101
|
Nissen PH, Christensen SE, Ladefoged SA, Brixen K, Heickendorff L, Mosekilde L. Identification of rare and frequent variants of the CASR gene by high-resolution melting. Clin Chim Acta 2012; 413:605-11. [DOI: 10.1016/j.cca.2011.12.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Revised: 12/02/2011] [Accepted: 12/05/2011] [Indexed: 10/14/2022]
|
102
|
Bouschet T, Martin S, Henley JM. Regulation of calcium sensing receptor trafficking by RAMPs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 744:39-48. [PMID: 22434106 DOI: 10.1007/978-1-4614-2364-5_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
As mentioned earlier in this book, RAMPs were identified as proteins escorting the Calcitonin Receptor-Like Receptor (CRLR) to the plasma membrane (PM) to generate either CGRP (when associated with RAMP1), or adrenomedullin receptors (when associated with RAMP2 or RAMP3). Some years after this initial discovery, it was established that RAMPs can accompany four additional class B G Protein-Coupled Receptors-GPCRs- (PTH1, PTH2, glucagon receptor and VPAC1) to the PM.(1) By demonstrating that the sorting traffic of the Calcium Sensing Receptor (CaSR), a class C GPCR, is positively modulated by RAMP1 and RAMP3,(2) our data extended the concept of RAMPs as escorting molecules to another class of GPCRs.
Collapse
Affiliation(s)
- Tristan Bouschet
- Institut de Génomique Fonctionnelle, INSERM U661-CNRS UMR5203, Montpellier, France
| | | | | |
Collapse
|
103
|
Abstract
In vivo models represent important resources for investigating the physiological mechanisms underlying endocrine and metabolic disorders, and for pre-clinical translational studies that may include the assessments of new treatments. In the study of endocrine diseases, which affect multiple organs, in vivo models provide specific advantages over in vitro models, which are limited to investigation of isolated systems. In recent years, the mouse has become the popular choice for developing such in vivo mammalian models, as it has a genome that shares ∼85% identity to that of man, and has many physiological systems that are similar to those in man. Moreover, methods have been developed to alter the expression of genes in the mouse, thereby generating models for human diseases, which may be due to loss- or gain-of-function mutations. The methods used to generate mutations in the mouse genome include: chemical mutagenesis; conventional, conditional and inducible knockout models; knockin models and transgenic models, and these strategies are often complementary. This review describes some of the different strategies that are utilised for generating mouse models. In addition, some mouse models that have been successfully generated by these methods for some human hereditary endocrine and metabolic disorders are reviewed. In particular, the mouse models generated for parathyroid disorders, which include: the multiple endocrine neoplasias; hyperparathyroidism-jaw tumour syndrome; disorders of the calcium-sensing receptor and forms of inherited hypoparathyroidism are discussed. The advances that have been made in our understanding of the mechanisms of these human diseases by investigations of these mouse models are described.
Collapse
Affiliation(s)
- Siân E Piret
- Academic Endocrine Unit, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, University of Oxford, Headington, Oxford OX3 7LJ, UK
| | | |
Collapse
|
104
|
Raue F, Pichl J, Dörr HG, Schnabel D, Heidemann P, Hammersen G, Jaursch-Hancke C, Santen R, Schöfl C, Wabitsch M, Haag C, Schulze E, Frank-Raue K. Activating mutations in the calcium-sensing receptor: genetic and clinical spectrum in 25 patients with autosomal dominant hypocalcaemia - a German survey. Clin Endocrinol (Oxf) 2011; 75:760-5. [PMID: 21645025 DOI: 10.1111/j.1365-2265.2011.04142.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVE Autosomal dominant hypocalcaemia or hypoparathyroidism is caused by activating mutations of the calcium-sensing receptor (CaSR). Treatment with calcium and vitamin D often worsens hypercalciuria and nephrocalcinosis, and renal impairment can result. Our aim was to describe the phenotypic variance of this rare disorder in a large series and to evaluate the outcome after long-term treatment. DESIGN Nationwide retrospective collaborative study. PATIENTS We describe 25 patients (14 men and 11 women), 20 belonging to 11 families and five single cases. MEASUREMENTS Activating CaSR mutations and clinical and biochemical findings were evaluated. RESULTS Nine different missense mutations of the CaSR, including one novel variant (M734T), were found. Twelve patients (50%) were symptomatic, 9 (36%) had basal ganglia calcifications and 3 (12%) had nephrocalcinosis. Serum calcium was decreased (1·87 ± 0·13 mm), and PTH was decreased (n = 19) or inappropriately low (n = 4). The occurrence of hypocalcaemic symptoms at diagnosis was related to the degree of hypocalcaemia. The occurrence of features like calcification of basal ganglia or kidney calcification did not correlate with the severity of hypocalcaemia or the age at diagnosis. The most common treatment was calcitriol (median dosage 0·6 μg/day), and the mean duration of therapy was 7·1 years (max. 26 years). Hypercalcaemic episodes rarely occurred, and the rate of kidney calcifications was remarkably low (12%). CONCLUSION This series increases the limited knowledge of mutations and phenotypes of this rare disorder. Mutation analysis of the CaSR gene facilitates patient and family management. Low dosages of calcitriol resulted in less frequent renal calcifications.
Collapse
Affiliation(s)
- Friedhelm Raue
- Endocrine Practice and Molecular Laboratory, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Christensen SE, Nissen PH, Vestergaard P, Mosekilde L. Familial hypocalciuric hypercalcaemia: a review. Curr Opin Endocrinol Diabetes Obes 2011; 18:359-70. [PMID: 21986511 DOI: 10.1097/med.0b013e32834c3c7c] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW Hypercalcaemia is a potentially life-threatening condition. Familial hypocalciuric hypercalcaemia (FHH) is a rare, lifelong, benign condition. It is important to separate this condition from other hypercalcaemic states such as hypercalcaemia of malignancy and primary hyperparathyroidism (PHPT). RECENT FINDINGS FHH is caused by inactivating mutations in the calcium sensing receptor (CASR) gene leading to a general calcium-hyposensitivity, compensatory hypercalcaemia and hypocalciuria. The inheritance of FHH is autosomal dominant. Similar to PHPT, FHH is characterized by hypercalcaemia, unsuppressed or elevated plasma parathyroid hormone, and typically normal renal function. The phenotype is normal, and hypercalcaemic symptoms are generally absent. The hallmark is a relatively low urine calcium excretion in contrast to PHPT, in which urine calcium excretion is increased. The vitamin D status as measured by plasma 25-hydroxyvitamin D has been reported to be normal with normal seasonal variations, whereas plasma 1,25-dihydroxyvitamin D has been found slightly increased compared to normal. Bone mineral density Z-scores are normal in spite of a slightly increased bone turnover. Differential diagnoses include mainly PHPT, but in some cases also hypercalcaemia of malignancy and use of thiazide diuretics. SUMMARY In general, FHH does not require treatment. We recommend a two-step diagnostic procedure. First, the calcium/creatinine clearance ratio is measured from a 24-h urine. Second, all patients with calcium/creatinine clearance ratio of 0.020 or less are tested for mutations in the CASR gene. The diagnostic sensitivity of this setup is 98%.
Collapse
Affiliation(s)
- Signe E Christensen
- Department of Medicine and Endocrinology, Aarhus University Hospital, Aarhus C, Denmark.
| | | | | | | |
Collapse
|
106
|
Bilezikian JP, Khan A, Potts JT, Brandi ML, Clarke BL, Shoback D, Jüppner H, D'Amour P, Fox J, Rejnmark L, Mosekilde L, Rubin MR, Dempster D, Gafni R, Collins MT, Sliney J, Sanders J. Hypoparathyroidism in the adult: epidemiology, diagnosis, pathophysiology, target-organ involvement, treatment, and challenges for future research. J Bone Miner Res 2011; 26:2317-37. [PMID: 21812031 PMCID: PMC3405491 DOI: 10.1002/jbmr.483] [Citation(s) in RCA: 341] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Recent advances in understanding the epidemiology, genetics, diagnosis, clinical presentations, skeletal involvement, and therapeutic approaches to hypoparathyroidism led to the First International Workshop on Hypoparathyroidism that was held in 2009. At this conference, a group of experts convened to discuss these issues with a view towards a future research agenda for this disease. This review, which focuses primarily on hypoparathyroidism in the adult, provides a comprehensive summary of the latest information on this disease.
Collapse
Affiliation(s)
- John P Bilezikian
- Department of Medicine, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Seyberth HW, Schlingmann KP. Bartter- and Gitelman-like syndromes: salt-losing tubulopathies with loop or DCT defects. Pediatr Nephrol 2011; 26:1789-802. [PMID: 21503667 PMCID: PMC3163795 DOI: 10.1007/s00467-011-1871-4] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 03/09/2011] [Accepted: 03/09/2011] [Indexed: 12/11/2022]
Abstract
Salt-losing tubulopathies with secondary hyperaldosteronism (SLT) comprise a set of well-defined inherited tubular disorders. Two segments along the distal nephron are primarily involved in the pathogenesis of SLTs: the thick ascending limb of Henle's loop, and the distal convoluted tubule (DCT). The functions of these pre- and postmacula densa segments are quite distinct, and this has a major impact on the clinical presentation of loop and DCT disorders - the Bartter- and Gitelman-like syndromes. Defects in the water-impermeable thick ascending limb, with its greater salt reabsorption capacity, lead to major salt and water losses similar to the effect of loop diuretics. In contrast, defects in the DCT, with its minor capacity of salt reabsorption and its crucial role in fine-tuning of urinary calcium and magnesium excretion, provoke more chronic solute imbalances similar to the effects of chronic treatment with thiazides. The most severe disorder is a combination of a loop and DCT disorder similar to the enhanced diuretic effect of a co-medication of loop diuretics with thiazides. Besides salt and water supplementation, prostaglandin E2-synthase inhibition is the most effective therapeutic option in polyuric loop disorders (e.g., pure furosemide and mixed furosemide-amiloride type), especially in preterm infants with severe volume depletion. In DCT disorders (e.g., pure thiazide and mixed thiazide-furosemide type), renin-angiotensin-aldosterone system (RAAS) blockers might be indicated after salt, potassium, and magnesium supplementation are deemed insufficient. It appears that in most patients with SLT, a combination of solute supplementation with some drug treatment (e.g., indomethacin) is needed for a lifetime.
Collapse
Affiliation(s)
- Hannsjörg W. Seyberth
- Department of Pediatrics and Adolescent Medicine, Philipps University, Marburg, Germany ,Lazarettgarten 23, 76829 Landau, Germany
| | - Karl P. Schlingmann
- Department of General Pediatrics, University Children’s Hospital, Münster, Germany
| |
Collapse
|
108
|
Abstract
Hypocalcemia is common in the critically ill patient. In this population, however, the diagnosis of hypocalcemia is complicated by limitations in the interpretation of the total plasma calcium concentration. These limitations are principally the result of the effects of hypoalbuminemia and disorders of acid-base balance on the total calcium concentration. Thus, measurement of ionized calcium can be critical in determining an individual's true serum calcium status. In this review, we first describe the regulation of normal calcium metabolism and then focus on the various etiologies of hypocalcemia, including congenital and acquired disorders of parathyroid hormone and vitamin D, which are encountered in the neonatal, pediatric, and adult critical care settings. The approach to the treatment of hypocalcemia and the current consensus on treatment of hypocalcemia in the critically ill patient is also presented.
Collapse
Affiliation(s)
- Andrea Kelly
- Division of Endocrinology and Diabetes, Department of Pediatrics, The Children's Hospital of Philadelphia, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | |
Collapse
|
109
|
Guran T, Akcay T, Bereket A, Atay Z, Turan S, Haisch L, Konrad M, Schlingmann KP. Clinical and molecular characterization of Turkish patients with familial hypomagnesaemia: novel mutations in TRPM6 and CLDN16 genes. Nephrol Dial Transplant 2011; 27:667-73. [DOI: 10.1093/ndt/gfr300] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
110
|
Schouten BJ, Raizis AM, Soule SG, Cole DR, Frengley PA, George PM, Florkowski CM. Four cases of autosomal dominant hypocalcaemia with hypercalciuria including two with novel mutations in the calcium-sensing receptor gene. Ann Clin Biochem 2011; 48:286-90. [DOI: 10.1258/acb.2010.010139] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
We present four cases with clinical and biochemical hypocalcaemia and evidence supportive of hypoparathyroidism. One case had been previously ascribed a diagnosis of idiopathic hypoparathyroidism. Following the detection of relative hypercalciuria, all cases were found to have autosomal dominant hypocalcaemia with hypercalciuria and mutations of the calcium-sensing receptor gene, of which two were novel. Increased awareness of this condition and access to genotyping enables prompt accurate diagnosis and cascade screening of first-degree relatives.
Collapse
Affiliation(s)
| | - Anthony M Raizis
- Clinical Biochemistry Unit, Canterbury Health Laboratories, Christchurch
| | | | - David R Cole
- Department of Endocrinology, Christchurch Hospital
| | | | - Peter M George
- Clinical Biochemistry Unit, Canterbury Health Laboratories, Christchurch
| | | |
Collapse
|
111
|
Kapur K, Johnson T, Beckmann ND, Sehmi J, Tanaka T, Kutalik Z, Styrkarsdottir U, Zhang W, Marek D, Gudbjartsson DF, Milaneschi Y, Holm H, DiIorio A, Waterworth D, Li Y, Singleton AB, Bjornsdottir US, Sigurdsson G, Hernandez DG, DeSilva R, Elliott P, Eyjolfsson GI, Guralnik JM, Scott J, Thorsteinsdottir U, Bandinelli S, Chambers J, Stefansson K, Waeber G, Ferrucci L, Kooner JS, Mooser V, Vollenweider P, Beckmann JS, Bochud M, Bergmann S. Genome-wide meta-analysis for serum calcium identifies significantly associated SNPs near the calcium-sensing receptor (CASR) gene. PLoS Genet 2010; 6:e1001035. [PMID: 20661308 PMCID: PMC2908705 DOI: 10.1371/journal.pgen.1001035] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Accepted: 06/17/2010] [Indexed: 12/24/2022] Open
Abstract
Calcium has a pivotal role in biological functions, and serum calcium levels have been associated with numerous disorders of bone and mineral metabolism, as well as with cardiovascular mortality. Here we report results from a genome-wide association study of serum calcium, integrating data from four independent cohorts including a total of 12,865 individuals of European and Indian Asian descent. Our meta-analysis shows that serum calcium is associated with SNPs in or near the calcium-sensing receptor (CASR) gene on 3q13. The top hit with a p-value of 6.3 x 10(-37) is rs1801725, a missense variant, explaining 1.26% of the variance in serum calcium. This SNP had the strongest association in individuals of European descent, while for individuals of Indian Asian descent the top hit was rs17251221 (p = 1.1 x 10(-21)), a SNP in strong linkage disequilibrium with rs1801725. The strongest locus in CASR was shown to replicate in an independent Icelandic cohort of 4,126 individuals (p = 1.02 x 10(-4)). This genome-wide meta-analysis shows that common CASR variants modulate serum calcium levels in the adult general population, which confirms previous results in some candidate gene studies of the CASR locus. This study highlights the key role of CASR in calcium regulation.
Collapse
Affiliation(s)
- Karen Kapur
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Toby Johnson
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Institute of Social and Preventive Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Noam D. Beckmann
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland
| | - Joban Sehmi
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Toshiko Tanaka
- Clinical Research Branch, National Institute on Aging, Baltimore, Maryland, United States of America
| | - Zoltán Kutalik
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | | | - Weihua Zhang
- Department of Epidemiology and Public Health, Imperial College London, London, United Kingdom
| | - Diana Marek
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | | | - Yuri Milaneschi
- Clinical Research Branch, National Institute on Aging, Baltimore, Maryland, United States of America
| | | | - Angelo DiIorio
- Department of Medicine and Sciences of Aging, Laboratory of Clinical Epidemiology, University G. d'Annunzio, Chieti, Italy
| | - Dawn Waterworth
- Division of Genetics, GlaxoSmithKline, King of Prussia, Pennsylvania, United States of America
| | - Yun Li
- Department of Genetics and Department of Biostatistics, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Andrew B. Singleton
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, Maryland, United States of America
| | | | - Gunnar Sigurdsson
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Department of Endocrinology and Metabolism, University Hospital, Reykjavik, Iceland
| | - Dena G. Hernandez
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, Maryland, United States of America
| | - Ranil DeSilva
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Paul Elliott
- Department of Epidemiology and Biostatistics, Medical Research Council–Health Protection Agency Centre for Environment and Health, Imperial College London, London, United Kingdom
| | | | - Jack M. Guralnik
- Laboratory of Epidemiology, Demography, and Biometry, National Institute on Aging, Bethesda, Maryland, United States of America
| | - James Scott
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Unnur Thorsteinsdottir
- deCODE Genetics, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | | | - John Chambers
- Department of Epidemiology and Public Health, Imperial College London, London, United Kingdom
| | - Kari Stefansson
- deCODE Genetics, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Gérard Waeber
- Department of Medicine, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Luigi Ferrucci
- Clinical Research Branch, National Institute on Aging, Baltimore, Maryland, United States of America
| | - Jaspal S. Kooner
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Vincent Mooser
- Division of Genetics, GlaxoSmithKline, King of Prussia, Pennsylvania, United States of America
| | - Peter Vollenweider
- Department of Medicine, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Jacques S. Beckmann
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland
- Service of Medical Genetics, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Murielle Bochud
- Institute of Social and Preventive Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Sven Bergmann
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| |
Collapse
|
112
|
Richard C, Huo R, Samadfam R, Bolivar I, Miao D, Brown EM, Hendy GN, Goltzman D. The calcium-sensing receptor and 25-hydroxyvitamin D-1alpha-hydroxylase interact to modulate skeletal growth and bone turnover. J Bone Miner Res 2010; 25:1627-36. [PMID: 20200973 DOI: 10.1002/jbmr.58] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We examined parathyroid and skeletal function in 3-month-old mice expressing the null mutation for 25-hydroxyvitamin D-1alpha-hydroxylase [1alpha(OH)ase(-/-)] and in mice expressing the null mutation for both the 1alpha(OH)ase and the calcium-sensing receptor [Casr(-/-)1alpha(OH)ase(-/-)] genes. On a normal diet, all mice were hypocalcemic, with markedly increased parathyroid hormone (PTH), increased trabecular bone volume, increased osteoblast activity, poorly mineralized bone, enlarged and distorted cartilaginous growth plates, and marked growth retardation, especially in the compound mutants. Osteoclast numbers were reduced in the Casr(-/-)1alpha(OH)ase(-/-) mice. On a high-lactose, high-calcium, high-phosphorus "rescue" diet, serum calcium and PTH were normal in the 1alpha(OH)ase(-/-) mice but increased in the Casr(-/-)1alpha(OH)ase(-/-) mice with reduced serum phosphorus. Growth plate architecture and mineralization were improved in both mutants, but linear growth of the double mutants remained abnormal. Mineralization of bone improved in all mice, but osteoblast activity and trabecular bone volume remained elevated in the Casr(-/-)1alpha(OH)ase(-/-) mice. These studies support a role for calcium-stimulated maturation of the cartilaginous growth plate and mineralization of the growth plate and bone and calcium-stimulated CaSR-mediated effects on bone resorption. PTH-mediated bone resorption may require calcium-stimulated CaSR-mediated enhancement of osteoclastic activity. (c) 2010 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Christian Richard
- Calcium Research Laboratory, Department of Medicine, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
113
|
Abstract
In contrast to the regulation of calcium homeostasis, which has been extensively studied over the past several decades, relatively little is known about the regulation of phosphate homeostasis. Fibroblast growth factor 23 (FGF23) is part of a previously unrecognized hormonal bone-parathyroid-kidney axis, which is modulated by PTH, 1,25(OH)(2)-vitamin D (1,25(OH)(2)D), dietary and serum phosphorus levels. Synthesis and secretion of FGF23 by osteocytes are positively regulated by 1,25(OH)(2)D and serum phosphorus and negatively regulated, through yet unknown mechanisms, by the phosphate-regulating gene with homologies to endopeptidases on the X chromosome (PHEX) and by dentin matrix protein 1 (DMP1). In turn, FGF23 inhibits the synthesis of 1,25(OH)(2)D, and it may negatively regulate the secretion of parathyroid hormone (PTH) from the parathyroid glands. However, FGF23 synergizes with PTH to increase renal phosphate excretion by reducing expression of the renal sodium-phosphate cotransporters NaPi-IIa and NaPi-IIc in the proximal tubules. Most insights gained into the regulation of phosphate homeostasis by these factors are derived from human genetic disorders and genetically engineered mice, which are reviewed in this paper.
Collapse
Affiliation(s)
- Clemens Bergwitz
- Endocrine Unit, Massachusetts General Hospital, Boston, MA 02114, USA.
| | | |
Collapse
|
114
|
Riccardi D, Brown EM. Physiology and pathophysiology of the calcium-sensing receptor in the kidney. Am J Physiol Renal Physiol 2010; 298:F485-99. [PMID: 19923405 PMCID: PMC2838589 DOI: 10.1152/ajprenal.00608.2009] [Citation(s) in RCA: 238] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Accepted: 11/13/2009] [Indexed: 12/21/2022] Open
Abstract
The extracellular calcium-sensing receptor (CaSR) plays a major role in the maintenance of a physiological serum ionized calcium (Ca2+) concentration by regulating the circulating levels of parathyroid hormone. It was molecularly identified in 1993 by Brown et al. in the laboratory of Dr. Steven Hebert with an expression cloning strategy. Subsequent studies have demonstrated that the CaSR is highly expressed in the kidney, where it is capable of integrating signals deriving from the tubular fluid and/or the interstitial plasma. Additional studies elucidating inherited and acquired mutations in the CaSR gene, the existence of activating and inactivating autoantibodies, and genetic polymorphisms of the CaSR have greatly enhanced our understanding of the role of the CaSR in mineral ion metabolism. Allosteric modulators of the CaSR are the first drugs in their class to become available for clinical use and have been shown to treat successfully hyperparathyroidism secondary to advanced renal failure. In addition, preclinical and clinical studies suggest the possibility of using such compounds in various forms of hypercalcemic hyperparathyroidism, such as primary and lithium-induced hyperparathyroidism and that occurring after renal transplantation. This review addresses the role of the CaSR in kidney physiology and pathophysiology as well as current and in-the-pipeline treatments utilizing CaSR-based therapeutics.
Collapse
Affiliation(s)
- Daniela Riccardi
- School of Biosciences, Cardiff University, Cardiff, United Kingdom.
| | | |
Collapse
|
115
|
Kim MY, Tan AHK, Ki CS, Lee JI, Jang HW, Shin HW, Kim SW, Min YK, Lee MS, Lee MK, Kim KW, Chung JH. Autosomal dominant hypocalcemia caused by an activating mutation of the calcium-sensing receptor gene: the first case report in Korea. J Korean Med Sci 2010; 25:317-20. [PMID: 20119591 PMCID: PMC2811305 DOI: 10.3346/jkms.2010.25.2.317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Accepted: 10/01/2008] [Indexed: 12/02/2022] Open
Abstract
Hypoparathyroidism is an abnormality of calcium metabolism characterized by low serum levels of parathyroid hormone in spite of hypocalcemia. The causes of hypoparathyroidism are numerous. Activating mutations in the calcium-sensing receptor (CaSR) gene are well-known causes of familial isolated hypoparathyroidism, also known as autosomal dominant hypocalcemia (ADH). Here we describe members of a Korean family with a heterozygous Pro221Leu mutation causing ADH. This case is the first report in Korea.
Collapse
Affiliation(s)
- Mi Yeon Kim
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Alice Hyun Kyung Tan
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Chang-Seok Ki
- Department of Laboratory Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ji In Lee
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hye Won Jang
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hyun Won Shin
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Sun Wook Kim
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yong-Ki Min
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Myung-Shik Lee
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Moon-Kyu Lee
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kwang-Won Kim
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jae Hoon Chung
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
116
|
Parathyroid Hormone and Parathyroid Hormone–Related Peptide in the Regulation of Calcium Homeostasis and Bone Development. Endocrinology 2010. [DOI: 10.1016/b978-1-4160-5583-9.00056-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
117
|
|
118
|
Saidak Z, Brazier M, Kamel S, Mentaverri R. Agonists and allosteric modulators of the calcium-sensing receptor and their therapeutic applications. Mol Pharmacol 2009; 76:1131-44. [PMID: 19779033 DOI: 10.1124/mol.109.058784] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The calcium-sensing receptor (CaR) belongs to the G protein-coupled receptor superfamily, with a characteristic structure consisting of seven transmembrane helices, an intracellular C-terminal and an extracellular N terminal domain. The primary physiological function of the CaR is the maintenance of constant blood Ca2+ levels, as a result of its ability to sense very small changes in extracellular Ca2+ (Ca2+(o)). Nevertheless, in addition to being expressed in tissues involved in Ca2+(o) homeostasis, the CaR is also expressed in tissues not involved in mineral homeostasis, suggestive of additional physiological functions. Numerous agonists and modulators of the CaR are now known in addition to Ca2+(o), including various divalent and trivalent cations, aromatic l-amino acids, polyamines, and aminoglycoside antibiotics. The signaling of the CaR is also regulated by extracellular pH and ionic strength. The activated CaR couples mainly to the phospholipase Cbeta and extracellular signal-regulated kinase 1/2 signaling pathways, and it decreases intracellular cAMP levels, leading to various physiological effects. The recent identification of synthetic allosteric modulators of the CaR has opened up a new field of research possibilities. Calcimimetics and calcilytics, which increase and decrease agonist signaling via the CaR, respectively, may facilitate the manipulation of the CaR and thus aid in further investigations of its precise signaling. These allosteric modulators, as well as strontium, have been demonstrated to have therapeutic potential for the treatment of disorders involving the CaR. This review discusses the various agonists and modulators of the CaR, differences in their binding and signaling, and their roles as therapeutics in various diseases.
Collapse
Affiliation(s)
- Zuzana Saidak
- INSERM ERI-12, 1, rue des Louvels, Amiens 80037, France.
| | | | | | | |
Collapse
|
119
|
Stechman MJ, Loh NY, Thakker RV. Genetic causes of hypercalciuric nephrolithiasis. Pediatr Nephrol 2009; 24:2321-32. [PMID: 18446382 PMCID: PMC2770137 DOI: 10.1007/s00467-008-0807-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Revised: 02/15/2008] [Accepted: 02/25/2008] [Indexed: 12/19/2022]
Abstract
Renal stone disease (nephrolithiasis) affects 3-5% of the population and is often associated with hypercalciuria. Hypercalciuric nephrolithiasis is a familial disorder in over 35% of patients and may occur as a monogenic disorder that is more likely to manifest itself in childhood. Studies of these monogenic forms of hypercalciuric nephrolithiasis in humans, e.g. Bartter syndrome, Dent's disease, autosomal dominant hypocalcemic hypercalciuria (ADHH), hypercalciuric nephrolithiasis with hypophosphatemia, and familial hypomagnesemia with hypercalciuria have helped to identify a number of transporters, channels and receptors that are involved in regulating the renal tubular reabsorption of calcium. Thus, Bartter syndrome, an autosomal disease, is caused by mutations of the bumetanide-sensitive Na-K-Cl (NKCC2) co-transporter, the renal outer-medullary potassium (ROMK) channel, the voltage-gated chloride channel, CLC-Kb, the CLC-Kb beta subunit, barttin, or the calcium-sensing receptor (CaSR). Dent's disease, an X-linked disorder characterized by low molecular weight proteinuria, hypercalciuria and nephrolithiasis, is due to mutations of the chloride/proton antiporter 5, CLC-5; ADHH is associated with activating mutations of the CaSR, which is a G-protein-coupled receptor; hypophosphatemic hypercalciuric nephrolithiasis associated with rickets is due to mutations in the type 2c sodium-phosphate co-transporter (NPT2c); and familial hypomagnesemia with hypercalciuria is due to mutations of paracellin-1, which is a member of the claudin family of membrane proteins that form the intercellular tight junction barrier in a variety of epithelia. These studies have provided valuable insights into the renal tubular pathways that regulate calcium reabsorption and predispose to hypercalciuria and nephrolithiasis.
Collapse
Affiliation(s)
- Michael J. Stechman
- Academic Endocrine Unit, Nuffield Department of Clinical Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), University of Oxford, Oxford, OX3 7LJ UK
| | - Nellie Y. Loh
- Academic Endocrine Unit, Nuffield Department of Clinical Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), University of Oxford, Oxford, OX3 7LJ UK
| | - Rajesh V. Thakker
- Academic Endocrine Unit, Nuffield Department of Clinical Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), University of Oxford, Oxford, OX3 7LJ UK
| |
Collapse
|
120
|
Hannan FM, Nesbit MA, Turner JJO, Stacey JM, Cianferotti L, Christie PT, Conigrave AD, Whyte MP, Thakker RV. Comparison of human chromosome 19q13 and syntenic region on mouse chromosome 7 reveals absence, in man, of 11.6 Mb containing four mouse calcium-sensing receptor-related sequences: relevance to familial benign hypocalciuric hypercalcaemia type 3. Eur J Hum Genet 2009; 18:442-7. [PMID: 19809483 DOI: 10.1038/ejhg.2009.161] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Familial benign hypocalciuric hypercalcaemia (FBHH) is a genetically heterogeneous disorder that consists of three designated types, FBHH1, FBHH2 and FBHH3, whose chromosomal locations are 3q21.1, 19p and 19q13, respectively. FBHH1 is caused by mutations of a calcium-sensing receptor (CaSR), but the abnormalities underlying FBHH2 and FBHH3 are unknown. FBHH3, also referred to as the Oklahoma variant (FBHH(Ok)), has been mapped to a 12cM interval, flanked by D19S908 and D19S866. To refine the location of FBHH3, we pursued linkage studies using 24 polymorphic loci. Our results establish a linkage between FBHH3 and 17 of these loci, and indicate that FBHH3 is located in a 4.1 Mb region flanked centromerically by D19S112 and telomerically by rs245111, which in the syntenic region on mouse chromosome 7 contains four Casr-related sequences (Gprc2a-rss). However, human homologues of these Gprc2a-rss were not found and a comparative analysis of the 22.0 Mb human and 39.3 Mb mouse syntenic regions showed evolutionary conservation of two segments that were inverted with loss from the human genome of 11.6 Mb that contained the four Gprc2a-rss. Thus, FBHH3 cannot be attributed to Gprc2a-rss abnormalities. DNA sequence analysis of 12 other genes from the interval that were expressed in the parathyroids and/or kidneys did not detect any abnormalities, thereby indicating that these genes are unlikely to be the cause of FBHH3. The results of this study have refined the map location of FBHH3, which will facilitate the identification of another CaSR or a mediator of calcium homeostasis.
Collapse
Affiliation(s)
- Fadil M Hannan
- Academic Endocrine Unit, Nuffield Department of Clinical Medicine, Churchill Hospital, University of Oxford, Oxford, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Hereditary tubular transport disorders: implications for renal handling of Ca2+ and Mg2+. Clin Sci (Lond) 2009; 118:1-18. [PMID: 19780717 DOI: 10.1042/cs20090086] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The kidney plays an important role in maintaining the systemic Ca2+ and Mg2+ balance. Thus the renal reabsorptive capacity of these cations can be amended to adapt to disturbances in plasma Ca2+ and Mg2+ concentrations. The reabsorption of Ca2+ and Mg2+ is driven by transport of other electrolytes, sometimes through selective channels and often supported by hormonal stimuli. It is, therefore, not surprising that monogenic disorders affecting such renal processes may impose a shift in, or even completely blunt, the reabsorptive capacity of these divalent cations within the kidney. Accordingly, in Dent's disease, a disorder with defective proximal tubular transport, hypercalciuria is frequently observed. Dysfunctional thick ascending limb transport in Bartter's syndrome, familial hypomagnesaemia with hypercalciuria and nephrocalcinosis, and diseases associated with Ca2+-sensing receptor defects, markedly change tubular transport of Ca2+ and Mg2+. In the distal convolutions, several proteins involved in Mg2+ transport have been identified [TRPM6 (transient receptor potential melastatin 6), proEGF (pro-epidermal growth factor) and FXYD2 (Na+/K+-ATPase gamma-subunit)]. In addition, conditions such as Gitelman's syndrome, distal renal tubular acidosis and pseudohypoaldosteronism type II, as well as a mitochondrial defect associated with hypomagnesaemia, all change the renal handling of divalent cations. These hereditary disorders have, in many cases, substantially increased our understanding of the complex transport processes in the kidney and their contribution to the regulation of overall Ca2+ and Mg2+ balance.
Collapse
|
122
|
Charrié A, Chikh K, Peix JL, Berger N, Decaussin M, Veber S, Bienvenu J, Lifante JC, Fabien N. Calcium-sensing receptor autoantibodies in primary hyperparathyroidism. Clin Chim Acta 2009; 406:94-7. [DOI: 10.1016/j.cca.2009.05.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 05/11/2009] [Accepted: 05/31/2009] [Indexed: 10/20/2022]
|
123
|
|
124
|
Zietse R, Zoutendijk R, Hoorn EJ. Fluid, electrolyte and acid–base disorders associated with antibiotic therapy. Nat Rev Nephrol 2009; 5:193-202. [DOI: 10.1038/nrneph.2009.17] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
125
|
Saidak Z, Mentaverri R, Brown EM. The role of the calcium-sensing receptor in the development and progression of cancer. Endocr Rev 2009; 30:178-95. [PMID: 19237714 DOI: 10.1210/er.2008-0041] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The calcium-sensing receptor (CaR) is responsive to changes in the extracellular Ca(2+) (Ca(2+)(o)) concentration. It is a member of the largest family of cell surface receptors, the G protein-coupled receptors, and it has been shown to be involved in Ca(2+)(o) homeostasis. Apart from its primary role in Ca(2+)(o) homeostasis, the CaR may be involved in phenomena that allow for the development of many types of benign or malignant tumors, from parathyroid adenomas to breast, prostate, and colon cancers. For example, whereas the CaR is expressed in both normal and malignant breast tissue, increased CaR levels have been reported in highly metastatic primary breast cancer cells and breast cancer cell lines, possibly contributing to their malignancy and associated alterations in their biological properties. In these settings the CaR exhibits oncogenic properties. Enhanced CaR expression and altered proliferation of prostate cancer cells in response to increased Ca(2+)(o) have also been described. In contrast, colon and parathyroid cancers often present with reduced or absent CaR expression, and activation of this receptor decreases cell proliferation, suggesting a role for the CaR as a tumor suppressor gene. Thus, the CaR may play an important role in the development of many types of neoplasia. Herein, we review the role of the CaR in various benign and malignant tumors in further detail, describing its contribution to parathyroid tumors, breast, prostate, and colon cancers, and we evaluate how pharmacological manipulations of this receptor may be of interest for the treatment of certain cancers in the future.
Collapse
Affiliation(s)
- Zuzana Saidak
- Institut National de la Santé et de la Recherche Médicale ERI-12, 1, Amiens, France.
| | | | | |
Collapse
|
126
|
Nakajima K, Yamazaki K, Kimura H, Takano K, Miyoshi H, Sato K. Novel gain of function mutations of the calcium-sensing receptor in two patients with PTH-deficient hypocalcemia. Intern Med 2009; 48:1951-6. [PMID: 19915295 DOI: 10.2169/internalmedicine.48.2459] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Among 15 patients with PTH-deficient idiopathic hypocalcemia, we found two novel missense mutations in the calcium-sensing receptor (CaSR). Patient 1, who developed severe hypocalcemia (5.0 mg/dL) and seizures after birth, had a heterozygous de novo missense mutation in the transmembrane domain (A844P). The patient is currently receiving a minimum dose of 1alpha-OHD(3) (0.5 microg/day) to maintain the serum calcium level at 6 mg/dL and thus prevent seizures. Patient 2 had asymptomatic hypocalcemia (7.5 mg/dL) and also had a heterozygous missense mutation in the extracellular domain (E228G). These findings suggest that gene analysis of CaSR should be performed in patients with idiopathic hypocalcemia, particularly when it occurs in the neonatal period.
Collapse
Affiliation(s)
- Kishiko Nakajima
- Department of Medicine, Institute of Clinical Endocrinology, Tokyo Women's Medical University, Tokyo
| | | | | | | | | | | |
Collapse
|
127
|
|
128
|
Saito T, Fukumoto S, Ito N, Suzuki H, Igarashi T, Fujita T. A novel mutation in the GATA3 gene of a Japanese patient with PTH-deficient hypoparathyroidism. J Bone Miner Metab 2009; 27:386-9. [PMID: 19057839 DOI: 10.1007/s00774-008-0015-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Accepted: 04/30/2008] [Indexed: 10/21/2022]
Abstract
Hypoparathyroidism is a disease characterized by hypocalcemia and hyperphosphatemia derived from deficient actions of parathyroid hormone (PTH). We report the case of 43-year-old Japanese man with PTH-deficient hypoparathyroidism introduced to an endocrinologist in our hospital. As he had complained of hearing disturbance since the age of 20, we decided to investigate the GATA3 gene. Direct sequencing of PCR products identified a novel heterozygous mutation, 432insG, in the GATA3 gene. The mutation introduces a premature stop codon at exon 4 (K302X), which results in a loss of both zinc finger domains of the GATA3 protein. However, because the mutation in the GATA3 gene found in this patient is highly likely to impair GATA3 function, we speculate that it is extremely unlikely that this patient has mutations in other genes that cause PTH-deficient hypoparathyroidism, in addition to the GATA3 mutation described here.
Collapse
Affiliation(s)
- Tasuku Saito
- Division of Pediatrics, University of Tokyo Hospital, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
129
|
Hendy GN, Guarnieri V, Canaff L. Chapter 3 Calcium-Sensing Receptor and Associated Diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 89:31-95. [DOI: 10.1016/s1877-1173(09)89003-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
130
|
Glial Cells Missing-2 (GCM2) transactivates the calcium-sensing receptor gene: effect of a dominant-negative GCM2 mutant associated with autosomal dominant hypoparathyroidism. Hum Mutat 2009; 30:85-92. [DOI: 10.1002/humu.20827] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
131
|
|
132
|
Drüeke TB, Ritz E. Treatment of secondary hyperparathyroidism in CKD patients with cinacalcet and/or vitamin D derivatives. Clin J Am Soc Nephrol 2008; 4:234-41. [PMID: 19056615 DOI: 10.2215/cjn.04520908] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The discovery of the calcium-sensing receptor (CaR) 15 yr ago was rapidly followed by the development of drugs modulating its activity, the so-called calcimimetics (increasing the CaR signal) and calcilytics (decreasing the CaR signal). The indication for calcimimetics is treatment of primary and secondary hyperparathyroidism, whereas calcilytics have potential for treatment of osteoporosis. A large number of clinical studies has shown that cinacalcet, the only presently available calcimimetic, effectively reduces serum parathyroid hormone in dialysis patients with secondary hyperparathyroidism. In contrast to the effect of active vitamin D derivatives, it simultaneously decreases serum calcium and phosphorus. Experimental studies showed a concomitant decrease in parathyroid hyperplasia. In the treatment of secondary hyperparathyroidism of dialysis patients, important questions remain unresolved, for example, whether there are reasons to prefer calcimimetics to active vitamin D derivatives and whether combined administration offers advantages compared with calcimimetics or active vitamin D given in isolation. For lowering parathyroid hormone, available evidence from recent studies suggests that combination therapy should be preferred to single drug treatment because of less side-effects and greater efficacy in controlling parathyroid overfunction. Future randomized controlled trial must answer whether calcimimetics impact on cardiovascular events or survival and whether in this respect there are differences between vitamin D sterols and calcimimetics.
Collapse
Affiliation(s)
- Tilman B Drüeke
- INSERM Unité 845 and Service de Néphrologie, Hôpital Necker, Tour Lavoisier, Paris Cedex 15, France.
| | | |
Collapse
|
133
|
Bouschet T, Martin S, Henley JM. Regulation of calcium-sensing-receptor trafficking and cell-surface expression by GPCRs and RAMPs. Trends Pharmacol Sci 2008; 29:633-9. [PMID: 18930324 PMCID: PMC3310155 DOI: 10.1016/j.tips.2008.09.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Revised: 09/15/2008] [Accepted: 09/16/2008] [Indexed: 12/14/2022]
Abstract
The calcium-sensing (CaS) receptor is a G-protein-coupled receptor (GPCR) that is of fundamental importance for extracellular calcium signalling and calcium homeostasis. The CaS receptor detects changes in free, ionized extracellular calcium concentration and initiates pathways that constantly re-adjust levels of circulating calcium. In addition, the CaS receptor is involved in processes such as stem-cell homing and regulation of neuronal-process outgrowth. To perform these functions, the CaS receptor must be appropriately targeted to the plasma membrane so that its large N-terminal calcium-sensing domain is positioned in the extracellular environment to detect dynamic changes in ionic calcium concentration. Here, we provide an overview of the molecular determinants controlling CaS receptor forward traffic and highlight the roles of CaS receptor interactors such as receptor-activity-modifying proteins and subunits of other class C GPCRs in this process.
Collapse
Affiliation(s)
- Tristan Bouschet
- Department of Anatomy, Medical Research Council Centre for Synaptic Plasticity, School of Medical Sciences, University of Bristol, University Walk, Bristol, UK
| | | | | |
Collapse
|
134
|
Tao YX. Constitutive activation of G protein-coupled receptors and diseases: insights into mechanisms of activation and therapeutics. Pharmacol Ther 2008; 120:129-48. [PMID: 18768149 PMCID: PMC2668812 DOI: 10.1016/j.pharmthera.2008.07.005] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Accepted: 07/22/2008] [Indexed: 01/17/2023]
Abstract
The existence of constitutive activity for G protein-coupled receptors (GPCRs) was first described in 1980s. In 1991, the first naturally occurring constitutively active mutations in GPCRs that cause diseases were reported in rhodopsin. Since then, numerous constitutively active mutations that cause human diseases were reported in several additional receptors. More recently, loss of constitutive activity was postulated to also cause diseases. Animal models expressing some of these mutants confirmed the roles of these mutations in the pathogenesis of the diseases. Detailed functional studies of these naturally occurring mutations, combined with homology modeling using rhodopsin crystal structure as the template, lead to important insights into the mechanism of activation in the absence of crystal structure of GPCRs in active state. Search for inverse agonists on these receptors will be critical for correcting the diseases cause by activating mutations in GPCRs. Theoretically, these inverse agonists are better therapeutics than neutral antagonists in treating genetic diseases caused by constitutively activating mutations in GPCRs.
Collapse
Affiliation(s)
- Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, 212 Greene Hall, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
135
|
Tfelt-Hansen J, Brown EM. THE CALCIUM-SENSING RECEPTOR IN NORMAL PHYSIOLOGY AND PATHOPHYSIOLOGY: A Review. Crit Rev Clin Lab Sci 2008; 42:35-70. [PMID: 15697170 DOI: 10.1080/10408360590886606] [Citation(s) in RCA: 177] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The discovery of a G protein-coupled, calcium-sensing receptor (CaR) a decade ago and of diseases caused by CaR mutations provided unquestionable evidence of the CaR's critical role in the maintenance of systemic calcium homeostasis. On the cell membrane of the chief cells of the parathyroid glands, the CaR "senses" the extracellular calcium concentration and, subsequently, alters the release of parathyroid hormone (PTH). The CaR is likewise functionally expressed in bone, kidney, and gut--the three major calcium-translocating organs involved in calcium homeostasis. Intracellular signal pathways to which the CaR couples via its associated G proteins include phospholipase C (PLC), protein kinase B (AKT); and mitogen-activated protein kinases (MAPKs). The receptor is widely expressed in various tissues and regulates important cellular functions in addition to its role in maintaining systemic calcium homeostasis, i.e., protection against apoptosis, cellular proliferation, and membrane voltage. Functionally significant mutations in the receptor have been shown to induce diseases of calcium homeostasis owing to changes in the set point for calcium-regulated PTH release as well as alterations in the renal handling of calcium. Gain-of-function mutations cause hypocalcemia, whereas loss-of-function mutations produce hypercalcemia. Recent studies have shown that the latter clinical presentation can also be caused by inactivating autoantibodies directed against the CaR Newly discovered type II allosteric activators of the CaR have been found to be effective as a medical treatment for renal secondary hyperparathyroidism.
Collapse
Affiliation(s)
- Jacob Tfelt-Hansen
- Laboratory of Molecular Cardiology, Medical Department B, H:S Rigshospitalet, University of Copenhagen, Copenhagen O, Denmark.
| | | |
Collapse
|
136
|
Fukumoto S, Namba N, Ozono K, Yamauchi M, Sugimoto T, Michigami T, Tanaka H, Inoue D, Minagawa M, Endo I, Matsumoto T. Causes and differential diagnosis of hypocalcemia--recommendation proposed by expert panel supported by ministry of health, labour and welfare, Japan. Endocr J 2008; 55:787-94. [PMID: 18490837 DOI: 10.1507/endocrj.k08e-076] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Serum calcium (Ca) level is maintained within a narrow range mainly by actions of parathyroid hormone (PTH) and 1,25-dihydroxyvitmain D [1,25(OH)(2)D]. While it is not rare to encounter hypocalcemia in clinical practice, there is currently no practical guideline for the differential diagnosis of hypocalcemia. We therefore propose flowcharts for the differential diagnosis of hypocalcemia and hypoparathyroidism, especially PTH-deficient hypoparathyroidism in which many genetic or other causes have been identified recently. Hypocalcemia can be divided into two categories, hypocalcemia with low serum phosphate level, and one with normal to elevated serum phosphate level. Deficient actions of 1,25(OH)(2)D, loss of Ca into urine, and deposition of Ca in bone or soft tissues are main causes of hypocalcemia with low to low normal serum phosphate level. Hypocalcemia with high normal to high serum phosphate level includes chronic renal failure and hypoparathyroidism. Hypoparathyroidism is subdivided into PTH-deficient hypoparathyroidism and pseudohypoparathyroidism. Recent investigations identified several causes of PTH-deficient hypoparathyroidism, including genetic abnormalities and parathyroid autoantibodies, which should be differentiated from idiopathic hypoparathyroidism. Physical and laboratory findings, the time of the onset of diseases and accompanying illness can be clues for identifying causes of PTH-deficient hypoparathyroidism.
Collapse
Affiliation(s)
- Seiji Fukumoto
- Division of Nephrology & Endocrinology, Department of Medicine, University of Tokyo Hospital, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
137
|
Canaff L, Zhou X, Hendy GN. The proinflammatory cytokine, interleukin-6, up-regulates calcium-sensing receptor gene transcription via Stat1/3 and Sp1/3. J Biol Chem 2008; 283:13586-600. [PMID: 18348986 DOI: 10.1074/jbc.m708087200] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Increased expression of the calcium-sensing receptor (CASR), which controls blood calcium homeostasis, leads to a decrease in the extracellular calcium set-point, thereby reducing parathyroid hormone secretion and renal calcium reabsorption and increasing calcitonin secretion resulting in reduced circulating calcium levels. Critically ill patients with elevated proinflammatory cytokine levels commonly have hypocalcemia, although the mechanism is not known. After intraperitoneal injection of interleukin (IL)-6 in the rat, circulating levels of parathyroid hormone, 1,25-dihydroxyvitamin D, and calcium fell within hours and remained low at 24 h. Expression of CASR (mRNA and protein) increased within hours in parathyroid, thyroid, and kidney and remained elevated at 24 h. The CASR gene has two promoters (P1 and P2) yielding transcripts having alternative 5'-untranslated regions but encoding the same receptor protein. Activities of P1 and P2 promoter/luciferase reporter constructs were stimulated approximately 2-3-fold by IL-6 in proximal tubule HKC cells and TT thyroid C-cells. Studies with P1 deleted and mutated promoter-reporter and Stat1 and/or Stat3 dominant-negative constructs showed that a Stat1/3 element downstream of the P1 start site accounted for the IL-6 induction. There are no Stat elements in the P2 promoter, but Sp1/3 elements are clustered at the transcription start site. A series of transfection P2 promoter-reporter analyses showed that Sp1 together with Stat1/3 was critical for IL-6 responsiveness of P2. By oligonucleotide precipitation assay, IL-6 rapidly promoted a complex containing both Sp1/3 and Stat1/3 on the Sp1/3 elements. In conclusion, Stat1/3 directly controls promoter P1, and the Stats indirectly regulate promoter P2 via Sp1/3 in response to IL-6. By this mechanism, the cytokine likely contributes to altered extracellular calcium homeostasis.
Collapse
Affiliation(s)
- Lucie Canaff
- Department of Medicine, Physiology, and Human Genetics, McGill University, Quebec, Canada
| | | | | |
Collapse
|
138
|
Aquaporin 2 and Apical Calcium-Sensing Receptor: New Players in Polyuric Disorders Associated With Hypercalciuria. Semin Nephrol 2008; 28:297-305. [DOI: 10.1016/j.semnephrol.2008.03.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
139
|
Schweitzer DH. Mineral Metabolism and Bone Disease after Bariatric Surgery and Ways to Optimize Bone Health. Obes Surg 2008; 17:1510-6. [DOI: 10.1007/s11695-008-9431-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
140
|
Egbuna OI, Brown EM. Hypercalcaemic and hypocalcaemic conditions due to calcium-sensing receptor mutations. Best Pract Res Clin Rheumatol 2008; 22:129-48. [PMID: 18328986 PMCID: PMC2364635 DOI: 10.1016/j.berh.2007.11.006] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The extracellular calcium (Ca2+o)-sensing receptor (CaSR) enables the parathyroid glands and other CaSR-expressing cells involved in calcium homeostasis, such as the kidney and bone, to sense alterations in the level of Ca2+o and to respond with changes in function that are directed at normalizing the blood calcium concentration. Several disorders of Ca2+o sensing arise from inherited or acquired abnormalities that 'reset' the serum calcium concentration upwards or downwards. Heterozygous inactivating mutations of the CaSR produce a benign form of hypercalcaemia, termed 'familial hypocalciuric hypercalcaemia', while homozygous mutations produce a much more severe hypercalcaemic disorder resulting from marked hyperparathyroidism, called 'neonatal severe hyperparathyroidism'. Activating mutations cause a hypocalcaemic syndrome of varying severity, termed 'autosomal-dominant hypocalcaemia or hypoparathyroidism' as well as Bartter's syndrome type V. Calcimimetic CaSR activators and calcilytic CaSR antagonists have also been developed with potential for use in the treatment of these disorders.
Collapse
MESH Headings
- Bartter Syndrome/genetics
- Humans
- Hypercalcemia/genetics
- Hyperparathyroidism, Primary/physiopathology
- Hypocalcemia/genetics
- Infant, Newborn
- Infant, Newborn, Diseases/physiopathology
- Kidney/physiology
- Mutation, Missense
- Parathyroid Glands/metabolism
- Polymorphism, Genetic
- Receptors, Calcium-Sensing/antagonists & inhibitors
- Receptors, Calcium-Sensing/genetics
- Receptors, Calcium-Sensing/metabolism
- Receptors, Calcium-Sensing/physiology
- Tissue Distribution
Collapse
Affiliation(s)
- Ogo I Egbuna
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| | | |
Collapse
|
141
|
Miyata I, Yoshikawa H, Kurokawa N, Kanno KI, Hayashi Y, Eto Y. A Neonatal Case of Autosomal Dominant Hypoparathyroidism without Mutation of the CASR Gene. Clin Pediatr Endocrinol 2008; 17:17-22. [PMID: 24790357 PMCID: PMC4004876 DOI: 10.1297/cpe.17.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Accepted: 10/29/2007] [Indexed: 11/30/2022] Open
Abstract
We experienced a case of familial hypoparathyroidism with an autosomal dominant
pattern of transmission and performed molecular analysis of the calcium-sensing receptor
(CASR) gene. The patient was a female neonate, born by cesarean section at term because of
breech presentation. Her mother had been diagnosed with idiopathic hypoparathyroidism at
the age of 9 yr and had been receiving vitamin D treatment since then. At birth, the
patient’s serum calcium concentration was 8.4 mg/dl, but it fell to 4.0 mg/dl on the fifth
day after birth. Furthermore, her serum intact PTH level was inappropriately low, while
hyperphosphatemia and hypomagnesemia were found. She was diagnosed with familial
hypoparathyroidism, and was immediately started on oral administration of 1α(OH)D3 (0.1
µg/kg/day) and continuous intravenous infusion of 8.5% calcium gluconate. Additionally,
trichlormethiazide was administered because of elevated urinary calcium/creatinine (Ca/Cr)
ratio. Her serum calcium concentration gradually improved thereafter. In this case,
autosomal dominant hypocalcemia (ADH) due to abnormality in the CASR gene was clinically
suspected, but DNA sequencing analysis revealed no mutation of the CASR gene in either the
patient or her mother. This result suggests that the patient’s hypoparathyroidism may have
been caused by abnormality in a gene other than CASR.
Collapse
Affiliation(s)
- Ichiro Miyata
- Department of Pediatrics, Jikei University School of Medicine
| | | | | | - Kei-ichi Kanno
- Department of Pediatrics, Jikei University School of Medicine
| | | | - Yoshikatsu Eto
- Department of Pediatrics, Jikei University School of Medicine
| |
Collapse
|
142
|
Nissen PH, Christensen SE, Heickendorff L, Brixen K, Mosekilde L. Molecular genetic analysis of the calcium sensing receptor gene in patients clinically suspected to have familial hypocalciuric hypercalcemia: phenotypic variation and mutation spectrum in a Danish population. J Clin Endocrinol Metab 2007; 92:4373-9. [PMID: 17698911 DOI: 10.1210/jc.2007-0322] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
CONTEXT The autosomal dominantly inherited condition familial hypocalciuric hypercalcemia (FHH) is characterized by elevated plasma calcium levels, relative or absolute hypocalciuria, and normal to moderately elevated plasma PTH. The condition is difficult to distinguish clinically from primary hyperparathyroidism and is caused by inactivating mutations in the calcium sensing receptor (CASR) gene. OBJECTIVE We sought to define the mutation spectrum of the CASR gene in a Danish FHH population and to establish genotype-phenotype relationships regarding the different mutations. DESIGN AND PARTICIPANTS A total of 213 subjects clinically suspected to have FHH, and 121 subjects enrolled as part of a family-screening program were studied. Genotype-phenotype relationships were established in 66 mutation-positive index patients and family members. MAIN OUTCOME MEASURES We determined CASR gene mutations, and correlating levels of plasma calcium (albumin corrected), ionized calcium (pH 7.4), and PTH were measured. RESULTS We identified 22 different mutations in 39 FHH families. We evaluated data on circulating calcium and PTH for 11 different mutations, representing a spectrum of clinical phenotypes, ranging from calcium concentrations moderately above the upper reference limit, to calcium levels more than 20% above the upper reference limit. Furthermore, the mean plasma PTH concentration was within the normal range in eight of 11 studied mutations, but mild to moderately elevated in families with the mutations p.C582Y, p.C582F, and p.G553R. CONCLUSIONS The present data add 19 novel mutations to the catalog of inactivating CASR mutations and illustrate a variety of biochemical phenotypes in patients with the molecular genetic diagnosis FHH.
Collapse
Affiliation(s)
- Peter H Nissen
- Department of Clinical Biochemistry, Aarhus University Hospital, Aarhus Sygehus, Tage Hansens gade 2, DK-8000 Aarhus C, Denmark.
| | | | | | | | | |
Collapse
|
143
|
Stechman MJ, Loh NY, Thakker RV. Genetics of hypercalciuric nephrolithiasis: renal stone disease. Ann N Y Acad Sci 2007; 1116:461-84. [PMID: 17872384 DOI: 10.1196/annals.1402.030] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Renal stone disease (nephrolithiasis) affects 5% of adults and is often associated with hypercalciuria. Hypercalciuric nephrolithiasis is a familial disorder in more than 35% of patients, and may occur as a monogenic disorder, or as a polygenic trait involving 3 to 5 susceptibility loci in man and rat, respectively. Studies of monogenic forms of hypercalciuric nephrolithiasis in man, for example, Bartter syndrome, Dent's disease, autosomal dominant hypocalcemic hypercalciuria (ADHH), hypercalciuric nephrolithiasis with hypophosphatemia, and familial hypomagnesemia with hypercalciuria have helped to identify a number of transporters, channels, and receptors that are involved in regulating the renal tubular reabsorption of calcium. Thus, Bartter syndrome, an autosomal recessive disease, is caused by mutations of the bumetanide-sensitive Na-K-Cl (NKCC2) cotransporter, the renal outer-medullary potassium channel (ROMK), the voltage-gated chloride channel, CLC-Kb, or in its beta subunit, Barttin. Dent's disease, an X-linked disorder characterized by low molecular weight proteinuria, hypercalciuria, and nephrolithiasis, is due to mutations of the chloride/proton antiporter, CLC-5; ADHH is associated with activating mutations of the calcium-sensing receptor, which is a G protein-coupled receptor; hypophosphatemic hypercalciuric nephrolithiasis associated with rickets is due to mutations in the type 2c sodium-phosphate cotransporter (NPT2c); and familial hypomagnesemia with hypercalciuria is due to mutations of paracellin-1, which is a member of the claudin family of membrane proteins that form the intercellular tight junction barrier in a variety of epithelia. These studies have provided valuable insights into the renal tubular pathways that regulate calcium reabsorption and predispose to kidney stones and bone disease.
Collapse
Affiliation(s)
- Michael J Stechman
- Academic Endocrine Unit, Nuffield Department of Clinical Medicine, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Headington, Oxford, UK
| | | | | |
Collapse
|
144
|
Jiang R, Yang H, Zhou L, Kuo CCJ, Sun F, Chen T. Sequence-based prioritization of nonsynonymous single-nucleotide polymorphisms for the study of disease mutations. Am J Hum Genet 2007; 81:346-60. [PMID: 17668383 PMCID: PMC1950793 DOI: 10.1086/519747] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Accepted: 05/08/2007] [Indexed: 01/07/2023] Open
Abstract
The increasing demand for the identification of genetic variation responsible for common diseases has translated into a need for sophisticated methods for effectively prioritizing mutations occurring in disease-associated genetic regions. In this article, we prioritize candidate nonsynonymous single-nucleotide polymorphisms (nsSNPs) through a bioinformatics approach that takes advantages of a set of improved numeric features derived from protein-sequence information and a new statistical learning model called "multiple selection rule voting" (MSRV). The sequence-based features can maximize the scope of applications of our approach, and the MSRV model can capture subtle characteristics of individual mutations. Systematic validation of the approach demonstrates that this approach is capable of prioritizing causal mutations for both simple monogenic diseases and complex polygenic diseases. Further studies of familial Alzheimer diseases and diabetes show that the approach can enrich mutations underlying these polygenic diseases among the top of candidate mutations. Application of this approach to unclassified mutations suggests that there are 10 suspicious mutations likely to cause diseases, and there is strong support for this in the literature.
Collapse
Affiliation(s)
- Rui Jiang
- Molecular and Computational Biology Program, Signal and Image Processing Institute, Department of Electrical Engineering, University of Southern California, Los Angeles, CA 90089-2910, USA
| | | | | | | | | | | |
Collapse
|
145
|
Endo I, Matsumoto T. [Progress in diagnosis of and therapy for hypocalcemia: Differential diagnosis and classification of hypoparathyroidism]. NIHON NAIKA GAKKAI ZASSHI. THE JOURNAL OF THE JAPANESE SOCIETY OF INTERNAL MEDICINE 2007; 96:688-95. [PMID: 17506305 DOI: 10.2169/naika.96.688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
|
146
|
Huang C, Sindic A, Hill CE, Hujer KM, Chan KW, Sassen M, Wu Z, Kurachi Y, Nielsen S, Romero MF, Miller RT. Interaction of the Ca2+-sensing receptor with the inwardly rectifying potassium channels Kir4.1 and Kir4.2 results in inhibition of channel function. Am J Physiol Renal Physiol 2007; 292:F1073-81. [PMID: 17122384 DOI: 10.1152/ajprenal.00269.2006] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The Ca(2+)-sensing receptor (CaR), a G protein-coupled receptor, is expressed in many epithelial tissues including the parathyroid glands, kidney, and GI tract. Although its role in regulating PTH levels and Ca(2+) metabolism are best characterized, it may also regulate salt and water transport in the kidney as demonstrated by recent reports showing association of potent gain-of-function mutations in the CaR with a Bartter-like, salt-wasting phenotype. To determine whether this receptor interacts with novel proteins that control ion transport, we screened a human adult kidney cDNA library with the COOH-terminal 219 amino acid cytoplasmic tail of the CaR as bait using the yeast two-hybrid system. We identified two independent clones coding for approximately 125 aa from the COOH terminus of the inwardly rectifying K(+) channel, Kir4.2. The CaR and Kir4.2 as well as Kir4.1 (another member of Kir4 subfamily) were reciprocally coimmunoprecipitated from HEK-293 cells in which they were expressed, but the receptor did not coimmunoprecipitate with Kir5.1 or Kir1.1. Both Kir4.1 and Kir4.2 were immunoprecipitated from rat kidney extracts with the CaR. In Xenopus laevis oocytes, expression of the CaR with either Kir4.1 or Kir4.2 channels resulted in inactivation of whole cell current as measured by two-electrode voltage clamp, but the nonfunctional CaR mutant CaR(R796W), and that does not coimmunoprecipitate with the channels, had no effect. Kir4.1 and the CaR were colocalized in the basolateral membrane of the distal nephron. The CaR interacts directly with Kir4.1 and Kir4.2 and can decrease their currents, which in turn could reduce recycling of K(+) for the basolateral Na(+)-K(+)-ATPase and thereby contribute to inhibition of Na(+) reabsorption.
Collapse
Affiliation(s)
- Chunfa Huang
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
147
|
Brown EM. Clinical lessons from the calcium-sensing receptor. ACTA ACUST UNITED AC 2007; 3:122-33. [PMID: 17237839 DOI: 10.1038/ncpendmet0388] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Accepted: 07/21/2006] [Indexed: 11/09/2022]
Abstract
The extracellular calcium ion (Ca(2+)(e))-sensing receptor (CaR) enables key tissues that maintain Ca(2+)(e) homeostasis to sense changes in the Ca(2+)(e) concentration. These tissues respond to changes in Ca(2+)(e) with functional alterations that will help restore Ca(2+)(e) to normal. For instance, decreases in Ca(2+)(e) act via the CaR to stimulate secretion of parathyroid hormone-a Ca(2+)(e)-elevating hormone-and to increase renal tubular calcium reabsorption; each response helps promote normalization of Ca(2+)(e) levels. Further work is needed to determine whether the CaR regulates other parameters of renal function (e.g. 1,25-dihydroxyvitamin D(3) synthesis, intestinal absorption of mineral ions, and/or bone turnover). Identification of the CaR has also elucidated the pathogenesis and pathophysiology of inherited disorders of mineral and electrolyte metabolism; moreover, acquired abnormalities of Ca(2+)(e)-sensing can result from autoimmunity to the CaR, and reduced CaR expression in the parathyroid may contribute to the abnormal parathyroid secretory control that is observed in primary and secondary hyperparathyroidism. Finally, calcimimetics-allosteric activators of the CaR-treat secondary hyperparathyroidism effectively in end-stage renal failure.
Collapse
Affiliation(s)
- Edward M Brown
- Division of Endocrinology, Diabetes and Hypertension at Brigham and Women's Hospital in Boston, MA, USA.
| |
Collapse
|
148
|
Yun FHJ, Wong BYL, Chase M, Shuen AY, Canaff L, Thongthai K, Siminovitch K, Hendy GN, Cole DEC. Genetic variation at the calcium-sensing receptor (CASR) locus: implications for clinical molecular diagnostics. Clin Biochem 2007; 40:551-61. [PMID: 17320849 DOI: 10.1016/j.clinbiochem.2006.12.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2006] [Revised: 12/05/2006] [Accepted: 12/21/2006] [Indexed: 11/20/2022]
Abstract
OBJECTIVES The calcium-sensing receptor (CASR) is critical for maintenance of blood calcium in a narrow physiologic range. Naturally occurring mutations in the calcium-sensing receptor gene (CASR) cause hypocalcaemia or hypercalcaemia, and molecular diagnosis of these mutations is clinically important. Knowledge of SNP frequency and haplotype structure is essential in understanding molecular test results. DESIGN AND METHODS Genotyping and haplotype analysis of 26 CASR SNPs (and a tetranucleotide insertion/deletion polymorphism) in control cohorts of Caucasian, Asian and African-American origin (n=1136, 88 and 104 chromosomes, respectively). RESULTS The three SNPs in exon 7 (A986S, R990G, Q1011E) are the only common exonic variants in our cohorts, and synonymous exonic SNPs are uncommon. Linkage disequilibrium analysis of the Caucasian cohort (Haploview) showed that the CASR locus is divided into three haplotype blocks, coincident with 5' regulatory, coding, and 3' regulatory domains. CONCLUSIONS These analyses provide an important framework for appropriate interpretation of CASR mutation screening now offered by a number of laboratories for the diagnosis of calcium disorders. They will assist in the study of CASR polymorphisms as predictors of complex disease states.
Collapse
Affiliation(s)
- Francisco H J Yun
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
149
|
Abstract
The extracellular calcium (Ca(o)2+)-sensing receptor (CaR) enables the parathyroid glands and other CaR-expressing cells to sense alterations in the level of Ca(o)2+ and to respond with changes in function that are directed at normalizing the blood calcium concentration. In addition to the parathyroid gland, the kidney is a key site for Ca(o)2(+)-sensing that enables it to make physiologically relevant alterations in divalent cation and water metabolism. Several disorders of Ca(o)2(+)-sensing arise from inherited or acquired abnormalities that "reset" the serum calcium concentration upward or downward. Inactivating mutations produce a benign form of hypercalcemia when present in the heterozygous state, termed Familial Hypocalciuric Hypercalcemia (FHH), while homozygous mutations produce a much more severe hypercalcemic disorder resulting from marked hyperparathyroidism, called Neonatal Severe Hyperparathyroidism (NSHPT). Activating mutations cause a hypocalcemic syndrome of varying severity, termed autosomal dominant hypocalcemia or hypoparathyroidism. Inactivating or activating antibodies directed at the CaR produce the expected hyper- or hypocalcemic syndromes, respectively. "Calcimimetic" CaR activators and "calcilytic" CaR antagonists have been developed. The calcimimetics are currently in use for controlling severe hyperparathyroidism in patients receiving dialysis treatment for end stage renal disease or with parathyroid cancer. Calcilytics are being evaluated as a means of inducing a "pulse" in the circulating parathyroid hormone (PTH) concentration, which would mimic that resulting from injection of PTH, an established anabolic form of treatment for osteoporosis.
Collapse
Affiliation(s)
- E M Brown
- Division of Endocrinology, Diabetes and Hypertension, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
150
|
Srivastava T, Alon US. Pathophysiology of hypercalciuria in children. Pediatr Nephrol 2007; 22:1659-73. [PMID: 17464515 PMCID: PMC6904412 DOI: 10.1007/s00467-007-0482-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Revised: 03/11/2007] [Accepted: 03/12/2007] [Indexed: 12/17/2022]
Abstract
Urinary excretion of calcium is the result of a complex interplay between three organs-namely, the gastrointestinal tract, bone, and kidney-which is finely orchestrated by multiple hormones. Hypercalciuria is believed to be a polygenic trait and is influenced significantly by diet. This paper briefly reviews calcium handling by the renal tubule in normal and in hereditary disorders as it relates to the pathophysiology of hypercalciuria. The effects of dietary sodium, potassium, protein, calcium, and phosphate on calcium excretion, and the association of hypercalciuria with bone homeostasis is discussed, leading to recommendations on means to address excessive urinary calcium excretion.
Collapse
Affiliation(s)
- Tarak Srivastava
- Section of Nephrology, Bone and Mineral Disorder Clinic, The Children’s Mercy Hospital and Clinics, University of Missouri, 2401 Gillham Road, Kansas City, MO 64108 USA
| | - Uri S. Alon
- Section of Nephrology, Bone and Mineral Disorder Clinic, The Children’s Mercy Hospital and Clinics, University of Missouri, 2401 Gillham Road, Kansas City, MO 64108 USA
| |
Collapse
|