaria infection. We examined the KIR locus in relation to malaria in children from southwest Nigeria. Sequence specific priming (SSP)-PCR was used to detect the KIR genes. The presence or absence of fifteen different KIR genes was determined in each individual and the proportions compared across 3 clinical groups; asymptomatic malaria, uncomplicated clinical malaria and severe clinical malaria. The genes KIR2DL5, KIR2DS3 and KIR2DS5 were present in a significantly higher proportion of individuals in the asymptomatic control group than in the malaria cases. Furthermore, KIR2DS3 and KIR2DS5 were present in a higher proportion of uncomplicated malaria cases than severe malaria cases. Carriage c-AB2 genotype (which comprises all centromeric KIR genes including KIR2DL5, KIR2DS3 and KIR2DS5) decreases with severity of the disease suggesting that the KIR AB profile might be associated with protection from severe malaria infection in this population in Nigeria.
Collapse
Affiliation(s)
- Subulade A Olaniyan
- Institute of Child Health, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| | - Olukemi K Amodu
- Institute of Child Health, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| | - Louis-Marie Yindom
- Medical Research Council Laboratories, Fajara, Banjul, Gambia; University of Oxford, Nuffield Department of Medicine, Oxford, UK.
| | - David J Conway
- Medical Research Council Laboratories, Fajara, Banjul, Gambia; London School of Hygiene and Tropical Medicine, London, UK.
| | - Peter Aka
- National Institutes of Health, Bethesda, MD, USA.
| | | | - Olayemi O Omotade
- Institute of Child Health, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| |
Collapse
|
140
|
Brisebarre A, Kumulungui B, Sawadogo S, Atkinson A, Garnier S, Fumoux F, Rihet P. A genome scan for Plasmodium falciparum malaria identifies quantitative trait loci on chromosomes 5q31, 6p21.3, 17p12, and 19p13. Malar J 2014; 13:198. [PMID: 24884991 PMCID: PMC4057593 DOI: 10.1186/1475-2875-13-198] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 05/20/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Genome-wide studies have mapped several loci controlling Plasmodium falciparum mild malaria and parasitaemia, only two of them being significant at the genome level. The objective of the present study was to identify malaria resistance loci in individuals living in Burkina Faso. METHODS A genome scan that involved 314 individuals belonging to 63 families was performed. Markers located within chromosomes 6p21.3 and 17p12 were genotyped in 247 additional individuals belonging to 55 families. The linkage and the association of markers with parasitaemia and mild malaria were assessed by using the maximum-likelihood binomial method extended to quantitative trait linkage and the quantitative trait disequilibrium test, respectively. RESULTS Multipoint linkage analysis showed a significant linkage of mild malaria to chromosome 6p21.3 (LOD score 3.73, P = 1.7 10-5), a suggestive linkage of mild malaria to chromosome 19p13.12 (LOD score 2.50, P = 3.5 10-4), and a suggestive linkage of asymptomatic parasitaemia to chromosomes 6p21.3 (LOD score 2.36, P = 4.9 10-4) and 17p12 (LOD score 2.87, P = 1.4 10-4). Genome-wide family-based association analysis revealed a significant association between three chromosome 5q31 markers and asymptomatic parasitaemia, whereas there was no association with mild malaria. When taking into account 247 additional individuals, a significant linkage of asymptomatic parasitaemia to chromosome 17p12 (LOD score 3.6, P = 2 10-5) was detected. CONCLUSION A new genome-wide significant malaria locus on chromosome 17p12 and a new suggestive locus on chromosome 19p13.12 are reported. Moreover, there was evidence that confirmed the influence of chromosomes 5q31 and 6p21.3 as loci controlling mild malaria or asymptomatic parasitaemia.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Pascal Rihet
- INSERM, UMR1090 TAGC, Marseille F-13288, France.
| |
Collapse
|
141
|
Abstract
Infectious pathogens are among the strongest selective forces that shape the human genome. Migrations and cultural changes in the past 100,000 years exposed populations to dangerous new pathogens. Host genetics influences susceptibility to infectious disease. Evolutionary adaptations for resistance and symbiosis may underlie common immune-mediated diseases. Signatures of selection and methods to detect them vary with the age, geographical spread and virulence of the pathogen. A history of selection on a trait adds power to association studies by driving the emergence of common alleles of strong effect. Combining selection and association metrics can further increase power. Genome-wide association studies (GWASs) of susceptibility to pathogens that are moderately old (1,000–50,000 years ago), geographically limited in history and exerted strong positive selective pressure will have the most power if GWASs can be done in the historically affected population. An understanding of host–pathogen interactions can inform the development of new therapies for both infectious diseases and common immune-mediated diseases.
The impact of various infectious agents on human survival and reproduction over thousands of years has exerted selective pressure on numerous regions of the human genome. This Review describes how such signatures of selection can be detected and integrated with data from complementary approaches, such as genome-wide association studies, to provide biological insights into host–pathogen interactions. The ancient biological 'arms race' between microbial pathogens and humans has shaped genetic variation in modern populations, and this has important implications for the growing field of medical genomics. As humans migrated throughout the world, populations encountered distinct pathogens, and natural selection increased the prevalence of alleles that are advantageous in the new ecosystems in both host and pathogens. This ancient history now influences human infectious disease susceptibility and microbiome homeostasis, and contributes to common diseases that show geographical disparities, such as autoimmune and metabolic disorders. Using new high-throughput technologies, analytical methods and expanding public data resources, the investigation of natural selection is leading to new insights into the function and dysfunction of human biology.
Collapse
|
142
|
Pillai NE, Okada Y, Saw WY, Ong RTH, Wang X, Tantoso E, Xu W, Peterson TA, Bielawny T, Ali M, Tay KY, Poh WT, Tan LWL, Koo SH, Lim WY, Soong R, Wenk M, Raychaudhuri S, Little P, Plummer FA, Lee EJD, Chia KS, Luo M, De Bakker PIW, Teo YY. Predicting HLA alleles from high-resolution SNP data in three Southeast Asian populations. Hum Mol Genet 2014; 23:4443-51. [DOI: 10.1093/hmg/ddu149] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
143
|
Howey R, Cordell HJ. Imputation without doing imputation: a new method for the detection of non-genotyped causal variants. Genet Epidemiol 2014; 38:173-90. [PMID: 24535679 PMCID: PMC4150535 DOI: 10.1002/gepi.21792] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 12/30/2013] [Accepted: 12/31/2013] [Indexed: 01/22/2023]
Abstract
Genome-wide association studies allow detection of non-genotyped disease-causing variants through testing of nearby genotyped SNPs. This approach may fail when there are no genotyped SNPs in strong LD with the causal variant. Several genotyped SNPs in weak LD with the causal variant may, however, considered together, provide equivalent information. This observation motivates popular but computationally intensive approaches based on imputation or haplotyping. Here we present a new method and accompanying software designed for this scenario. Our approach proceeds by selecting, for each genotyped "anchor" SNP, a nearby genotyped "partner" SNP, chosen via a specific algorithm we have developed. These two SNPs are used as predictors in linear or logistic regression analysis to generate a final significance test. In simulations, our method captures much of the signal captured by imputation, while taking a fraction of the time and disc space, and generating a smaller number of false-positives. We apply our method to a case/control study of severe malaria genotyped using the Affymetrix 500K array. Previous analysis showed that fine-scale sequencing of a Gambian reference panel in the region of the known causal locus, followed by imputation, increased the signal of association to genome-wide significance levels. Our method also increases the signal of association from P ≈ 2 × 10⁻⁶ to P ≈ 6 × 10⁻¹¹. Our method thus, in some cases, eliminates the need for more complex methods such as sequencing and imputation, and provides a useful additional test that may be used to identify genetic regions of interest.
Collapse
Affiliation(s)
- Richard Howey
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Central ParkwayNewcastle upon Tyne, United Kingdom
| | - Heather J Cordell
- Institute of Genetic Medicine, Newcastle University, International Centre for Life, Central ParkwayNewcastle upon Tyne, United Kingdom
| |
Collapse
|
144
|
Atkinson SH, Uyoga SM, Nyatichi E, Macharia AW, Nyutu G, Ndila C, Kwiatkowski DP, Rockett KA, Williams TN. Epistasis between the haptoglobin common variant and α+thalassemia influences risk of severe malaria in Kenyan children. Blood 2014; 123:2008-16. [PMID: 24478401 PMCID: PMC3968387 DOI: 10.1182/blood-2013-10-533489] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 01/21/2014] [Indexed: 11/20/2022] Open
Abstract
Haptoglobin (Hp) scavenges free hemoglobin following malaria-induced hemolysis. Few studies have investigated the relationship between the common Hp variants and the risk of severe malaria, and their results are inconclusive. We conducted a case-control study of 996 children with severe Plasmodium falciparum malaria and 1220 community controls and genotyped for Hp, hemoglobin (Hb) S heterozygotes, and α(+)thalassemia. Hb S heterozygotes and α(+)thalassemia homozygotes were protected from severe malaria (odds ratio [OR], 0.12; 95% confidence interval [CI], 0.07-0.18 and OR, 0.69; 95% CI, 0.53-0.91, respectively). The risk of severe malaria also varied by Hp genotype: Hp2-1 was associated with the greatest protection against severe malaria and Hp2-2 with the greatest risk. Meta-analysis of the current and published studies suggests that Hp2-2 is associated with increased risk of severe malaria compared with Hp2-1. We found a significant interaction between Hp genotype and α(+)thalassemia in predicting risk of severe malaria: Hp2-1 in combination with heterozygous or homozygous α(+)thalassemia was associated with protection from severe malaria (OR, 0.73; 95% CI, 0.54-0.99 and OR, 0.48; 95% CI, 0.32-0.73, respectively), but α(+)thalassemia in combination with Hp2-2 was not protective. This epistatic interaction together with varying frequencies of α(+)thalassemia across Africa may explain the inconsistent relationship between Hp genotype and malaria reported in previous studies.
Collapse
Affiliation(s)
- Sarah H Atkinson
- Department of Paediatrics, Oxford University Hospitals National Health Service Trust, University of Oxford, and
| | | | | | | | | | | | | | | | | |
Collapse
|
145
|
Weinberg JB, Yeo TW, Mukemba JP, Florence SM, Volkheimer AD, Wang H, Chen Y, Rubach M, Granger DL, Mwaikambo ED, Anstey NM. Dimethylarginines: endogenous inhibitors of nitric oxide synthesis in children with falciparum malaria. J Infect Dis 2014; 210:913-22. [PMID: 24620026 DOI: 10.1093/infdis/jiu156] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Nitric oxide (NO) bioavailability is impaired in children and adults with severe falciparum malaria (SM). Asymmetric-dimethylarginine (ADMA) limits NO production by inhibiting NO synthase and is increased in adult SM. The role of ADMA in the pathogenesis of childhood SM is unknown. METHODS We studied Tanzanian children ages 4-8 years with malaria. Plasma levels of arginine, arginase, cell-free hemoglobin, ADMA, symmetric-dimethylarginine (SDMA), histidine-rich protein-2, and angiopoietin-2 were measured. RESULTS ADMA was low in children with SM relative to controls. Nevertheless, arginine and arginine:ADMA ratios were very low in SM. SDMA was high in children with SM. With treatment, arginine and the arginine:ADMA ratio normalized, but SDMA did not. Arginine:ADMA ratios, but not arginine, were significantly and inde-pendent-ly inversely associated with lactate and angiopoietin-2. Plasma arginase was not elevated in those with malaria, and plasma free hemoglobin was elevated only in patients with cerebral malaria. CONCLUSIONS In contrast to adults, plasma ADMA is reduced in SM in children, but hypoargininemia is more severe. Arginine bioavailability (reflected by low arginine:ADMA ratios) is therefore comparably low in SM in children as in adults. Therapies to increase NO bioavailability in malaria may be useful as adjunctive treatment of severe malaria in children.
Collapse
Affiliation(s)
| | - Tsin W Yeo
- Menzies School of Health Research and Charles Darwin University, Australia
| | | | | | | | - Hao Wang
- Menzies School of Health Research and Charles Darwin University, Australia
| | - Youwei Chen
- Duke University and V.A. Medical Centers, Durham, North Carolina
| | - Matthew Rubach
- Duke University and V.A. Medical Centers, Durham, North Carolina
| | | | | | - Nicholas M Anstey
- Menzies School of Health Research and Charles Darwin University, Australia
| |
Collapse
|
146
|
Apinjoh TO, Anchang-Kimbi JK, Njua-Yafi C, Mugri RN, Ngwai AN, Rockett KA, Mbunwe E, Besingi RN, Clark TG, Kwiatkowski DP, Achidi EA. Association of cytokine and Toll-like receptor gene polymorphisms with severe malaria in three regions of Cameroon. PLoS One 2013; 8:e81071. [PMID: 24312262 PMCID: PMC3842328 DOI: 10.1371/journal.pone.0081071] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 10/08/2013] [Indexed: 11/23/2022] Open
Abstract
P. falciparum malaria is one of the most widespread and deadliest infectious diseases in children under five years in endemic areas. The disease has been a strong force for evolutionary selection in the human genome, and uncovering the critical human genetic factors that confer resistance to the disease would provide clues to the molecular basis of protective immunity that would be invaluable for vaccine development. We investigated the effect of single nucleotide polymorphisms (SNPs) on malaria pathology in a case- control study of 1862 individuals from two major ethnic groups in three regions with intense perennial P. falciparum transmission in Cameroon. Twenty nine polymorphisms in cytokine and toll-like receptor (TLR) genes as well as the sickle cell trait (HbS) were assayed on the Sequenom iPLEX platform. Our results confirm the known protective effect of HbS against severe malaria and also reveal a protective effect of SNPs in interleukin-10 (IL10) cerebral malaria and hyperpyrexia. Furthermore, IL17RE rs708567 GA and hHbS rs334 AT individuals were associated with protection from uncomplicated malaria and anaemia respectively in this study. Meanwhile, individuals with the hHbS rs334 TT, IL10 rs3024500 AA, and IL17RD rs6780995 GA genotypes were more susceptible to severe malarial anaemia, cerebral malaria, and hyperpyrexia respectively. Taken together, our results suggest that polymorphisms in some immune response genes may have important implications for the susceptibility to severe malaria in Cameroonians. Moreover using uncomplicated malaria may allow us to identify novel pathways in the early development of the disease.
Collapse
Affiliation(s)
- Tobias O. Apinjoh
- Department of Biochemistry and Molecular Biology, University of Buea, Buea, Cameroon
- * E-mail:
| | | | - Clarisse Njua-Yafi
- Department of Animal Biology and Physiology, University of Yaounde I, Yaounde, Cameroon
| | - Regina N. Mugri
- Department of Medical Laboratory Sciences, University of Buea, Buea, Cameroon
| | - Andre N. Ngwai
- Department of Medical Laboratory Sciences, University of Buea, Buea, Cameroon
| | - Kirk A. Rockett
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Eric Mbunwe
- Department of Medical Laboratory Sciences, University of Buea, Buea, Cameroon
- Diabetes Research Center, Brussels Free University, Brussels, Belgium
| | - Richard N. Besingi
- Department of Biochemistry and Molecular Biology, University of Buea, Buea, Cameroon
- Department of Oral Biology, University of Florida, Gainesville, Florida, United States of America
| | - Taane G. Clark
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Dominic P. Kwiatkowski
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | - Eric A. Achidi
- Department of Biochemistry and Molecular Biology, University of Buea, Buea, Cameroon
- Department of Medical Laboratory Sciences, University of Buea, Buea, Cameroon
| | | |
Collapse
|
147
|
Hansson HH, Kurtzhals JA, Goka BQ, Rodriques OP, Nkrumah FN, Theander TG, Bygbjerg IC, Alifrangis M. Human genetic polymorphisms in the Knops blood group are not associated with a protective advantage against Plasmodium falciparum malaria in Southern Ghana. Malar J 2013; 12:400. [PMID: 24200236 PMCID: PMC4226212 DOI: 10.1186/1475-2875-12-400] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 10/23/2013] [Indexed: 11/25/2022] Open
Abstract
Background The complex interactions between the human host and the Plasmodium falciparum parasite and the factors influencing severity of disease are still not fully understood. Human single nucleotide polymorphisms SNPs associated with Knops blood group system; carried by complement receptor 1 may be associated with the pathology of P. falciparum malaria, and susceptibility to disease. Methods The objective of this study was to determine the genotype and haplotype frequencies of the SNPs defining the Knops blood group antigens; Kna/b, McCoya/b, Swain-Langley1/2 and KCAM+/- in Ghanaian patients with malaria and determine possible associations between these polymorphisms and the severity of the disease. Study participants were patients (n = 267) admitted to the emergency room at the Department of Child Health, Korle-Bu Teaching Hospital, Accra, Ghana during the malaria season from June to August in 1995, 1996 and 1997, classified as uncomplicated malaria (n = 89), severe anaemia (n = 57) and cerebral malaria (n = 121) and controls who did not have a detectable Plasmodium infection or were symptomless carriers of the parasite (n = 275). The frequencies were determined using a post-PCR ligation detection reaction-fluorescent microsphere assay, developed to detect the SNPs defining the antigens. Chi-square/Fisher’s exact test and logistic regression models were used to analyse the data. Results As expected, high frequencies of the alleles Kna, McCb, Sl2 and KCAM- were found in the Ghanaian population. Apart from small significant differences between the groups at the Sl locus, no significant allelic or genotypic differences were found between the controls and the disease groups or between the disease groups. The polymorphisms define eight different haplotypes H1(2.4%), H2(9.4%), H3(59.8%), H4(0%), H5(25.2%), H6(0.33%), H7(2.8%) and H8(0%). Investigating these haplotypes, no significant differences between any of the groups were found. Conclusion The results confirm earlier findings of high frequencies of certain CR1 alleles in Africa; and shed more light on earlier conflicting findings; the alleles McCb, Sl2, Knb and KCAM- or combined haplotypes do not seem to confer any protective advantage against malaria infection or resulting disease severity. Based on these findings, in a very well-characterized population, malaria does not seem to be the selective force on these alleles.
Collapse
Affiliation(s)
- Helle H Hansson
- Centre for Medical Parasitology, Department of International Health, Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
148
|
Peprah E, Wonkam A. Biomedical research, a tool to address the health issues that affect African populations. Global Health 2013; 9:50. [PMID: 24143865 PMCID: PMC4015770 DOI: 10.1186/1744-8603-9-50] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 08/05/2013] [Indexed: 12/22/2022] Open
Abstract
Traditionally, biomedical research endeavors in low to middle resources countries have focused on communicable diseases. However, data collected over the past 20 years by the World Health Organization (WHO) show a significant increase in the number of people suffering from non-communicable diseases (e.g. heart disease, diabetes, cancer and pulmonary diseases). Within the coming years, WHO predicts significant decreases in communicable diseases while non-communicable diseases are expected to double in low and middle income countries in sub-Saharan Africa. The predicted increase in the non-communicable diseases population could be economically burdensome for the basic healthcare infrastructure of countries that lack resources to address this emerging disease burden. Biomedical research could stimulate development of healthcare and biomedical infrastructure. If this development is sustainable, it provides an opportunity to alleviate the burden of both communicable and non-communicable diseases through diagnosis, prevention and treatment. In this paper, we discuss how research using biomedical technology, especially genomics, has produced data that enhances the understanding and treatment of both communicable and non-communicable diseases in sub-Saharan Africa. We further discuss how scientific development can provide opportunities to pursue research areas responsive to the African populations. We limit our discussion to biomedical research in the areas of genomics due to its substantial impact on the scientific community in recent years however, we also recognize that targeted investments in other scientific disciplines could also foster further development in African countries.
Collapse
Affiliation(s)
- Emmanuel Peprah
- Current address: National Institutes of Health, Building 1, RM 256A, Bethesda MD 20892, USA
| | - Ambroise Wonkam
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Anzio Road-7925, Observatory, Cape Town, South Africa
| |
Collapse
|
149
|
Ballana E, Esté JA. Insights from host genomics into HIV infection and disease: Identification of host targets for drug development. Antiviral Res 2013; 100:473-86. [PMID: 24084487 DOI: 10.1016/j.antiviral.2013.09.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 09/17/2013] [Accepted: 09/20/2013] [Indexed: 01/11/2023]
Abstract
HIV susceptibility and disease progression show a substantial degree of individual heterogeneity, ranging from fast progressors to long-term non progressors or elite controllers, that is, subjects that control infection in the absence of therapy. Recent years have seen a significant increase in understanding of the host genetic determinants of susceptibility to HIV infection and disease progression, driven in large part by candidate gene studies, genome-wide association studies, genome-wide transcriptome analyses, and large-scale functional screens. These studies have identified common variants in host loci that clearly influence disease progression, characterized the scale and dynamics of gene and protein expression changes in response to infection, and provided the first comprehensive catalogue of genes and pathways involved in viral replication. This review highlights the potential of host genomic influences in antiviral therapy by pointing to promising novel drug targets but also providing the basis of the identification and validation of host mechanisms that might be susceptible targets for novel antiviral therapies.
Collapse
Affiliation(s)
- Ester Ballana
- IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain.
| | | |
Collapse
|
150
|
Abstract
PURPOSE OF REVIEW This review aims to interpret the current literature on the role of genetic and epigenetic factors in susceptibility to neonatal infection, a leading cause of early life mortality and morbidity. RECENT FINDINGS Epidemiological data indicate that the differential susceptibility to infection is partly heritable. To date there have been relatively few studies on genetic determinants of susceptibility to neonatal infection and many of these have methodological shortcomings. Most studies predominantly focus on the innate immune system. There is growing interest in the potential role of epigenetic mechanisms in disease susceptibility and data are emerging on the role of epigenetics in the maturation of the immune system in early life. SUMMARY Infection is a leading cause of morbidity and mortality, especially in preterm infants, but it remains unclear why neonates are so susceptible or what mediates differential risk. Genetic and epigenetic epidemiologic studies may assist in the identification of critical protective and pathogenic pathways. Despite the current relative lack of robust data, such studies may facilitate the development of interventions that ultimately decrease the significant morbidity and mortality of this highly vulnerable population.
Collapse
|