101
|
KRAS mutant allele-specific imbalance is associated with worse prognosis in pancreatic cancer and progression to undifferentiated carcinoma of the pancreas. Mod Pathol 2013; 26:1346-54. [PMID: 23599154 PMCID: PMC4128625 DOI: 10.1038/modpathol.2013.71] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 02/18/2013] [Accepted: 02/19/2013] [Indexed: 12/19/2022]
Abstract
KRAS codon 12 mutations are present in about 90% of ductal adenocarcinomas and in undifferentiated carcinomas of the pancreas. The role of KRAS copy number changes and resulting KRAS mutant allele-specific imbalance (MASI) in ductal adenocarcinoma (n=94), and its progression into undifferentiated carcinoma of the pancreas (n=25) was studied by direct sequencing and KRAS fluorescence in situ hybridization (FISH). Semi-quantitative evaluation of sequencing electropherograms showed KRAS MASI (ie, mutant allele peak higher than or equal to the wild-type allele peak) in 22 (18.4%) cases. KRAS FISH (performed on 45 cases) revealed a trend for more frequent KRAS amplification among cases with KRAS MASI (7/20, 35% vs 3/25, 12%, P=0.08). KRAS amplification by FISH was seen only in undifferentiated carcinomas (10/24, 42% vs 0/21 pancreatic ductal adenocarcinoma, 0%, P=0.0007). In 6 of 11 cases with both undifferentiated and well-differentiated components, transition to undifferentiated carcinoma was associated with an increase in KRAS copy number, due to amplification and/or chromosome 12 hyperploidy. Pancreatic carcinomas with KRAS MASI (compared to those without MASI) were predominantly undifferentiated (16/22, 73% vs 9/97, 9%, P<0.001), more likely to present at clinical stage IV (5/22, 23% vs 7/97, 7%, P=0.009), and were associated with shorter overall survival (9 months, 95% confidence interval, 5-13, vs 22 months, 95% confidence interval, 17-27; P=0.015) and shorter disease-free survival (5 months, 95% confidence interval, 2-8 vs 13 months, 95% confidence interval, 10-16; P=0.02). Our findings suggest that in a subset of ductal adenocarcinomas, KRAS MASI correlates with the progression to undifferentiated carcinoma of the pancreas.
Collapse
|
102
|
A requirement for wild-type Ras isoforms in mutant KRas-driven signalling and transformation. Biochem J 2013; 452:313-20. [PMID: 23496764 DOI: 10.1042/bj20121578] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The mutant forms of KRas, NRas and HRas drive the initiation and progression of a number of human cancers, but less is known about the role of WT (wild-type) Ras alleles and isoforms in cancer. We used zinc-finger nucleases targeting HRas and NRas to modify both alleles of these genes in the mutant KRas-driven Hec1A endometrial cancer cell line, which normally expresses WT copies of these genes. The disruption of either WT isoform of Ras compromised growth-factor-dependent signalling through the ERK (extracellular-signal-regulated kinase) pathway. In addition, the disruption of HRas hindered the activation of Akt and subsequent downstream signalling. This was associated with decreased proliferation, increased apoptosis and decreased anchorage-independent growth in the HRas-disrupted cells. However, xenograft tumour growth was not significantly affected by the disruption of either NRas or HRas. As expected, deleting the mutant allele of KRas abolished tumour growth, whereas deletion of the remaining WT copy of KRas increased the tumorigenic properties of these cells; deleting a single copy of either HRas or NRas did not mimic this effect. The present study demonstrates that the WT copies of HRas, NRas and KRas play unique roles in the context of mutant KRas-driven tumours.
Collapse
|
103
|
Abstract
Although the functional interplay between mutant and wild-type Ras in driving tumor initiation and growth has been described, a clear picture of the precise ramifications and mechanisms of this association remains elusive, sometimes with conflicting conclusions. A report in this issue of Cancer Discovery tackles this question, which may have important implications for therapeutic strategies to block mutant Ras for cancer treatment.
Collapse
Affiliation(s)
- Tikvah K Hayes
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | |
Collapse
|
104
|
Xu J, Haigis KM, Firestone AJ, McNerney ME, Li Q, Davis E, Chen SC, Nakitandwe J, Downing J, Jacks T, Le Beau MM, Shannon K. Dominant role of oncogene dosage and absence of tumor suppressor activity in Nras-driven hematopoietic transformation. Cancer Discov 2013; 3:993-1001. [PMID: 23733505 DOI: 10.1158/2159-8290.cd-13-0096] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
UNLABELLED Biochemical properties of Ras oncoproteins and their transforming ability strongly support a dominant mechanism of action in tumorigenesis. However, genetic studies unexpectedly suggested that wild-type (WT) Ras exerts tumor suppressor activity. Expressing oncogenic Nras(G12D) in the hematopoietic compartment of mice induces an aggressive myeloproliferative neoplasm that is exacerbated in homozygous mutant animals. Here, we show that increased Nras(G12D) gene dosage, but not inactivation of WT Nras, underlies the aggressive in vivo behavior of Nras(G12D/G12D) hematopoietic cells. Modulating Nras(G12D) dosage had discrete effects on myeloid progenitor growth, signal transduction, and sensitivity to MAP-ERK kinase (MEK) inhibition. Furthermore, enforced WT N-Ras expression neither suppressed the growth of Nras-mutant cells nor inhibited myeloid transformation by exogenous Nras(G12D). Importantly, NRAS expression increased in human cancer cell lines with NRAS mutations. These data have therapeutic implications and support reconsidering the proposed tumor suppressor activity of WT Ras in other cancers. SIGNIFICANCE Understanding the mechanisms of Ras -induced transformation and adaptive cellular responses is fundamental. The observation that oncogenic Nras lacks tumor suppressor activity, whereas increased dosage strongly modulates cell growth and alters sensitivity to MEK inhibition, suggests new therapeutic opportunities in cancer.
Collapse
Affiliation(s)
- Jin Xu
- 1Department of Pediatrics and 2Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California; 3Molecular Pathology Unit and Center for Cancer Research, Massachusetts General Hospital, Charlestown, 4Department of Biology, David H. Koch Institute for Integrative Cancer Research and Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts; 5Department of Pathology, Institute for Genomics and Systems Biology, 6Ben May Department for Cancer Research, 7Section of Hematology/Oncology and Comprehensive Cancer Center, University of Chicago, Chicago, Illinois; 8Department of Medicine, Division of Hematology/Oncology, University of Michigan, Ann Arbor, Michigan; and 9Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Kato M, Yasui N, Seki M, Kishimoto H, Sato-Otsubo A, Hasegawa D, Kiyokawa N, Hanada R, Ogawa S, Manabe A, Takita J, Koh K. Aggressive transformation of juvenile myelomonocytic leukemia associated with duplication of oncogenic KRAS due to acquired uniparental disomy. J Pediatr 2013; 162:1285-8, 1288.e1. [PMID: 23403250 DOI: 10.1016/j.jpeds.2013.01.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 11/16/2012] [Accepted: 01/02/2013] [Indexed: 01/16/2023]
Abstract
A small fraction of cases of juvenile myelomonocytic leukemia (JMML) develop massive disease activation. Through genomic analysis of JMML, which developed in an individual with mosaicism for oncogenic KRAS mutation with rapid progression, we identified acquired uniparental disomy at 12p. We demonstrated that duplication of oncogenic KRAS is associated with rapid JMML progression.
Collapse
Affiliation(s)
- Motohiro Kato
- Department of Hematology/Oncology, Saitama Children's Medical Center, Saitama, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Emerging roles for intersectin (ITSN) in regulating signaling and disease pathways. Int J Mol Sci 2013; 14:7829-52. [PMID: 23574942 PMCID: PMC3645719 DOI: 10.3390/ijms14047829] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 04/02/2013] [Accepted: 04/03/2013] [Indexed: 01/10/2023] Open
Abstract
Intersectins (ITSNs) represent a family of multi-domain adaptor proteins that regulate endocytosis and cell signaling. ITSN genes are highly conserved and present in all metazoan genomes examined thus far. Lower eukaryotes have only one ITSN gene, whereas higher eukaryotes have two ITSN genes. ITSN was first identified as an endocytic scaffold protein, and numerous studies reveal a conserved role for ITSN in endocytosis. Subsequently, ITSNs were found to regulate multiple signaling pathways including receptor tyrosine kinases (RTKs), GTPases, and phosphatidylinositol 3-kinase Class 2beta (PI3KC2β). ITSN has also been implicated in diseases such as Down Syndrome (DS), Alzheimer Disease (AD), and other neurodegenerative disorders. This review summarizes the evolutionary conservation of ITSN, the latest research on the role of ITSN in endocytosis, the emerging roles of ITSN in regulating cell signaling pathways, and the involvement of ITSN in human diseases such as DS, AD, and cancer.
Collapse
|
107
|
Abstract
Lung cancer is a heterogeneous disease at both clinical and molecular levels, posing conceptual and practical bottlenecks in defining key pathways affecting its initiation and progression. Molecules with a central role in lung carcinogenesis are likely to be targeted by multiple deregulated pathways and may have prognostic, predictive, and/or therapeutic value. Here, we report that Tumor Progression Locus 2 (TPL2), a kinase implicated in the regulation of innate and adaptive immune responses, fulfils a role as a suppressor of lung carcinogenesis and is subject to diverse genetic and epigenetic aberrations in lung cancer patients. We show that allelic imbalance at the TPL2 locus, up-regulation of microRNA-370, which targets TPL2 transcripts, and activated RAS (rat sarcoma) signaling may result in down-regulation of TPL2 expression. Low TPL2 levels correlate with reduced lung cancer patient survival and accelerated onset and multiplicity of urethane-induced lung tumors in mice. Mechanistically, TPL2 was found to antagonize oncogene-induced cell transformation and survival through a pathway involving p53 downstream of cJun N-terminal kinase (JNK) and be required for optimal p53 response to genotoxic stress. These results identify multiple oncogenic pathways leading to TPL2 deregulation and highlight its major tumor-suppressing function in the lung.
Collapse
|
108
|
Vartanian S, Bentley C, Brauer MJ, Li L, Shirasawa S, Sasazuki T, Kim JS, Haverty P, Stawiski E, Modrusan Z, Waldman T, Stokoe D. Identification of mutant K-Ras-dependent phenotypes using a panel of isogenic cell lines. J Biol Chem 2012. [PMID: 23188824 DOI: 10.1074/jbc.m112.394130] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
To assess the consequences of endogenous mutant K-Ras, we analyzed the signaling and biological properties of a small panel of isogenic cell lines. These include the cancer cell lines DLD1, HCT116, and Hec1A, in which either the WT or mutant K-ras allele has been disrupted, and SW48 colorectal cancer cells and human mammary epithelial cells in which a single copy of mutant K-ras was introduced at its endogenous genomic locus. We find that single copy mutant K-Ras causes surprisingly modest activation of downstream signaling to ERK and Akt. In contrast, a negative feedback signaling loop to EGFR and N-Ras occurs in some, but not all, of these cell lines. Mutant K-Ras also had relatively minor effects on cell proliferation and cell migration but more dramatic effects on cell transformation as assessed by growth in soft agar. Surprisingly, knock-out of the wild type K-ras allele consistently increased growth in soft agar, suggesting tumor-suppressive properties of this gene under these conditions. Finally, we examined the effects of single copy mutant K-Ras on global gene expression. Although transcriptional programs triggered by mutant K-Ras were generally quite distinct in the different cell lines, there was a small number of genes that were consistently overexpressed, and these could be used to monitor K-Ras inhibition in a panel of human tumor cell lines. We conclude that there are conserved components of mutant K-Ras signaling and phenotypes but that many depend on cell context and environmental cues.
Collapse
Affiliation(s)
- Steffan Vartanian
- Department of Discovery Oncology, Genentech Inc., South San Francisco, California 94080, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
109
|
Demory Beckler M, Higginbotham JN, Franklin JL, Ham AJ, Halvey PJ, Imasuen IE, Whitwell C, Li M, Liebler DC, Coffey RJ. Proteomic analysis of exosomes from mutant KRAS colon cancer cells identifies intercellular transfer of mutant KRAS. Mol Cell Proteomics 2012; 12:343-55. [PMID: 23161513 DOI: 10.1074/mcp.m112.022806] [Citation(s) in RCA: 415] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Activating mutations in KRAS occur in 30% to 40% of colorectal cancers. How mutant KRAS alters cancer cell behavior has been studied intensively, but non-cell autonomous effects of mutant KRAS are less understood. We recently reported that exosomes isolated from mutant KRAS-expressing colon cancer cells enhanced the invasiveness of recipient cells relative to exosomes purified from wild-type KRAS-expressing cells, leading us to hypothesize mutant KRAS might affect neighboring and distant cells by regulating exosome composition and behavior. Herein, we show the results of a comprehensive proteomic analysis of exosomes from parental DLD-1 cells that contain both wild-type and G13D mutant KRAS alleles and isogenically matched derivative cell lines, DKO-1 (mutant KRAS allele only) and DKs-8 (wild-type KRAS allele only). Mutant KRAS status dramatically affects the composition of the exosome proteome. Exosomes from mutant KRAS cells contain many tumor-promoting proteins, including KRAS, EGFR, SRC family kinases, and integrins. DKs-8 cells internalize DKO-1 exosomes, and, notably, DKO-1 exosomes transfer mutant KRAS to DKs-8 cells, leading to enhanced three-dimensional growth of these wild-type KRAS-expressing non-transformed cells. These results have important implications for non-cell autonomous effects of mutant KRAS, such as field effect and tumor progression.
Collapse
|
110
|
Young A, Lou D, McCormick F. Oncogenic and Wild-type Ras Play Divergent Roles in the Regulation of Mitogen-Activated Protein Kinase Signaling. Cancer Discov 2012; 3:112-23. [DOI: 10.1158/2159-8290.cd-12-0231] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
111
|
Tyagi A, Agarwal C, Dwyer-Nield LD, Singh RP, Malkinson AM, Agarwal R. Silibinin modulates TNF-α and IFN-γ mediated signaling to regulate COX2 and iNOS expression in tumorigenic mouse lung epithelial LM2 cells. Mol Carcinog 2012; 51:832-42. [PMID: 21882257 DOI: 10.1002/mc.20851] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 08/01/2011] [Accepted: 08/10/2011] [Indexed: 12/21/2022]
Abstract
Silibinin inhibits mouse lung tumorigenesis in part by targeting tumor microenvironment. Tumor necrosis factor-alpha (TNF-α) and interferon-gamma (IFN-γ) can be pro- or anti-tumorigenic, but in lung cancer cell lines they induce pro-inflammatory enzymes cyclooxygenase 2 (COX2) and inducible nitric oxide synthase (iNOS). Accordingly, here we examined mechanism of silibinin action on TNF-α + IFN-γ (hereafter referred as cytokine mixture) elicited signaling in tumor-derived mouse lung epithelial LM2 cells. Both signal transducers and activators of the transcription (STAT)3 (tyr705 and ser727) and STAT1 (tyr701) were activated within 15 min of cytokine mixture exposure, while STAT1 (ser727) activated after 3 h. Cytokine mixture also activated Erk1/2 and caused an increase in both COX2 and iNOS levels. Pretreatment of cells with a MEK, NF-κB, and/or epidermal growth factor receptor (EGFR) inhibitor inhibited cytokine mixture-induced activation of Erk1/2, NF-κB, or EGFR, respectively, and strongly decreased phosphorylation of STAT3 and STAT1 and expression of COX2 and iNOS. Also, janus family kinases (JAK)1 and JAK2 inhibitors specifically decreased cytokine-induced iNOS expression, suggesting possible roles of JAK1, JAK2, Erk1/2, NF-κB, and EGFR in cytokine mixture-caused induction of COX2 and iNOS expression via STAT3/STAT1 activation in LM2 cells. Importantly, silibinin pretreatment inhibited cytokine mixture-induced phosphorylation of STAT3, STAT1, and Erk1/2, NF-κB-DNA binding, and expression of COX2, iNOS, matrix metalloproteinases (MMP)2, and MMP9, which was mediated through impairment of STAT3 and STAT1 nuclear localization. Silibinin also inhibited cytokine mixture-induced migration of LM2 cells. Together, we showed that STAT3 and STAT1 could be valuable chemopreventive and therapeutic targets within the lung tumor microenvironment in addition to being targets within tumor itself, and that silibinin inhibits their activation as a plausible mechanism of its efficacy against lung cancer.
Collapse
Affiliation(s)
- Alpna Tyagi
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Denver, Aurora, Colorado 80045, USA
| | | | | | | | | | | |
Collapse
|
112
|
Wong KA, Russo A, Wang X, Chen YJ, Lavie A, O'Bryan JP. A new dimension to Ras function: a novel role for nucleotide-free Ras in Class II phosphatidylinositol 3-kinase beta (PI3KC2β) regulation. PLoS One 2012; 7:e45360. [PMID: 23028960 PMCID: PMC3441633 DOI: 10.1371/journal.pone.0045360] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 08/14/2012] [Indexed: 12/31/2022] Open
Abstract
The intersectin 1 (ITSN1) scaffold stimulates Ras activation on endocytic vesicles without activating classic Ras effectors. The identification of Class II phosphatidylinositol 3-kinase beta, PI3KC2β, as an ITSN1 target on vesicles and the presence of a Ras binding domain (RBD) in PI3KC2β suggests a role for Ras in PI3KC2β activation. Here, we demonstrate that nucleotide-free Ras negatively regulates PI3KC2β activity. PI3KC2β preferentially interacts in vivo with dominant-negative (DN) Ras, which possesses a low affinity for nucleotides. PI3KC2β interaction with DN Ras is disrupted by switch 1 domain mutations in Ras as well as RBD mutations in PI3KC2β. Using purified proteins, we demonstrate that the PI3KC2β-RBD directly binds nucleotide-free Ras in vitro and that this interaction is not disrupted by nucleotide addition. Finally, nucleotide-free Ras but not GTP-loaded Ras inhibits PI3KC2β lipid kinase activity in vitro. Our findings indicate that PI3KC2β interacts with and is regulated by nucleotide-free Ras. These data suggest a novel role for nucleotide-free Ras in cell signaling in which PI3KC2β stabilizes nucleotide-free Ras and that interaction of Ras and PI3KC2β mutually inhibit one another.
Collapse
Affiliation(s)
- Katy A. Wong
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - Angela Russo
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - Xuerong Wang
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - Yun-Ju Chen
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - Arnon Lavie
- Cancer Center, University of Illinois College of Medicine, Chicago, Illinois, United States of America
- Biochemistry and Molecular Genetics, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - John P. O'Bryan
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois, United States of America
- Cancer Center, University of Illinois College of Medicine, Chicago, Illinois, United States of America
- Center for Cardiovascular Research, University of Illinois College of Medicine, Chicago, Illinois, United States of America
| |
Collapse
|
113
|
Interactions between wild-type and mutant Ras genes in lung and skin carcinogenesis. Oncogene 2012; 32:4028-33. [PMID: 22945650 PMCID: PMC3515692 DOI: 10.1038/onc.2012.404] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 07/05/2012] [Accepted: 07/17/2012] [Indexed: 12/17/2022]
Abstract
Ras oncogenes (Hras, Kras, and Nras) are important drivers of carcinogenesis. However, tumors with Ras mutations often show loss of the corresponding wildtype (WT) allele, suggesting that proto-oncogenic forms of Ras can function as a suppressor of carcinogenesis. In vitro studies also suggest that WT Ras proteins can suppress the tumorigenic properties of alternate mutant Ras family members, but in vivo evidence for these heterologous interactions is lacking. We have investigated the genetic interactions between different combinations of mutant and WT Ras alleles in vivo using carcinogen-induced lung and skin carcinogenesis in mice with targeted deletion of different Ras family members. The major suppressor effect of WT Kras is observed only in mutant Kras-driven lung carcinogenesis, where loss of one Kras allele led to increased tumor number and size. Deletion of one Hras allele dramatically reduced the number of skin papillomas with Hras mutations, consistent with Hras as the major target of mutation in these tumors. However, skin carcinoma numbers were very similar, suggesting that WT Hras functions as a suppressor of progression from papillomas to invasive squamous carcinomas. In the skin, the Kras proto-oncogene functions cooperatively with mutant Hras to promote papilloma development, although the effect is relatively small. In contrast, the Hras proto-oncogene attenuated the activity of mutant Kras in lung carcinogenesis. Interestingly, loss of Nras increased the number of mutant Kras-induced lung tumors but decreased the number of mutant Hras-induced skin papillomas. These results show that the strongest suppressor effects of WT Ras are only seen in the context of mutation of the cognate Ras protein, and only relatively weak effects are detected on tumor development induced by mutations in alternative family members. The data also underscore the complex and context-dependent nature of interactions between proto-oncogenic and oncogenic forms of different Ras family members during tumor development.
Collapse
|
114
|
Abstract
Mutational activation of KRAS is a common oncogenic event in lung cancer and other epithelial cancer types. Efforts to develop therapies that counteract the oncogenic effects of mutant KRAS have been largely unsuccessful, and cancers driven by mutant KRAS remain among the most refractory to available treatments. Studies undertaken over the past decades have produced a wealth of information regarding the clinical relevance of KRAS mutations in lung cancer. Mutant Kras-driven mouse models of cancer, together with cellular and molecular studies, have provided a deeper appreciation for the complex functions of KRAS in tumorigenesis. However, a much more thorough understanding of these complexities is needed before clinically effective therapies targeting mutant KRAS-driven cancers can be achieved.
Collapse
Affiliation(s)
- Peter M K Westcott
- Pharmaceutical Sciences and Pharmacogenomics Program, Helen Diller Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94115, USA
| | | |
Collapse
|
115
|
Benet M, Dulman RY, Suzme R, de Miera EVS, Vega ME, Nguyen T, Zavadil J, Pellicer A. Wild type N-ras displays anti-malignant properties, in part by downregulating decorin. J Cell Physiol 2012; 227:2341-51. [PMID: 21809347 DOI: 10.1002/jcp.22969] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Previously, we have shown that wild type N-ras (wt N-ras) harbors an anti-malignant effect against mutated Ras and in tumors without Ras mutations. To investigate the molecular bases of this anti-malignant activity, we have studied the potency of this anti-malignant effect in a model system against SV40 large T antigen (SV40T). We show that wild-type N-ras (wt N-ras) counteracts the effects of SV40T in NIH3T3 cells as seen by a decrease in proliferation, anchorage independence and changes in migration. We also show that wt N-ras elicits the same anti-malignant effects in some human tumor cell lines (HT1080 and MDA-MB-231). Through mRNA and microRNA (miRNAs) expression profiling we have identified genes (decorin) and miRNAs (mir-29A, let-7b) modulated by wt N-ras potentially responsible for the anti-malignant effect. Wt N-ras appears to mediate its anti-malignant effect by downregulating some of the targets of the TGFβ pathway and decorin, which are able to reverse the inhibition of migration induced by wt N-ras. Our experiments show that the molecules that mediate the anti-malignant effect by wt N-ras appear to be different from those modulated by transforming N-ras. The components of the pathways modulated by wt N-ras mediating its anti-malignant effects are potential targets for therapeutic intervention in cancer.
Collapse
Affiliation(s)
- Marta Benet
- Department of Pathology, New York University School of Medicine, New York, New York, USA.
| | | | | | | | | | | | | | | |
Collapse
|
116
|
Qiu W, Sahin F, Iacobuzio-Donahue CA, Garcia-Carracedo D, Wang WM, Kuo CY, Chen D, Arking DE, Lowy AM, Hruban RH, Remotti HE, Su GH. Disruption of p16 and activation of Kras in pancreas increase ductal adenocarcinoma formation and metastasis in vivo. Oncotarget 2012; 2:862-73. [PMID: 22113502 PMCID: PMC3259996 DOI: 10.18632/oncotarget.357] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Inactivation of tumor suppressor gene p16/INK4A and oncogenic activation of KRAS occur in almost all pancreatic cancers. To better understand the roles of p16 in pancreatic tumorigenesis, we created a conditional p16 knockout mouse line (p16flox/flox), in which p16 is specifically disrupted in a tissue-specific manner without affecting p19/ARF expression. p16flox/flox; LSL-KrasG12D; Pdx1-Cre mice developed the full spectrum of pancreatic intraepithelial neoplasia (mPanIN) lesions, pancreatic ductal adenocarcinoma (PDA), and metastases were observed in all the mice. Here we report a mouse model that simulates human pancreatic tumorigenesis at both genetic and histologic levels and is ideal for studies of metastasis. During the progression from primary tumors to metastases, the wild-type allele of Kras was progressively lost (loss of heterozygosity at Kras or LOH at Kras) in p16flox/flox; LSL- KrasG12D; Pdx1-Cre mice. These observations suggest a role for Kras beyond tumor initiation. In vitro assays performed with cancer cell lines derived from primary pancreatic tumors of these mice showed that cancer cells with LOH at Kras exhibited more aggressive phenotypes than those retained the wild-type Kras allele, indicating that LOH at Kras can provide cancer cells functional growth advantages and promote metastasis. Increased LOH at KRAS was also observed in progression of human pancreatic primary tumors to metastases, again supporting a role for the KRAS gene in cancer metastasis. This finding has potential translational implications- future KRAS target therapies may need to consider targeting oncogenic KRAS specifically without inhibiting wild-type KRAS function.
Collapse
Affiliation(s)
- Wanglong Qiu
- The Department of Otolaryngology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
117
|
Hartman DJ, Davison JM, Foxwell TJ, Nikiforova MN, Chiosea SI. Mutant allele-specific imbalance modulates prognostic impact of KRAS mutations in colorectal adenocarcinoma and is associated with worse overall survival. Int J Cancer 2012; 131:1810-7. [PMID: 22290300 DOI: 10.1002/ijc.27461] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 01/14/2012] [Accepted: 01/18/2012] [Indexed: 01/15/2023]
Abstract
The prognostic impact of distinct KRAS mutations in colorectal carcinomas is not fully characterized. We hypothesized that the prognostic impact of KRAS mutations is modulated by KRAS mutant allele-specific imbalance (MASI). KRAS MASI was assessed by sequencing electropherograms in KRAS-mutated colorectal carcinomas (N = 394, prospectively tested). The mechanism of KRAS MASI was studied by fluorescence in situ hybridization (FISH; N = 50). FISH showed that KRAS MASI developed by chromosome 12 hyperploidy (9/18, 50%) or KRAS amplification (1/18, 5.5%). KRAS MASI was more common in tumors with KRAS codon 13 than with codon 12 mutations [24/81, 30% vs. 54/313, 17%; odds ratio (OR), 2.0, 95% confidence interval (CI), 1.2-3.5; p = 0.01]. KRAS MASI was correlated with overall survival (N = 358, median follow-up = 21 months). In a multivariate analysis, KRAS codon 13 MASI was an independent adverse prognostic factor (compared to codon 13 mutants without MASI combined with all codon 12 mutants; adjusted hazard ratio, 2.2, 95% CI: 1.2-3.9; p = 0.01). KRAS MASI arises through chromosome 12 hyperploidy or KRAS amplification and, when affects KRAS codon 13, is associated with worse overall survival.
Collapse
Affiliation(s)
- D J Hartman
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | | | | | | | | |
Collapse
|
118
|
Wang Y, Rouggly L, You M, Lubet R. Animal models of lung cancer characterization and use for chemoprevention research. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 105:211-26. [PMID: 22137433 DOI: 10.1016/b978-0-12-394596-9.00007-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Of the potential sites of cancer development, cancer of the lung accounts for the highest number of cancer deaths each year in the United States (Jemal et al., 2010(1)). Based on its histopathological features, lung cancer is grouped into small cell lung cancer (SCLC; ∼20%) and non-SCLC (NSCLC; ∼80%), which is further divided into three subtypes: squamous cell carcinoma (∼30%), adenocarcinoma (∼50%), and large cell lung carcinoma. Every subtype of lung cancer has a relatively low 5-year survival rate that is attributed, in part, to the fact that they are routinely diagnosed at later histologic stages. Due to this alarming statistic, it is necessary to develop not only new and effective means of treatment but also of prevention. One of the promising approaches is chemoprevention which is the use of synthetic or natural agents to inhibit the initial development of or further progression of early lung lesions (Hong and Sporn, 1997). Many compounds have been identified as potentially effective chemopreventive agents using animal models. Most chemopreventive studies have been performed using mouse models which were developed to study lung adenomas or adenocarcinomas. More recently, models of squamous cell lung cancer and small cell lung cancer have also been developed. This review seeks to highlight mouse models which we helped to develop and presents the results of recent chemopreventive studies that we have performed in models of lung adenocarcinoma, squamous cell carcinoma, and small cell lung cancer.
Collapse
Affiliation(s)
- Yian Wang
- Department of Surgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | | |
Collapse
|
119
|
Matallanas D, Romano D, Al-Mulla F, O'Neill E, Al-Ali W, Crespo P, Doyle B, Nixon C, Sansom O, Drosten M, Barbacid M, Kolch W. Mutant K-Ras activation of the proapoptotic MST2 pathway is antagonized by wild-type K-Ras. Mol Cell 2011; 44:893-906. [PMID: 22195963 DOI: 10.1016/j.molcel.2011.10.016] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 08/29/2011] [Accepted: 10/10/2011] [Indexed: 01/14/2023]
Abstract
K-Ras mutations are frequent in colorectal cancer (CRC), albeit K-Ras is the only Ras isoform that can elicit apoptosis. Here, we show that mutant K-Ras directly binds to the tumor suppressor RASSF1A to activate the apoptotic MST2-LATS1 pathway. In this pathway LATS1 binds to and sequesters the ubiquitin ligase Mdm2 causing stabilization of the tumor suppressor p53 and apoptosis. However, mutant Ras also stimulates autocrine activation of the EGF receptor (EGFR) which counteracts mutant K-Ras-induced apoptosis. Interestingly, this protection requires the wild-type K-Ras allele, which inhibits the MST2 pathway in part via AKT activation. Confirming the pathophysiological relevance of the molecular findings, we find a negative correlation between K-Ras mutation and MST2 expression in human CRC patients and CRC mouse models. The small number of tumors with co-expression of mutant K-Ras and MST2 has elevated apoptosis rates. Thus, in CRC, mutant K-Ras transformation is supported by the wild-type allele.
Collapse
Affiliation(s)
- David Matallanas
- Systems Biology Ireland, University College Dublin, Dublin 4, Ireland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
120
|
To MD, Quigley DA, Mao JH, Rosario RD, Hsu J, Hodgson G, Jacks T, Balmain A. Progressive genomic instability in the FVB/Kras(LA2) mouse model of lung cancer. Mol Cancer Res 2011; 9:1339-1345. [PMID: 21807965 PMCID: PMC3196775 DOI: 10.1158/1541-7786.mcr-11-0219] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Alterations in DNA copy number contribute to the development and progression of cancers and are common in epithelial tumors. We have used array Comparative Genomic Hybridization (aCGH) to visualize DNA copy number alterations across the genomes of lung tumors in the Kras(LA2) model of lung cancer. Copy number gain involving the Kras locus, as focal amplification or whole chromosome gain, is the most common alteration in these tumors and with a prevalence that increased significantly with increasing tumor size. Furthermore, Kras amplification was the only major genomic event among the smallest lung tumors, suggesting that this alteration occurs early during the development of mutant Kras-driven lung cancers. Recurring gains and deletions of other chromosomes occur progressively more frequently among larger tumors. These results are in contrast to a previous aCGH analysis of lung tumors from Kras(LA2) mice on a mixed genetic background, in which relatively few DNA copy number alterations were observed regardless of tumor size. Our model features the Kras(LA2) allele on the inbred FVB/N mouse strain, and in this genetic background, there is a highly statistically significant increase in level of genomic instability with increasing tumor size. These data suggest that recurring DNA copy alterations are important for tumor progression in the Kras(LA2) model of lung cancer and that the requirement for these alterations may be dependent on the genetic background of the mouse strain.
Collapse
Affiliation(s)
- Minh D. To
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
- Thoracic Oncology Program, Department of Surgery, University of California San Francisco, San Francisco, California
| | - David A. Quigley
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Jian-Hua Mao
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Reyno Del Rosario
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Jeff Hsu
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Graeme Hodgson
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Tyler Jacks
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Allan Balmain
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| |
Collapse
|
121
|
Wang J, Liu Y, Li Z, Wang Z, Tan LX, Ryu MJ, Meline B, Du J, Young KH, Ranheim E, Chang Q, Zhang J. Endogenous oncogenic Nras mutation initiates hematopoietic malignancies in a dose- and cell type-dependent manner. Blood 2011; 118:368-379. [PMID: 21586752 PMCID: PMC3138689 DOI: 10.1182/blood-2010-12-326058] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 04/28/2011] [Indexed: 12/16/2022] Open
Abstract
Both monoallelic and biallelic oncogenic NRAS mutations are identified in human leukemias, suggesting a dose-dependent role of oncogenic NRAS in leukemogenesis. Here, we use a hypomorphic oncogenic Nras allele and a normal oncogenic Nras allele (Nras G12D(hypo) and Nras G12D, respectively) to create a gene dose gradient ranging from 25% to 200% of endogenous Nras G12D/+. Mice expressing Nras G12D(hypo)/G12D(hypo) develop normally and are tumor-free, whereas early embryonic expression of Nras G12D/+ is lethal. Somatic expression of Nras G12D/G12D but not Nras G12D/+ leads to hyperactivation of ERK, excessive proliferation of myeloid progenitors, and consequently an acute myeloproliferative disease. Using a bone marrow transplant model, we previously showed that ∼ 95% of animals receiving Nras G12D/+ bone marrow cells develop chronic myelomonocytic leukemia (CMML), while ∼ 8% of recipients develop acute T-cell lymphoblastic leukemia/lymphoma [TALL] (TALL-het). Here we demonstrate that 100% of recipients transplanted with Nras G12D/G12D bone marrow cells develop TALL (TALL-homo). Although both TALL-het and -homo tumors acquire Notch1 mutations and are sensitive to a γ-secretase inhibitor, endogenous Nras G12D/+ signaling promotes TALL through distinct genetic mechanism(s) from Nras G12D/G12D. Our data indicate that the tumor transformation potential of endogenous oncogenic Nras is both dose- and cell type-dependent.
Collapse
Affiliation(s)
- Jinyong Wang
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
122
|
Higginbotham JN, Beckler MD, Gephart JD, Franklin JL, Bogatcheva G, Kremers GJ, Piston DW, Ayers GD, McConnell RE, Tyska MJ, Coffey RJ. Amphiregulin exosomes increase cancer cell invasion. Curr Biol 2011; 21:779-86. [PMID: 21514161 PMCID: PMC3417320 DOI: 10.1016/j.cub.2011.03.043] [Citation(s) in RCA: 277] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 02/16/2011] [Accepted: 03/16/2011] [Indexed: 12/14/2022]
Abstract
Autocrine, paracrine, and juxtacrine are recognized modes of action for mammalian EGFR ligands including EGF, TGF-α (TGFα), amphiregulin (AREG), heparin-binding EGF-like growth factor (HB-EGF), betacellulin, epiregulin, and epigen. We identify a new mode of EGFR ligand signaling via exosomes. Human breast and colorectal cancer cells release exosomes containing full-length, signaling-competent EGFR ligands. Exosomes isolated from MDCK cells expressing individual full-length EGFR ligands displayed differential activities; AREG exosomes increased invasiveness of recipient breast cancer cells 4-fold over TGFα or HB-EGF exosomes and 5-fold over equivalent amounts of recombinant AREG. Exosomal AREG displayed significantly greater membrane stability than TGFα or HB-EGF. An average of 24 AREG molecules are packaged within an individual exosome, and AREG exosomes are rapidly internalized by recipient cells. Whether the composition and behavior of exosomes differ between nontransformed and transformed cells is unknown. Exosomes from DLD-1 colon cancer cells with a mutant KRAS allele exhibited both higher AREG levels and greater invasive potential than exosomes from isogenically matched, nontransformed cells in which mutant KRAS was eliminated by homologous recombination. We speculate that EGFR ligand signaling via exosomes might contribute to diverse cancer phenomena such as field effect and priming of the metastatic niche.
Collapse
Affiliation(s)
| | - Michelle Demory Beckler
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Radiology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Jonathan D. Gephart
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Jeffrey L. Franklin
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Galina Bogatcheva
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Gert-Jan Kremers
- Department of Molecular and Cellular Physiology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - David W. Piston
- Department of Molecular and Cellular Physiology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Gregory D. Ayers
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Russell E. McConnell
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Matthew J. Tyska
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Robert J. Coffey
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232
- Department of Veterans Affairs Medical Center, Nashville, TN 37232
| |
Collapse
|
123
|
Little AS, Balmanno K, Sale MJ, Newman S, Dry JR, Hampson M, Edwards PAW, Smith PD, Cook SJ. Amplification of the driving oncogene, KRAS or BRAF, underpins acquired resistance to MEK1/2 inhibitors in colorectal cancer cells. Sci Signal 2011; 4:ra17. [PMID: 21447798 DOI: 10.1126/scisignal.2001752] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The acquisition of resistance to protein kinase inhibitors is a growing problem in cancer treatment. We modeled acquired resistance to the MEK1/2 (mitogen-activated or extracellular signal-regulated protein kinase kinases 1 and 2) inhibitor selumetinib (AZD6244) in colorectal cancer cell lines harboring mutations in BRAF (COLO205 and HT29 lines) or KRAS (HCT116 and LoVo lines). AZD6244-resistant derivatives were refractory to AZD6244-induced cell cycle arrest and death and exhibited a marked increase in ERK1/2 (extracellular signal-regulated kinases 1 and 2) pathway signaling and cyclin D1 abundance when assessed in the absence of inhibitor. Genomic sequencing revealed no acquired mutations in MEK1 or MEK2, the primary target of AZD6244. Rather, resistant lines showed a marked up-regulation of their respective driving oncogenes, BRAF(600E) or KRAS(13D), due to intrachromosomal amplification. Inhibition of BRAF reversed resistance to AZD6244 in COLO205 cells, which suggested that combined inhibition of MEK1/2 and BRAF may reduce the likelihood of acquired resistance in tumors with BRAF(600E). Knockdown of KRAS reversed AZD6244 resistance in HCT116 cells as well as reduced the activation of ERK1/2 and protein kinase B; however, the combined inhibition of ERK1/2 and phosphatidylinositol 3-kinase signaling had little effect on AZD6244 resistance, suggesting that additional KRAS effector pathways contribute to this process. Microarray analysis identified increased expression of an 18-gene signature previously identified as reflecting MEK1/2 pathway output in resistant cells. Thus, amplification of the driving oncogene (BRAF(600E) or KRAS(13D)) can drive acquired resistance to MEK1/2 inhibitors by increasing signaling through the ERK1/2 pathway. However, up-regulation of KRAS(13D) leads to activation of multiple KRAS effector pathways, underlining the therapeutic challenge posed by KRAS mutations. These results may have implications for the use of combination therapies.
Collapse
Affiliation(s)
- Annette S Little
- Laboratory of Molecular Signalling, Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
124
|
The stress kinase MKK7 couples oncogenic stress to p53 stability and tumor suppression. Nat Genet 2011; 43:212-9. [PMID: 21317887 DOI: 10.1038/ng.767] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 01/19/2011] [Indexed: 12/11/2022]
Abstract
Most preneoplastic lesions are quiescent and do not progress to form overt tumors. It has been proposed that oncogenic stress activates the DNA damage response and the key tumor suppressor p53, which prohibits tumor growth. However, the molecular pathways by which cells sense a premalignant state in vivo are largely unknown. Here we report that tissue-specific inactivation of the stress signaling kinase MKK7 in KRas(G12D)-driven lung carcinomas and NeuT-driven mammary tumors markedly accelerates tumor onset and reduces overall survival. Mechanistically, MKK7 acts through the kinases JNK1 and JNK2, and this signaling pathway directly couples oncogenic and genotoxic stress to the stability of p53, which is required for cell cycle arrest and suppression of epithelial cancers. These results show that MKK7 functions as a major tumor suppressor in lung and mammary cancer in mouse and identify MKK7 as a vital molecular sensor to set a cellular anti-cancer barrier.
Collapse
|
125
|
Bose S, Sakhuja P, Bezawada L, Agarwal AK, Kazim SN, Khan LA, Sarin SK, Ramakrishna G. Hepatocellular carcinoma with persistent hepatitis B virus infection shows unusual downregulation of Ras expression and differential response to Ras mediated signaling. J Gastroenterol Hepatol 2011; 26:135-144. [PMID: 21175807 DOI: 10.1111/j.1440-1746.2010.06305.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND AIM Persistent infection with hepatitis B virus (HBV) is a major etiological risk factor for hepatocellular carcinoma (HCC). The host cellular components involved in the progression of the carcinoma are still unclear. In the present study we aimed to evaluate Ras mediated signaling in hepatocellular carcinoma with persistent HBV infection. METHODS To gain insight into the role of Ras mediated signaling in HBV mediated carcinogenesis we evaluated Ras functionality by mutation analysis, reverse transcription-polymerase chain reaction, immunohistochemistry (IHC), Ras-guanosine triphosphate bound functionality assay and Ras-mediated downstream signaling in a cohort of primary HCC tissues positive for HBV-DNA. RESULTS Mutation in codon 12 of K-ras appeared to be an uncommon event in the pathogenesis of HCC. We found unusually low levels of Ras expression in HCC compared with those with normal liver and chronic liver disease (cirrhosis and chronic hepatitis). Considerable heterogeneity was found with respect to Ras-mediated signaling events (pRaf, pMAPK and pAKT). The hepatoma cell line (Hep3B) with integrated HBV showed upregulation in expression and activation of Ras and its downstream signaling in comparison to HBV a negative cell line (HepG2). The contrasting result between the cell lines and primary tumors is worthy of note. CONCLUSIONS The unusual finding on downregulation of Ras expression in primary HCC tumors in the present study together with tumor heterogeneity with respect to Ras-mediated signaling events prompts a new role of the wild type K-Ras as a possible growth suppressor and a stochastic model for progression of hepatic cancer.
Collapse
Affiliation(s)
- Sujoy Bose
- Department of Gastroenterology, G.B. Pant Hospital, Delhi, India
| | | | | | | | | | | | | | | |
Collapse
|
126
|
Hematopoiesis and leukemogenesis in mice expressing oncogenic NrasG12D from the endogenous locus. Blood 2010; 117:2022-32. [PMID: 21163920 DOI: 10.1182/blood-2010-04-280750] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
NRAS is frequently mutated in hematologic malignancies. We generated Mx1-Cre, Lox-STOP-Lox (LSL)-Nras(G12D) mice to comprehensively analyze the phenotypic, cellular, and biochemical consequences of endogenous oncogenic Nras expression in hematopoietic cells. Here we show that Mx1-Cre, LSL-Nras(G12D) mice develop an indolent myeloproliferative disorder but ultimately die of a diverse spectrum of hematologic cancers. Expressing mutant Nras in hematopoietic tissues alters the distribution of hematopoietic stem and progenitor cell populations, and Nras mutant progenitors show distinct responses to cytokine growth factors. Injecting Mx1-Cre, LSL-Nras(G12D) mice with the MOL4070LTR retrovirus causes acute myeloid leukemia that faithfully recapitulates many aspects of human NRAS-associated leukemias, including cooperation with deregulated Evi1 expression. The disease phenotype in Mx1-Cre, LSL-Nras(G12D) mice is attenuated compared with Mx1-Cre, LSL-Kras(G12D) mice, which die of aggressive myeloproliferative disorder by 4 months of age. We found that endogenous Kras(G12D) expression results in markedly elevated Ras protein expression and Ras-GTP levels in Mac1(+) cells, whereas Mx1-Cre, LSL-Nras(G12D) mice show much lower Ras protein and Ras-GTP levels. Together, these studies establish a robust and tractable system for interrogating the differential properties of oncogenic Ras proteins in primary cells, for identifying candidate cooperating genes, and for testing novel therapeutic strategies.
Collapse
|
127
|
Junttila MR, Karnezis A, Garcia D, Madriles F, Kortlever RM, Rostker F, Brown-Swigart L, Pham DM, Seo Y, Evan GI, Martins CP. Selective activation of p53-mediated tumour suppression in high-grade tumours. Nature 2010; 468:567-71. [PMID: 21107427 PMCID: PMC3011233 DOI: 10.1038/nature09526] [Citation(s) in RCA: 208] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 09/21/2010] [Indexed: 11/24/2022]
Abstract
Non-small cell lung carcinoma (NSCLC) is the leading cause of cancer-related death worldwide, with an overall 5-year survival rate of only 10-15%. Deregulation of the Ras pathway is a frequent hallmark of NSCLC, often through mutations that directly activate Kras. p53 is also frequently inactivated in NSCLC and, because oncogenic Ras can be a potent trigger of p53 (ref. 3), it seems likely that oncogenic Ras signalling has a major and persistent role in driving the selection against p53. Hence, pharmacological restoration of p53 is an appealing therapeutic strategy for treating this disease. Here we model the probable therapeutic impact of p53 restoration in a spontaneously evolving mouse model of NSCLC initiated by sporadic oncogenic activation of endogenous Kras. Surprisingly, p53 restoration failed to induce significant regression of established tumours, although it did result in a significant decrease in the relative proportion of high-grade tumours. This is due to selective activation of p53 only in the more aggressive tumour cells within each tumour. Such selective activation of p53 correlates with marked upregulation in Ras signal intensity and induction of the oncogenic signalling sensor p19(ARF)( )(ref. 6). Our data indicate that p53-mediated tumour suppression is triggered only when oncogenic Ras signal flux exceeds a critical threshold. Importantly, the failure of low-level oncogenic Kras to engage p53 reveals inherent limits in the capacity of p53 to restrain early tumour evolution and in the efficacy of therapeutic p53 restoration to eradicate cancers.
Collapse
Affiliation(s)
- Melissa R. Junttila
- University of California San Francisco, Department of Pathology and Helen Diller Family Comprehensive Cancer Center, San Francisco, California 94143-0502, USA
| | - Anthony Karnezis
- University of California San Francisco, Department of Pathology and Helen Diller Family Comprehensive Cancer Center, San Francisco, California 94143-0502, USA
| | - Daniel Garcia
- University of California San Francisco, Department of Pathology and Helen Diller Family Comprehensive Cancer Center, San Francisco, California 94143-0502, USA
| | | | - Roderik M. Kortlever
- University of California San Francisco, Department of Pathology and Helen Diller Family Comprehensive Cancer Center, San Francisco, California 94143-0502, USA
| | - Fanya Rostker
- University of California San Francisco, Department of Pathology and Helen Diller Family Comprehensive Cancer Center, San Francisco, California 94143-0502, USA
| | - Lamorna Brown-Swigart
- University of California San Francisco, Department of Pathology and Helen Diller Family Comprehensive Cancer Center, San Francisco, California 94143-0502, USA
| | - David M. Pham
- University of California San Francisco, Department of Radiology and Biomedical Imaging and Helen Diller Family Comprehensive Cancer Center San Francisco, California 94143, USA
| | - Youngho Seo
- University of California San Francisco, Department of Radiology and Biomedical Imaging and Helen Diller Family Comprehensive Cancer Center San Francisco, California 94143, USA
| | - Gerard I. Evan
- University of California San Francisco, Department of Pathology and Helen Diller Family Comprehensive Cancer Center, San Francisco, California 94143-0502, USA
| | - Carla P. Martins
- University of California San Francisco, Department of Pathology and Helen Diller Family Comprehensive Cancer Center, San Francisco, California 94143-0502, USA
| |
Collapse
|
128
|
Berdeaux O, Juaneda P, Martine L, Cabaret S, Bretillon L, Acar N. Identification and quantification of phosphatidylcholines containing very-long-chain polyunsaturated fatty acid in bovine and human retina using liquid chromatography/tandem mass spectrometry. J Chromatogr A 2010; 1217:7738-48. [PMID: 21035124 DOI: 10.1016/j.chroma.2010.10.039] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 09/09/2010] [Accepted: 10/07/2010] [Indexed: 11/30/2022]
Abstract
The retina is one of the vertebrate tissues with the highest content in polyunsaturated fatty acids (PUFA). A large proportion of retinal phospholipids, especially those found in photoreceptor membranes, are dipolyunsaturated molecular species. Among them, dipolyunsaturated phosphatidylcholine (PC) molecular species are known to contain very-long-chain polyunsaturated fatty acids (VLC-PUFA) from the n-3 and n-6 series having 24-36 carbon atoms (C24-C36) and four to six double bonds. Recent interest in the role played by VLC-PUFA arose from the findings that a protein called elongation of very-long-chain fatty acids 4 (ELOVL4) is involved in their biosynthesis and that mutations in the ELOVL4 gene are associated with Stargardt-like macular dystrophy (STD3), a dominantly inherited juvenile macular degeneration leading to vision loss. The aim of the present study was to develop an HPLC-ESI-MS/MS method for the structural characterisation and the quantification of dipolyunsaturated PC molecular species containing VLC-PUFA and validate this methodology on retinas from bovines and human donors. Successful separation of phosphatidylethanolamine (PE), phosphatidylinositol (PI), phosphatidylserine (PS), PC, lyso-phosphatidylcholine (LPC) and sphingomyelin (SM) was achieved using a silica gel column and a gradient of hexane/isopropanol/water containing ammonium formate as a mobile phase. A complete structural characterisation of intact phosphatidylcholine species was obtained by collision-induced dissociation (CID) in the negative mode. Fatty acid composition and distribution can be clearly assigned based on the intensity of sn-2/sn-1 fragment ions. The PC species were characterised on bovine retina, 28 of which were dipolyunsaturated PC species containing one VLC-PUFA (C24-C36) with three to six double bonds. VLC-PUFA was always in the sn-1 position while PUFA at the sn-2 position was exclusively docosahexaenoic acid (DHA, C22:6n-3). Most of these VLC-PUFA-containing dipolyunsaturated PCs were detected and quantified in human retinas. The quantitative analysis of the different PC molecular species was performed in the positive mode using precursor ion scanning of m/z 184 and 14:0/14:0-PC and 24:0/24:0-PC as internal standards. The relationship between the MS peak intensities of different PC species and their carbon chain length was included for calibration. The main compounds represented were those having VLC-PUFA with 32 carbon atoms (C32:3, C32:4, C32:5 and C32:6) and 34 carbon atoms (C34:3, C34:4, C34:5 and C34:6). Dipolyunsaturated PCs with 36:5 and 36:6 were detected but in smaller quantities. In conclusion, this new HPLC-ESI-MS/MS method is sensitive and specific enough to structurally characterise and quantify all molecular PC species, including those esterified with VLC-PUFA. This technique is valuable for a precise characterisation of PC molecular species containing VLC-PUFA in retina and may be useful for a better understanding of the pathogenesis of STD3.
Collapse
Affiliation(s)
- Olivier Berdeaux
- Lipid-Aroma Platform, Centre des Sciences du Goût et de l'Alimentation, UMR6265 CNRS, UMR1324 INRA, Université de Bourgogne, Agrosup Dijon, F-21000 Dijon, France.
| | | | | | | | | | | |
Collapse
|
129
|
Fujimoto J, Kadara H, Men T, van Pelt C, Lotan D, Lotan R. Comparative functional genomics analysis of NNK tobacco-carcinogen induced lung adenocarcinoma development in Gprc5a-knockout mice. PLoS One 2010; 5:e11847. [PMID: 20686609 PMCID: PMC2912294 DOI: 10.1371/journal.pone.0011847] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Accepted: 07/07/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Improved understanding of lung cancer development and progression, including insights from studies of animal models, are needed to combat this fatal disease. Previously, we found that mice with a knockout (KO) of G-protein coupled receptor 5A (Gprc5a) develop lung tumors after a long latent period (12 to 24 months). METHODOLOGY/PRINCIPAL FINDINGS To determine whether a tobacco carcinogen will enhance tumorigenesis in this model, we administered 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) i.p. to 2-months old Gprc5a-KO mice and sacrificed groups (n=5) of mice at 6, 9, 12, and 18 months later. Compared to control Gprc5a-KO mice, NNK-treated mice developed lung tumors at least 6 months earlier, exhibited 2- to 4-fold increased tumor incidence and multiplicity, and showed a dramatic increase in lesion size. A gene expression signature, NNK-ADC, of differentially expressed genes derived by transcriptome analysis of epithelial cell lines from normal lungs of Gprc5a-KO mice and from NNK-induced adenocarcinoma was highly similar to differential expression patterns observed between normal and tumorigenic human lung cells. The NNK-ADC expression signature also separated both mouse and human adenocarcinomas from adjacent normal lung tissues based on publicly available microarray datasets. A key feature of the signature, up-regulation of Ube2c, Mcm2, and Fen1, was validated in mouse normal lung and adenocarcinoma tissues and cells by immunohistochemistry and western blotting, respectively. CONCLUSIONS/SIGNIFICANCE Our findings demonstrate that lung tumorigenesis in the Gprc5a-KO mouse model is augmented by NNK and that gene expression changes induced by tobacco carcinogen(s) may be conserved between mouse and human lung epithelial cells. Further experimentation to prove the reliability of the Gprc5a knockout mouse model for the study of tobacco-induced lung carcinogenesis is warranted.
Collapse
Affiliation(s)
- Junya Fujimoto
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Humam Kadara
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Taoyan Men
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Carolyn van Pelt
- Department of Veterinary Medicine and Surgery, University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Dafna Lotan
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Reuben Lotan
- Department of Thoracic/Head and Neck Medical Oncology, University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
| |
Collapse
|
130
|
Puyol M, Martín A, Dubus P, Mulero F, Pizcueta P, Khan G, Guerra C, Santamaría D, Barbacid M. A synthetic lethal interaction between K-Ras oncogenes and Cdk4 unveils a therapeutic strategy for non-small cell lung carcinoma. Cancer Cell 2010; 18:63-73. [PMID: 20609353 DOI: 10.1016/j.ccr.2010.05.025] [Citation(s) in RCA: 347] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 04/16/2010] [Accepted: 05/19/2010] [Indexed: 10/19/2022]
Abstract
We have unveiled a synthetic lethal interaction between K-Ras oncogenes and Cdk4 in a mouse tumor model that closely recapitulates human non-small cell lung carcinoma (NSCLC). Ablation of Cdk4, but not Cdk2 or Cdk6, induces an immediate senescence response only in lung cells that express an endogenous K-Ras oncogene. No such response occurs in lungs expressing a single Cdk4 allele or in other K-Ras-expressing tissues. More importantly, targeting Cdk4 alleles in advanced tumors detectable by computed tomography scanning also induces senescence and prevents tumor progression. These observations suggest that robust and selective pharmacological inhibition of Cdk4 may provide therapeutic benefit for NSCLC patients carrying K-RAS oncogenes.
Collapse
Affiliation(s)
- Marta Puyol
- Molecular Oncology Programme, Centro Nacional de Investigaciones Oncológicas, E-28029 Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
131
|
Clinical relevance of KRAS in human cancers. J Biomed Biotechnol 2010; 2010:150960. [PMID: 20617134 PMCID: PMC2896632 DOI: 10.1155/2010/150960] [Citation(s) in RCA: 239] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Revised: 02/22/2010] [Accepted: 03/09/2010] [Indexed: 12/18/2022] Open
Abstract
The KRAS gene (Ki-ras2 Kirsten rat sarcoma viral oncogene homolog) is an oncogene that encodes a small GTPase transductor protein called KRAS. KRAS is involved in the regulation of cell division as a result of its ability to relay external signals to the cell nucleus. Activating mutations in the KRAS gene impair the ability of the KRAS protein to switch between active and inactive states, leading to cell transformation and increased resistance to chemotherapy and biological therapies targeting epidermal growth factor receptors. This review highlights some of the features of the KRAS gene and the KRAS protein and summarizes current knowledge of the mechanism of KRAS gene regulation. It also underlines the importance of activating mutations in the KRAS gene in relation to carcinogenesis and their importance as diagnostic biomarkers, providing clues regarding human cancer patients' prognosis and indicating potential therapeutic approaches.
Collapse
|
132
|
Suda K, Tomizawa K, Mitsudomi T. Biological and clinical significance of KRAS mutations in lung cancer: an oncogenic driver that contrasts with EGFR mutation. Cancer Metastasis Rev 2010; 29:49-60. [PMID: 20108024 DOI: 10.1007/s10555-010-9209-4] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
KRAS and epidermal growth factor receptor (EGFR) are the two most frequently mutated proto-oncogenes in adenocarcinoma of the lung. The occurrence of these two oncogenic mutations is mutually exclusive, and they exhibit many contrasting characteristics such as clinical background, pathological features of patients harboring each mutation, and prognostic or predictive implications. Lung cancers harboring the EGFR mutations are remarkably sensitive to EGFR tyrosine kinase inhibitors such as gefitinib or erlotinib. This discovery has dramatically changed the clinical treatment of lung cancer in that it almost doubled the duration of survival for lung cancer patients with an EGFR mutation. In this review, we describe the features of KRAS mutations in lung cancer and contrast these with the features of EGFR mutations. Recent strategies to combat lung cancer harboring KRAS mutations are also reviewed.
Collapse
Affiliation(s)
- Kenichi Suda
- Department of Thoracic Surgery, Aichi Cancer Center Hospital, 1-1 Kanokoden, Chikusa-ku, Nagoya, 464-8681, Japan
| | | | | |
Collapse
|
133
|
Jongmans MCJ, Hoogerbrugge PM, Hilkens L, Flucke U, van der Burgt I, Noordam K, Ruiterkamp-Versteeg M, Yntema HG, Nillesen WM, Ligtenberg MJL, van Kessel AG, Kuiper RP, Hoogerbrugge N. Noonan syndrome, the SOS1 gene and embryonal rhabdomyosarcoma. Genes Chromosomes Cancer 2010; 49:635-41. [DOI: 10.1002/gcc.20773] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
134
|
Luo F, Ye H, Hamoudi R, Dong G, Zhang W, Patek CE, Poulogiannis G, Arends MJ. K-ras exon 4A has a tumour suppressor effect on carcinogen-induced murine colonic adenoma formation. J Pathol 2010; 220:542-550. [PMID: 20087880 DOI: 10.1002/path.2672] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Accepted: 12/06/2009] [Indexed: 01/15/2023]
Abstract
K-ras encodes two isoforms, K-ras 4A and 4B, that are jointly affected by K-ras activating mutations, which are prevalent in colorectal cancer (CRC). CRC shows alterations in the expressed K-ras 4A : 4B isoform ratio in favour of K-ras 4B, in tumours both with and without K-ras mutations. The present study evaluated whether K-ras 4A expression can suppress colonic adenoma development in the absence of its oncogenic allele. Mice with homozygous targeted deletions of K-ras exon 4A (K-ras(tmDelta4A/tmDelta4A)) that can express the K-ras 4B isoform only, along with heterozygous K-ras(tmDelta4A/+) and wild-type mice, were given ten weekly 1,2-dimethylhydrazine (DMH) treatments to induce colonic adenomas. There was a significant increase in both the number and the size of colonic adenomas in DMH-treated K-ras(tmDelta4A/tmDelta4A) mice, with reduced survival, compared with heterozygous and wild-type mice. No K-ras mutations were found in any of the 30 tumours tested from the three groups. Lack of expression of K-ras 4A transcripts was confirmed, whereas the relative expression levels of K-ras 4B transcripts were significantly increased in the adenomas of K-ras(tmDelta4A/tmDelta4A) mice compared with K-ras(tmDelta4A/+) and wild-type mice. Immunohistochemical studies showed that adenomas of K-ras(tmDelta4A/tmDelta4A) mice had significantly increased cell proliferation and significantly decreased apoptosis with evidence of activation of MapKinase and Akt pathways, with increased phospho-Erk1/2 and both phospho-Akt-Thr308 and phospho-Akt-Ser473 immunostaining, compared with adenomas from K-ras(tmDelta4A/+) and wild-type mice. In conclusion, following DMH treatment, K-ras exon 4A deletion promoted increased number and size of colonic adenomas showing increased K-ras 4B expression, increased proliferation, decreased apoptosis, and activation of MapKinase and Akt pathways, in the absence of K-ras mutations. Therefore, K-ras 4A expression had a tumour suppressor effect on carcinogen-induced murine colonic adenoma formation, explaining the selective advantage of the altered K-ras 4A : 4B isoform ratio found in human colorectal cancer.
Collapse
Affiliation(s)
- Feijun Luo
- Department of Pathology, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 2QQ, UK
| | | | | | | | | | | | | | | |
Collapse
|
135
|
Zhang J, Chen YH, Lu Q. Pro-oncogenic and anti-oncogenic pathways: opportunities and challenges of cancer therapy. Future Oncol 2010; 6:587-603. [PMID: 20373871 PMCID: PMC2886915 DOI: 10.2217/fon.10.15] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Carcinogenesis is the uncontrolled growth of cells gaining the potential to invade and disrupt vital tissue functions. This malignant process includes the occurrence of 'unwanted' gene mutations that induce the transformation of normal cells, for example, by overactivation of pro-oncogenic pathways and inactivation of tumor-suppressive or anti-oncogenic pathways. It is now recognized that the number of major signaling pathways that control oncogenesis is not unlimited; therefore, suppressing these pathways can conceivably lead to a cancer cure. However, the clinical application of cancer intervention has not matched up to scientific expectations. Increasing numbers of studies have revealed that many oncogenic-signaling elements show double faces, in which they can promote or suppress cancer pathogenesis depending on tissue type, cancer stage, gene dosage and their interaction with other players in carcinogenesis. This complexity of oncogenic signaling poses challenges to traditional cancer therapy and calls for considerable caution when designing an anticancer drug strategy. We propose future oncology interventions with the concept of integrative cancer therapy.
Collapse
Affiliation(s)
- Jiao Zhang
- Department of Anatomy & Cell Biology, The Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Yan-Hua Chen
- Department of Anatomy & Cell Biology, Leo Jenkins Cancer Center, The Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA
| | - Qun Lu
- Associate Professor, Department of Anatomy & Cell Biology, Leo Jenkins Cancer Center, The Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA, Tel.: +1 252 744 2844, Fax: +1 252 744 2850,
| |
Collapse
|
136
|
Abstract
The role of the NF-κB signaling pathway in liver cancer is complex. While some evidence suggests that in the liver, like in many other organ systems, NF-κB is oncogenic, there is strong evidence showing that in certain liver cancer models NF-κB suppresses tumorigenesis. These contrasting findings cannot be dismissed on technicalities and are likely due to the complex nature of the NF-κB response. Similar contrasting findings regarding NF-κB activity are revealed in skin cancer models. Thus, it is possible that the contradictory role of NF-κB in tumorigenesis is a general phenomenon and not an oddity related solely to the liver. Further studies are indicated to decipher the underlying molecular mechanisms. Revealing these mechanisms may facilitate the identification of patient subgroups and specific situations in which NF-κB inhibition will be a preferred therapeutic option. Moreover, it is possible that specific interventions could boost the tumor suppressor functions of NF-κB in tumors that harbor mutations that render this pathway constitutively active.
Collapse
Affiliation(s)
- Shlomi Finkin
- Department of Immunology and Cancer Research and Department of Pathology, IMRIC, Hebrew University Hadassah Medical School, Ein Kerem, 91120, Jerusalem, Israel
| | | |
Collapse
|
137
|
Hoenerhoff MJ, Hong HH, Ton TV, Lahousse SA, Sills RC. A review of the molecular mechanisms of chemically induced neoplasia in rat and mouse models in National Toxicology Program bioassays and their relevance to human cancer. Toxicol Pathol 2009; 37:835-48. [PMID: 19846892 PMCID: PMC3524969 DOI: 10.1177/0192623309351726] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Tumor response in the B6C3F1 mouse, F344 rat, and other animal models following exposure to various compounds provides evidence that people exposed to these or similar compounds may be at risk for developing cancer. Although tumors in rodents and humans are often morphologically similar, underlying mechanisms of tumorigenesis are often unknown and may be different between the species. Therefore, the relevance of an animal tumor response to human health would be better determined if the molecular pathogenesis were understood. The underlying molecular mechanisms leading to carcinogenesis are complex and involve multiple genetic and epigenetic events and other factors. To address the molecular pathogenesis of environmental carcinogens, the authors examine rodent tumors (e.g., lung, colon, mammary gland, skin, brain, mesothelioma) for alterations in cancer genes and epigenetic events that are associated with human cancer. National Toxicology Program (NTP) studies have identified several genetic alterations in chemically induced rodent neoplasms that are important in human cancer. Identification of such alterations in rodent models of chemical carcinogenesis caused by exposure to environmental contaminants, occupational chemicals, and other compounds lends further support that they are of potential human health risk. These studies also emphasize the importance of molecular evaluation of chemically induced rodent tumors for providing greater public health significance for NTP evaluated compounds.
Collapse
Affiliation(s)
- Mark J Hoenerhoff
- Cellular and Molecular Pathology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27519, USA.
| | | | | | | | | |
Collapse
|
138
|
Soh J, Okumura N, Lockwood WW, Yamamoto H, Shigematsu H, Zhang W, Chari R, Shames DS, Tang X, MacAulay C, Varella-Garcia M, Vooder T, Wistuba II, Lam S, Brekken R, Toyooka S, Minna JD, Lam WL, Gazdar AF. Oncogene mutations, copy number gains and mutant allele specific imbalance (MASI) frequently occur together in tumor cells. PLoS One 2009; 4:e7464. [PMID: 19826477 PMCID: PMC2757721 DOI: 10.1371/journal.pone.0007464] [Citation(s) in RCA: 187] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Accepted: 09/14/2009] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Activating mutations in one allele of an oncogene (heterozygous mutations) are widely believed to be sufficient for tumorigenesis. However, mutant allele specific imbalance (MASI) has been observed in tumors and cell lines harboring mutations of oncogenes. METHODOLOGY/PRINCIPAL FINDINGS We determined 1) mutational status, 2) copy number gains (CNGs) and 3) relative ratio between mutant and wild type alleles of KRAS, BRAF, PIK3CA and EGFR genes by direct sequencing and quantitative PCR assay in over 400 human tumors, cell lines, and xenografts of lung, colorectal, and pancreatic cancers. Examination of a public database indicated that homozygous mutations of five oncogenes were frequent (20%) in 833 cell lines of 12 tumor types. Our data indicated two major forms of MASI: 1) MASI with CNG, either complete or partial; and 2) MASI without CNG (uniparental disomy; UPD), due to complete loss of wild type allele. MASI was a frequent event in mutant EGFR (75%) and was due mainly to CNGs, while MASI, also frequent in mutant KRAS (58%), was mainly due to UPD. Mutant: wild type allelic ratios at the genomic level were precisely maintained after transcription. KRAS mutations or CNGs were significantly associated with increased ras GTPase activity, as measured by ELISA, and the two molecular changes were synergistic. Of 237 lung adenocarcinoma tumors, the small number with both KRAS mutation and CNG were associated with shortened survival. CONCLUSIONS MASI is frequently present in mutant EGFR and KRAS tumor cells, and is associated with increased mutant allele transcription and gene activity. The frequent finding of mutations, CNGs and MASI occurring together in tumor cells indicates that these three genetic alterations, acting together, may have a greater role in the development or maintenance of the malignant phenotype than any individual alteration.
Collapse
Affiliation(s)
- Junichi Soh
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
139
|
Modrek B, Ge L, Pandita A, Lin E, Mohan S, Yue P, Guerrero S, Lin WM, Pham T, Modrusan Z, Seshagiri S, Stern HM, Waring P, Garraway LA, Chant J, Stokoe D, Cavet G. Oncogenic activating mutations are associated with local copy gain. Mol Cancer Res 2009; 7:1244-52. [PMID: 19671679 DOI: 10.1158/1541-7786.mcr-08-0532] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although activating mutations and gains in copy number are key mechanisms for oncogene activation, the relationship between the two is not well understood. In this study, we focused on KRAS copy gains and mutations in non-small cell lung cancer. We found that KRAS copy gains occur more frequently in tumors with KRAS activating mutations and are associated with large increases in KRAS expression. These copy gains tend to be more focal in tumors with activating mutations than in those with wild-type KRAS. Fluorescence in situ hybridization analysis revealed that some tumors have homogeneous low-level gains of the KRAS locus, whereas others have high-level amplification of KRAS, often in only a fraction of tumor cells. Associations between activating mutation and copy gains were also observed for other oncogenes (EGFR in non-small cell lung cancer, BRAF and NRAS in melanoma). Activating mutations were associated with copy gains only at the mutated oncogene locus but not other oncogene loci. However, KRAS activating mutations in colorectal cancer were not associated with copy gains. Future work is warranted to clarify the relationship among the different mechanisms of oncogene activation.
Collapse
Affiliation(s)
- Barmak Modrek
- Department of Bioinformatics, Genentech, Inc., South San Francisco, California, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
140
|
Systems genetics analysis of cancer susceptibility: from mouse models to humans. Nat Rev Genet 2009; 10:651-7. [PMID: 19636343 DOI: 10.1038/nrg2617] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Genetic studies of cancer susceptibility have shown that most heritable risk cannot be explained by the main effects of common alleles. This may be due to unknown gene-gene or gene-environment interactions and the complex roles of many genes at different stages of cancer. Studies using mouse models of cancer suggest that methods that integrate genetic analysis and genomic networks with knowledge of cancer biology can help to extend our understanding of heritable cancer susceptibility.
Collapse
|
141
|
Maciag A, Anderson LM. Reactive Oxygen Species And Lung Tumorigenesis By Mutant K-ras: A Working Hypothesis. Exp Lung Res 2009; 31:83-104. [PMID: 15765920 DOI: 10.1080/01902140490495048] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Wild-type K-ras is tumor suppressive in mouse lung, but mutant K-ras is actively oncogenic. Thus, the mutant protein must acquire new, dominant protumorigenic properties. Generation of reactive oxygen species could be one such property. The authors demonstrate increased peroxides in lung epithelial cells (E10)-transfected with mutant hK-ras(va112). An associated increase in DNA damage (comet assay) correlates with increased cyclooxygenase-2 protein. This DNA damage is completely abrogated by a specific cyclooxygenase-2 inhibitor (SC58125) or by a cell-permeable modified catalase. Literature is reviewed regarding generation of reactive oxygen and cyclooxygenase-2 induction by ras, cyclooxygenase-2 release of DNA-damaging reactive oxygen, and involvement of cyclooxygenase-2 and reactive oxygen in lung cancer
Collapse
Affiliation(s)
- Anna Maciag
- Laboratory of Comparative Carcinogenesis, National Cancer Institute at Frederick, Frederick, Maryland 21702, USA
| | | |
Collapse
|
142
|
Endogenous expression of Hras(G12V) induces developmental defects and neoplasms with copy number imbalances of the oncogene. Proc Natl Acad Sci U S A 2009; 106:7979-84. [PMID: 19416908 DOI: 10.1073/pnas.0900343106] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We developed mice with germline endogenous expression of oncogenic Hras to study effects on development and mechanisms of tumor initiation. They had high perinatal mortality, abnormal cranial dimensions, defective dental ameloblasts, and nasal septal deviation, consistent with some of the features of human Costello syndrome. These mice developed papillomas and angiosarcomas, which were associated with Hras(G12V) allelic imbalance and augmented Hras signaling. Endogenous expression of Hras(G12V) was also associated with a higher mutation rate in vivo. Tumor initiation by Hras(G12V) likely requires augmentation of signal output, which in papillomas and angiosarcomas is achieved via increased Hras-gene copy number, which may be favored by a higher mutation frequency in cells expressing the oncoprotein.
Collapse
|
143
|
Shamma A, Takegami Y, Miki T, Kitajima S, Noda M, Obara T, Okamoto T, Takahashi C. Rb Regulates DNA damage response and cellular senescence through E2F-dependent suppression of N-ras isoprenylation. Cancer Cell 2009; 15:255-69. [PMID: 19345325 DOI: 10.1016/j.ccr.2009.03.001] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 12/08/2008] [Accepted: 03/02/2009] [Indexed: 01/23/2023]
Abstract
Oncogene-induced cellular senescence is well documented, but little is known about how infinite cell proliferation induced by loss of tumor suppressor genes is antagonized by cellular functions. Rb heterozygous mice generate Rb-deficient C cell adenomas that progress to adenocarcinomas following biallelic loss of N-ras. Here, we demonstrate that pRb inactivation induces aberrant expression of farnesyl diphosphate synthase, many prenyltransferases, and their upstream regulators sterol regulatory element-binding proteins (SREBPs) in an E2F-dependent manner, leading to enhanced isoprenylation and activation of N-Ras. Consequently, elevated N-Ras activity induces DNA damage response and p130-dependent cellular senescence in Rb-deficient cells. Furthermore, Rb heterozygous mice additionally lacking any of Ink4a, Arf, or Suv39h1 generated C cell adenocarcinomas, suggesting that cellular senescence antagonizes Rb-deficient carcinogenesis.
Collapse
Affiliation(s)
- Awad Shamma
- Department of Molecular Oncology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
144
|
Abstract
Ras and pRb are key regulators of a plethora of cellular processes, including proliferation, differentiation, and tumorigenesis. Adding to several previously established lines of communication between the two, in this issue of Cancer Cell, Shamma et al. resolve a new signaling network involved in cellular senescence and tumor suppression.
Collapse
Affiliation(s)
- Daniel S Peeper
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
145
|
Assem FL, Levy LS. A review of current toxicological concerns on vanadium pentoxide and other vanadium compounds: gaps in knowledge and directions for future research. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2009; 12:289-306. [PMID: 20183524 DOI: 10.1080/10937400903094166] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Vanadium pentoxide (V(2)O(5)) and other inorganic vanadium compounds have recently been evaluated by several occupational exposure limit (OEL) setting (occupational exposure limit, OEL) committees and expert groups in response to the publication of several new studies, including the U.S. National Toxicology Program (NTP, 2002) carcinogenicity study of inhaled V(2)O(5) in rats and mice, which concluded that clear evidence of lung tumors was seen in mice of both genders and that there was some evidence of carcinogenicity in male rats. This study reviews the expert evaluations of several OEL committees and expert groups and attempts to understand the strengths and weaknesses in their scientific arguments. This study also evaluates some key studies relating to potential genotoxicity, carcinogenicity, and respiratory effects of vanadium compounds and discusses how they might elucidate the mechanism(s) by which V(2)O(5) induces lung cancer in mice. All expert groups appear to agree that the lung tumors induced in mice in the NTP (2002) study are a site-specific response and, in general, verify that existing in vitro and in vivo studies suggest that tumors were induced by a secondary mechanism (presumably non-genotoxic), which is supported, though not conclusively, by a mechanistic data set. As some vanadium compounds produce a range of DNA and chromosome damage, there is no consensus on which of these changes is critical for the carcinogenic process for V(2)O(5) or whether the findings for the lung tumors seen in mice exposed to V(2)O(5) can be extrapolated to other inorganic vanadium compounds. As such, the various expert committees used the evidence differently, some to read across, i.e., to predict an endpoint for a substance based on the endpoint information of another with similar characteristics (e.g., physicochemical properties [solubility, bioaccessibility, bioavailability], structure, fate [toxicokinetics], and toxicology) for carcinogenicity from V(2)O(5) to other inorganic vanadium compounds. It is noteworthy that the toxicity of metals does not necessarily relate to carcinogenicity in a direct manner; thus, no assumptions should be made a priori when trying to extrapolate from V(2)O(5) to other inorganic vanadium compounds. Recent studies evaluated in this review provided some further insights into possible mechanisms but do not cover all relevant endpoints, address only a limited number of vanadium compounds, and have not established no-effect thresholds for carcinogenicity or respiratory tract irritation. Thresholds need to be established in order for arguments to be made for setting a health-based OEL for non-genotoxic or secondary genotoxic carcinogens. In conclusion, important knowledge gaps preclude confident classification and risk assessment for all vanadium compounds. Evidence suggests that further research that may address some of these critical gaps is needed.
Collapse
Affiliation(s)
- Farida Louise Assem
- Institute of Environment and Health, Cranfield University, Bedfordshire, United Kingdom
| | | |
Collapse
|
146
|
Gandhi J, Zhang J, Xie Y, Soh J, Shigematsu H, Zhang W, Yamamoto H, Peyton M, Girard L, Lockwood WW, Lam WL, Varella-Garcia M, Minna JD, Gazdar AF. Alterations in genes of the EGFR signaling pathway and their relationship to EGFR tyrosine kinase inhibitor sensitivity in lung cancer cell lines. PLoS One 2009; 4:e4576. [PMID: 19238210 PMCID: PMC2642732 DOI: 10.1371/journal.pone.0004576] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2008] [Accepted: 12/18/2008] [Indexed: 12/27/2022] Open
Abstract
Background Deregulation of EGFR signaling is common in non-small cell lung cancers (NSCLC) and this finding led to the development of tyrosine kinase inhibitors (TKIs) that are highly effective in a subset of NSCLC. Mutations of EGFR (mEGFR) and copy number gains (CNGs) of EGFR (gEGFR) and HER2 (gHER2) have been reported to predict for TKI response. Mutations in KRAS (mKRAS) are associated with primary resistance to TKIs. Methodology/Principal Findings We investigated the relationship between mutations, CNGs and response to TKIs in a large panel of NSCLC cell lines. Genes studied were EGFR, HER2, HER3 HER4, KRAS, BRAF and PIK3CA. Mutations were detected by sequencing, while CNGs were determined by quantitative PCR (qPCR), fluorescence in situ hybridization (FISH) and array comparative genomic hybridization (aCGH). IC50 values for the TKIs gefitinib (Iressa) and erlotinib (Tarceva) were determined by MTS assay. For any of the seven genes tested, mutations (39/77, 50.6%), copy number gains (50/77, 64.9%) or either (65/77, 84.4%) were frequent in NSCLC lines. Mutations of EGFR (13%) and KRAS (24.7%) were frequent, while they were less frequent for the other genes. The three techniques for determining CNG were well correlated, and qPCR data were used for further analyses. CNGs were relatively frequent for EGFR and KRAS in adenocarcinomas. While mutations were largely mutually exclusive, CNGs were not. EGFR and KRAS mutant lines frequently demonstrated mutant allele specific imbalance i.e. the mutant form was usually in great excess compared to the wild type form. On a molar basis, sensitivity to gefitinib and erlotinib were highly correlated. Multivariate analyses led to the following results: 1. mEGFR and gEGFR and gHER2 were independent factors related to gefitinib sensitivity, in descending order of importance. 2. mKRAS was associated with increased in vitro resistance to gefitinib. Conclusions/Significance Our in vitro studies confirm and extend clinical observations and demonstrate the relative importance of both EGFR mutations and CNGs and HER2 CNGs in the sensitivity to TKIs.
Collapse
Affiliation(s)
- Jeet Gandhi
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Jianling Zhang
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Yang Xie
- Department of Clinical Sciences, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Junichi Soh
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Hisayuki Shigematsu
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Wei Zhang
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Hiromasa Yamamoto
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Michael Peyton
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Luc Girard
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - William W. Lockwood
- Department of Cancer Genetics and Developmental Biology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Wan L. Lam
- Department of Cancer Genetics and Developmental Biology, British Columbia Cancer Research Centre, Vancouver, British Columbia, Canada
| | - Marileila Varella-Garcia
- Department of Internal Medicine, University of Colorado Cancer Center, Aurora, Colorado, United States of America
| | - John D. Minna
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
- Department of Internal Medicine, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
- Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Adi F. Gazdar
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
- Department of Pathology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
- * E-mail:
| |
Collapse
|
147
|
Lymbouridou R, Soufla G, Chatzinikola AM, Vakis A, Spandidos DA. Down-regulation of K-ras and H-ras in human brain gliomas. Eur J Cancer 2009; 45:1294-1303. [PMID: 19179066 DOI: 10.1016/j.ejca.2008.12.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Revised: 12/17/2008] [Accepted: 12/19/2008] [Indexed: 10/21/2022]
Abstract
Ras genes, a class of nucleotide-binding proteins that regulate normal and transformed cell growth, have been scarcely investigated in human brain tumours. We evaluated the mutational, mRNA and protein expression profile of the ras genes in 21 glioblastomas multiforme (grade IV), four fibrillary astrocytoma (grade II), four anaplastic astrocytoma (grade III) and 15 normal specimens. K-, H- and N-ras transcript levels were determined by real-time RT-PCR and mutational status by PCR-restriction fragment length polymorphism (RFLP) and direct sequencing. p21 protein was evaluated by Western blot analysis. Two K-ras mutations were found in codons 16 and 26 in one pathological and one normal sample, respectively. Glioblastoma multiforme cases exhibited significantly lower K- and H-ras mRNA levels compared to controls (P < 10(-4)). K- and H-ras mRNA down-regulation was not associated with patient outcome or survival. K-ras was positively correlated with H-ras in glioblastomas (P = 0.005), but not in normal specimens. p21 protein was absent in all samples. Our findings provide evidence of K- and H-ras involvement in brain malignant transformation through transcriptional down-regulation, while N-ras seems to contribute less to brain carcinogenesis.
Collapse
Affiliation(s)
- Rena Lymbouridou
- Department of Virology, Faculty of Medicine, Medical School, University of Crete, P.O. Box 1527, Heraklion 710 03, Crete, Greece
| | - Giannoula Soufla
- Department of Virology, Faculty of Medicine, Medical School, University of Crete, P.O. Box 1527, Heraklion 710 03, Crete, Greece
| | - Anthoula M Chatzinikola
- Department of Virology, Faculty of Medicine, Medical School, University of Crete, P.O. Box 1527, Heraklion 710 03, Crete, Greece
| | - Antonios Vakis
- Department of Neurosurgery, University Hospital of Heraklion, Crete, Greece
| | - Demetrios A Spandidos
- Department of Virology, Faculty of Medicine, Medical School, University of Crete, P.O. Box 1527, Heraklion 710 03, Crete, Greece.
| |
Collapse
|
148
|
Lee GH. The Kras2 oncogene and mouse lung carcinogenesis. Med Mol Morphol 2008; 41:199-203. [DOI: 10.1007/s00795-008-0419-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Accepted: 09/12/2008] [Indexed: 11/28/2022]
|
149
|
|
150
|
To MD, Wong CE, Karnezis AN, Del Rosario R, Di Lauro R, Balmain A. Kras regulatory elements and exon 4A determine mutation specificity in lung cancer. Nat Genet 2008; 40:1240-4. [PMID: 18758463 PMCID: PMC2654781 DOI: 10.1038/ng.211] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Accepted: 07/02/2008] [Indexed: 12/29/2022]
Abstract
Kras is the most frequently mutated ras family member in lung carcinomas, whereas Hras mutations are common in tumors from stratified epithelia such as the skin. Using a Hras knock-in mouse model, we demonstrate that specificity for Kras mutations in lung and Hras mutations in skin tumors is determined by local regulatory elements in the target ras genes. Although the Kras 4A isoform is dispensable for mouse development, it is the most important isoform for lung carcinogenesis in vivo and for the inhibitory effect of wild-type (WT) Kras on the mutant allele. Kras 4A expression is detected in a subpopulation of normal lung epithelial cells, but at very low levels in lung tumors, suggesting that it may not be required for tumor progression. The two Kras isoforms undergo different post-translational modifications; therefore, these findings can have implications for the design of therapeutic strategies for inhibiting oncogenic Kras activity in human cancers.
Collapse
Affiliation(s)
- Minh D To
- University of California San Francisco, Helen Diller Family Comprehensive Cancer Center, Cancer Research Institute, San Francisco, California 94115, USA
| | | | | | | | | | | |
Collapse
|