101
|
AlDaif BA, Mercer AA, Fleming SB. The parapoxvirus Orf virus ORF116 gene encodes an antagonist of the interferon response. J Gen Virol 2021; 102. [PMID: 34890310 DOI: 10.1099/jgv.0.001695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Orf virus (ORFV) is the type species of the Parapoxvirus genus of the Poxviridae family. Genetic and functional studies have revealed ORFV has multiple immunomodulatory genes that manipulate innate immune responses, during the early stage of infection. ORF116 is a novel gene of ORFV with hitherto unknown function. Characterization of an ORF116 deletion mutant showed that it replicated in primary lamb testis cells with reduced levels compared to the wild-type and produced a smaller plaque phenotype. ORF116 was shown to be expressed prior to DNA replication. The potential function of ORF116 was investigated by gene-expression microarray analysis in HeLa cells infected with wild-type ORFV or the ORF116 deletion mutant. The analysis of differential cellular gene expression revealed a number of interferon-stimulated genes (ISGs) differentially expressed at either 4 or 6 h post infection. IFI44 showed the greatest differential expression (4.17-fold) between wild-type and knockout virus. Other ISGs that were upregulated in the knockout included RIG-I, IFIT2, MDA5, OAS1, OASL, DDX60, ISG20 and IFIT1 and in addition the inflammatory cytokine IL-8. These findings were validated by infecting HeLa cells with an ORF116 revertant recombinant virus and analysis of transcript expression by quantitative real time-PCR (qRT-PCR). These observations suggested a role for the ORFV gene ORF116 in modulating the IFN response and inflammatory cytokines. This study represents the first functional analysis of ORF116.
Collapse
Affiliation(s)
- Basheer A AlDaif
- Virus Research Unit, Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Andrew A Mercer
- Virus Research Unit, Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Stephen B Fleming
- Virus Research Unit, Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
102
|
Kessler AC, Maraia RJ. The nuclear and cytoplasmic activities of RNA polymerase III, and an evolving transcriptome for surveillance. Nucleic Acids Res 2021; 49:12017-12034. [PMID: 34850129 PMCID: PMC8643620 DOI: 10.1093/nar/gkab1145] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/26/2021] [Accepted: 11/02/2021] [Indexed: 12/23/2022] Open
Abstract
A 1969 report that described biochemical and activity properties of the three eukaryotic RNA polymerases revealed Pol III as highly distinguishable, even before its transcripts were identified. Now known to be the most complex, Pol III contains several stably-associated subunits referred to as built-in transcription factors (BITFs) that enable highly efficient RNA synthesis by a unique termination-associated recycling process. In vertebrates, subunit RPC7(α/β) can be of two forms, encoded by POLR3G or POLR3GL, with differential activity. Here we review promoter-dependent transcription by Pol III as an evolutionary perspective of eukaryotic tRNA expression. Pol III also provides nonconventional functions reportedly by promoter-independent transcription, one of which is RNA synthesis from DNA 3'-ends during repair. Another is synthesis of 5'ppp-RNA signaling molecules from cytoplasmic viral DNA in a pathway of interferon activation that is dysfunctional in immunocompromised patients with mutations in Pol III subunits. These unconventional functions are also reviewed, including evidence that link them to the BITF subunits. We also review data on a fraction of the human Pol III transcriptome that evolved to include vault RNAs and snaRs with activities related to differentiation, and in innate immune and tumor surveillance. The Pol III of higher eukaryotes does considerably more than housekeeping.
Collapse
Affiliation(s)
- Alan C Kessler
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892 USA
| | - Richard J Maraia
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892 USA
| |
Collapse
|
103
|
Kumar R, Mendonca J, Owoyemi O, Boyapati K, Thomas N, Kanacharoen S, Coffey M, Topiwala D, Gomes C, Ozbek B, Jones T, Rosen M, Dong L, Wiens S, Brennen WN, Isaacs JT, De Marzo AM, Markowski MC, Antonarakis ES, Qian DZ, Pienta KJ, Pardoll DM, Carducci MA, Denmeade SR, Kachhap SK. Supraphysiologic Testosterone Induces Ferroptosis and Activates Immune Pathways through Nucleophagy in Prostate Cancer. Cancer Res 2021; 81:5948-5962. [PMID: 34645612 PMCID: PMC8639619 DOI: 10.1158/0008-5472.can-20-3607] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 04/14/2021] [Accepted: 10/08/2021] [Indexed: 12/09/2022]
Abstract
The discovery that androgens play an important role in the progression of prostate cancer led to the development of androgen deprivation therapy (ADT) as a first line of treatment. However, paradoxical growth inhibition has been observed in a subset of prostate cancer upon administration of supraphysiologic levels of testosterone (SupraT), both experimentally and clinically. Here we report that SupraT activates cytoplasmic nucleic acid sensors and induces growth inhibition of SupraT-sensitive prostate cancer cells. This was initiated by the induction of two parallel autophagy-mediated processes, namely, ferritinophagy and nucleophagy. Consequently, autophagosomal DNA activated nucleic acid sensors converge on NFκB to drive immune signaling pathways. Chemokines and cytokines secreted by the tumor cells in response to SupraT resulted in increased migration of cytotoxic immune cells to tumor beds in xenograft models and patient tumors. Collectively, these findings indicate that SupraT may inhibit a subset of prostate cancer by activating nucleic acid sensors and downstream immune signaling. SIGNIFICANCE: This study demonstrates that supraphysiologic testosterone induces two parallel autophagy-mediated processes, ferritinophagy and nucleophagy, which then activate nucleic acid sensors to drive immune signaling pathways in prostate cancer.
Collapse
Affiliation(s)
- Rajendra Kumar
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Janet Mendonca
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Olutosin Owoyemi
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kavya Boyapati
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Naiju Thomas
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Suthicha Kanacharoen
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Max Coffey
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Deven Topiwala
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Carolina Gomes
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Busra Ozbek
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Tracy Jones
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Marc Rosen
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Liang Dong
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sadie Wiens
- OHSU Knight Cancer Institute, Prostate Cancer Program, Portland, Oregon
| | - W Nathaniel Brennen
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - John T Isaacs
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Angelo M De Marzo
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Mark C Markowski
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Emmanuel S Antonarakis
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - David Z Qian
- OHSU Knight Cancer Institute, Prostate Cancer Program, Portland, Oregon
| | - Kenneth J Pienta
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Drew M Pardoll
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Michael A Carducci
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Samuel R Denmeade
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sushant K Kachhap
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
104
|
Chandler M, Johnson B, Khisamutdinov E, Dobrovolskaia MA, Sztuba-Solinska J, Salem AK, Breyne K, Chammas R, Walter NG, Contreras LM, Guo P, Afonin KA. The International Society of RNA Nanotechnology and Nanomedicine (ISRNN): The Present and Future of the Burgeoning Field. ACS NANO 2021; 15:16957-16973. [PMID: 34677049 PMCID: PMC9023608 DOI: 10.1021/acsnano.0c10240] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The International Society of RNA Nanotechnology and Nanomedicine (ISRNN) hosts an annual meeting series focused on presenting the latest research achievements involving RNA-based therapeutics and strategies, aiming to expand their current biomedical applications while overcoming the remaining challenges of the burgeoning field of RNA nanotechnology. The most recent online meeting hosted a series of engaging talks and discussions from an international cohort of leading nanotechnologists that focused on RNA modifications and modulation, dynamic RNA structures, overcoming delivery limitations using a variety of innovative platforms and approaches, and addressing the newly explored potential for immunomodulation with programmable nucleic acid nanoparticles. In this Nano Focus, we summarize the main discussion points, conclusions, and future directions identified during this two-day webinar as well as more recent advances to highlight and to accelerate this exciting field.
Collapse
Affiliation(s)
- Morgan Chandler
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Brittany Johnson
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| | - Emil Khisamutdinov
- Department of Chemistry, Ball State University, Muncie, Indiana 47304, United States
| | - Marina A Dobrovolskaia
- Nanotechnology Characterization Lab, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, Maryland 21702, United States
| | - Joanna Sztuba-Solinska
- Department of Biological Sciences, Auburn University, 120 W. Samford Avenue, Rouse Life Sciences Building, Auburn, Alabama 36849, United States
| | - Aliasger K Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa 52242, United States
| | - Koen Breyne
- Molecular Neurogenetics Unit, Department of Neurology and Center for Molecular Imaging Research, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachussets 02114, United States
| | - Roger Chammas
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
- Centro de Investigação Translacional em Oncologia, Departamento de Radiologia e Oncologia, Instituto do Cancer do Estado de São Paulo - ICESP, Faculdade de Medicina da Universidade de São Paulo - FMUSP, Avenida Dr. Arnaldo 251, Cerqueira César, São Paulo 01246-000, São Paulo, Brazil
| | - Nils G Walter
- Single Molecule Analysis Group, Department of Chemistry and Center for RNA Biomedicine, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Lydia M Contreras
- McKetta Department of Chemical Engineering and Department of Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78714, United States
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and Nanomedicine, College of Pharmacy, Division of Pharmaceutics and Pharmaceutical Chemistry, College of Medicine, Dorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio 43210, United States
| | - Kirill A Afonin
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina 28223, United States
| |
Collapse
|
105
|
Zhu J, Li X, Sun X, Zhou Z, Cai X, Liu X, Wang J, Xiao W. Zebrafish prmt2 Attenuates Antiviral Innate Immunity by Targeting traf6. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:2570-2580. [PMID: 34654690 DOI: 10.4049/jimmunol.2100627] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/16/2021] [Indexed: 12/23/2022]
Abstract
TNFR-associated factor 6 (TRAF6) not only recruits TBK1/IKKε to MAVS upon virus infection but also catalyzes K63-linked polyubiquitination on substrate or itself, which is critical for NEMO-dependent and -independent TBK1/IKKε activation, leading to the production of type I IFNs. The regulation at the TRAF6 level could affect the activation of antiviral innate immunity. In this study, we demonstrate that zebrafish prmt2, a type I arginine methyltransferase, attenuates traf6-mediated antiviral response. Prmt2 binds to the C terminus of traf6 to catalyze arginine asymmetric dimethylation of traf6 at arginine 100, preventing its K63-linked autoubiquitination, which results in the suppression of traf6 activation. In addition, it seems that the N terminus of prmt2 competes with mavs for traf6 binding and prevents the recruitment of tbk1/ikkε to mavs. By zebrafish model, we show that loss of prmt2 promotes the survival ratio of zebrafish larvae after challenge with spring viremia of carp virus. Therefore, we reveal, to our knowledge, a novel function of prmt2 in the negative regulation of antiviral innate immunity by targeting traf6.
Collapse
Affiliation(s)
- Junji Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xiong Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xueyi Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Ziwen Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xiaolian Cai
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China.,University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xing Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China.,The Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan, People's Republic of China.,The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, People's Republic of China; and
| | - Jing Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China.,The Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan, People's Republic of China.,The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, People's Republic of China; and
| | - Wuhan Xiao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, People's Republic of China; .,University of Chinese Academy of Sciences, Beijing, People's Republic of China.,The Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan, People's Republic of China.,The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, People's Republic of China; and.,Hubei Hongshan Laboratory, Wuhan, People's Republic of China
| |
Collapse
|
106
|
Cai C, Tang YD, Xu G, Zheng C. The crosstalk between viral RNA- and DNA-sensing mechanisms. Cell Mol Life Sci 2021; 78:7427-7434. [PMID: 34714359 PMCID: PMC8554519 DOI: 10.1007/s00018-021-04001-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 12/14/2022]
Abstract
Viral infections pose a severe threat to humans by causing many infectious, even fatal, diseases, such as the current pandemic disease (COVID-19) since 2019, and understanding how the host innate immune system recognizes viruses has become more important. Endosomal and cytosolic sensors can detect viral nucleic acids to induce type I interferon and proinflammatory cytokines, subsequently inducing interferon-stimulated genes for restricting viral infection. Although viral RNA and DNA sensing generally rely on diverse receptors and adaptors, the crosstalk between DNA and RNA sensing is gradually appreciated. This minireview highlights the overlap between the RNA- and DNA-sensing mechanisms in antiviral innate immunity, which significantly amplifies the antiviral innate responses to restrict viral infection and might be a potential novel target for preventing and treating viral diseases.
Collapse
Affiliation(s)
- Chunmei Cai
- Research Center for High Altitude Medicine, School of Medical, Qinghai University, Xining, 810016, Qinghai, China.,Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province, Qinghai University, Xining, 810016, Qinghai, China
| | - Yan-Dong Tang
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350108, Fujian, China.,State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Guocai Xu
- Research Center for High Altitude Medicine, School of Medical, Qinghai University, Xining, 810016, Qinghai, China.,Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province, Qinghai University, Xining, 810016, Qinghai, China
| | - Chunfu Zheng
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, 350108, Fujian, China. .,Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
107
|
Suresh M, Li B, Huang X, Korolowicz KE, Murreddu MG, Gudima SO, Menne S. Agonistic Activation of Cytosolic DNA Sensing Receptors in Woodchuck Hepatocyte Cultures and Liver for Inducing Antiviral Effects. Front Immunol 2021; 12:745802. [PMID: 34671360 PMCID: PMC8521114 DOI: 10.3389/fimmu.2021.745802] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/13/2021] [Indexed: 12/11/2022] Open
Abstract
Immune modulation for the treatment of chronic hepatitis B (CHB) has gained more traction in recent years, with an increasing number of compounds designed for targeting different host pattern recognition receptors (PRRs). These agonistic molecules activate the receptor signaling pathway and trigger an innate immune response that will eventually shape the adaptive immunity for control of chronic infection with hepatitis B virus (HBV). While definitive recognition of HBV nucleic acids by PRRs during viral infection still needs to be elucidated, several viral RNA sensing receptors, including toll-like receptors 7/8/9 and retinoic acid inducible gene-I-like receptors, are explored preclinically and clinically as possible anti-HBV targets. The antiviral potential of viral DNA sensing receptors is less investigated. In the present study, treatment of primary woodchuck hepatocytes generated from animals with CHB with HSV-60 or poly(dA:dT) agonists resulted in increased expression of interferon-gamma inducible protein 16 (IFI16) or Z-DNA-binding protein 1 (ZBP1/DAI) and absent in melanoma 2 (AIM2) receptors and their respective adaptor molecules and effector cytokines. Cytosolic DNA sensing receptor pathway activation correlated with a decline in woodchuck hepatitis virus (WHV) replication and secretion in these cells. Combination treatment with HSV-60 and poly(dA:dT) achieved a superior antiviral effect over monotreatment with either agonist that was associated with an increased expression of effector cytokines. The antiviral effect, however, could not be enhanced further by providing additional type-I interferons (IFNs) exogenously, indicating a saturated level of effector cytokines produced by these receptors following agonism. In WHV-uninfected woodchucks, a single poly(dA:dT) dose administered via liver-targeted delivery was well-tolerated and induced the intrahepatic expression of ZBP1/DAI and AIM2 receptors and their effector cytokines, IFN-β and interleukins 1β and 18. Receptor agonism also resulted in increased IFN-γ secretion of peripheral blood cells. Altogether, the effect on WHV replication and secretion following in vitro activation of IFI16, ZBP1/DAI, and AIM2 receptor pathways suggested an antiviral benefit of targeting more than one cytosolic DNA receptor. In addition, the in vivo activation of ZBP1/DAI and AIM2 receptor pathways in liver indicated the feasibility of the agonist delivery approach for future evaluation of therapeutic efficacy against HBV in woodchucks with CHB.
Collapse
Affiliation(s)
- Manasa Suresh
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC, United States
| | - Bin Li
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC, United States
| | - Xu Huang
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC, United States
| | - Kyle E Korolowicz
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC, United States
| | - Marta G Murreddu
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC, United States
| | - Severin O Gudima
- Department of Microbiology, Molecular Genetics & Immunology, University of Kansas Medical Center, Kansas City, KS, United States
| | - Stephan Menne
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC, United States
| |
Collapse
|
108
|
Anwar S, Ul Islam K, Azmi MI, Iqbal J. cGAS-STING-mediated sensing pathways in DNA and RNA virus infections: crosstalk with other sensing pathways. Arch Virol 2021; 166:3255-3268. [PMID: 34622360 DOI: 10.1007/s00705-021-05211-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/04/2021] [Indexed: 12/25/2022]
Abstract
Viruses cause a variety of diseases in humans and other organisms. The most important defense mechanism against viral infections is initiated when the viral genome is sensed by host proteins, and this results in interferon production and pro-inflammatory cytokine responses. The sensing of the viral genome or its replication intermediates within host cells is mediated by cytosolic proteins. For example, cGAS and IFI16 recognize non-self DNA, and RIG-I and MDA5 recognize non-self RNA. Once these sensors are activated, they trigger a cascade of reactions activating downstream molecules, which eventually results in the transcriptional activation of type I and III interferons, which play a critical role in suppressing viral propagation, either by directly limiting their replication or by inducing host cells to inhibit viral protein synthesis. The immune response against viruses relies solely upon sensing of viral genomes and their downstream signaling molecules. Although DNA and RNA viruses are sensed by distinct classes of receptor proteins, there is a possibility of overlap between the viral DNA and viral RNA sensing mechanisms. In this review, we focus on various host sensing molecules and discuss the associated signaling pathways that are activated in response to different viral infections. We further highlight the possibility of crosstalk between the cGAS-STING and the RIG-I-MAVS pathways to limit viral infections. This comprehensive review delineates the mechanisms by which different viruses evade host cellular responses to sustain within the host cells.
Collapse
Affiliation(s)
- Saleem Anwar
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Khursheed Ul Islam
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Md Iqbal Azmi
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Jawed Iqbal
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India.
| |
Collapse
|
109
|
Kennedy PGE, Mogensen TH, Cohrs RJ. Recent Issues in Varicella-Zoster Virus Latency. Viruses 2021; 13:v13102018. [PMID: 34696448 PMCID: PMC8540691 DOI: 10.3390/v13102018] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/30/2021] [Accepted: 10/02/2021] [Indexed: 12/16/2022] Open
Abstract
Varicella-zoster virus (VZV) is a human herpes virus which causes varicella (chicken pox) as a primary infection, and, following a variable period of latency in neurons in the peripheral ganglia, may reactivate to cause herpes zoster (shingles) as well as a variety of neurological syndromes. In this overview we consider some recent issues in alphaherpesvirus latency with special focus on VZV ganglionic latency. A key question is the nature and extent of viral gene transcription during viral latency. While it is known that this is highly restricted, it is only recently that the very high degree of that restriction has been clarified, with both VZV gene 63-encoded transcripts and discovery of a novel VZV transcript (VLT) that maps antisense to the viral transactivator gene 61. It has also emerged in recent years that there is significant epigenetic regulation of VZV gene transcription, and the mechanisms underlying this are complex and being unraveled. The last few years has also seen an increased interest in the immunological aspects of VZV latency and reactivation, in particular from the perspective of inborn errors of host immunity that predispose to different VZV reactivation syndromes.
Collapse
Affiliation(s)
- Peter G. E. Kennedy
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow G61 1QH, UK
- Correspondence:
| | - Trine H. Mogensen
- Department of Infectious Diseases, Aarhus University Hospital, 8000 Aarhus, Denmark;
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Randall J. Cohrs
- Department of Neurology, University of Colorado School of Medicine, 80045 Aurora, CO, USA
| |
Collapse
|
110
|
Beyond the Double-Strand Breaks: The Role of DNA Repair Proteins in Cancer Stem-Cell Regulation. Cancers (Basel) 2021; 13:cancers13194818. [PMID: 34638302 PMCID: PMC8508278 DOI: 10.3390/cancers13194818] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Cancer stem cells (CSCs) are a tumor cell population maintaining tumor growth and promoting tumor relapse if not wholly eradicated during treatment. CSCs are often equipped with molecular mechanisms making them resistant to conventional anti-cancer therapies whose curative potential depends on DNA damage-induced cell death. An elevated expression of some key DNA repair proteins is one of such defense mechanisms. However, new research reveals that the role of critical DNA repair proteins is extending far beyond the DNA repair mechanisms. This review discusses the diverse biological functions of DNA repair proteins in CSC maintenance and the adaptation to replication and oxidative stress, anti-cancer immune response, epigenetic reprogramming, and intracellular signaling mechanisms. It also provides an overview of their potential therapeutic targeting. Abstract Cancer stem cells (CSCs) are pluripotent and highly tumorigenic cells that can re-populate a tumor and cause relapses even after initially successful therapy. As with tissue stem cells, CSCs possess enhanced DNA repair mechanisms. An active DNA damage response alleviates the increased oxidative and replicative stress and leads to therapy resistance. On the other hand, mutations in DNA repair genes cause genomic instability, therefore driving tumor evolution and developing highly aggressive CSC phenotypes. However, the role of DNA repair proteins in CSCs extends beyond the level of DNA damage. In recent years, more and more studies have reported the unexpected role of DNA repair proteins in the regulation of transcription, CSC signaling pathways, intracellular levels of reactive oxygen species (ROS), and epithelial–mesenchymal transition (EMT). Moreover, DNA damage signaling plays an essential role in the immune response towards tumor cells. Due to its high importance for the CSC phenotype and treatment resistance, the DNA damage response is a promising target for individualized therapies. Furthermore, understanding the dependence of CSC on DNA repair pathways can be therapeutically exploited to induce synthetic lethality and sensitize CSCs to anti-cancer therapies. This review discusses the different roles of DNA repair proteins in CSC maintenance and their potential as therapeutic targets.
Collapse
|
111
|
Genotoxic stress and viral infection induce transient expression of APOBEC3A and pro-inflammatory genes through two distinct pathways. Nat Commun 2021; 12:4917. [PMID: 34389714 PMCID: PMC8363607 DOI: 10.1038/s41467-021-25203-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 07/27/2021] [Indexed: 02/07/2023] Open
Abstract
APOBEC3A is a cytidine deaminase driving mutagenesis in tumors. While APOBEC3A-induced mutations are common, APOBEC3A expression is rarely detected in cancer cells. This discrepancy suggests a tightly controlled process to regulate episodic APOBEC3A expression in tumors. In this study, we find that both viral infection and genotoxic stress transiently up-regulate APOBEC3A and pro-inflammatory genes using two distinct mechanisms. First, we demonstrate that STAT2 promotes APOBEC3A expression in response to foreign nucleic acid via a RIG-I, MAVS, IRF3, and IFN-mediated signaling pathway. Second, we show that DNA damage and DNA replication stress trigger a NF-κB (p65/IkBα)-dependent response to induce expression of APOBEC3A and other innate immune genes, independently of DNA or RNA sensing pattern recognition receptors and the IFN-signaling response. These results not only reveal the mechanisms by which tumors could episodically up-regulate APOBEC3A but also highlight an alternative route to stimulate the immune response after DNA damage independently of cGAS/STING or RIG-I/MAVS.
Collapse
|
112
|
Zhu J, Li X, Cai X, Zha H, Zhou Z, Sun X, Rong F, Tang J, Zhu C, Liu X, Fan S, Wang J, Liao Q, Ouyang G, Xiao W. Arginine monomethylation by PRMT7 controls MAVS-mediated antiviral innate immunity. Mol Cell 2021; 81:3171-3186.e8. [PMID: 34171297 DOI: 10.1016/j.molcel.2021.06.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/10/2021] [Accepted: 06/02/2021] [Indexed: 12/14/2022]
Abstract
Accurate control of innate immune responses is required to eliminate invading pathogens and simultaneously avoid autoinflammation and autoimmune diseases. Here, we demonstrate that arginine monomethylation precisely regulates the mitochondrial antiviral-signaling protein (MAVS)-mediated antiviral response. Protein arginine methyltransferase 7 (PRMT7) forms aggregates to catalyze MAVS monomethylation at arginine residue 52 (R52), attenuating its binding to TRIM31 and RIG-I, which leads to the suppression of MAVS aggregation and subsequent activation. Upon virus infection, aggregated PRMT7 is disabled in a timely manner due to automethylation at arginine residue 32 (R32), and SMURF1 is recruited to PRMT7 by MAVS to induce proteasomal degradation of PRMT7, resulting in the relief of PRMT7 suppression of MAVS activation. Therefore, we not only reveal that arginine monomethylation by PRMT7 negatively regulates MAVS-mediated antiviral signaling in vitro and in vivo but also uncover a mechanism by which PRMT7 is tightly controlled to ensure the timely activation of antiviral defense.
Collapse
Affiliation(s)
- Junji Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China; University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Xiong Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China; University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Xiaolian Cai
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China; University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Huangyuan Zha
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China
| | - Ziwen Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China; University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Xueyi Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China; University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Fangjing Rong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China; University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Jinghua Tang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China; University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Chunchun Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China; University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Xing Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China; The Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan 430072, P.R. China; The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan 430072, P.R. China
| | - Sijia Fan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China; University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Jing Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China; The Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan 430072, P.R. China; The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan 430072, P.R. China
| | - Qian Liao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China; University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Gang Ouyang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China; The Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan 430072, P.R. China; The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan 430072, P.R. China
| | - Wuhan Xiao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, P.R. China; The Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan 430072, P.R. China; University of Chinese Academy of Sciences, Beijing 100049, P.R. China; The Innovation of Seed Design, Chinese Academy of Sciences, Wuhan 430072, P.R. China; Hubei Hongshan Laboratory, Wuhan 430070, P.R. China.
| |
Collapse
|
113
|
Lata E, Choquet K, Sagliocco F, Brais B, Bernard G, Teichmann M. RNA Polymerase III Subunit Mutations in Genetic Diseases. Front Mol Biosci 2021; 8:696438. [PMID: 34395528 PMCID: PMC8362101 DOI: 10.3389/fmolb.2021.696438] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/21/2021] [Indexed: 12/24/2022] Open
Abstract
RNA polymerase (Pol) III transcribes small untranslated RNAs such as 5S ribosomal RNA, transfer RNAs, and U6 small nuclear RNA. Because of the functions of these RNAs, Pol III transcription is best known for its essential contribution to RNA maturation and translation. Surprisingly, it was discovered in the last decade that various inherited mutations in genes encoding nine distinct subunits of Pol III cause tissue-specific diseases rather than a general failure of all vital functions. Mutations in the POLR3A, POLR3C, POLR3E and POLR3F subunits are associated with susceptibility to varicella zoster virus-induced encephalitis and pneumonitis. In addition, an ever-increasing number of distinct mutations in the POLR3A, POLR3B, POLR1C and POLR3K subunits cause a spectrum of neurodegenerative diseases, which includes most notably hypomyelinating leukodystrophy. Furthermore, other rare diseases are also associated with mutations in genes encoding subunits of Pol III (POLR3H, POLR3GL) and the BRF1 component of the TFIIIB transcription initiation factor. Although the causal relationship between these mutations and disease development is widely accepted, the exact molecular mechanisms underlying disease pathogenesis remain enigmatic. Here, we review the current knowledge on the functional impact of specific mutations, possible Pol III-related disease-causing mechanisms, and animal models that may help to better understand the links between Pol III mutations and disease.
Collapse
Affiliation(s)
- Elisabeth Lata
- Bordeaux University, Inserm U 1212, CNRS UMR 5320, ARNA laboratory, Bordeaux, France
| | - Karine Choquet
- Department of Genetics, Harvard Medical School, Boston, MA, United States
| | - Francis Sagliocco
- Bordeaux University, Inserm U 1212, CNRS UMR 5320, ARNA laboratory, Bordeaux, France
| | - Bernard Brais
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Geneviève Bernard
- Departments of Neurology and Neurosurgery, Pediatrics and Human Genetics, McGill University, Montreal, QC, Canada
- Department of Specialized Medicine, Division of Medical Genetics, McGill University Health Center, Montreal, QC, Canada
- Child Health and Human Development Program, Research Institute of the McGill University Health Center, Montreal, QC, Canada
| | - Martin Teichmann
- Bordeaux University, Inserm U 1212, CNRS UMR 5320, ARNA laboratory, Bordeaux, France
| |
Collapse
|
114
|
Fukuda K, Okamura K, Riding RL, Fan X, Afshari K, Haddadi NS, McCauley SM, Guney MH, Luban J, Funakoshi T, Yaguchi T, Kawakami Y, Khvorova A, Fitzgerald KA, Harris JE. AIM2 regulates anti-tumor immunity and is a viable therapeutic target for melanoma. J Exp Med 2021; 218:212521. [PMID: 34325468 PMCID: PMC8329870 DOI: 10.1084/jem.20200962] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/24/2021] [Accepted: 07/09/2021] [Indexed: 12/14/2022] Open
Abstract
The STING and absent in melanoma 2 (AIM2) pathways are activated by the presence of cytosolic DNA, and STING agonists enhance immunotherapeutic responses. Here, we show that dendritic cell (DC) expression of AIM2 within human melanoma correlates with poor prognosis and, in contrast to STING, AIM2 exerts an immunosuppressive effect within the melanoma microenvironment. Vaccination with AIM2-deficient DCs improves the efficacy of both adoptive T cell therapy and anti–PD-1 immunotherapy for “cold tumors,” which exhibit poor therapeutic responses. This effect did not depend on prolonged survival of vaccinated DCs, but on tumor-derived DNA that activates STING-dependent type I IFN secretion and subsequent production of CXCL10 to recruit CD8+ T cells. Additionally, loss of AIM2-dependent IL-1β and IL-18 processing enhanced the treatment response further by limiting the recruitment of regulatory T cells. Finally, AIM2 siRNA-treated mouse DCs in vivo and human DCs in vitro enhanced similar anti-tumor immune responses. Thus, targeting AIM2 in tumor-infiltrating DCs is a promising new treatment strategy for melanoma.
Collapse
Affiliation(s)
- Keitaro Fukuda
- Department of Dermatology, University of Massachusetts Medical School, Worcester, MA.,Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Ken Okamura
- Department of Dermatology, University of Massachusetts Medical School, Worcester, MA
| | - Rebecca L Riding
- Department of Dermatology, University of Massachusetts Medical School, Worcester, MA
| | - Xueli Fan
- Department of Dermatology, University of Massachusetts Medical School, Worcester, MA
| | - Khashayar Afshari
- Department of Dermatology, University of Massachusetts Medical School, Worcester, MA
| | - Nazgol-Sadat Haddadi
- Department of Dermatology, University of Massachusetts Medical School, Worcester, MA
| | - Sean M McCauley
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Mehmet H Guney
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Jeremy Luban
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA.,Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA
| | - Takeru Funakoshi
- Department of Dermatology, Keio University School of Medicine, Tokyo, Japan
| | - Tomonori Yaguchi
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Yutaka Kawakami
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Anastasia Khvorova
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA.,Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA
| | - Katherine A Fitzgerald
- Department of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA
| | - John E Harris
- Department of Dermatology, University of Massachusetts Medical School, Worcester, MA
| |
Collapse
|
115
|
Klein B, Günther C. Type I Interferon Induction in Cutaneous DNA Damage Syndromes. Front Immunol 2021; 12:715723. [PMID: 34381458 PMCID: PMC8351592 DOI: 10.3389/fimmu.2021.715723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/05/2021] [Indexed: 12/20/2022] Open
Abstract
Type I interferons (IFNs) as part of the innate immune system have an outstanding importance as antiviral defense cytokines that stimulate innate and adaptive immune responses. Upon sensing of pattern recognition particles (PRPs) such as nucleic acids, IFN secretion is activated and induces the expression of interferon stimulated genes (ISGs). Uncontrolled constitutive activation of the type I IFN system can lead to autoinflammation and autoimmunity, which is observed in autoimmune disorders such as systemic lupus erythematodes and in monogenic interferonopathies. They are caused by mutations in genes which are involved in sensing or metabolism of intracellular nucleic acids and DNA repair. Many authors described mechanisms of type I IFN secretion upon increased DNA damage, including the formation of micronuclei, cytosolic chromatin fragments and destabilization of DNA binding proteins. Hereditary cutaneous DNA damage syndromes, which are caused by mutations in proteins of the DNA repair, share laboratory and clinical features also seen in autoimmune disorders and interferonopathies; hence a potential role of DNA-damage-induced type I IFN secretion seems likely. Here, we aim to summarize possible mechanisms of IFN induction in cutaneous DNA damage syndromes with defects in the DNA double-strand repair and nucleotide excision repair. We review recent publications referring to Ataxia teleangiectasia, Bloom syndrome, Rothmund–Thomson syndrome, Werner syndrome, Huriez syndrome, and Xeroderma pigmentosum. Furthermore, we aim to discuss the role of type I IFN in cancer and these syndromes.
Collapse
Affiliation(s)
- Benjamin Klein
- Department of Dermatology, Venereology and Allergology, University Medicine Leipzig, Leipzig, Germany
| | - Claudia Günther
- Department of Dermatology, University Hospital and Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
116
|
Zhou Y, Lei Y, Lu LF, Chen DD, Zhang C, Li ZC, Zhou XY, Li S, Zhang YA. cGAS Is a Negative Regulator of RIG-I-Mediated IFN Response in Cyprinid Fish. THE JOURNAL OF IMMUNOLOGY 2021; 207:784-798. [PMID: 34290106 DOI: 10.4049/jimmunol.2100075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/18/2021] [Indexed: 12/13/2022]
Abstract
In mammals, cyclic GMP-AMP synthase (cGAS) recognizes cytosolic dsDNA to induce the type I IFN response. However, the functional role of cGAS in the IFN response of fish remains unclear or controversial. In this study, we report that cGAS orthologs from crucian carp Carassius auratus (CacGAS) and grass carp Ctenopharyngodon idellus (CicGAS) target the dsRNA sensor retinoic acid-inducible gene I (RIG-I) for negative regulation of the IFN response. First, poly(deoxyadenylic-deoxythymidylic) acid-, polyinosinic-polycytidylic acid-, and spring viremia of carp virus-induced IFN responses were impaired by overexpression of CacGAS and CicGAS. Then, CacGAS and CicGAS interacted with CiRIG-I and CiMAVS and inhibited CiRIG-I- and CiMAVS-mediated IFN induction. Moreover, the K63-linked ubiquitination of CiRIG-I and the interaction between CiRIG-I and CiMAVS were attenuated by CacGAS and CicGAS. Finally, CacGAS and CicGAS decreased CiRIG-I-mediated the cellular antiviral response and facilitated viral replication. Taken together, data in this study identify CacGAS and CicGAS as negative regulators in RIG-I-like receptor signaling, which extends the current knowledge regarding the role of fish cGAS in the innate antiviral response.
Collapse
Affiliation(s)
- Yu Zhou
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Yi Lei
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Long-Feng Lu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Dan-Dan Chen
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Can Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China; and
| | - Zhuo-Cong Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China; and
| | - Xiao-Yu Zhou
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China; and
| | - Shun Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Yong-An Zhang
- State Key Laboratory of Agricultural Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China; .,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
117
|
Batool M, Kim MS, Choi S. Structural insights into the distinctive RNA recognition and therapeutic potentials of RIG-I-like receptors. Med Res Rev 2021; 42:399-425. [PMID: 34287999 DOI: 10.1002/med.21845] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 06/11/2021] [Accepted: 07/04/2021] [Indexed: 12/12/2022]
Abstract
RNA viruses, including the coronavirus, develop a unique strategy to evade the host immune response by interrupting the normal function of cytosolic retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs). RLRs rapidly detect atypical nucleic acids, thereby triggering the antiviral innate immune signaling cascade and subsequently activates the interferons transcription and induction of other proinflammatory cytokines and chemokines. Nonetheless, these receptors are manipulated by viral proteins to subvert the host immune system and sustain the infectivity and replication potential of the virus. RIG-I senses the single-stranded, double-stranded, and short double-stranded RNAs and recognizes the key signature, a 5'-triphosphate moiety, at the blunt end of the viral RNA. Meanwhile, the melanoma differentiation-associated gene 5 (MDA5) is triggered by longer double stranded RNAs, messenger RNAs lacking 2'-O-methylation in their 5'-cap, and RNA aggregates. Therefore, structural insights into the nucleic-acid-sensing and downstream signaling mechanisms of these receptors hold great promise for developing effective antiviral therapeutic interventions. This review highlights the critical roles played by RLRs in viral infections as well as their ligand recognition mechanisms. In addition, we highlight the crosstalk between the toll-like receptors and RLRs and provide a comprehensive overview of RLR-associated diseases as well as the therapeutic potential of RLRs for the development of antiviral-drugs. Moreover, we believe that these RLR-based antivirals will serve as a step toward countering the recent coronavirus disease 2019 pandemic.
Collapse
Affiliation(s)
- Maria Batool
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea
- S&K Therapeutics, Campus Plaza 418, Ajou University, Suwon, Korea
| | - Moon Suk Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea
- S&K Therapeutics, Campus Plaza 418, Ajou University, Suwon, Korea
| |
Collapse
|
118
|
de Oliveira Mann CC, Hornung V. Molecular mechanisms of nonself nucleic acid recognition by the innate immune system. Eur J Immunol 2021; 51:1897-1910. [PMID: 34138462 DOI: 10.1002/eji.202049116] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/13/2021] [Accepted: 06/15/2021] [Indexed: 12/24/2022]
Abstract
Nucleic acids (NAs) represent one of the most important classes of molecules recognized by the innate immune system. However, NAs are not limited to pathogens, but are also present within the host. As such, the immune system has evolved an elaborate set of pathogen recognition receptors (PRRs) that employ various strategies to recognize distinct types of NAs, while reliably distinguishing between self and nonself. The here-employed strategies encompass the positioning of NA-sensing PRRs in certain subcellular compartments that potentially come in contact with pathogens but not host NAs, the existence of counterregulatory measures that keep endogenous NAs below a certain threshold, and also the specific identification of certain nonself patterns. Here, we review recent advances in the molecular mechanisms of NA recognition by TLRs, RLRs, and the cGAS-STING axis. We highlight the differences in NA-PRR interfaces that confer specificity and selectivity toward an NA ligand, as well as the NA-dependent induced conformational changes required for signal transduction.
Collapse
Affiliation(s)
| | - Veit Hornung
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
119
|
Yu H, Bruneau RC, Brennan G, Rothenburg S. Battle Royale: Innate Recognition of Poxviruses and Viral Immune Evasion. Biomedicines 2021; 9:biomedicines9070765. [PMID: 34356829 PMCID: PMC8301327 DOI: 10.3390/biomedicines9070765] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 12/17/2022] Open
Abstract
Host pattern recognition receptors (PRRs) sense pathogen-associated molecular patterns (PAMPs), which are molecular signatures shared by different pathogens. Recognition of PAMPs by PRRs initiate innate immune responses via diverse signaling pathways. Over recent decades, advances in our knowledge of innate immune sensing have enhanced our understanding of the host immune response to poxviruses. Multiple PRR families have been implicated in poxvirus detection, mediating the initiation of signaling cascades, activation of transcription factors, and, ultimately, the expression of antiviral effectors. To counteract the host immune defense, poxviruses have evolved a variety of immunomodulators that have diverse strategies to disrupt or circumvent host antiviral responses triggered by PRRs. These interactions influence the outcomes of poxvirus infections. This review focuses on our current knowledge of the roles of PRRs in the recognition of poxviruses, their elicited antiviral effector functions, and how poxviral immunomodulators antagonize PRR-mediated host immune responses.
Collapse
|
120
|
Matsushita K, Li X, Nakamura Y, Dong D, Mukai K, Tsai M, Montgomery SB, Galli SJ. The role of Sp140 revealed in IgE and mast cell responses in Collaborative Cross mice. JCI Insight 2021; 6:e146572. [PMID: 34156030 PMCID: PMC8262499 DOI: 10.1172/jci.insight.146572] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 05/12/2021] [Indexed: 12/20/2022] Open
Abstract
Mouse IgE and mast cell (MC) functions have been studied primarily using inbred strains. Here, we (a) identified effects of genetic background on mouse IgE and MC phenotypes, (b) defined the suitability of various strains for studying IgE and MC functions, and (c) began to study potentially novel genes involved in such functions. We screened 47 Collaborative Cross (CC) strains, as well as C57BL/6J and BALB/cJ mice, for strength of passive cutaneous anaphylaxis (PCA) and responses to the intestinal parasite Strongyloides venezuelensis (S.v.). CC mice exhibited a diversity in PCA strength and S.v. responses. Among strains tested, C57BL/6J and CC027 mice showed, respectively, moderate and uniquely potent MC activity. Quantitative trait locus analysis and RNA sequencing of BM-derived cultured MCs (BMCMCs) from CC027 mice suggested Sp140 as a candidate gene for MC activation. siRNA-mediated knock-down of Sp140 in BMCMCs decreased IgE-dependent histamine release and cytokine production. Our results demonstrated marked variations in IgE and MC activity in vivo, and in responses to S.v., across CC strains. C57BL/6J and CC027 represent useful models for studying MC functions. Additionally, we identified Sp140 as a gene that contributes to IgE-dependent MC activation.
Collapse
Affiliation(s)
- Kazufumi Matsushita
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA.,Department of Immunology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Xin Li
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA.,Department of Genetics, Stanford University School of Medicine, Stanford, California, USA.,CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yuki Nakamura
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| | - Danyue Dong
- CAS Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Kaori Mukai
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA.,Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, California, USA
| | - Mindy Tsai
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA.,Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, California, USA
| | - Stephen B Montgomery
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA.,Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Stephen J Galli
- Department of Pathology, Stanford University School of Medicine, Stanford, California, USA.,Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, California, USA.,Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
121
|
Schustak J, Twarog M, Wu X, Wu HY, Huang Q, Bao Y. Mechanism of Nucleic Acid Sensing in Retinal Pigment Epithelium (RPE): RIG-I Mediates Type I Interferon Response in Human RPE. J Immunol Res 2021; 2021:9975628. [PMID: 34239945 PMCID: PMC8235977 DOI: 10.1155/2021/9975628] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/12/2021] [Accepted: 05/21/2021] [Indexed: 11/17/2022] Open
Abstract
Age-related macular degeneration (AMD), a degenerative disease of the outer retina, is the leading cause of blindness among the elderly. A hallmark of geographic atrophy (GA), an advanced type of nonneovascular AMD (dry AMD), is photoreceptor and retinal pigment epithelium (RPE) cell death. Currently, there are no FDA-approved therapies for GA due to a lack of understanding of the disease-causing mechanisms. Increasing evidence suggests that chronic inflammation plays a predominant role in the pathogenesis of dry AMD. Dead or stressed cells release danger signals and inflammatory factors, which causes further damage to neighboring cells. It has been reported that type I interferon (IFN) response is activated in RPE cells in patients with AMD. However, how RPE cells sense stress to initiate IFN response and cause further damage to the retina are still unknown. Although it has been reported that RPE can respond to extracellularly added dsRNA, it is unknown whether and how RPE detects and senses internally generated or internalized nucleic acids. Here, we elucidated the molecular mechanism by which RPE cells sense intracellular nucleic acids. Our data demonstrate that RPE cells can respond to intracellular RNA and induce type I IFN responses via the RIG-I (DExD/H-box helicase 58, DDX58) RNA helicase. In contrast, we showed that RPE cells were unable to directly sense and respond to DNA through the cGAS-STING pathway. We demonstrated that this was due to the absence of the cyclic GMP-AMP synthase (cGAS) DNA sensor in these cells. The activation of IFN response via RIG-I induced expression of cell death effectors and caused barrier function loss in RPE cells. These data suggested that RPE-intrinsic pathways of nucleic acid sensing are biased toward RNA sensing.
Collapse
Affiliation(s)
- Joshua Schustak
- The Department of Ophthalmology, Novartis Institutes for BioMedical Research, 22 Windsor Street, Cambridge, MA, USA
| | - Michael Twarog
- The Department of Ophthalmology, Novartis Institutes for BioMedical Research, 22 Windsor Street, Cambridge, MA, USA
| | - Xiaoqiu Wu
- The Department of Ophthalmology, Novartis Institutes for BioMedical Research, 22 Windsor Street, Cambridge, MA, USA
| | - Henry Y. Wu
- The Department of Ophthalmology, Novartis Institutes for BioMedical Research, 22 Windsor Street, Cambridge, MA, USA
| | - Qian Huang
- The Department of Ophthalmology, Novartis Institutes for BioMedical Research, 22 Windsor Street, Cambridge, MA, USA
| | - Yi Bao
- The Department of Ophthalmology, Novartis Institutes for BioMedical Research, 22 Windsor Street, Cambridge, MA, USA
| |
Collapse
|
122
|
Johnson MB, Chandler M, Afonin KA. Nucleic acid nanoparticles (NANPs) as molecular tools to direct desirable and avoid undesirable immunological effects. Adv Drug Deliv Rev 2021; 173:427-438. [PMID: 33857556 PMCID: PMC8178219 DOI: 10.1016/j.addr.2021.04.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/05/2021] [Accepted: 04/08/2021] [Indexed: 12/12/2022]
Abstract
Nucleic acid nanoparticles (NANPs) represent a highly versatile molecular platform for the targeted delivery of various therapeutics. However, despite their promise, further clinical translation of this innovative technology can be hindered by immunological off-target effects. All human cells are equipped with an arsenal of receptors that recognize molecular patterns specific to foreign nucleic acids and understanding the rules that guide this recognition offer the key rationale for the development of therapeutic NANPs with tunable immune stimulation. Numerous recent studies have provided increasing evidence that in addition to NANPs' physicochemical properties and therapeutic effects, their interactions with cells of the immune system can be regulated through multiple independently programmable architectural parameters. The results further suggest that defined immunomodulation by NANPs can either support their immunoquiescent delivery or be used for conditional stimulation of beneficial immunological responses.
Collapse
Affiliation(s)
- M Brittany Johnson
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Morgan Chandler
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - Kirill A Afonin
- Nanoscale Science Program, Department of Chemistry, University of North Carolina at Charlotte, Charlotte, NC 28223, USA.
| |
Collapse
|
123
|
Elmanfi S, Yilmaz M, Ong WWS, Yeboah KS, Sintim HO, Gürsoy M, Könönen E, Gürsoy UK. Bacterial Cyclic Dinucleotides and the cGAS-cGAMP-STING Pathway: A Role in Periodontitis? Pathogens 2021; 10:675. [PMID: 34070809 PMCID: PMC8226932 DOI: 10.3390/pathogens10060675] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 01/07/2023] Open
Abstract
Host cells can recognize cytosolic double-stranded DNAs and endogenous second messengers as cyclic dinucleotides-including c-di-GMP, c-di-AMP, and cGAMP-of invading microbes via the critical and essential innate immune signaling adaptor molecule known as STING. This recognition activates the innate immune system and leads to the production of Type I interferons and proinflammatory cytokines. In this review, we (1) focus on the possible role of bacterial cyclic dinucleotides and the STING/TBK1/IRF3 pathway in the pathogenesis of periodontal disease and the regulation of periodontal immune response, and (2) review and discuss activators and inhibitors of the STING pathway as immune response regulators and their potential utility in the treatment of periodontitis. PubMed/Medline, Scopus, and Web of Science were searched with the terms "STING", "TBK 1", "IRF3", and "cGAS"-alone, or together with "periodontitis". Current studies produced evidence for using STING-pathway-targeting molecules as part of anticancer therapy, and as vaccine adjuvants against microbial infections; however, the role of the STING/TBK1/IRF3 pathway in periodontal disease pathogenesis is still undiscovered. Understanding the stimulation of the innate immune response by cyclic dinucleotides opens a new approach to host modulation therapies in periodontology.
Collapse
Affiliation(s)
- Samira Elmanfi
- Department of Periodontology, Institute of Dentistry, University of Turku, 20520 Turku, Finland; (S.E.); (M.G.); (E.K.)
| | - Mustafa Yilmaz
- Department of Periodontology, Faculty of Dentistry, Biruni University, 34010 Istanbul, Turkey;
| | - Wilson W. S. Ong
- Department of Chemistry and Purdue Institute for Drug Discovery and Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, Indiana, IN 47907, USA; (W.W.S.O.); (K.S.Y.)
| | - Kofi S. Yeboah
- Department of Chemistry and Purdue Institute for Drug Discovery and Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, Indiana, IN 47907, USA; (W.W.S.O.); (K.S.Y.)
| | - Herman O. Sintim
- Department of Chemistry and Purdue Institute for Drug Discovery and Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, Indiana, IN 47907, USA; (W.W.S.O.); (K.S.Y.)
| | - Mervi Gürsoy
- Department of Periodontology, Institute of Dentistry, University of Turku, 20520 Turku, Finland; (S.E.); (M.G.); (E.K.)
| | - Eija Könönen
- Department of Periodontology, Institute of Dentistry, University of Turku, 20520 Turku, Finland; (S.E.); (M.G.); (E.K.)
- Oral Health Care, Welfare Division, City of Turku, 20520 Turku, Finland
| | - Ulvi K. Gürsoy
- Department of Periodontology, Institute of Dentistry, University of Turku, 20520 Turku, Finland; (S.E.); (M.G.); (E.K.)
| |
Collapse
|
124
|
Cell Cycle Checkpoints Cooperate to Suppress DNA- and RNA-Associated Molecular Pattern Recognition and Anti-Tumor Immune Responses. Cell Rep 2021; 32:108080. [PMID: 32877684 PMCID: PMC7530826 DOI: 10.1016/j.celrep.2020.108080] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 06/22/2020] [Accepted: 08/05/2020] [Indexed: 12/19/2022] Open
Abstract
The DNA-dependent pattern recognition receptor, cGAS (cyclic GMP-AMP synthase), mediates communication between the DNA damage and the immune responses. Mitotic chromosome missegregation stimulates cGAS activity; however, it is unclear whether progression through mitosis is required for cancercell-intrinsic activation of anti-tumor immune responses. Moreover, it is unknown whether cell cycle checkpoint disruption can restore responses in cancer cells that are recalcitrant to DNAdamage-induced inflammation. Here, we demonstrate that prolonged cell cycle arrest at the G2-mitosis boundary from either excessive DNA damage or CDK1 inhibition prevents inflammatory-stimulated gene expression and immune-mediated destruction of distal tumors. Remarkably, DNAdamage-induced inflammatory signaling is restored in a RIG-I-dependent manner upon concomitant disruption of p53 and the G2 checkpoint. These findings link aberrant cell progression and p53 loss to an expanded spectrum of damage-associated molecular pattern recognition and have implications for the design of rational approaches to augment anti-tumor immune responses. Chen et al. show that prolonged cell cycle arrest before mitosis prevents inflammatory signaling and anti-tumor immunity. Concomitant disruption of p53 and the G2 checkpoint restores DNAdamage-induced inflammatory signaling in a cGAS- and RIG-I-dependent manner.
Collapse
|
125
|
Bode C, Poth JM, Fox M, Schulz S, Klinman DM, Latz E, Steinhagen F. Cytosolic d-type CpG-oligonucleotides induce a type I interferon response by activating the cGAS-STING signaling pathway. Eur J Immunol 2021; 51:1686-1697. [PMID: 33860535 DOI: 10.1002/eji.202048810] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 02/26/2021] [Accepted: 04/13/2021] [Indexed: 12/14/2022]
Abstract
Cytosolic DNA receptor cyclic GMP-AMP (cGAMP) synthase (cGAS) has been shown to be critically involved in the detection of cytosolic, self- and non-self-DNA, initiating a type I IFN response through the adaptor protein Stimulator of Interferon Genes (STING) and interferon regulatory factor 3 (IRF3). Current studies propose that canonical binding of dsDNA by cGAS depends on DNA length, but not on base sequence. In contrast, activation of TLR9 is sequence dependent. It requires unmethylated CpG dinucleotides in microbial DNA, which is mimicked by synthetic oligodeoxynucleotides (ODN). Here, we provide evidence that d-type ODN (D-ODN), but not K-type ODN (K-ODN), bind to human cGAS and activate downstream signaling. Transfection of D-ODN into a TLR9-deficient, human monocytic cell line (THP-1) induced phosphorylation of IRF3 and secretion of IFN. This response was absent in cells with CRISPR/Cas9-mediated cGAS- or STING-deficiency. Utilizing a protein pulldown approach, we further demonstrate direct binding of D-ODN to cGAS. Induction of a type I IFN response by D-ODN was confirmed in human primary monocytes and monocyte-derived macrophages. These results are relevant to our understanding of self-nonself-discrimination by cGAS and to the pharmacologic effects of ODN, which currently are investigated in clinical studies.
Collapse
Affiliation(s)
- Christian Bode
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Jens M Poth
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Mario Fox
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Susanne Schulz
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany
| | - Dennis M Klinman
- Cancer and Inflammation Program, Center for Cancer Research, NCI, Frederick, MD, USA
| | - Eicke Latz
- Institute of Innate Immunity, University Hospital Bonn, Bonn, Germany
| | - Folkert Steinhagen
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, Bonn, Germany.,Department of Anesthesiology and Intensive Care Medicine, SHG-Clinic Voelklingen, Voelklingen, Germany
| |
Collapse
|
126
|
Thomsen MM, Tyrberg T, Skaalum K, Carter-Timofte M, Freytag MR, Norberg P, Helleberg M, Storgaard M, Nielsen H, Bodilsen J, Grahn A, Mogensen T. Genetic variants and immune responses in a cohort of patients with varicella zoster virus encephalitis. J Infect Dis 2021; 224:2122-2132. [PMID: 33974706 DOI: 10.1093/infdis/jiab254] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/06/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Infection with varicella zoster virus (VZV) may involve different central nervous system (CNS) manifestations, including meningitis, encephalitis, and vasculitis. In cases where otherwise healthy individuals are affected, an inborn error of immunity may underlie increased susceptibility or severity of infection. METHODS We collected a cohort of 17 adults who experienced VZV encephalitis and performed whole exome sequencing. Patient PBMCs were infected with VZV and innate antiviral interferon and cytokine responses as well as viral replication was evaluated. Data were analyzed by Mann Whitney U test. RESULTS We identified a total of 21 different potentially disease-causing variants in a total of 13 of the 17 patients included. These gene variants were within two major functional clusters: i) innate viral sensors and immune pathways and ii) autophagy pathways. Antiviral interferon (IFN) and cytokine responses were abnormal in the majority of patients, whereas viral replication was increased in only 2/17. CONCLUSION This study identifies a list of variants of pathogenic potential, which may serve as a platform for generating hypotheses for future studies addressing genetic and immunological factors associated with susceptibility to VZV encephalitis. Collectively, these data suggest that disturbances in innate sensing and autophagy pathways may predispose to VZV encephalitis.
Collapse
Affiliation(s)
- Michelle M Thomsen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Tobias Tyrberg
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Kristoffer Skaalum
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | | | - Mette R Freytag
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Peter Norberg
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Marie Helleberg
- Department of Infectious Diseases, Rigshospitalet, Copenhagen, Denmark
| | - Merete Storgaard
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Henrik Nielsen
- Department of Infectious Diseases, Aalborg University Hospital, Denmark.,Department of Clinical Medicine, Aalborg University, Denmark
| | - Jacob Bodilsen
- Department of Infectious Diseases, Aalborg University Hospital, Denmark
| | - Anna Grahn
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Trine Mogensen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
127
|
Goedegebuure RSA, Kleibeuker EA, Buffa FM, Castricum KCM, Haider S, Schulkens IA, Ten Kroode L, van den Berg J, Jacobs MAJM, van Berkel AM, van Grieken NCT, Derks S, Slotman BJ, Verheul HMW, Harris AL, Thijssen VL. Interferon- and STING-independent induction of type I interferon stimulated genes during fractionated irradiation. J Exp Clin Cancer Res 2021; 40:161. [PMID: 33964942 PMCID: PMC8106844 DOI: 10.1186/s13046-021-01962-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/25/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Improvement of radiotherapy efficacy requires better insight in the dynamic responses that occur during irradiation. Here, we aimed to identify the molecular responses that are triggered during clinically applied fractionated irradiation. METHODS Gene expression analysis was performed by RNAseq or microarray analysis of cancer cells or xenograft tumors, respectively, subjected to 3-5 weeks of 5 × 2 Gy/week. Validation of altered gene expression was performed by qPCR and/or ELISA in multiple cancer cell lines as well as in pre- and on-treatment biopsies from esophageal cancer patients ( NCT02072720 ). Targeted protein inhibition and CRISPR/Cas-induced gene knockout was used to analyze the role of type I interferons and cGAS/STING signaling pathway in the molecular and cellular response to fractionated irradiation. RESULTS Gene expression analysis identified type I interferon signaling as the most significantly enriched biological process induced during fractionated irradiation. The commonality of this response was confirmed in all irradiated cell lines, the xenograft tumors and in biopsies from esophageal cancer patients. Time-course analyses demonstrated a peak in interferon-stimulated gene (ISG) expression within 2-3 weeks of treatment. The response was accompanied by a variable induction of predominantly interferon-beta and/or -lambda, but blocking these interferons did not affect ISG expression induction. The same was true for targeted inhibition of the upstream regulatory STING protein while knockout of STING expression only delayed the ISG expression induction. CONCLUSIONS Collectively, the presented data show that clinically applied fractionated low-dose irradiation can induce a delayed type I interferon response that occurs independently of interferon expression or STING signaling. These findings have implications for current efforts that aim to target the type I interferon response for cancer treatment.
Collapse
Affiliation(s)
- Ruben S A Goedegebuure
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, location VUmc, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Esther A Kleibeuker
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, location VUmc, Amsterdam, The Netherlands
| | | | - Kitty C M Castricum
- Department of Radiation Oncology, Cancer Center Amsterdam, Amsterdam UMC, location VUmc, Amsterdam, The Netherlands
| | - Syed Haider
- Department of Molecular Oncology, University of Oxford, Oxford, UK
| | - Iris A Schulkens
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, location VUmc, Amsterdam, The Netherlands
| | - Luuk Ten Kroode
- Department of Radiation Oncology, Cancer Center Amsterdam, Amsterdam UMC, location VUmc, Amsterdam, The Netherlands
| | - Jaap van den Berg
- Department of Radiation Oncology, Cancer Center Amsterdam, Amsterdam UMC, location VUmc, Amsterdam, The Netherlands
| | - Maarten A J M Jacobs
- Department of Gastroenterology, Cancer Center Amsterdam, Amsterdam UMC, location VUmc, Amsterdam, The Netherlands
| | - Anne-Marie van Berkel
- Department of Gastroenterology, Noord West Ziekenhuisgroep, Alkmaar, The Netherlands
| | - Nicole C T van Grieken
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, location VUmc, Amsterdam, The Netherlands
| | - Sarah Derks
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, location VUmc, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Ben J Slotman
- Department of Radiation Oncology, Cancer Center Amsterdam, Amsterdam UMC, location VUmc, Amsterdam, The Netherlands
| | - Henk M W Verheul
- Department of Medical Oncology, Radboud UMC, Nijmegen, The Netherlands
| | - Adrian L Harris
- Department of Molecular Oncology, University of Oxford, Oxford, UK
| | - Victor L Thijssen
- Department of Radiation Oncology, Cancer Center Amsterdam, Amsterdam UMC, location VUmc, Amsterdam, The Netherlands.
| |
Collapse
|
128
|
Tan P, He L, Zhou Y. Engineering Supramolecular Organizing Centers for Optogenetic Control of Innate Immune Responses. Adv Biol (Weinh) 2021; 5:e2000147. [PMID: 34028210 PMCID: PMC8144545 DOI: 10.1002/adbi.202000147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/18/2020] [Indexed: 12/20/2022]
Abstract
The spatiotemporal organization of oligomeric protein complexes, such as the supramolecular organizing centers (SMOCs) made of MyDDosome and MAVSome, is essential for transcriptional activation of host inflammatory responses and immunometabolism. Light-inducible assembly of MyDDosome and MAVSome is presented herein to induce activation of nuclear factor-kB and type-I interferons. Engineering of SMOCs and the downstream transcription factor permits programmable and customized innate immune operations in a light-dependent manner. These synthetic molecular tools will likely enable optical and user-defined modulation of innate immunity at a high spatiotemporal resolution to facilitate mechanistic studies of distinct modes of innate immune activations and potential intervention of immune disorders and cancer.
Collapse
Affiliation(s)
- Peng Tan
- Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, TX, 77030, USA
| | - Lian He
- Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, TX, 77030, USA
| | - Yubin Zhou
- Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, TX, 77030, USA
- Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, TX, 77030, USA
| |
Collapse
|
129
|
Yu L, Liu P. Cytosolic DNA sensing by cGAS: regulation, function, and human diseases. Signal Transduct Target Ther 2021; 6:170. [PMID: 33927185 PMCID: PMC8085147 DOI: 10.1038/s41392-021-00554-y] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/17/2021] [Accepted: 03/08/2021] [Indexed: 12/16/2022] Open
Abstract
Sensing invasive cytosolic DNA is an integral component of innate immunity. cGAS was identified in 2013 as the major cytosolic DNA sensor that binds dsDNA to catalyze the synthesis of a special asymmetric cyclic-dinucleotide, 2'3'-cGAMP, as the secondary messenger to bind and activate STING for subsequent production of type I interferons and other immune-modulatory genes. Hyperactivation of cGAS signaling contributes to autoimmune diseases but serves as an adjuvant for anticancer immune therapy. On the other hand, inactivation of cGAS signaling causes deficiency to sense and clear the viral and bacterial infection and creates a tumor-prone immune microenvironment to facilitate tumor evasion of immune surveillance. Thus, cGAS activation is tightly controlled. In this review, we summarize up-to-date multilayers of regulatory mechanisms governing cGAS activation, including cGAS pre- and post-translational regulations, cGAS-binding proteins, and additional cGAS regulators such as ions and small molecules. We will also reveal the pathophysiological function of cGAS and its product cGAMP in human diseases. We hope to provide an up-to-date review for recent research advances of cGAS biology and cGAS-targeted therapies for human diseases.
Collapse
Affiliation(s)
- Le Yu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Pengda Liu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Biochemistry and Biophysics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
130
|
Proulx J, Borgmann K, Park IW. Role of Virally-Encoded Deubiquitinating Enzymes in Regulation of the Virus Life Cycle. Int J Mol Sci 2021; 22:ijms22094438. [PMID: 33922750 PMCID: PMC8123002 DOI: 10.3390/ijms22094438] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 01/21/2023] Open
Abstract
The ubiquitin (Ub) proteasome system (UPS) plays a pivotal role in regulation of numerous cellular processes, including innate and adaptive immune responses that are essential for restriction of the virus life cycle in the infected cells. Deubiquitination by the deubiquitinating enzyme, deubiquitinase (DUB), is a reversible molecular process to remove Ub or Ub chains from the target proteins. Deubiquitination is an integral strategy within the UPS in regulating survival and proliferation of the infecting virus and the virus-invaded cells. Many viruses in the infected cells are reported to encode viral DUB, and these vial DUBs actively disrupt cellular Ub-dependent processes to suppress host antiviral immune response, enhancing virus replication and thus proliferation. This review surveys the types of DUBs encoded by different viruses and their molecular processes for how the infecting viruses take advantage of the DUB system to evade the host immune response and expedite their replication.
Collapse
Affiliation(s)
- Jessica Proulx
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (J.P.); (K.B.)
| | - Kathleen Borgmann
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (J.P.); (K.B.)
| | - In-Woo Park
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
- Correspondence: ; Tel.: +1-(817)-735-5115; Fax: +1-(817)-735-2610
| |
Collapse
|
131
|
Song B, Liu D, Greco TM, Cristea IM. Post-translational modification control of viral DNA sensors and innate immune signaling. Adv Virus Res 2021; 109:163-199. [PMID: 33934827 PMCID: PMC8489191 DOI: 10.1016/bs.aivir.2021.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The vertebrate innate immune system confers host cells with mechanisms to protect against both evolutionarily ancient pathogens and newly emerging pathogenic strains. Innate immunity relies on the host cell's ability to distinguish between self and pathogen-derived molecules. To achieve this, the innate immune system uses germline encoded receptors called pattern recognition receptors (PRRs), which recognize various molecular signatures, including nucleic acids, proteins, lipids, glycans and glycolipids. Among these molecules, the recognition of pathogenic, mislocalized, or damaged DNA by cellular protein receptors, commonly called DNA sensors, represents a major surveillance pathway for initiating immune signaling. The ability of cells to temporally regulate DNA sensor activation and subsequent signal termination is critical for effective immune signaling. These same mechanisms are also co-opted by pathogens to promote their replication. Therefore, there is significant interest in understanding DNA sensor regulatory networks during microbial infections and autoimmune disease. One emerging aspect of DNA sensor regulation is through post-translational modifications (PTMs), including phosphorylation, acetylation, ubiquitination, ADP-ribosylation, SUMOylation, methylation, deamidation, glutamylation. In this chapter, we discuss how PTMs have been shown to positively or negatively impact DNA sensor functions via diverse mechanisms, including direct regulation of enzymatic activity, protein-protein and protein-DNA interactions, protein translocations and protein turnover. In addition, we highlight the ability of virus-induced PTMs to promote immune evasion. We also discuss the recent evidence linking PTMs on DNA sensors with human diseases and more broadly, highlight promising directions for future research on PTM-mediated regulation of DNA sensor-dependent immune signaling.
Collapse
Affiliation(s)
- Bokai Song
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States
| | - Dawei Liu
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States
| | - Todd M Greco
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States.
| |
Collapse
|
132
|
Chiang C, Dvorkin S, Chiang JJ, Potter RB, Gack MU. The Small t Antigen of JC Virus Antagonizes RIG-I-Mediated Innate Immunity by Inhibiting TRIM25's RNA Binding Ability. mBio 2021; 12:e00620-21. [PMID: 33849980 PMCID: PMC8092259 DOI: 10.1128/mbio.00620-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 03/15/2021] [Indexed: 12/14/2022] Open
Abstract
JC polyomavirus (JCV), a DNA virus that leads to persistent infection in humans, is the causative agent of progressive multifocal leukoencephalopathy, a lethal brain disease that affects immunocompromised individuals. Almost nothing is currently known about how JCV infection is controlled by the innate immune response and, further, whether JCV has evolved mechanisms to antagonize antiviral immunity. Here, we show that the innate immune sensors retinoic acid-inducible gene I (RIG-I) and cGMP-AMP synthase (cGAS) control JCV replication in human astrocytes. We further identify that the small t antigen (tAg) of JCV functions as an interferon (IFN) antagonist by suppressing RIG-I-mediated signal transduction. JCV tAg interacts with the E3 ubiquitin ligase TRIM25, thereby preventing its ability to bind RNA and to induce the K63-linked ubiquitination of RIG-I, which is known to facilitate RIG-I-mediated cytokine responses. Antagonism of RIG-I K63-linked ubiquitination and antiviral signaling is also conserved in the tAg of the related polyomavirus BK virus (BKV). These findings highlight how JCV and BKV manipulate a key innate surveillance pathway, which may stimulate research into designing novel therapies.IMPORTANCE The innate immune response is the first line of defense against viral pathogens, and in turn, many viruses have evolved strategies to evade detection by the host's innate immune surveillance machinery. Investigation of the interplay between viruses and the innate immune response provides valuable insight into potential therapeutic targets against viral infectious diseases. JC polyomavirus (JCV) is associated with a lifelong, persistent infection that can cause a rare neurodegenerative disease, called progressive multifocal leukoencephalopathy, in individuals that are immunosuppressed. The molecular mechanisms of JCV infection and persistence are not well understood, and very little is currently known about the relevance of innate immunity for the control of JCV replication. Here, we define the intracellular innate immune sensors responsible for controlling JCV infection and also demonstrate a novel mechanism by which a JCV-encoded protein acts as an antagonist of the type I interferon-mediated innate immune response.
Collapse
Affiliation(s)
- Cindy Chiang
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, Florida, USA
- Department of Microbiology, The University of Chicago, Chicago, Illinois, USA
| | - Steve Dvorkin
- Department of Microbiology, The University of Chicago, Chicago, Illinois, USA
| | - Jessica J Chiang
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Rachel B Potter
- Department of Microbiology, The University of Chicago, Chicago, Illinois, USA
| | - Michaela U Gack
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, Florida, USA
- Department of Microbiology, The University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
133
|
Dunker W, Ye X, Zhao Y, Liu L, Richardson A, Karijolich J. TDP-43 prevents endogenous RNAs from triggering a lethal RIG-I-dependent interferon response. Cell Rep 2021; 35:108976. [PMID: 33852834 PMCID: PMC8109599 DOI: 10.1016/j.celrep.2021.108976] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/01/2021] [Accepted: 03/19/2021] [Indexed: 12/16/2022] Open
Abstract
RIG-I-like receptors (RLRs) are involved in the discrimination of self versus non-self via the recognition of double-stranded RNA (dsRNA). Emerging evidence suggests that immunostimulatory dsRNAs are ubiquitously expressed but are disrupted or sequestered by cellular RNA binding proteins (RBPs). TDP-43 is an RBP associated with multiple neurological disorders and is essential for cell viability. Here, we demonstrate that TDP-43 regulates the accumulation of immunostimulatory dsRNA. The immunostimulatory RNA is identified as RNA polymerase III transcripts, including 7SL and Alu retrotransposons, and we demonstrate that the RNA-binding activity of TDP-43 is required to prevent immune stimulation. The dsRNAs activate a RIG-I-dependent interferon (IFN) response, which promotes necroptosis. Genetic inactivation of the RLR-pathway rescues the interferon-mediated cell death associated with loss of TDP-43. Collectively, our study describes a role for TDP-43 in preventing the accumulation of endogenous immunostimulatory dsRNAs and uncovers an intricate relationship between the control of cellular gene expression and IFN-mediated cell death.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/immunology
- Alu Elements
- Cell Line, Tumor
- Cell Survival
- Cytokines/genetics
- Cytokines/immunology
- DEAD Box Protein 58/antagonists & inhibitors
- DEAD Box Protein 58/genetics
- DEAD Box Protein 58/immunology
- DNA-Binding Proteins/deficiency
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/immunology
- Epithelial Cells/immunology
- Epithelial Cells/virology
- Gene Expression Regulation
- HEK293 Cells
- Herpesvirus 8, Human/genetics
- Herpesvirus 8, Human/growth & development
- Herpesvirus 8, Human/immunology
- Humans
- Immunization
- Interferons/genetics
- Interferons/immunology
- Interleukin-6/genetics
- Interleukin-6/immunology
- Necroptosis/genetics
- Necroptosis/immunology
- Neurons/immunology
- Neurons/virology
- RNA Polymerase III/genetics
- RNA Polymerase III/immunology
- RNA, Double-Stranded/genetics
- RNA, Double-Stranded/immunology
- RNA, Messenger/genetics
- RNA, Messenger/immunology
- RNA, Small Cytoplasmic/genetics
- RNA, Small Cytoplasmic/immunology
- RNA, Viral/genetics
- RNA, Viral/immunology
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/immunology
- Receptors, Immunologic/antagonists & inhibitors
- Receptors, Immunologic/genetics
- Receptors, Immunologic/immunology
- Signal Recognition Particle/genetics
- Signal Recognition Particle/immunology
- Signal Transduction
- Tumor Necrosis Factor-alpha/genetics
- Tumor Necrosis Factor-alpha/immunology
- Ubiquitins/genetics
- Ubiquitins/immunology
Collapse
Affiliation(s)
- William Dunker
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232-2363, USA
| | - Xiang Ye
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232-2363, USA
| | - Yang Zhao
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232-2363, USA
| | - Lanxi Liu
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232-2363, USA
| | - Antiana Richardson
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232-2363, USA
| | - John Karijolich
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232-2363, USA; Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-2363, USA; Vanderbilt-Ingram Cancer Center, Nashville, TN 37232-2363, USA; Vanderbilt Institute for Infection, Immunology and Inflammation, Nashville, TN 37232-2363, USA; Vanderbilt Center for Immunobiology, Nashville, TN 37232-2363, USA.
| |
Collapse
|
134
|
|
135
|
Transcriptional and Non-Transcriptional Activation, Posttranslational Modifications, and Antiviral Functions of Interferon Regulatory Factor 3 and Viral Antagonism by the SARS-Coronavirus. Viruses 2021; 13:v13040575. [PMID: 33805458 PMCID: PMC8066409 DOI: 10.3390/v13040575] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 12/12/2022] Open
Abstract
The immune system defends against invading pathogens through the rapid activation of innate immune signaling pathways. Interferon regulatory factor 3 (IRF3) is a key transcription factor activated in response to virus infection and is largely responsible for establishing an antiviral state in the infected host. Studies in Irf3−/− mice have demonstrated the absence of IRF3 imparts a high degree of susceptibility to a wide range of viral infections. Virus infection causes the activation of IRF3 to transcribe type-I interferon (e.g., IFNβ), which is responsible for inducing the interferon-stimulated genes (ISGs), which act at specific stages to limit virus replication. In addition to its transcriptional function, IRF3 is also activated to trigger apoptosis of virus-infected cells, as a mechanism to restrict virus spread within the host, in a pathway called RIG-I-like receptor-induced IRF3 mediated pathway of apoptosis (RIPA). These dual functions of IRF3 work in concert to mediate protective immunity against virus infection. These two pathways are activated differentially by the posttranslational modifications (PTMs) of IRF3. Moreover, PTMs regulate not only IRF3 activation and function, but also protein stability. Consequently, many viruses utilize viral proteins or hijack cellular enzymes to inhibit IRF3 functions. This review will describe the PTMs that regulate IRF3′s RIPA and transcriptional activities and use coronavirus as a model virus capable of antagonizing IRF3-mediated innate immune responses. A thorough understanding of the cellular control of IRF3 and the mechanisms that viruses use to subvert this system is critical for developing novel therapies for virus-induced pathologies.
Collapse
|
136
|
Liu X, Ma Y, Voss K, van Gent M, Chan YK, Gack MU, Gale M, He B. The herpesvirus accessory protein γ134.5 facilitates viral replication by disabling mitochondrial translocation of RIG-I. PLoS Pathog 2021; 17:e1009446. [PMID: 33770145 PMCID: PMC7996975 DOI: 10.1371/journal.ppat.1009446] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 03/02/2021] [Indexed: 12/13/2022] Open
Abstract
RIG-I and MDA5 are cytoplasmic RNA sensors that mediate cell intrinsic immunity against viral pathogens. While it has been well-established that RIG-I and MDA5 recognize RNA viruses, their interactive network with DNA viruses, including herpes simplex virus 1 (HSV-1), remains less clear. Using a combination of RNA-deep sequencing and genetic studies, we show that the γ134.5 gene product, a virus-encoded virulence factor, enables HSV growth by neutralization of RIG-I dependent restriction. When expressed in mammalian cells, HSV-1 γ134.5 targets RIG-I, which cripples cytosolic RNA sensing and subsequently suppresses antiviral gene expression. Rather than inhibition of RIG-I K63-linked ubiquitination, the γ134.5 protein precludes the assembly of RIG-I and cellular chaperone 14-3-3ε into an active complex for mitochondrial translocation. The γ134.5-mediated inhibition of RIG-I-14-3-3ε binding abrogates the access of RIG-I to mitochondrial antiviral-signaling protein (MAVS) and activation of interferon regulatory factor 3. As such, unlike wild type virus HSV-1, a recombinant HSV-1 in which γ134.5 is deleted elicits efficient cytokine induction and replicates poorly, while genetic ablation of RIG-I expression, but not of MDA5 expression, rescues viral growth. Collectively, these findings suggest that viral suppression of cytosolic RNA sensing is a key determinant in the evolutionary arms race of a large DNA virus and its host.
Collapse
Affiliation(s)
- Xing Liu
- Department of Microbiology and Immunology University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - Yijie Ma
- Department of Microbiology and Immunology University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - Kathleen Voss
- Center for Innate Immunity and Immune Disease, Department Immunology, University of Washington, Seattle, Washington, United States of America
| | - Michiel van Gent
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, Florida, United States of America
- Department of Microbiology, The University of Chicago, Illinois, United States of America
| | - Ying Kai Chan
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, United States of America
| | - Michaela U. Gack
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, Florida, United States of America
- Department of Microbiology, The University of Chicago, Illinois, United States of America
| | - Michael Gale
- Center for Innate Immunity and Immune Disease, Department Immunology, University of Washington, Seattle, Washington, United States of America
| | - Bin He
- Department of Microbiology and Immunology University of Illinois College of Medicine, Chicago, Illinois, United States of America
| |
Collapse
|
137
|
Onomoto K, Onoguchi K, Yoneyama M. Regulation of RIG-I-like receptor-mediated signaling: interaction between host and viral factors. Cell Mol Immunol 2021; 18:539-555. [PMID: 33462384 PMCID: PMC7812568 DOI: 10.1038/s41423-020-00602-7] [Citation(s) in RCA: 188] [Impact Index Per Article: 62.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/17/2020] [Indexed: 01/31/2023] Open
Abstract
Retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) are RNA sensor molecules that play essential roles in innate antiviral immunity. Among the three RLRs encoded by the human genome, RIG-I and melanoma differentiation-associated gene 5, which contain N-terminal caspase recruitment domains, are activated upon the detection of viral RNAs in the cytoplasm of virus-infected cells. Activated RLRs induce downstream signaling via their interactions with mitochondrial antiviral signaling proteins and activate the production of type I and III interferons and inflammatory cytokines. Recent studies have shown that RLR-mediated signaling is regulated by interactions with endogenous RNAs and host proteins, such as those involved in stress responses and posttranslational modifications. Since RLR-mediated cytokine production is also involved in the regulation of acquired immunity, the deregulation of RLR-mediated signaling is associated with autoimmune and autoinflammatory disorders. Moreover, RLR-mediated signaling might be involved in the aberrant cytokine production observed in coronavirus disease 2019. Since the discovery of RLRs in 2004, significant progress has been made in understanding the mechanisms underlying the activation and regulation of RLR-mediated signaling pathways. Here, we review the recent advances in the understanding of regulated RNA recognition and signal activation by RLRs, focusing on the interactions between various host and viral factors.
Collapse
Affiliation(s)
- Koji Onomoto
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8673, Japan
| | - Kazuhide Onoguchi
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8673, Japan
| | - Mitsutoshi Yoneyama
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8673, Japan.
| |
Collapse
|
138
|
Abstract
The innate immune system has numerous signal transduction pathways that lead to the production of type I interferons in response to exposure of cells to external stimuli. One of these pathways comprises RNA polymerase (Pol) III that senses common DNA viruses, such as cytomegalovirus, vaccinia, herpes simplex virus-1 and varicella zoster virus. This polymerase detects and transcribes viral genomic regions to generate AU-rich transcripts that bring to the induction of type I interferons. Remarkably, Pol III is also stimulated by foreign non-viral DNAs and expression of one of its subunits is induced by an RNA virus, the Sindbis virus. Moreover, a protein subunit of RNase P, which is known to associate with Pol III in initiation complexes, is induced by viral infection. Accordingly, alliance of the two tRNA enzymes in innate immunity merits a consideration.
Collapse
Affiliation(s)
- Nayef Jarrous
- Department of Microbiology and Molecular Genetics, Institute of Medical Research Israel-Canada, Israel-Canada
| | - Alexander Rouvinski
- Department of Microbiology and Molecular Genetics, Institute of Medical Research Israel-Canada, Israel-Canada.,The Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| |
Collapse
|
139
|
Gao P, Ma X, Yuan M, Yi Y, Liu G, Wen M, Jiang W, Ji R, Zhu L, Tang Z, Yu Q, Xu J, Yang R, Xia S, Yang M, Pan J, Yuan H, An H. E3 ligase Nedd4l promotes antiviral innate immunity by catalyzing K29-linked cysteine ubiquitination of TRAF3. Nat Commun 2021; 12:1194. [PMID: 33608556 PMCID: PMC7895832 DOI: 10.1038/s41467-021-21456-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 01/26/2021] [Indexed: 02/07/2023] Open
Abstract
Ubiquitination is one of the most prevalent protein posttranslational modifications. Here, we show that E3 ligase Nedd4l positively regulates antiviral immunity by catalyzing K29-linked cysteine ubiquitination of TRAF3. Deficiency of Nedd4l significantly impairs type I interferon and proinflammatory cytokine production induced by virus infection both in vitro and in vivo. Nedd4l deficiency inhibits virus-induced ubiquitination of TRAF3, the binding between TRAF3 and TBK1, and subsequent phosphorylation of TBK1 and IRF3. Nedd4l directly interacts with TRAF3 and catalyzes K29-linked ubiquitination of Cys56 and Cys124, two cysteines that constitute zinc fingers, resulting in enhanced association between TRAF3 and E3 ligases, cIAP1/2 and HECTD3, and also increased K48/K63-linked ubiquitination of TRAF3. Mutation of Cys56 and Cys124 diminishes Nedd4l-catalyzed K29-linked ubiquitination, but enhances association between TRAF3 and the E3 ligases, supporting Nedd4l promotes type I interferon production in response to virus by catalyzing ubiquitination of the cysteines in TRAF3.
Collapse
Affiliation(s)
- Peng Gao
- Clinical Cancer Institute, Center for Translational Medicine, Second Military Medical University, Shanghai, 200433, China
| | - Xianwei Ma
- Scientific Research Center, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Ming Yuan
- Immunology Department & National Key Laboratory of Medical Immunology, Second Military Medical University, Shanghai, 200433, China
| | - Yulan Yi
- Clinical Cancer Institute, Center for Translational Medicine, Second Military Medical University, Shanghai, 200433, China
| | - Guoke Liu
- Clinical Cancer Institute, Center for Translational Medicine, Second Military Medical University, Shanghai, 200433, China
| | - Mingyue Wen
- Immunology Department & National Key Laboratory of Medical Immunology, Second Military Medical University, Shanghai, 200433, China
| | - Wei Jiang
- Clinical Cancer Institute, Center for Translational Medicine, Second Military Medical University, Shanghai, 200433, China
| | - Ruihua Ji
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Lingxi Zhu
- Clinical Cancer Institute, Center for Translational Medicine, Second Military Medical University, Shanghai, 200433, China
| | - Zhen Tang
- Clinical Cancer Institute, Center for Translational Medicine, Second Military Medical University, Shanghai, 200433, China
| | - Qingzhuo Yu
- Clinical Cancer Institute, Center for Translational Medicine, Second Military Medical University, Shanghai, 200433, China
| | - Jing Xu
- Clinical Cancer Institute, Center for Translational Medicine, Second Military Medical University, Shanghai, 200433, China
| | - Rui Yang
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Sheng Xia
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Mingjin Yang
- Immunology Department & National Key Laboratory of Medical Immunology, Second Military Medical University, Shanghai, 200433, China
| | - Jianping Pan
- Department of Clinical Medicine, Zhejiang University City College School of Medicine, Hangzhou, 310015, China
| | - Hongbin Yuan
- Department of Anesthesiology, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China.
| | - Huazhang An
- Clinical Cancer Institute, Center for Translational Medicine, Second Military Medical University, Shanghai, 200433, China.
| |
Collapse
|
140
|
Abstract
The innate immune system recognizes conserved pathogen-associated molecular patterns and produces inflammatory cytokines that direct downstream immune responses. The inappropriate localization of DNA within the cell cytosol or endosomal compartments indicates that a cell may either be infected by a DNA virus or bacterium, or has problems with its own nuclear integrity. This DNA is sensed by certain receptors that mediate cytokine production and, in some cases, initiate an inflammatory and lytic form of cell death called pyroptosis. Dysregulation of these DNA-sensing pathways is thought to contribute to autoimmune diseases and the development of cancer. In this review, we will discuss the DNA sensors Toll-like receptor 9 (TLR9), cyclic GMP-AMP synthase (cGAS), stimulator of interferon genes (STING), absent in melanoma 2 (AIM2), and interferon gamma-inducible 16 (IFI16), their ligands, and their physiological significance. We will also examine the less-well-understood DEAH- and DEAD-box helicases DHX9, DHX36, DDX41, and RNA polymerase III, each of which may play an important role in DNA-mediated innate immunity.
Collapse
Affiliation(s)
- Benoit Briard
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - David E Place
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | | |
Collapse
|
141
|
Jiang X, Tang T, Guo J, Wang Y, Li P, Chen X, Wang L, Wen Y, Jia J, Emanuela G, Hu B, Chen S, Yao K, Li L, Tang H. Human Herpesvirus 6B U26 Inhibits the Activation of the RLR/MAVS Signaling Pathway. mBio 2021; 12:e03505-20. [PMID: 33593967 PMCID: PMC8545120 DOI: 10.1128/mbio.03505-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 01/04/2021] [Indexed: 01/15/2023] Open
Abstract
U26 is one of the roseolovirus unique genes with unknown function. Human herpesvirus 6B (HHV-6B) pU26 is predicted to be an 8-transmembrane protein containing a mitochondrion location signal. Here, we analyzed U26 function during HHV-6B infection and find that (i) HHV-6B U26 is expressed at a very early stage during HHV-6B infection, and knockdown of it results in a significant decrease of HHV-6B progeny virus production; (ii) U26 inhibits the activation of the retinoic acid-inducible gene I (RIG-I)-like receptor (RLR)/mitochondrial antiviral signaling protein (MAVS) signaling pathway, an important anti-HHV-6B infection innate immune response, by targeting MAVS protein for degradation; and (iii) a portion of U26 locates to the mitochondria, which could affect the mitochondrial membrane potential and finally leads to MAVS degradation. These findings indicate that HHV-6B U26 is a novel antagonistic viral factor against host innate antiviral immunity.IMPORTANCE HHV-6B (human herpesvirus 6B) is well known to evade host antiviral responses and establish a lifelong latent infection. How HHV-6B evades RNA recognition is still poorly understood. Our results indicate that HHV-6 U26 plays a vital role in RLR/MAVS signaling pathway activity. Knockout of endogenous MAVS could facilitate HHV-6B replication. The findings in this study could provide new insights into host-virus interactions and help develop a new therapy against HHV-6B infection.
Collapse
Affiliation(s)
- Xuefeng Jiang
- Department of Immunology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Tian Tang
- Department of Immunology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Jinfeng Guo
- Department of Immunology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Yuhang Wang
- Department of Immunology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Peipei Li
- Department of Women's Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, People's Republic of China
| | - Xiangjun Chen
- Department of Women's Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, People's Republic of China
| | - Lily Wang
- Department of Women's Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, People's Republic of China
| | - Yiqun Wen
- Department of Women's Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, People's Republic of China
| | - Junli Jia
- Department of Immunology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Garbarino Emanuela
- Department of Immunology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Benshun Hu
- Department of Immunology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Shuhua Chen
- Department of Critical Care Medicine, Changzhou Cancer Hospital Affiliated to Soochow University, Changzhou, People's Republic of China
| | - Kun Yao
- Department of Immunology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Linyun Li
- Department of Medical Genetics, Nanjing Medical University, Nanjing, People's Republic of China
| | - Huaming Tang
- Department of Immunology, Nanjing Medical University, Nanjing, People's Republic of China
- Key Laboratory of Antibody Technique of Ministry of Health, Nanjing Medical University, Nanjing, People's Republic of China
- The Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
142
|
Shao DD, Meng FZ, Liu Y, Xu XQ, Wang X, Hu WH, Hou W, Ho WZ. Poly(dA:dT) Suppresses HSV-2 Infection of Human Cervical Epithelial Cells Through RIG-I Activation. Front Immunol 2021; 11:598884. [PMID: 33664729 PMCID: PMC7923882 DOI: 10.3389/fimmu.2020.598884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/16/2020] [Indexed: 12/25/2022] Open
Abstract
Epithelial cells of the female reproductive tract (FRT) participate in the initial innate immunity against viral infections. Poly(dA:dT) is a synthetic analog of B form double-stranded (ds) DNA which can activate the interferon (IFN) signaling pathway-mediated antiviral immunity through DNA-dependent RNA Polymerase III. Here we investigated whether poly(dA:dT) could inhibit herpes simplex virus type 2 (HSV-2) infection of human cervical epithelial cells (End1/E6E7). We demonstrated that poly(dA:dT) treatment of End1/E6E7 cells could significantly inhibit HSV-2 infection. Mechanistically, poly(dA:dT) treatment of the cells induced the expression of the intracellular IFNs and the multiple antiviral IFN-stimulated genes (ISGs), including IFN-stimulated gene 15 (ISG15), IFN-stimulated gene 56 (ISG56), 2'-5'-oligoadenylate synthetase 1 (OAS1), 2'-5'-oligoadenylate synthetase 2 (OAS2), myxovirus resistance protein A (MxA), myxovirus resistance protein B (MxB), virus inhibitory protein, endoplasmic reticulum-associated, IFN-inducible (Viperin), and guanylate binding protein 5 (GBP5). Further investigation showed that the activation of RIG-I was largely responsible for poly(dA:dT)-mediated HSV-2 inhibition and IFN/ISGs induction in the cervical epithelial cells, as RIG-I knockout abolished the poly(dA:dT) actions. These observations demonstrate the importance for design and development of AT-rich dsDNA-based intervention strategies to control HSV-2 mucosal transmission in FRT.
Collapse
Affiliation(s)
- Dan-Dan Shao
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Feng-Zhen Meng
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Yu Liu
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Xi-Qiu Xu
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Xu Wang
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Wen-Hui Hu
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Wei Hou
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Wen-Zhe Ho
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
143
|
Huijser E, Versnel MA. Making Sense of Intracellular Nucleic Acid Sensing in Type I Interferon Activation in Sjögren's Syndrome. J Clin Med 2021; 10:532. [PMID: 33540529 PMCID: PMC7867173 DOI: 10.3390/jcm10030532] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 12/13/2022] Open
Abstract
Primary Sjögren's syndrome (pSS) is a systemic autoimmune rheumatic disease characterized by dryness of the eyes and mucous membranes, which can be accompanied by various extraglandular autoimmune manifestations. The majority of patients exhibit persistent systemic activation of the type I interferon (IFN) system, a feature that is shared with other systemic autoimmune diseases. Type I IFNs are integral to anti-viral immunity and are produced in response to stimulation of pattern recognition receptors, among which nucleic acid (NA) receptors. Dysregulated detection of endogenous NAs has been widely implicated in the pathogenesis of systemic autoimmune diseases. Stimulation of endosomal Toll-like receptors by NA-containing immune complexes are considered to contribute to the systemic type I IFN activation. Accumulating evidence suggest additional roles for cytosolic NA-sensing pathways in the pathogenesis of systemic autoimmune rheumatic diseases. In this review, we will provide an overview of the functions and signaling of intracellular RNA- and DNA-sensing receptors and summarize the evidence for a potential role of these receptors in the pathogenesis of pSS and the sustained systemic type I IFN activation.
Collapse
Affiliation(s)
| | - Marjan A. Versnel
- Department of Immunology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands;
| |
Collapse
|
144
|
Cryo-EM structures of human RNA polymerase III in its unbound and transcribing states. Nat Struct Mol Biol 2021; 28:210-219. [PMID: 33558764 PMCID: PMC7610652 DOI: 10.1038/s41594-020-00555-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 12/21/2020] [Indexed: 01/30/2023]
Abstract
RNA polymerase III (Pol III) synthesizes transfer RNAs and other short, essential RNAs. Human Pol III misregulation is linked to tumor transformation, neurodegenerative and developmental disorders, and increased sensitivity to viral infections. Here, we present cryo-electron microscopy structures at 2.8 to 3.3 Å resolution of transcribing and unbound human Pol III. We observe insertion of the TFIIS-like subunit RPC10 into the polymerase funnel, providing insights into how RPC10 triggers transcription termination. Our structures resolve elements absent from Saccharomyces cerevisiae Pol III such as the winged-helix domains of RPC5 and an iron-sulfur cluster, which tethers the heterotrimer subcomplex to the core. The cancer-associated RPC7α isoform binds the polymerase clamp, potentially interfering with Pol III inhibition by tumor suppressor MAF1, which may explain why overexpressed RPC7α enhances tumor transformation. Finally, the human Pol III structure allows mapping of disease-related mutations and may contribute to the development of inhibitors that selectively target Pol III for therapeutic interventions.
Collapse
|
145
|
Hahne JC, Lampis A, Valeri N. Vault RNAs: hidden gems in RNA and protein regulation. Cell Mol Life Sci 2021; 78:1487-1499. [PMID: 33063126 PMCID: PMC7904556 DOI: 10.1007/s00018-020-03675-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/27/2020] [Accepted: 10/05/2020] [Indexed: 12/11/2022]
Abstract
Non-coding RNAs are important regulators of differentiation during embryogenesis as well as key players in the fine-tuning of transcription and furthermore, they control the post-transcriptional regulation of mRNAs under physiological conditions. Deregulated expression of non-coding RNAs is often identified as one major contribution in a number of pathological conditions. Non-coding RNAs are a heterogenous group of RNAs and they represent the majority of nuclear transcripts in eukaryotes. An evolutionary highly conserved sub-group of non-coding RNAs is represented by vault RNAs, named since firstly discovered as component of the largest known ribonucleoprotein complexes called "vault". Although they have been initially described 30 years ago, vault RNAs are largely unknown and their molecular role is still under investigation. In this review we will summarize the known functions of vault RNAs and their involvement in cellular mechanisms.
Collapse
Affiliation(s)
- Jens Claus Hahne
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK.
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK.
| | - Andrea Lampis
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Nicola Valeri
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
- Department of Medicine, The Royal Marsden NHS Foundation Trust, London, UK
| |
Collapse
|
146
|
Chiang C, Liu G, Gack MU. Viral Evasion of RIG-I-Like Receptor-Mediated Immunity through Dysregulation of Ubiquitination and ISGylation. Viruses 2021; 13:182. [PMID: 33530371 PMCID: PMC7910861 DOI: 10.3390/v13020182] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 12/15/2022] Open
Abstract
Viral dysregulation or suppression of innate immune responses is a key determinant of virus-induced pathogenesis. Important sensors for the detection of virus infection are the RIG-I-like receptors (RLRs), which, in turn, are antagonized by many RNA viruses and DNA viruses. Among the different escape strategies are viral mechanisms to dysregulate the post-translational modifications (PTMs) that play pivotal roles in RLR regulation. In this review, we present the current knowledge of immune evasion by viral pathogens that manipulate ubiquitin- or ISG15-dependent mechanisms of RLR activation. Key viral strategies to evade RLR signaling include direct targeting of ubiquitin E3 ligases, active deubiquitination using viral deubiquitinating enzymes (DUBs), and the upregulation of cellular DUBs that regulate RLR signaling. Additionally, we summarize emerging new evidence that shows that enzymes of certain coronaviruses such as SARS-CoV-2, the causative agent of the current COVID-19 pandemic, actively deISGylate key molecules in the RLR pathway to escape type I interferon (IFN)-mediated antiviral responses. Finally, we discuss the possibility of targeting virally-encoded proteins that manipulate ubiquitin- or ISG15-mediated innate immune responses for the development of new antivirals and vaccines.
Collapse
Affiliation(s)
| | | | - Michaela U. Gack
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL 34987, USA; (C.C.); (G.L.)
| |
Collapse
|
147
|
Pseudorabies virus UL24 antagonizes OASL-mediated antiviral effect. Virus Res 2021; 295:198276. [PMID: 33476694 DOI: 10.1016/j.virusres.2020.198276] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 11/21/2022]
Abstract
Oligoadenylate synthetases-like (OASL) protein exerts various effects on DNA and RNA viruses by inhibiting cGAS-mediated IFN production and by enhancing RIG-I-mediated IFN induction, respectively. In this study, we aimed to examine the role of OASL in pseudorabies virus (PRV) proliferation and investigate the function of the PRV UL24 protein in cellular innate immunity. We found that OASL regulates PRV proliferation by enhancing RIG-I signaling. PRV infection decreased the expression of OASL at both the mRNA and protein levels in PK15 and HeLa cells. OASL expression suppressed the proliferation of PRV in a RIG-I-dependent manner and boosted RIG-I-mediated IFN expression as well as IFN-stimulated gene (ISG) induction. In contrast, knockdown of OASL enhanced PRV proliferation and reduced RIG-I signaling. However, the PRV UL24 protein was found to impair RIG-I signaling, thus inhibiting transcription of IFN and ISGs. In addition, the UL24 protein reduced RIG-I-induced expression of endogenous OASL in an IRF3-dependent manner, thereby antagonizing the OASL antiviral effect. Taken together, our findings characterize the role of OASL in PRV proliferation and provide new insights into the role of UL24 in PRV pathogenesis.
Collapse
|
148
|
Qiao Y, Zhu S, Deng S, Zou SS, Gao B, Zang G, Wu J, Jiang Y, Liu YJ, Chen J. Human Cancer Cells Sense Cytosolic Nucleic Acids Through the RIG-I-MAVS Pathway and cGAS-STING Pathway. Front Cell Dev Biol 2021; 8:606001. [PMID: 33490069 PMCID: PMC7820189 DOI: 10.3389/fcell.2020.606001] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/04/2020] [Indexed: 12/24/2022] Open
Abstract
Pattern recognition receptors (PRRs) are germline-encoded host sensors of the innate immune system. Some human cancer cells have been reported to express PRRs. However, nucleic acid sensors in human cancers have not been studied in detail. Therefore, we systematically analyzed the expression, molecular cascade, and functions of TLR3, RIG-I, MDA5, LGP2, cGAS, and STING in human cancer cells. TLR3, TRIF, RIG-I, MDA5, LGP2, and MAVS were expressed in 22 cell lines. The majority of cell lines responded to only RIG-I ligands 5′-ppp-dsRNA, Poly(I:C)-HMW, Poly(I:C)-LMW, and/or Poly(dA:dT), as revealed by IRF3 phosphorylation and IFN-β secretion. IFN-β secretion was inhibited by RIG-I and MAVS knockdown. cGAS and STING were co-expressed in 10 of 22 cell lines, but IFN-β secretion was not induced by STING ligands ISD, HSV60, VACV70, Poly(dG:dC), and 3′3′-cGAMP in cGAS and STING intact cell lines. Further experiments revealed that the cGAS–STING pathway was activated, as revealed by TBK1 and IRF3 phosphorylation and IFN-β and ISG mRNA expression. These results suggest that human epithelial cancer cells respond to cytosolic RNA through the RIG-I–MAVS pathway but only sense cytosolic DNA through the cGAS–STING pathway. These findings are relevant for cancer immunotherapy approaches based on targeting nucleic acid receptors.
Collapse
Affiliation(s)
- Yuan Qiao
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Shan Zhu
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Shuanglin Deng
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Shan-Shan Zou
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Bao Gao
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Guoxia Zang
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Jing Wu
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Yuxue Jiang
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Yong-Jun Liu
- Sanofi Research and Development, Cambridge, MA, United States
| | - Jingtao Chen
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China.,Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
149
|
Long X, Yang J, Zhang X, Yang Z, Li Y, Wang F, Li X, Kuang E. BRLF1 suppresses RNA Pol III-mediated RIG-I inflammasome activation in the early EBV lytic lifecycle. EMBO Rep 2021; 22:e50714. [PMID: 33225563 PMCID: PMC7788446 DOI: 10.15252/embr.202050714] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 09/29/2020] [Accepted: 10/19/2020] [Indexed: 11/09/2022] Open
Abstract
Latent infection with herpesviruses constitutively activates inflammasomes, while lytic replication suppresses their activation through distinct mechanisms. However, how Epstein-Barr virus (EBV) lytic replication inhibits the activation of inflammasomes remains unknown. Here, we reveal that the EBV immediate-early protein BRLF1 inhibits inflammasome activation, and BRLF1 deficiency significantly increases the activation of inflammasomes and pyroptosis during early lytic lifecycle. BRLF1 interacts with RNA polymerase III subunits to suppress immunostimulatory small RNA transcription, RIG-I inflammasome activation, and antiviral responses. Consequently, BRLF1-deficient EBV primary infection induces robust T-cell and NK cell activation and killing through IL-1β and IL-18. A BRLF1-derived peptide that inhibits inflammasome activation is sufficient to suppress T-cell and NK cell responses during BRLF1-deficient EBV primary infection in lymphocytes. These results reveal a novel mechanism involved in the evasion of inflammasome activation and antiviral responses during EBV early lytic infection and provide a promising approach for the manipulation of inflammasomes against infection of oncogenic herpesviruses.
Collapse
Affiliation(s)
- Xubing Long
- Institute of Human VirologyZhongshan School of MedicineSun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Jing Yang
- Institute of Human VirologyZhongshan School of MedicineSun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Xiaolin Zhang
- Institute of Human VirologyZhongshan School of MedicineSun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Ziwei Yang
- Institute of Human VirologyZhongshan School of MedicineSun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Yang Li
- Institute of Human VirologyZhongshan School of MedicineSun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Fan Wang
- Institute of Human VirologyZhongshan School of MedicineSun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Xiaojuan Li
- Institute of Human VirologyZhongshan School of MedicineSun Yat‐Sen UniversityGuangzhouGuangdongChina
| | - Ersheng Kuang
- Institute of Human VirologyZhongshan School of MedicineSun Yat‐Sen UniversityGuangzhouGuangdongChina
- Key Laboratory of Tropical Disease Control (Sun Yat‐Sen University)Ministry of EducationGuangzhouGuangdongChina
| |
Collapse
|
150
|
Sun H, Huang Y, Mei S, Xu F, Liu X, Zhao F, Yin L, Zhang D, Wei L, Wu C, Ma S, Wang J, Cen S, Liang C, Hu S, Guo F. A Nuclear Export Signal Is Required for cGAS to Sense Cytosolic DNA. Cell Rep 2021; 34:108586. [PMID: 33406424 DOI: 10.1016/j.celrep.2020.108586] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/02/2020] [Accepted: 12/10/2020] [Indexed: 02/08/2023] Open
Abstract
The cyclic GMP-AMP (cGAMP) synthase (cGAS) is a key DNA sensor that initiates STING-dependent signaling to produce type I interferons through synthesizing the secondary messenger 2'3'-cGAMP. In this study, we confirm previous studies showing that cGAS is located both in the cytoplasm and in the nucleus. Nuclear accumulation is observed when leptomycin B is used to block the exportin, CRM1 protein. As a result, leptomycin B impairs the production of interferons in response to DNA stimulation. We further identify a functional nuclear export signal (NES) in cGAS, 169LEKLKL174. Mutating this NES leads to the sequestration of cGAS within the nucleus and the loss of interferon response to cytosolic DNA treatment, and it further determines the key amino acid to L172. Collectively, our data demonstrate that the cytosolic DNA-sensing function of cGAS depends on its presence within the cytoplasm, which is warranted by a functional NES.
Collapse
Affiliation(s)
- Hong Sun
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, PRC
| | - Yu Huang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, PRC
| | - Shan Mei
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, PRC
| | - Fengwen Xu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, PRC
| | - Xiaoman Liu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, PRC
| | - Fei Zhao
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, PRC
| | - Lijuan Yin
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, PRC
| | - Di Zhang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, PRC
| | - Liang Wei
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, PRC
| | - Chao Wu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, PRC
| | - Shichao Ma
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, PRC
| | - Jianwei Wang
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, PRC
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PRC
| | - Chen Liang
- McGill University AIDS Centre, Lady Davis Institute, Jewish General Hospital, Montreal H3T 1E2, Canada
| | - Siqi Hu
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, PRC.
| | - Fei Guo
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, and Center for AIDS Research, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, PRC.
| |
Collapse
|