101
|
Gregoire-Mitha S, Gray DA. What deubiquitinating enzymes, oncogenes, and tumor suppressors actually do: Are current assumptions supported by patient outcomes? Bioessays 2021; 43:e2000269. [PMID: 33415735 DOI: 10.1002/bies.202000269] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/30/2020] [Accepted: 12/17/2020] [Indexed: 12/22/2022]
Abstract
Context can determine whether a given gene acts as an oncogene or a tumor suppressor. Deubiquitinating enzymes (DUBs) regulate the stability of many components of the pathways dictating cell fate so it would be expected that alterations in the levels or activity of these enzymes may have oncogenic or tumor suppressive consequences. In the current review we survey publications reporting that genes encoding DUBs are oncogenes or tumor suppressors. For many DUBs both claims have been made. For such "double agents," the effects of gain or loss of function will depend on the overall status of a complex of molecular signaling networks subject to extensive crosstalk. As the TGF-β paradox makes clear context is critical in cell fate decisions, and the disconnect between experimental findings and patient survival outcomes can in part be attributed to disparities between culture conditions and the microenvironment in vivo. Convincing claims for oncogene or tumor suppressor roles require the documentation of gene alterations in patient samples; survival curves are alone inadequate.
Collapse
Affiliation(s)
- Sophie Gregoire-Mitha
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada.,Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
| | - Douglas A Gray
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada.,Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, Canada
| |
Collapse
|
102
|
Expression of NR5A2, NUP153, HNF4A, USP15 and FNDC3B is consistent with their use as novel biomarkers for bovine mammary stem/progenitor cells. J Mol Histol 2021; 52:289-300. [PMID: 33400051 DOI: 10.1007/s10735-020-09948-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 12/18/2020] [Indexed: 12/19/2022]
Abstract
Mammary stem cells (MaSC) are essential for growth and maintenance of mammary epithelium. Previous studies have utilized morphological characteristics or retention of bromodeoxyuridine (BrdU) label to identify MaSC and progenitor cells, these approaches may not be feasible or may not identify all resident stem cells. Alternatively, these special cells may be identified by assessing protein and mRNA expression of appropriate markers. The focus of this study was to assess the staining patterns and in situ quantification of novel candidate markers for bovine MaSC/progenitor cells. The candidate markers for MaSC/progenitor cells for immunohistochemical analysis were: NR5A2, NUP153, HNF4A, USP15 and FNDC3B and for in situ transcripts quantification were HNF4A and NUP153. We also evaluated protein expression pattern of presumptive MaSC markers known from the literature namely, ALDH1, MSI1 and Notch3. We found that NR5A2, NUP153, HNF4A and USP15-labeled cells represented 2.5-6% of epithelial cells prepubertally and were distributed in a fashion consistent with the location and abundance of MaSC/progenitor cells. A transient increase (10-37%) in expression of these markers was observed at peak lactation. FNDC3B was localized mainly in the nucleus prepubertally and in the cytoplasm of myoepithelial cells and nuclei of a limited number of alveolar cells during lactation. Abundant expression (~ 48%) and luminal localization of ALDH1 precludes its use as a bovine MaSC marker but may include transamplifying progenitor cells. MSI1 staining was consistent with MaSC localization. Onset of lumen formation in mammary ducts of prepubertal gland was associated with Notch 3 expression in the apical surface of luminal cells. RNAscope analysis of HNF4A and NUP153 transcripts in calf mammary gland showed very low copy numbers in a few epithelial cells, supporting the idea that these markers are expressed by fewer cells of epithelial origin. This study suggests that NR5A2, NUP153, HNF4A, USP15 and FNDC3B are likely markers for bovine MaSC/progenitor cells. Quantification of RNA transcripts of HNF4A and NUP153 in bovine MEC as potential MaSC markers are novel. Further studies to correlate protein expression of these markers with their transcripts level using single cell analysis in larger samples in lactating cow at different physiological stages are warranted.
Collapse
|
103
|
Yao XQ, Li L, Piao LZ, Zhang GJ, Huang XZ, Wang Y, Liang ZL. Overexpression of Ubiquitin-Specific Protease15 (USP15) Promotes Tumor Growth and Inhibits Apoptosis and Correlated With Poor Disease-Free Survival in Hepatocellular Carcinoma. Technol Cancer Res Treat 2020; 19:1533033820967455. [PMID: 33267707 PMCID: PMC7720296 DOI: 10.1177/1533033820967455] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
USP15 is a member of ubiquitin-specific proteases (USPs, the largest subfamily of deubiquitinases) and functions as a stabilize factor of target proteins in reversible ubiquitiantion progression. Dysregulated expression of USP15 has been observed in various cancers. However the expression profile and regulatory mechanism of USP15 in hepatocellular carcinoma (HCC) remains largely elusive. To exam the USP15 expression changes in the progression of HCC, we performed IHC analysis to test USP15 expression in a series of cancer-prone diseases including 2 normal liver tissues, 6 liver cirrhosis, 16 primary liver lesions and 15 metastases of hepatocellular carcinoma. The expression of USP15 was upregulated in various liver diseases in compared with normal tissue significantly (p < 0.05). Although no significant different of USP15 expression were discovered between cirrhotic tissue and primary tissue, its expression in HCC metastatic tissue was upregulated. Subsequently, we test the USP15 expression profile in a cohort of 66 HCC patients. USP15 expression was positively correlated with the recurrence of HCC significantly (p = 0.004). HCC patients with high USP15 expression had shorter disease free survival time in compare with those with low USP15 expression (56.9% VS 26.7%, P = 0.012). Subsequently, Cox multivariate analyses of clinical factors associated with disease free survival were performed and USP15 expression (p = 0.008) together with tumor size (p = 0.034) were proved to be independent predict factors in HCC. Then, we silenced USP15 expression in HCC cells and the results showed that downregulated USP15 expression resulting proliferation inhibition and apoptosis induction. In conclusion, our results suppose USP15 to be a potential target in HCC.
Collapse
Affiliation(s)
- Xue-Qing Yao
- Medical College of Yanbian University, Yanbian, Jilin, People’s Republic of China
| | - Ling Li
- Medical College of Yanbian University, Yanbian, Jilin, People’s Republic of China
| | - Long-Zhen Piao
- Departments of Oncology, Affiliated Hospital of Yanbian University, Yanbian, Jilin, People’s Republic of China
| | - Guang-Jian Zhang
- Departments of Pain Management, Affiliated Hospital of Yanbian University, Yanbian, Jilin, People’s Republic of China
| | - Xue-Zhu Huang
- Departments of Anesthesia, Affiliated Hospital of Yanbian University, Yanbian, Jilin, People’s Republic of China
| | - Ying Wang
- Shanghai Outdo Biotech Co., Ltd., Shanghai, People’s Republic of China
| | - Zhe-Long Liang
- Departments of Anesthesia, Affiliated Hospital of Yanbian University, Yanbian, Jilin, People’s Republic of China
- Zhe-Long Liang, Department of Anesthesia, Affiliated Hospital of Yanbian University, Yanji 133000, Jilin, China.
| |
Collapse
|
104
|
Yuan F, Yin H, Deng Y, Jiao F, Jiang H, Niu Y, Chen S, Ying H, Zhai Q, Chen Y, Guo F. Overexpression of Smad7 in hypothalamic POMC neurons disrupts glucose balance by attenuating central insulin signaling. Mol Metab 2020; 42:101084. [PMID: 32971298 PMCID: PMC7551358 DOI: 10.1016/j.molmet.2020.101084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Although the hypothalamus is crucial for peripheral metabolism control, the signals in specific neurons involved remain poorly understood. The aim of our current study was to explore the role of the hypothalamic gene mothers against decapentaplegic homolog 7 (Smad7) in peripheral glucose disorders. METHODS We studied glucose metabolism in high-fat diet (HFD)-fed mice and middle-aged mice with Cre-mediated recombination causing 1) overexpression of Smad7 in hypothalamic proopiomelanocortin (POMC) neurons, 2) deletion of Smad7 in POMC neurons, and 3) overexpression of protein kinase B (AKT) in arcuate nucleus (ARC) in Smad7 overexpressed mice. Intracerebroventricular (ICV) cannulation of insulin was used to test the hypothalamic insulin sensitivity in the mice. Hypothalamic primary neurons were used to investigate the mechanism of Smad7 regulating hypothalamic insulin signaling. RESULTS We found that Smad7 expression was increased in POMC neurons in the hypothalamic ARC of HFD-fed or middle-aged mice. Furthermore, overexpression of Smad7 in POMC neurons disrupted the glucose balance, and deletion of Smad7 in POMC neurons prevented diet- or age-induced glucose disorders, which was likely to be independent of changes in body weight or food intake. Moreover, the effect of Smad7 was reversed by overexpression of AKT in the ARC. Finally, Smad7 decreased AKT phosphorylation by activating protein phosphatase 1c in hypothalamic primary neurons. CONCLUSIONS Our results demonstrated that an excess of central Smad7 in POMC neurons disrupts glucose balance by attenuating hypothalamic insulin signaling. In addition, we found that this regulation was mediated by the activity of protein phosphatase 1c.
Collapse
Affiliation(s)
- Feixiang Yuan
- CAS Key Laboratory of Nutrition, Metabolism and Food safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences
| | - Hanrui Yin
- CAS Key Laboratory of Nutrition, Metabolism and Food safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences
| | - Yalan Deng
- CAS Key Laboratory of Nutrition, Metabolism and Food safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences
| | - Fuxin Jiao
- CAS Key Laboratory of Nutrition, Metabolism and Food safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences
| | - Haizhou Jiang
- CAS Key Laboratory of Nutrition, Metabolism and Food safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences
| | - Yuguo Niu
- CAS Key Laboratory of Nutrition, Metabolism and Food safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences
| | - Shanghai Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences
| | - Hao Ying
- CAS Key Laboratory of Nutrition, Metabolism and Food safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences
| | - Qiwei Zhai
- CAS Key Laboratory of Nutrition, Metabolism and Food safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences
| | - Yan Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences
| | - Feifan Guo
- CAS Key Laboratory of Nutrition, Metabolism and Food safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences.
| |
Collapse
|
105
|
van den Berk P, Lancini C, Company C, Serresi M, Sanchez-Bailon MP, Hulsman D, Pritchard C, Song JY, Schmitt MJ, Tanger E, Popp O, Mertins P, Huijbers IJ, Jacobs H, van Lohuizen M, Gargiulo G, Citterio E. USP15 Deubiquitinase Safeguards Hematopoiesis and Genome Integrity in Hematopoietic Stem Cells and Leukemia Cells. Cell Rep 2020; 33:108533. [PMID: 33378683 PMCID: PMC7788286 DOI: 10.1016/j.celrep.2020.108533] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 07/28/2020] [Accepted: 11/25/2020] [Indexed: 12/22/2022] Open
Abstract
Altering ubiquitination by disruption of deubiquitinating enzymes (DUBs) affects hematopoietic stem cell (HSC) maintenance. However, comprehensive knowledge of DUB function during hematopoiesis in vivo is lacking. Here, we systematically inactivate DUBs in mouse hematopoietic progenitors using in vivo small hairpin RNA (shRNA) screens. We find that multiple DUBs may be individually required for hematopoiesis and identify ubiquitin-specific protease 15 (USP15) as essential for HSC maintenance in vitro and in transplantations and Usp15 knockout (KO) mice in vivo. USP15 is highly expressed in human hematopoietic tissues and leukemias. USP15 depletion in murine progenitors and leukemia cells impairs in vitro expansion and increases genotoxic stress. In leukemia cells, USP15 interacts with and stabilizes FUS (fused in sarcoma), a known DNA repair factor, directly linking USP15 to the DNA damage response (DDR). Our study underscores the importance of DUBs in preserving normal hematopoiesis and uncovers USP15 as a critical DUB in safeguarding genome integrity in HSCs and leukemia cells. In vivo shRNAs screens for deubiquitinases identify regulators of murine hematopoiesis Usp15 deletion compromises HSC maintenance and reconstitution potential in vivo USP15 loss affects genome integrity and growth of mHSPCs and human leukemia cells In human leukemia cells, USP15 stabilizes its interactor, FUS, a DNA repair factor
Collapse
Affiliation(s)
- Paul van den Berk
- Division of Tumor Biology and Immunology, the Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, the Netherlands
| | - Cesare Lancini
- Division of Molecular Genetics, the Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, the Netherlands
| | - Carlos Company
- Max-Delbrück-Center for Molecular Medicine (MDC), Robert-Rössle-Str. 10, 13092 Berlin, Germany
| | - Michela Serresi
- Max-Delbrück-Center for Molecular Medicine (MDC), Robert-Rössle-Str. 10, 13092 Berlin, Germany
| | | | - Danielle Hulsman
- Division of Molecular Genetics, the Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, the Netherlands; ONCODE Institute, Utrecht, the Netherlands
| | - Colin Pritchard
- Transgenic Core Facility, Mouse Clinic for Cancer and Aging (MCCA), the Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, the Netherlands
| | - Ji-Ying Song
- Division of Experimental Animal Pathology, the Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, the Netherlands
| | - Matthias Jürgen Schmitt
- Max-Delbrück-Center for Molecular Medicine (MDC), Robert-Rössle-Str. 10, 13092 Berlin, Germany
| | - Ellen Tanger
- Division of Molecular Genetics, the Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, the Netherlands
| | - Oliver Popp
- Proteomics Platform, Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Berlin Institute of Health, Robert Rössle Strasse 10, 13125 Berlin, Germany
| | - Philipp Mertins
- Proteomics Platform, Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Berlin Institute of Health, Robert Rössle Strasse 10, 13125 Berlin, Germany
| | - Ivo J Huijbers
- Transgenic Core Facility, Mouse Clinic for Cancer and Aging (MCCA), the Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, the Netherlands
| | - Heinz Jacobs
- Division of Tumor Biology and Immunology, the Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, the Netherlands
| | - Maarten van Lohuizen
- Division of Molecular Genetics, the Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, the Netherlands; ONCODE Institute, Utrecht, the Netherlands
| | - Gaetano Gargiulo
- Max-Delbrück-Center for Molecular Medicine (MDC), Robert-Rössle-Str. 10, 13092 Berlin, Germany.
| | - Elisabetta Citterio
- Division of Molecular Genetics, the Netherlands Cancer Institute, Plesmanlaan 121, Amsterdam 1066 CX, the Netherlands; ONCODE Institute, Utrecht, the Netherlands.
| |
Collapse
|
106
|
Scholz N, Kurian KM, Siebzehnrubl FA, Licchesi JDF. Targeting the Ubiquitin System in Glioblastoma. Front Oncol 2020; 10:574011. [PMID: 33324551 PMCID: PMC7724090 DOI: 10.3389/fonc.2020.574011] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/07/2020] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma is the most common primary brain tumor in adults with poor overall outcome and 5-year survival of less than 5%. Treatment has not changed much in the last decade or so, with surgical resection and radio/chemotherapy being the main options. Glioblastoma is highly heterogeneous and frequently becomes treatment-resistant due to the ability of glioblastoma cells to adopt stem cell states facilitating tumor recurrence. Therefore, there is an urgent need for novel therapeutic strategies. The ubiquitin system, in particular E3 ubiquitin ligases and deubiquitinating enzymes, have emerged as a promising source of novel drug targets. In addition to conventional small molecule drug discovery approaches aimed at modulating enzyme activity, several new and exciting strategies are also being explored. Among these, PROteolysis TArgeting Chimeras (PROTACs) aim to harness the endogenous protein turnover machinery to direct therapeutically relevant targets, including previously considered "undruggable" ones, for proteasomal degradation. PROTAC and other strategies targeting the ubiquitin proteasome system offer new therapeutic avenues which will expand the drug development toolboxes for glioblastoma. This review will provide a comprehensive overview of E3 ubiquitin ligases and deubiquitinating enzymes in the context of glioblastoma and their involvement in core signaling pathways including EGFR, TGF-β, p53 and stemness-related pathways. Finally, we offer new insights into how these ubiquitin-dependent mechanisms could be exploited therapeutically for glioblastoma.
Collapse
Affiliation(s)
- Nico Scholz
- Department of Biology & Biochemistry, University of Bath, Bath, United Kingdom
| | - Kathreena M. Kurian
- Brain Tumour Research Group, Institute of Clinical Neurosciences, University of Bristol, Bristol, United Kingdom
| | - Florian A. Siebzehnrubl
- Cardiff University School of Biosciences, European Cancer Stem Cell Research Institute, Cardiff, United Kingdom
| | | |
Collapse
|
107
|
A novel negative regulatory mechanism of Smurf2 in BMP/Smad signaling in bone. Bone Res 2020; 8:41. [PMID: 33298874 PMCID: PMC7680794 DOI: 10.1038/s41413-020-00115-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 08/08/2020] [Accepted: 08/18/2020] [Indexed: 12/19/2022] Open
Abstract
Transforming growth factor-β (TGF-β) and bone morphogenetic protein (BMP) play important roles in bone metabolism. Smad ubiquitination regulatory factors (Smurfs) regulate TGF-β/BMP signaling via ubiquitination, resulting in degradation of signaling molecules to prevent excessive activation of TGF-β/BMP signaling. Though Smurf2 has been shown to negatively regulate TGF-β/Smad signaling, its involvement in BMP/Smad signaling in bone metabolism has not been thoroughly investigated. In the present study, we sought to evaluate the role of Smurf2 in BMP/Smad signaling in bone metabolism. Absorbable collagen sponges containing 3 μg of recombinant human BMP2 (rhBMP2) were implanted in the dorsal muscle pouches of wild type (WT) and Smurf2−/− mice. The rhBMP2-induced ectopic bone in Smurf2−/− mice showed greater bone mass, higher mineral apposition and bone formation rates, and greater osteoblast numbers than the ectopic bone in WT mice. In WT mice, the ectopic bone consisted of a thin discontinuous outer cortical shell and scant inner trabecular bone. In contrast, in Smurf2−/− mice, the induced bone consisted of a thick, continuous outer cortical shell and abundant inner trabecular bone. Additionally, rhBMP2-stimulated bone marrow stromal cells (BMSCs) from Smurf2−/− mice showed increased osteogenic differentiation. Smurf2 induced the ubiquitination of Smad1/5. BMP/Smad signaling was enhanced in Smurf2−/− BMSCs stimulated with rhBMP2, and the inhibition of BMP/Smad signaling suppressed osteogenic differentiation of these BMSCs. These findings demonstrate that Smurf2 negatively regulates BMP/Smad signaling, thereby identifying a new regulatory mechanism in bone metabolism.
Collapse
|
108
|
Kaushal K, Ramakrishna S. Deubiquitinating Enzyme-Mediated Signaling Networks in Cancer Stem Cells. Cancers (Basel) 2020; 12:E3253. [PMID: 33158118 PMCID: PMC7694198 DOI: 10.3390/cancers12113253] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/23/2020] [Accepted: 11/02/2020] [Indexed: 12/11/2022] Open
Abstract
Cancer stem cells (CSCs) have both the capacity for self-renewal and the potential to differentiate and contribute to multiple tumor properties, such as recurrence, metastasis, heterogeneity, multidrug resistance, and radiation resistance. Thus, CSCs are considered to be promising therapeutic targets for cancer therapy. The function of CSCs can be regulated by ubiquitination and deubiquitination of proteins related to the specific stemness of the cells executing various stem cell fate choices. To regulate the balance between ubiquitination and deubiquitination processes, the disassembly of ubiquitin chains from specific substrates by deubiquitinating enzymes (DUBs) is crucial. Several key developmental and signaling pathways have been shown to play essential roles in this regulation. Growing evidence suggests that overactive or abnormal signaling within and among these pathways may contribute to the survival of CSCs. These signaling pathways have been experimentally shown to mediate various stem cell properties, such as self-renewal, cell fate decisions, survival, proliferation, and differentiation. In this review, we focus on the DUBs involved in CSCs signaling pathways, which are vital in regulating their stem-cell fate determination.
Collapse
Affiliation(s)
- Kamini Kaushal
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea;
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea;
- College of Medicine, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
109
|
Xu W, Rush JS, Graham DB, Cao Z, Xavier RJ. USP15 Deubiquitinates CARD9 to Downregulate C-Type Lectin Receptor-Mediated Signaling. Immunohorizons 2020; 4:670-678. [PMID: 33093067 PMCID: PMC7758836 DOI: 10.4049/immunohorizons.2000036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 10/07/2020] [Indexed: 01/01/2023] Open
Abstract
Posttranslational modifications are efficient means to rapidly regulate protein function in response to a stimulus. Although ubiquitination events and the E3 ubiquitin ligases involved are increasingly characterized in many signaling pathways, their regulation by deubiquitinating enzymes remains less understood. The C-type lectin receptor (CLR) signaling adaptor CARD9 was previously reported to be activated via TRIM62-mediated ubiquitination. In this study, we identify the deubiquitinase USP15 as a novel regulator of CARD9, demonstrating that USP15 constitutively associates with CARD9 and removes TRIM62-deposited ubiquitin marks. Furthermore, USP15 knockdown and knockout specifically enhance CARD9-dependent CLR signaling in both mouse and human immune cells. Altogether, our study identifies a novel regulator of innate immune signaling and provides a blueprint for the identification of additional deubiquitinases that are likely to control these processes.
Collapse
Affiliation(s)
- Wenting Xu
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
- Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; and
| | - Jason S Rush
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Daniel B Graham
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
- Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Zhifang Cao
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114;
- Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Ramnik J Xavier
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114;
- Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
| |
Collapse
|
110
|
de Ceuninck van Capelle C, Spit M, Ten Dijke P. Current perspectives on inhibitory SMAD7 in health and disease. Crit Rev Biochem Mol Biol 2020; 55:691-715. [PMID: 33081543 DOI: 10.1080/10409238.2020.1828260] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transforming growth factor β (TGF-β) family members play an extensive role in cellular communication that orchestrates both early development and adult tissue homeostasis. Aberrant TGF-β family signaling is associated with a pathological outcome in numerous diseases, and in-depth understanding of molecular and cellular processes could result in therapeutic benefit for patients. Canonical TGF-β signaling is mediated by receptor-regulated SMADs (R-SMADs), a single co-mediator SMAD (Co-SMAD), and inhibitory SMADs (I-SMADs). SMAD7, one of the I-SMADs, is an essential negative regulator of the pleiotropic TGF-β and bone morphogenetic protein (BMP) signaling pathways. In a negative feedback loop, SMAD7 inhibits TGF-β signaling by providing competition for TGF-β type-1 receptor (TβRI), blocking phosphorylation and activation of SMAD2. Moreover, SMAD7 recruits E3 ubiquitin SMURF ligases to the type I receptor to promote ubiquitin-mediated proteasomal degradation. In addition to its role in TGF-β and BMP signaling, SMAD7 is regulated by and implicated in a variety of other signaling pathways and functions as a mediator of crosstalk. This review is focused on SMAD7, its function in TGF-β and BMP signaling, and its role as a downstream integrator and crosstalk mediator. This crucial signaling molecule is tightly regulated by various mechanisms. We provide an overview of the ways by which SMAD7 is regulated, including noncoding RNAs (ncRNAs) and post-translational modifications (PTMs). Finally, we discuss its role in diseases, such as cancer, fibrosis, and inflammatory bowel disease (IBD).
Collapse
Affiliation(s)
| | - Maureen Spit
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Peter Ten Dijke
- Oncode Institute and Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
111
|
Xu W, Ocak U, Gao L, Tu S, Lenahan CJ, Zhang J, Shao A. Selective autophagy as a therapeutic target for neurological diseases. Cell Mol Life Sci 2020; 78:1369-1392. [PMID: 33067655 PMCID: PMC7904548 DOI: 10.1007/s00018-020-03667-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 09/03/2020] [Accepted: 10/05/2020] [Indexed: 12/12/2022]
Abstract
The neurological diseases primarily include acute injuries, chronic neurodegeneration, and others (e.g., infectious diseases of the central nervous system). Autophagy is a housekeeping process responsible for the bulk degradation of misfolded protein aggregates and damaged organelles through the lysosomal machinery. Recent studies have suggested that autophagy, particularly selective autophagy, such as mitophagy, pexophagy, ER-phagy, ribophagy, lipophagy, etc., is closely implicated in neurological diseases. These forms of selective autophagy are controlled by a group of important proteins, including PTEN-induced kinase 1 (PINK1), Parkin, p62, optineurin (OPTN), neighbor of BRCA1 gene 1 (NBR1), and nuclear fragile X mental retardation-interacting protein 1 (NUFIP1). This review highlights the characteristics and underlying mechanisms of different types of selective autophagy, and their implications in various forms of neurological diseases.
Collapse
Affiliation(s)
- Weilin Xu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Umut Ocak
- Department of Emergency Medicine, Bursa Yuksek Ihtisas Training and Research Hospital, University of Health Sciences, 16310, Bursa, Turkey.,Department of Emergency Medicine, Bursa City Hospital, 16110, Bursa, Turkey
| | - Liansheng Gao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Sheng Tu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310009, Zhejiang, China
| | | | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China. .,Brain Research Institute, Zhejiang University, Hangzhou, China. .,Collaborative Innovation Center for Brain Science, Zhejiang University, Hangzhou, China.
| | - Anwen Shao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
112
|
USP15 Deubiquitinates TUT1 Associated with RNA Metabolism and Maintains Cerebellar Homeostasis. Mol Cell Biol 2020; 40:MCB.00098-20. [PMID: 32839293 DOI: 10.1128/mcb.00098-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 08/13/2020] [Indexed: 12/30/2022] Open
Abstract
Precise regulation of RNA metabolism is crucial for dynamic gene expression and controlling cellular functions. In the nervous system, defects in RNA metabolism are implicated in the disturbance of brain homeostasis and development. Here, we report that deubiquitinating enzyme, ubiquitin specific peptidase 15 (USP15), deubiquitinates terminal uridylyl transferase 1 (TUT1) and changes global RNA metabolism. We found that the expression of USP15 redistributes TUT1 from the nucleolus to nucleoplasm, resulting in the stabilization of U6 snRNA. We also found that lack of the Usp15 gene induces an impairment in motor ability with an unconventional cerebellar formation. Moreover, inhibition of the USP15-TUT1 cascade triggered mild and chronic endoplasmic reticulum (ER) stress. Therefore, our results suggest that USP15 is crucial for mRNA metabolism and maintains a healthy brain. These findings provide a possibility that disturbance of the USP15-TUT1 cascade induces chronic and mild ER stress, leading to an acceleration of the neurodegenerative phenotype.
Collapse
|
113
|
OTUD4 enhances TGFβ signalling through regulation of the TGFβ receptor complex. Sci Rep 2020; 10:15725. [PMID: 32973272 PMCID: PMC7519109 DOI: 10.1038/s41598-020-72791-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 09/02/2020] [Indexed: 11/18/2022] Open
Abstract
Systematic control of the transforming growth factor-β (TGFβ) pathway is essential to keep the amplitude and the intensity of downstream signalling at appropriate levels. Ubiquitination plays a crucial role in the general regulation of this pathway. Here we identify the deubiquitinating enzyme OTUD4 as a transcriptional target of the TGFβ pathway that functions through a positive feedback loop to enhance overall TGFβ activity. Interestingly we demonstrate that OTUD4 functions through both catalytically dependent and independent mechanisms to regulate TGFβ activity. Specifically, we find that OTUD4 enhances TGFβ signalling by promoting the membrane presence of TGFβ receptor I. Furthermore, we demonstrate that OTUD4 inactivates the TGFβ negative regulator SMURF2 suggesting that OTUD4 regulates multiple nodes of the TGFβ pathway to enhance TGFβ activity.
Collapse
|
114
|
Chen LL, Smith MD, Lv L, Nakagawa T, Li Z, Sun SC, Brown NG, Xiong Y, Xu YP. USP15 suppresses tumor immunity via deubiquitylation and inactivation of TET2. SCIENCE ADVANCES 2020; 6:6/38/eabc9730. [PMID: 32948596 PMCID: PMC7500937 DOI: 10.1126/sciadv.abc9730] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 08/06/2020] [Indexed: 05/10/2023]
Abstract
TET2 DNA dioxygenase is frequently mutated in human hematopoietic malignancies and functionally inactivated in many solid tumors through a nonmutational mechanism. We recently found that TET2 mediates the interferon-JAK-STAT pathway to stimulate chemokine expression and tumor infiltration of lymphocytes (TILs). TET2 is monoubiquitylated at K1299, which promotes its activity. Here, we report that USP15 is a TET2 deubiquitinase and inhibitor. USP15 catalyzes the removal of K1299-linked monoubiquitin and negatively regulates TET2 activity. Gene expression profiling demonstrates that TET2 and USP15 oppositely regulate genes involved in multiple inflammatory pathways, and TET2 is a major target of USP15 function. Deletion of Usp15 in melanoma stimulates chemokine expression and TILs in a TET2-dependent manner, leading to increased response to immunotherapy and extended life span of tumor-bearing mice. These results reveal a previously unknown regulator of TET2 activity and suggest USP15 as a potential therapeutic target for immunotherapy of solid tumors.
Collapse
Affiliation(s)
- Lei-Lei Chen
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Matthew D Smith
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lei Lv
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tadashi Nakagawa
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Zhijun Li
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Shao-Cong Sun
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nicholas G Brown
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yue Xiong
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yan-Ping Xu
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| |
Collapse
|
115
|
Celebi G, Kesim H, Ozer E, Kutlu O. The Effect of Dysfunctional Ubiquitin Enzymes in the Pathogenesis of Most Common Diseases. Int J Mol Sci 2020; 21:ijms21176335. [PMID: 32882786 PMCID: PMC7503467 DOI: 10.3390/ijms21176335] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/17/2020] [Accepted: 07/18/2020] [Indexed: 12/14/2022] Open
Abstract
Ubiquitination is a multi-step enzymatic process that involves the marking of a substrate protein by bonding a ubiquitin and protein for proteolytic degradation mainly via the ubiquitin–proteasome system (UPS). The process is regulated by three main types of enzymes, namely ubiquitin-activating enzymes (E1), ubiquitin-conjugating enzymes (E2), and ubiquitin ligases (E3). Under physiological conditions, ubiquitination is highly reversible reaction, and deubiquitinases or deubiquitinating enzymes (DUBs) can reverse the effect of E3 ligases by the removal of ubiquitin from substrate proteins, thus maintaining the protein quality control and homeostasis in the cell. The dysfunction or dysregulation of these multi-step reactions is closely related to pathogenic conditions; therefore, understanding the role of ubiquitination in diseases is highly valuable for therapeutic approaches. In this review, we first provide an overview of the molecular mechanism of ubiquitination and UPS; then, we attempt to summarize the most common diseases affecting the dysfunction or dysregulation of these mechanisms.
Collapse
Affiliation(s)
- Gizem Celebi
- Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics, and Bioengineering Program, Sabanci University, Istanbul 34956, Turkey; (G.C.); (H.K.); (E.O.)
| | - Hale Kesim
- Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics, and Bioengineering Program, Sabanci University, Istanbul 34956, Turkey; (G.C.); (H.K.); (E.O.)
| | - Ebru Ozer
- Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics, and Bioengineering Program, Sabanci University, Istanbul 34956, Turkey; (G.C.); (H.K.); (E.O.)
| | - Ozlem Kutlu
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Istanbul 34956, Turkey
- Center of Excellence for Functional Surfaces and Interfaces for Nano Diagnostics (EFSUN), Sabanci University, Istanbul 34956, Turkey
- Correspondence: ; Tel.: +90-216-483-9000 (ext. 2413)
| |
Collapse
|
116
|
Bai Y, Ying Y. The Post-translational Modifications of Smurf2 in TGF-β Signaling. Front Mol Biosci 2020; 7:128. [PMID: 32733916 PMCID: PMC7358609 DOI: 10.3389/fmolb.2020.00128] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/02/2020] [Indexed: 12/18/2022] Open
Abstract
Smad ubiquitin regulatory factor 2 (Smurf2), an essential negative regulator of TGF-β signaling, ubiquitinates TGF-β receptors (TβRs) and Smad proteins, inducing their proteasomal degradation. Smurf2 plays crucial roles in regulating TGF-β signaling and maintaining normal cellular functions and tissue homeostasis; dysfunction of Smurf2 triggers abnormal TGF-β signaling in pathological states. Smurf2 has been reported as a potentially strong candidate for targeting therapies for related diseases. Recent work has begun to focus on the regulation of Smurf2 itself, and emerging evidence indicates that Smurf2 is regulated by post-translational modifications (PTMs) mechanisms. These mechanisms predominantly regulate the expression level and E3 ligase activity of Smurf2, strongly suggesting that this protein contributes to complicated roles under multiple pathophysiological conditions. In this review, we cover some significant and novel mechanisms of the PTMs that potentially control Smurf2 participation in TGF-β signaling, including ubiquitylation, SUMOylation, neddylation, phosphorylation, and methylation in order to provide a broad view of the depth and sophistication of Smurf2 function in TGF-β regulation, as well as perspectives for future therapeutic directions for its associated diseases.
Collapse
Affiliation(s)
- Yangjinming Bai
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathophysiology, Schools of Basic Medical Sciences, Nanchang University, Nanchang, China.,Nanchang Joint Program, Queen Mary School, Nanchang University, Nanchang, China
| | - Ying Ying
- Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology and Department of Pathophysiology, Schools of Basic Medical Sciences, Nanchang University, Nanchang, China
| |
Collapse
|
117
|
Nagata A, Itoh F, Sasho A, Sugita K, Suzuki R, Hinata H, Shimoda Y, Suzuki E, Maemoto Y, Inagawa T, Fujikawa Y, Ikeda E, Fujii C, Inoue H. The evolutionarily conserved deubiquitinase UBH1/UCH-L1 augments DAF7/TGF-β signaling, inhibits dauer larva formation, and enhances lung tumorigenesis. J Biol Chem 2020; 295:9105-9120. [PMID: 32371398 PMCID: PMC7335803 DOI: 10.1074/jbc.ra119.011222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 04/20/2020] [Indexed: 01/02/2023] Open
Abstract
Modification of the transforming growth factor β (TGF-β) signaling components by (de)ubiquitination is emerging as a key regulatory mechanism that controls cell signaling responses in health and disease. Here, we show that the deubiquitinating enzyme UBH-1 in Caenorhabditis elegans and its human homolog, ubiquitin C-terminal hydrolase-L1 (UCH-L1), stimulate DAF-7/TGF-β signaling, suggesting that this mode of regulation of TGF-β signaling is conserved across animal species. The dauer larva-constitutive C. elegans phenotype caused by defective DAF-7/TGF-β signaling was enhanced and suppressed, respectively, by ubh-1 deletion and overexpression in the loss-of-function genetic backgrounds of daf7, daf-1/TGF-βRI, and daf4/R-SMAD, but not of daf-8/R-SMAD. This suggested that UBH-1 may stimulate DAF-7/TGF-β signaling via DAF-8/R-SMAD. Therefore, we investigated the effect of UCH-L1 on TGF-β signaling via its intracellular effectors, i.e. SMAD2 and SMAD3, in mammalian cells. Overexpression of UCH-L1, but not of UCH-L3 (the other human homolog of UBH1) or of the catalytic mutant UCH-L1C90A, enhanced TGF-β/SMAD-induced transcriptional activity, indicating that the deubiquitination activity of UCH-L1 is indispensable for enhancing TGF-β/SMAD signaling. We also found that UCH-L1 interacts, deubiquitinates, and stabilizes SMAD2 and SMAD3. Under hypoxia, UCH-L1 expression increased and TGF-β/SMAD signaling was potentiated in the A549 human lung adenocarcinoma cell line. Notably, UCH-L1-deficient A549 cells were impaired in tumorigenesis, and, unlike WT UCH-L1, a UCH-L1 variant lacking deubiquitinating activity was unable to restore tumorigenesis in these cells. These results indicate that UCH-L1 activity supports DAF-7/TGF-β signaling and suggest that UCH-L1's deubiquitination activity is a potential therapeutic target for managing lung cancer.
Collapse
Affiliation(s)
- Asami Nagata
- Laboratory of Molecular and Chemical Biology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Fumiko Itoh
- Laboratory of Cardiovascular Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan.
| | - Ayaka Sasho
- Laboratory of Molecular and Chemical Biology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Kaho Sugita
- Laboratory of Molecular and Chemical Biology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Riko Suzuki
- Laboratory of Molecular and Chemical Biology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Hiroki Hinata
- Laboratory of Cardiovascular Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Yuta Shimoda
- Laboratory of Molecular and Chemical Biology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Eri Suzuki
- Laboratory of Molecular and Chemical Biology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Yuki Maemoto
- Laboratory of Cell Signaling, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Toshihiko Inagawa
- Laboratory of Cardiovascular Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Yuuta Fujikawa
- Laboratory of Molecular and Chemical Biology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Eri Ikeda
- Laboratory of Molecular and Chemical Biology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Chiaki Fujii
- Laboratory of Molecular and Chemical Biology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Hideshi Inoue
- Laboratory of Molecular and Chemical Biology, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan.
| |
Collapse
|
118
|
ER-localized Hrd1 ubiquitinates and inactivates Usp15 to promote TLR4-induced inflammation during bacterial infection. Nat Microbiol 2020; 4:2331-2346. [PMID: 31477895 DOI: 10.1038/s41564-019-0542-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The special organelle-located MAVS, STING and TLR3 are important for clearing viral infections. Although TLR4 triggers NF-κB activation to produce pro-inflammatory cytokines for bacterial clearance, effectors with special organelle localization have not been identified. Here, we screened more than 280 E3 ubiquitin ligases and discovered that the endoplasmic reticulum-located Hrd1 regulates TLR4-induced inflammation during bacterial infection. Hrd1 interacts directly with the deubiquitinating enzyme Usp15. Unlike the classical function of Hrd1 in endoplasmic reticulum-associated degradation, Usp15 is not degraded but loses its deubiquitinating activity for IκBα deubiquitination, resulting in excessive NF-κB activation. Importantly, Hrd1 deficiency in macrophages protects mice against lipopolysaccharide-induced septic shock, and knockdown of Usp15 in Hrd1-knockout macrophages restores the reduced IL-6 production. This study proposes that there is crosstalk between Hrd1 and TLR4, thereby linking the endoplasmic reticulum-plasma membrane function during bacterial infection.
Collapse
|
119
|
Zhao Y, Huang X, Zhang Z, Zhang Y, Zhang G, Zan T, Li Q. USP15 Enhances Re-epithelialization Through Deubiquitinating EIF4A1 During Cutaneous Wound Repair. Front Cell Dev Biol 2020; 8:529. [PMID: 32671073 PMCID: PMC7332549 DOI: 10.3389/fcell.2020.00529] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/05/2020] [Indexed: 01/09/2023] Open
Abstract
Re-epithelialization is a fundamental process in wound healing that involves various cytokines and cells during cutaneous barrier reconstruction. Ubiquitin-specific peptidase 15 (USP15), an important member of the deubiquitinating enzymes (DUBs), removes ubiquitin chains from target proteins and maintains protein stability. However, the dynamic role of USP15 in epithelialization remains unclear. We aimed to investigate the regulatory function of USP15 in re-epithelialization. An excisional wound splinting model was established to evaluate the re-epithelialization rate in Usp15 knockout (KO) mice. Coimmunoprecipitation (Co-IP) and mass spectrum analyses were performed to identify USP15-interacting proteins. RNA-sequencing was performed for transcriptome analysis in keratinocytes and uploaded into NODE database (http://www.biosino.org/node, accession numbers: OEP000770 and OEP000763). First, a significant delay in epithelialization was observed in the Usp15 KO mice. Moreover, inhibition of cell migration and proliferation was observed in the USP15-silenced keratinocytes (HaCaTs). Moreover, we revealed for the first time that USP15 could interact with eukaryotic initiation factor 4A-1 (EIF4A1), thereby promoting translational efficacy in keratinocytes, which is essential for keratinocyte proliferation and migration. Conclusively, the USP15-EIF4A1 complex significantly accelerated re-epithelialization in wound healing. These observations helped elucidate the function and mechanisms of USP15 in modulating re-epithelialization in wound healing, providing a promising target for refractory wound treatment.
Collapse
Affiliation(s)
- Yixuan Zhao
- Department of Plastic and Reconstructive Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Huang
- Department of Plastic and Reconstructive Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zewei Zhang
- Department of Plastic and Reconstructive Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Plastic and Reconstructive Surgery, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yifan Zhang
- Department of Plastic and Reconstructive Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guoyou Zhang
- Department of Plastic and Reconstructive Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Zan
- Department of Plastic and Reconstructive Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
120
|
Kapadia BB, Gartenhaus RB. DUBbing Down Translation: The Functional Interaction of Deubiquitinases with the Translational Machinery. Mol Cancer Ther 2020; 18:1475-1483. [PMID: 31481479 DOI: 10.1158/1535-7163.mct-19-0307] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/12/2019] [Accepted: 06/20/2019] [Indexed: 02/06/2023]
Abstract
Cancer cells revamp the regulatory processes that control translation to induce tumor-specific translational programs that can adapt to a hostile microenvironment as well as withstand anticancer therapeutics. Translational initiation has been established as a common downstream effector of numerous deregulated signaling pathways that together culminate in prooncogenic expression. Other mechanisms, including ribosomal stalling and stress granule assembly, also appear to be rewired in the malignant phenotype. Therefore, better understanding of the underlying perturbations driving oncogenic translation in the transformed state will provide innovative therapeutic opportunities. This review highlights deubiquitinating enzymes that are activated/dysregulated in hematologic malignancies, thereby altering the translational output and contributing to tumorigenesis.
Collapse
Affiliation(s)
| | - Ronald B Gartenhaus
- University of Maryland School of Medicine, Baltimore, Maryland. .,Veterans Administration Medical Center, Baltimore, Maryland
| |
Collapse
|
121
|
Antao AM, Tyagi A, Kim KS, Ramakrishna S. Advances in Deubiquitinating Enzyme Inhibition and Applications in Cancer Therapeutics. Cancers (Basel) 2020; 12:E1579. [PMID: 32549302 PMCID: PMC7352412 DOI: 10.3390/cancers12061579] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/07/2020] [Accepted: 06/11/2020] [Indexed: 12/11/2022] Open
Abstract
Since the discovery of the ubiquitin proteasome system (UPS), the roles of ubiquitinating and deubiquitinating enzymes (DUBs) have been widely elucidated. The ubiquitination of proteins regulates many aspects of cellular functions such as protein degradation and localization, and also modifies protein-protein interactions. DUBs cleave the attached ubiquitin moieties from substrates and thereby reverse the process of ubiquitination. The dysregulation of these two paramount pathways has been implicated in numerous diseases, including cancer. Attempts are being made to identify inhibitors of ubiquitin E3 ligases and DUBs that potentially have clinical implications in cancer, making them an important target in the pharmaceutical industry. Therefore, studies in medicine are currently focused on the pharmacological disruption of DUB activity as a rationale to specifically target cancer-causing protein aberrations. Here, we briefly discuss the pathophysiological and physiological roles of DUBs in key cancer-related pathways. We also discuss the clinical applications of promising DUB inhibitors that may contribute to the development of DUBs as key therapeutic targets in the future.
Collapse
Affiliation(s)
- Ainsley Mike Antao
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea; (A.M.A.); (A.T.)
| | - Apoorvi Tyagi
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea; (A.M.A.); (A.T.)
| | - Kye-Seong Kim
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea; (A.M.A.); (A.T.)
- College of Medicine, Hanyang University, Seoul 04763, Korea
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea; (A.M.A.); (A.T.)
- College of Medicine, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
122
|
RAC1B Induces SMAD7 via USP26 to Suppress TGFβ1-Dependent Cell Migration in Mesenchymal-Subtype Carcinoma Cells. Cancers (Basel) 2020; 12:cancers12061545. [PMID: 32545415 PMCID: PMC7352540 DOI: 10.3390/cancers12061545] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 12/27/2022] Open
Abstract
The small GTPase RAC1B has been shown to act as a powerful inhibitor of the transforming growth factor (TGF)β type I receptor ALK5 and TGFβ1/ALK5-induced epithelial–mesenchymal transition and cell motility. However, the precise mechanism has remained elusive. RNAi-mediated knockdown of RAC1B in the pancreatic ductal adenocarcinoma (PDAC)-derived cell line Panc1 failed to alter transcriptional activity from a transfected ALK5 promoter–reporter construct. In contrast, pharmacological inhibition of the proteasome decreased the abundance of ALK5 protein in cell lines of the mesenchymal subtype (Panc1, IMIM-PC-1, and breast cancer MDA-MB-231), but not in a PDAC cell line of the epithelial subtype (Colo357). Here, we focused on the inhibitory Smad protein, SMAD7, as a potential candidate for RAC1B-mediated inhibition of cell migration. In Panc1 cells devoid of RAC1B, SMAD7 protein was dramatically reduced and these cells were refractory to TGFβ1-induced upregulation of SMAD7 protein but not mRNA expression. Intriguingly, RNAi-mediated knockdown or ectopic overexpression of SMAD7 in Panc1 cells up- or downregulated, respectively, ALK5 protein expression and mimicked the suppressive effect of RAC1B on TGFβ/SMAD3-dependent transcriptional activity, target gene expression and cell migration. Transfection of SMAD7 was further able to partially rescue cells from the RAC1B knockdown-mediated increase in migratory properties. Conversely, knockdown of SMAD7 was able to partially rescue Panc1 and MDA-MB-231 cells from the antimigratory effect of ectopically expressed RAC1B. Finally, we demonstrate that RAC1B upregulation of SMAD7 protein requires intermittent transcriptional induction of the deubiquitinating enzyme USP26. Our data suggest that RAC1B induces SMAD7 by promoting its deubiquitination and establishes this Smad as one of RAC1B’s downstream effectors in negative regulation of ALK5 and TGFβ1-induced cell migration in mesenchymal-type carcinoma cells.
Collapse
|
123
|
Regulation of Deubiquitinating Enzymes by Post-Translational Modifications. Int J Mol Sci 2020; 21:ijms21114028. [PMID: 32512887 PMCID: PMC7312083 DOI: 10.3390/ijms21114028] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/01/2020] [Accepted: 06/01/2020] [Indexed: 01/04/2023] Open
Abstract
Ubiquitination and deubiquitination play a critical role in all aspects of cellular processes, and the enzymes involved are tightly regulated by multiple factors including posttranslational modifications like most other proteins. Dysfunction or misregulation of these enzymes could have dramatic physiological consequences, sometimes leading to diseases. Therefore, it is important to have a clear understanding of these regulatory processes. Here, we have reviewed the posttranslational modifications of deubiquitinating enzymes and their consequences on the catalytic activity, stability, abundance, localization, and interaction with the partner proteins.
Collapse
|
124
|
Han J, Tian Y, Yu L, Zhang Q, Xu X, Zhang Y, Wang J, Ma Z, Bian J, Luo C, Jiang H, Chen K, Zhao Y, Li Z, Ding H. Discovery of novel USP8 inhibitors via Ubiquitin-Rho-110 fluorometric assay based high throughput screening. Bioorg Chem 2020; 101:103962. [PMID: 32480171 DOI: 10.1016/j.bioorg.2020.103962] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/30/2020] [Accepted: 05/20/2020] [Indexed: 12/28/2022]
Abstract
USP8, one member of deubiquitinating enzymes (DUBs) families, maintains the ubiquitination level of EGFR and regulates the downstream signaling pathways. The deregulation of USP8 has been implicated in many human diseases, especially in cancer. Therefore, USP8 has been identified as a promising target for drug design. Herein, via high throughput screening based on Ubiquitin-rhodamine-110 (Ubiquitin-Rho-110) fluorometric activity assay, we discovered a novel inhibitor DC-U43. By structure optimization, DC-U43-10 reached a half-maximal inhibitory concentration (IC50) value of 2.6 ± 1.1 μM and exhibited 10-fold selectivity against USP7. The binding between DC-U43-10 and USP8 was validated by surface plasmon resonance (SPR) assay with a KD value of 10.5 ± 3.7 μM. It also inhibited the colony formation of H1975 cells. Hence, DC-U43-10 represents a kind of USP8 inhibitors with novel scaffold and has broad prospects for being a probe for USP8-related academic and clinical research.
Collapse
Affiliation(s)
- Jie Han
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Yucheng Tian
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Liang Yu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Qilin Zhang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Xi Xu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yichao Zhang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Jubo Wang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zengyi Ma
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China
| | - Jinlei Bian
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Cheng Luo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Hualiang Jiang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Kaixian Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Yao Zhao
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, China.
| | - Zhiyu Li
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Hong Ding
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China; Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
125
|
Lei B, Wang D, Zhang M, Deng Y, Jiang H, Li Y. miR-615-3p promotes the epithelial-mesenchymal transition and metastasis of breast cancer by targeting PICK1/TGFBRI axis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:71. [PMID: 32336285 PMCID: PMC7183699 DOI: 10.1186/s13046-020-01571-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 04/14/2020] [Indexed: 02/22/2023]
Abstract
Background Increasing evidence indicates that epithelial-mesenchymal transition (EMT) can be regulated by microRNAs (miRNAs). miR-615-3p was shown to be involved in tumor development. However, the role of miR-615-3p in the metastasis of breast cancer remains largely unknown. Methods The expression of miR-615-3p in breast cancer cells and tissues was assessed by qRT-PCR and situ hybridization assays. Effects of miR-615-3p on tumor metastasis were evaluated with experiments in vitro and mouse model. EMT markers were detected by western blot and immunofluorescence assays. Molecular mechanism of miR-615-3p in the regulation of breast cancer cell metastasis was analyzed by Western Blot, Co-immunoprecipitation, and Luciferase assay. Results In the present study, we found that miR-615-3p was significantly elevated in breast cancer cells and tissues, especially in those with metastasis. In breast cancer cell lines, stable overexpression of miR-615-3p was sufficient to promote cell motility in vitro, and pulmonary metastasis in vivo, accompanied by the reduced expression of epithelial markers and the increased levels of mesenchymal markers. Further studies revealed that the reintroduction of miR-615-3p increased the downstream signaling of TGF-β, the type I receptor (TGFBRI) by targeting the 3′-untranslated regions (3′-UTR) of PICK1. PICK1 inhibits the binding of DICER1 to Smad2/3 and the processing of pre-miR-615-3p to mature miR-615-3p in breast cancer cells, thus exerting a negative feedback loop. Conclusions Our data highlight an important role of miR-615-3p in the molecular etiology of breast cancer, and implicate the potential application of miR-615-3p in cancer therapy.
Collapse
Affiliation(s)
- Bo Lei
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150086, China
| | - Dandan Wang
- Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150086, China
| | - Ming Zhang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150086, China
| | - Yuwei Deng
- Department of Oncology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150086, China
| | - Huijie Jiang
- Department of Radiology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150086, China.
| | - Yiwen Li
- Department of Oncology, The Second Affiliated Hospital of Harbin Medical University, 246 Xuefu Road, Harbin, 150086, China.
| |
Collapse
|
126
|
Lai KP, Chen J, Tse WKF. Role of Deubiquitinases in Human Cancers: Potential Targeted Therapy. Int J Mol Sci 2020; 21:ijms21072548. [PMID: 32268558 PMCID: PMC7177317 DOI: 10.3390/ijms21072548] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 02/06/2023] Open
Abstract
Deubiquitinases (DUBs) are involved in various cellular functions. They deconjugate ubiquitin (UBQ) from ubiquitylated substrates to regulate their activity and stability. Studies on the roles of deubiquitylation have been conducted in various cancers to identify the carcinogenic roles of DUBs. In this review, we evaluate the biological roles of DUBs in cancer, including proliferation, cell cycle control, apoptosis, the DNA damage response, tumor suppression, oncogenesis, and metastasis. This review mainly focuses on the regulation of different downstream effectors and pathways via biochemical regulation and posttranslational modifications. We summarize the relationship between DUBs and human cancers and discuss the potential of DUBs as therapeutic targets for cancer treatment. This review also provides basic knowledge of DUBs in the development of cancers and highlights the importance of DUBs in cancer biology.
Collapse
Affiliation(s)
- Keng Po Lai
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541004, China;
| | - Jian Chen
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin 541004, China;
- Correspondence: (J.C.); (W.K.F.T.); Tel.: +86-773-5895810 (J.C.); +81-92-802-4767 (W.K.F.T.)
| | - William Ka Fai Tse
- Center for Promotion of International Education and Research, Faculty of Agriculture, Kyushu University, Fukuoka 819-0395, Japan
- Correspondence: (J.C.); (W.K.F.T.); Tel.: +86-773-5895810 (J.C.); +81-92-802-4767 (W.K.F.T.)
| |
Collapse
|
127
|
Nielsen CP, MacGurn JA. Coupling Conjugation and Deconjugation Activities to Achieve Cellular Ubiquitin Dynamics. Trends Biochem Sci 2020; 45:427-439. [PMID: 32311336 DOI: 10.1016/j.tibs.2020.01.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/24/2020] [Accepted: 01/28/2020] [Indexed: 12/19/2022]
Abstract
In eukaryotic cells, proteome remodeling is mediated by the ubiquitin-proteasome system, which regulates protein degradation, trafficking, and signaling events in the cell. Interplay between the cellular proteome and ubiquitin is complex and dynamic and many regulatory features that support this system have only recently come into focus. An unexpected recurring feature in this system is the physical interaction between E3 ubiquitin ligases and deubiquitylases (DUBs). Recent studies have reported on the regulatory significance of DUB-E3 interactions and it is becoming clear that they play important but complicated roles in the regulation of diverse cellular processes. Here, we summarize the current understanding of interactions between ubiquitin conjugation and deconjugation machineries and we examine the regulatory logic of these enigmatic complexes.
Collapse
Affiliation(s)
- Casey P Nielsen
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Jason A MacGurn
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
128
|
An outlined review for the role of Nedd4-1 and Nedd4-2 in lung disorders. Biomed Pharmacother 2020; 125:109983. [PMID: 32092816 DOI: 10.1016/j.biopha.2020.109983] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 12/16/2022] Open
Abstract
Neural precursor cell expressed, developmentally down-regulated 4, E3 ubiquitin protein ligase (Nedd4-1 and Nedd4-2) is a member of the HECT E3 ubiquitin ligase family. It has been shown to mediate numerous pathophysiological processes, including the regulation of synaptic plasticity and Wnt-associated signaling, via promoting the ubiquitination of its substrates, such as cyclic adenosine monophosphate (cAMP)-response element binding protein regulated transcription coactivator 3 (CRTC3), alpha-amino-3-hydroxy-5-methyl-4-isoxazo-lepropionic acid receptor (AMPAR), and Dishevelled2 (Dvl2). In the respiratory system, both Nedd4-1 and Nedd4-2 are expressed in epithelial cells and functionally associated with lung cancer development and alveolar fluid regulation. Nedd4-1 mediates lung cancer migration, metastasis, or drug resistance mainly through inducing phosphate and tension homology deleted on chromsome ten (PTEN) degradation or promoting cathepsin B secretion. Unlike Nedd4-1, Nedd4-2 displays more complex effects in lung cancers. On one hand it suppresses lung cancer cell migration and metastasis, and on the other hand it has been shown to promote lung cancer survival via inducing general control nonrepressed 2 (GCN2) degradation. Another important function of Nedd4-2 is to regulate the activity of epithelial sodium channel (ENaC), a membrane channel which mediates the clearance of fluid from the alveolar space at birth or during pulmonary edema. Here, we make an outlined review for the expression and function of Nedd4-1 and Nedd4-2 in the respiratory system in hope of getting an in-depth insight into their roles in lung disorders.
Collapse
|
129
|
Mitschke J, Burk UC, Reinheckel T. The role of proteases in epithelial-to-mesenchymal cell transitions in cancer. Cancer Metastasis Rev 2020; 38:431-444. [PMID: 31482486 DOI: 10.1007/s10555-019-09808-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Changing the characteristics of cells from epithelial states to mesenchymal properties is a key process involved in developmental and physiological processes as well as in many diseases with cancer as the most prominent example. Nowadays, a great deal of work and literature concerns the understanding of the process of epithelial-to-mesenchymal transition (EMT) in terms of its molecular regulation and its implications for cancer. Similar statements can certainly be made regarding the investigation of the more than 500 proteases typically encoded by a mammalian genome. Specifically, the impact of proteases on tumor biology has been a long-standing topic of interest. However, although EMT actively regulates expression of many proteases and proteolytic enzymes are clearly involved in survival, division, differentiation, and movements of cells, information on the diverse roles of proteases in EMT has been rarely compiled. Here we aim to conceptually connect the scientific areas of "EMT" and "protease" research by describing how several important classes of proteolytic enzymes are regulated by EMT and how they are involved in initiation and execution of the EMT program. To do so, we briefly introduce the evolving key features of EMT and its regulation followed by discussion of protease involvement in this process.
Collapse
Affiliation(s)
- Julia Mitschke
- Institute of Molecular Medicine and Cell Research, University of Freiburg, 79104, Freiburg, Germany
| | - Ulrike C Burk
- Institute of Molecular Medicine and Cell Research, University of Freiburg, 79104, Freiburg, Germany
| | - Thomas Reinheckel
- Institute of Molecular Medicine and Cell Research, University of Freiburg, 79104, Freiburg, Germany. .,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ) Heidelberg, partner site Freiburg, 79106, Freiburg, Germany. .,BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany.
| |
Collapse
|
130
|
Galant C, Marchandise J, Stoenoiu MS, Ducreux J, De Groof A, Pirenne S, Van den Eynde B, Houssiau FA, Lauwerys BR. Overexpression of ubiquitin-specific peptidase 15 in systemic sclerosis fibroblasts increases response to transforming growth factor β. Rheumatology (Oxford) 2020; 58:708-718. [PMID: 30608617 PMCID: PMC6434377 DOI: 10.1093/rheumatology/key401] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/03/2018] [Indexed: 12/18/2022] Open
Abstract
Objective Ubiquitination of proteins leads to their degradation by the proteasome, and is regulated by ubiquitin ligases and substrate-specific ubiquitin-specific peptidases (USPs). The ubiquitination process also plays important roles in the regulation of cell metabolism and cell cycle. Here, we found that the expression of several USPs is increased in SSc tenosynovial and skin biopsies, and we demonstrated that USP inhibition decreases TGF-β signalling in primary fibroblast cell lines. Methods High-density transcriptomic studies were performed using total RNA obtained from SSc tenosynovial samples. Confirmatory immunostaining experiments were performed on tenosynovial and skin samples. In vitro experiments were conducted in order to study the influence of USP modulation on responses to TGF-β stimulation. Results Tenosynovial biopsies from SSc patients overexpressed known disease-associated gene pathways: fibrosis, cytokines and chemokines, and Wnt/TGF-β signalling, but also several USPs. Immunohistochemistry experiments confirmed the detection of USPs in the same samples, and in SSc skin biopsies. Exposure of primary fibroblast cell lines to TGF-β induced USP gene expression. The use of a pan-USP inhibitor decreased SMAD3 phosphorylation, and expression of COL1A1, COL3A1 and fibronectin gene expression in TGF-β-stimulated fibroblasts. The effect of the USP inhibitor resulted in increased SMAD3 ubiquitination, and was blocked by a proteasome inhibitor, thereby confirming the specificity of its action. Conclusion Overexpression of several USPs, including USP15, amplifies fibrotic responses induced by TGF-β, and is a potential therapeutic target in SSc.
Collapse
Affiliation(s)
- Christine Galant
- Pôle de Pathologies Rhumatismales Inflammatoires et Systémiques, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Belgium.,Department of Pathology, Cliniques Universitaires Saint-Luc, Belgium
| | - Joel Marchandise
- Pôle de Pathologies Rhumatismales Inflammatoires et Systémiques, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Belgium.,Department of Pathology, Cliniques Universitaires Saint-Luc, Belgium
| | - Maria S Stoenoiu
- Pôle de Pathologies Rhumatismales Inflammatoires et Systémiques, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Belgium.,Department of Rheumatology, Cliniques Universitaires Saint-Luc, Belgium
| | - Julie Ducreux
- Pôle de Pathologies Rhumatismales Inflammatoires et Systémiques, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Belgium
| | - Aurélie De Groof
- Pôle de Pathologies Rhumatismales Inflammatoires et Systémiques, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Belgium
| | - Sophie Pirenne
- Department of Pathology, Cliniques Universitaires Saint-Luc, Belgium
| | - Benoit Van den Eynde
- Institut de Duve, Department of Cancer Immunology and Immunotherapy, Université catholique de Louvain, Brussels, Belgium
| | - Frédéric A Houssiau
- Pôle de Pathologies Rhumatismales Inflammatoires et Systémiques, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Belgium.,Department of Rheumatology, Cliniques Universitaires Saint-Luc, Belgium
| | - Bernard R Lauwerys
- Pôle de Pathologies Rhumatismales Inflammatoires et Systémiques, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Belgium.,Department of Rheumatology, Cliniques Universitaires Saint-Luc, Belgium
| |
Collapse
|
131
|
Zhou Q, Cheng C, Wei Y, Yang J, Zhou W, Song Q, Ke M, Yan W, Zheng L, Zhang Y, Huang K. USP15 potentiates NF-κB activation by differentially stabilizing TAB2 and TAB3. FEBS J 2020; 287:3165-3183. [PMID: 31903660 DOI: 10.1111/febs.15202] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 10/29/2019] [Accepted: 01/03/2020] [Indexed: 12/25/2022]
Abstract
Tumor necrosis factor α (TNFα)- and interleukin 1β (IL-1β)-induced nuclear factor-κB (NF-κB) activation play key roles in inflammation, immunity, and cancer development. Here, we identified one of the deubiquitinating enzymes (DUBs), ubiquitin-specific protease 15 (USP15), as a positive regulator in both TNFα- and IL-1β-induced NF-κB activation. Overexpression of USP15 potentiated TNFα- or IL-1β-triggered NF-κB activation and downstream gene transcription, whereas knockdown of USP15 had opposite effects. Mechanistically, upon TNFα stimulation, USP15 showed an enhanced interaction with transforming growth factor-β activated kinase-1 (TAK1)-TAK1 binding protein (TAB) complex to inhibit the proteolysis of TAB2/3 by different pathways. Apart from deubiquitination dependently inducing cleavage of lysine 48-linked TAB2 ubiquitination, USP15 also DUB independently inhibited lysosome-associated TAB2 degradation, thus enhanced TAB2 stabilization. For TAB3, USP15 inhibited NBR1-mediated selective autophagic TAB3 degradation independent of its deubiquitinating activity. Together, our results reveal a novel USP15-mediated mechanism through which efficient NF-κB activation is achieved by differentially maintaining the TAB2/3 stability.
Collapse
Affiliation(s)
- Qiaoqiao Zhou
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Cheng Cheng
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Yujuan Wei
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Jing Yang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Wanzhu Zhou
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Qiuyi Song
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Mengxiang Ke
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Wanyao Yan
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Ling Zheng
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, China
| | - Yu Zhang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Kun Huang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| |
Collapse
|
132
|
Nie ZY, Yao M, Yang Z, Yang L, Liu XJ, Yu J, Ma Y, Zhang N, Zhang XY, Liu MH, Jiang LL, Luo JM. De-regulated STAT5A/miR-202-5p/USP15/Caspase-6 regulatory axis suppresses CML cell apoptosis and contributes to Imatinib resistance. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:17. [PMID: 31952546 PMCID: PMC6969434 DOI: 10.1186/s13046-019-1502-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 12/12/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND STAT5 plays an important role in the transformation of hematopoietic cells by BCR-ABL. However, the downstream target genes activated by STAT5 in chronic myeloid leukemia (CML) cells remain largely unclear. Here, we investigated the mechanistic functional relationship between STAT5A-regulated microRNA and CML cell apoptosis. METHODS The expression of USP15, Caspase-6, STAT5A-regulated miR-202-5p and STAT5A was detected by qRT-PCR and Western blotting in CML cell lines and PBMCs of CML patients. Cell apoptosis was evaluated by flow cytometry. Both gain- and loss-of-function experiments were used to investigate the roles of USP15, miR-202-5p and STAT5A in CML. Luciferase reporter assay detected the effect of miR-202-5p on USP15 expression. Xenograft animal model was used to test the effect of anti-miR-202-5p and pimozide on K562 cell xenograft growth. RESULTS USP15 expression was significantly downregulated in CML cell lines and PBMCs of CML patients. Depletion of USP15 increased, whereas overexpression of USP15 reduced the resistance of CML cells to Imatinib. Further, decreased deubiquitinating activity of USP15 by USP15 downregulation led to reduced caspase-6 level, thus attenuating CML cell apoptosis. Mechanistically, miR-202-5p was upregulated in K562G cells and negatively regulated USP15 expression by directly targeting USP15 3'-UTR. Correspondingly, upregulation of miR-202-5p enhanced the resistance of CML cells to Imatinib by inhibiting cell apoptosis. Importantly, STAT5A was upregulated in CML cells and directly activated miR-202-5p transcription by binding to the pre-miR-202 promoter. Pimozide induced CML cell apoptosis and significantly reduced K562 cell xenograft growth in vivo by blocking STAT5A/miR-202-5p/USP15/Caspase-6 regulatory axis. CONCLUSIONS we provide the first evidence that de-regulated STAT5A/miR-202-5p/USP15/Caspase-6 regulatory axis suppresses the apoptosis of CML cells, targeting this pathway might be a promising therapeutic approach for the treatment of CML.
Collapse
Affiliation(s)
- Zi-Yuan Nie
- Department of Hematology, The Second Hospital of Hebei Medical University, 215 Heping W Rd, Shijiazhuang, 050000, China
| | - Min Yao
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education of China, Hebei Medical University, No. 361 Zhongshan E Rd, Shijiazhuang, 050017, China
| | - Zhan Yang
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education of China, Hebei Medical University, No. 361 Zhongshan E Rd, Shijiazhuang, 050017, China.,Department of Urology, The Second Hospital of Hebei Medical University, 215 Heping W Rd, Shijiazhuang, 050000, China
| | - Lin Yang
- Department of Hematology, The Second Hospital of Hebei Medical University, 215 Heping W Rd, Shijiazhuang, 050000, China
| | - Xiao-Jun Liu
- Department of Hematology, The Second Hospital of Hebei Medical University, 215 Heping W Rd, Shijiazhuang, 050000, China
| | - Jing Yu
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education of China, Hebei Medical University, No. 361 Zhongshan E Rd, Shijiazhuang, 050017, China
| | - Ying Ma
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education of China, Hebei Medical University, No. 361 Zhongshan E Rd, Shijiazhuang, 050017, China
| | - Nan Zhang
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education of China, Hebei Medical University, No. 361 Zhongshan E Rd, Shijiazhuang, 050017, China
| | - Xiao-Yan Zhang
- Department of Hematology, The Second Hospital of Hebei Medical University, 215 Heping W Rd, Shijiazhuang, 050000, China
| | - Meng-Han Liu
- Department of Hematology, The Second Hospital of Hebei Medical University, 215 Heping W Rd, Shijiazhuang, 050000, China
| | - Ling-Ling Jiang
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education of China, Hebei Medical University, No. 361 Zhongshan E Rd, Shijiazhuang, 050017, China.
| | - Jian-Min Luo
- Department of Hematology, The Second Hospital of Hebei Medical University, 215 Heping W Rd, Shijiazhuang, 050000, China.
| |
Collapse
|
133
|
Chen X, Bao G, Liu F. Inhibition of USP15 Prevent Glutamate-Induced Oxidative Damage by Activating Nrf2/HO-1 Signaling Pathway in HT22 Cells. Cell Mol Neurobiol 2020; 40:999-1010. [PMID: 31933062 DOI: 10.1007/s10571-020-00789-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/07/2020] [Indexed: 02/07/2023]
Abstract
Oxidative stress has been identified as the significant mediator in epilepsy, which is a chronic disorder in central nervous system. About 30% of epilepsy patients are refractory to antiepileptic drug treatment. However, the underlying mechanism of oxidative damage in epilepsy needs further investigation. In our study, we first find that ubiquitin-specific peptidase 15 (USP15) expression was upregulated in a pentylenetetrazole (PTZ) kindled rat model of epilepsy. Silencing USP15 protected against glutamate-mediated neuronal cell death, and inhibited the high expression levels of cleaved caspase-3. Knockout of USP15 significantly reduced intracellular reactive oxygen species (ROS) levels and enhanced superoxide dismutase (SOD) activity in HT22 cells under the exposure to glutamate treatment. Furthermore, USP15 inhibition induced nuclear factor erythroid-derived 2-related factor2 (Nrf2) nuclear translocation and promoted protein expression level of heme oxygenase (HO-1). Taken together, our findings first reveal a role of USP15 in the pathogenesis of epilepsy, and silencing USP15 in vitro protects against glutamate-mediated cytotoxicity in HT22 cells. Pharmacological inhibition of USP15 may alleviate epileptic seizures via fighting against oxidative damage, providing a novel antiepileptic target.
Collapse
Affiliation(s)
- Xiaojie Chen
- Department of Neurology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 201999, China
| | - Guanshui Bao
- Department of Neurology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 201999, China.
| | - Fangfang Liu
- Department of Neurology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 201999, China
| |
Collapse
|
134
|
Gâtel P, Piechaczyk M, Bossis G. Ubiquitin, SUMO, and Nedd8 as Therapeutic Targets in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1233:29-54. [PMID: 32274752 DOI: 10.1007/978-3-030-38266-7_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ubiquitin defines a family of approximately 20 peptidic posttranslational modifiers collectively called the Ubiquitin-like (UbLs). They are conjugated to thousands of proteins, modifying their function and fate in many ways. Dysregulation of these modifications has been implicated in a variety of pathologies, in particular cancer. Ubiquitin, SUMO (-1 to -3), and Nedd8 are the best-characterized UbLs. They have been involved in the regulation of the activity and/or the stability of diverse components of various oncogenic or tumor suppressor pathways. Moreover, the dysregulation of enzymes responsible for their conjugation/deconjugation has also been associated with tumorigenesis and cancer resistance to therapies. The UbL system therefore constitutes an attractive target for developing novel anticancer therapeutic strategies. Here, we review the roles and dysregulations of Ubiquitin, SUMO, and Nedd8 pathways in tumorigenesis, as well as recent advances in the identification of small molecules targeting their conjugating machineries for potential application in the fight against cancer.
Collapse
Affiliation(s)
- Pierre Gâtel
- Equipe Labellisée Ligue Contre le Cancer, IGMM, Univ Montpellier, CNRS, Montpellier, France
| | - Marc Piechaczyk
- Equipe Labellisée Ligue Contre le Cancer, IGMM, Univ Montpellier, CNRS, Montpellier, France
| | - Guillaume Bossis
- Equipe Labellisée Ligue Contre le Cancer, IGMM, Univ Montpellier, CNRS, Montpellier, France.
| |
Collapse
|
135
|
Zhang L, Qiang J, Yang X, Wang D, Rehman AU, He X, Chen W, Sheng D, Zhou L, Jiang Y, Li T, Du Y, Feng J, Hu X, Zhang J, Hu X, Shao Z, Liu S. IL1R2 Blockade Suppresses Breast Tumorigenesis and Progression by Impairing USP15-Dependent BMI1 Stability. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1901728. [PMID: 31921558 PMCID: PMC6947699 DOI: 10.1002/advs.201901728] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/16/2019] [Indexed: 05/02/2023]
Abstract
Breast tumor initiating cells (BTICs) with ALDH+CD24-CD44+ phenotype are the most tumorigenic and invasive cell population in breast cancer. However, the molecular mechanisms are still unclear. Here, it is found that a negative immune regulator interleukin-1 receptor type 2 (IL1R2) is upregulated in breast cancer (BC) tissues and especially in BTICs. BC patients with high IL1R2 expression have a poorer overall survival and relapse-free survival. High IL1R2 promotes BTIC self-renewal and BC cell proliferation and invasion. Mechanistically, IL1R2 is activated by IL1β, as demonstrated by the fact that IL1β induces the release of IL1R2 intracellular domain (icd-IL1R2) and icd-IL1R2 then interacts with the deubiquitinase USP15 at the UBL2 domain and promotes its activity, which finally induces BMI1 deubiquitination at lysine 81 and stabilizes BMI1 protein. In addition, IL1R2 neutralizing antibody can suppress the protein expression of both IL1R2 and BMI1, and significantly abrogates the promoting effect of IL1R2 on BTIC self-renewal and BC cell growth both in vitro and in vivo. The current results indicate that blocking IL1R2 with neutralizing antibody provides a therapeutic approach to inhibit BC progression by targeting BTICs.
Collapse
Affiliation(s)
- Lixing Zhang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesShanghai Medical CollegeKey Laboratory of Breast Cancer in ShanghaiInnovation Center for Cell Signaling NetworkCancer InstituteFudan UniversityShanghai200032China
- Department of OncologyDepartment of Breast SurgeryShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Jiankun Qiang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesShanghai Medical CollegeKey Laboratory of Breast Cancer in ShanghaiInnovation Center for Cell Signaling NetworkCancer InstituteFudan UniversityShanghai200032China
- Department of OncologyDepartment of Breast SurgeryShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Xiaoli Yang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesShanghai Medical CollegeKey Laboratory of Breast Cancer in ShanghaiInnovation Center for Cell Signaling NetworkCancer InstituteFudan UniversityShanghai200032China
- Department of OncologyDepartment of Breast SurgeryShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Dong Wang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesShanghai Medical CollegeKey Laboratory of Breast Cancer in ShanghaiInnovation Center for Cell Signaling NetworkCancer InstituteFudan UniversityShanghai200032China
- School of Life ScienceThe CAS Key Laboratory of Innate Immunity and Chronic DiseaseUniversity of Science and Technology of ChinaHefeiAnhui230027China
| | - Adeel ur Rehman
- School of Life ScienceThe CAS Key Laboratory of Innate Immunity and Chronic DiseaseUniversity of Science and Technology of ChinaHefeiAnhui230027China
| | - Xueyan He
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesShanghai Medical CollegeKey Laboratory of Breast Cancer in ShanghaiInnovation Center for Cell Signaling NetworkCancer InstituteFudan UniversityShanghai200032China
| | - Weilong Chen
- School of Life ScienceThe CAS Key Laboratory of Innate Immunity and Chronic DiseaseUniversity of Science and Technology of ChinaHefeiAnhui230027China
| | - Dandan Sheng
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesShanghai Medical CollegeKey Laboratory of Breast Cancer in ShanghaiInnovation Center for Cell Signaling NetworkCancer InstituteFudan UniversityShanghai200032China
- School of Life ScienceThe CAS Key Laboratory of Innate Immunity and Chronic DiseaseUniversity of Science and Technology of ChinaHefeiAnhui230027China
| | - Lei Zhou
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesShanghai Medical CollegeKey Laboratory of Breast Cancer in ShanghaiInnovation Center for Cell Signaling NetworkCancer InstituteFudan UniversityShanghai200032China
- School of Life ScienceThe CAS Key Laboratory of Innate Immunity and Chronic DiseaseUniversity of Science and Technology of ChinaHefeiAnhui230027China
| | - Yi‐zhou Jiang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesShanghai Medical CollegeKey Laboratory of Breast Cancer in ShanghaiInnovation Center for Cell Signaling NetworkCancer InstituteFudan UniversityShanghai200032China
| | - Tao Li
- State Key Laboratory of ProteomicsInstitute of Basic Medical SciencesNational Center of Biomedical AnalysisBeijing100850China
| | - Ying Du
- Department of Laboratory Medicine and Central LaboratorySouthern Medical University Affiliated Fengxian HospitalShanghai201499China
| | - Jing Feng
- Department of Laboratory Medicine and Central LaboratorySouthern Medical University Affiliated Fengxian HospitalShanghai201499China
| | - Xin Hu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesShanghai Medical CollegeKey Laboratory of Breast Cancer in ShanghaiInnovation Center for Cell Signaling NetworkCancer InstituteFudan UniversityShanghai200032China
- Department of OncologyDepartment of Breast SurgeryShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Jian Zhang
- Department of Medical OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Xi‐chun Hu
- Department of Medical OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Zhi‐ming Shao
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesShanghai Medical CollegeKey Laboratory of Breast Cancer in ShanghaiInnovation Center for Cell Signaling NetworkCancer InstituteFudan UniversityShanghai200032China
- Department of OncologyDepartment of Breast SurgeryShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Suling Liu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical SciencesShanghai Medical CollegeKey Laboratory of Breast Cancer in ShanghaiInnovation Center for Cell Signaling NetworkCancer InstituteFudan UniversityShanghai200032China
- Department of OncologyDepartment of Breast SurgeryShanghai Medical CollegeFudan UniversityShanghai200032China
| |
Collapse
|
136
|
Fu L, Cui CP, Zhang X, Zhang L. The functions and regulation of Smurfs in cancers. Semin Cancer Biol 2019; 67:102-116. [PMID: 31899247 DOI: 10.1016/j.semcancer.2019.12.023] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/10/2019] [Accepted: 12/26/2019] [Indexed: 02/06/2023]
Abstract
Smad ubiquitination regulatory factor 1 (Smurf1) and Smurf2 are HECT-type E3 ubiquitin ligases, and both Smurfs were initially identified to regulate Smad protein stability in the TGF-β/BMP signaling pathway. In recent years, Smurfs have exhibited E3 ligase-dependent and -independent activities in various kinds of cells. Smurfs act as either potent tumor promoters or tumor suppressors in different tumors by regulating biological processes, including metastasis, apoptosis, cell cycle, senescence and genomic stability. The regulation of Smurfs activity and expression has therefore emerged as a hot spot in tumor biology research. Further, the Smurf1- or Smurf2-deficient mice provide more in vivo clues for the functional study of Smurfs in tumorigenesis and development. In this review, we summarize these milestone findings and, in turn, reveal new avenues for the prevention and treatment of cancer by regulating Smurfs.
Collapse
Affiliation(s)
- Lin Fu
- Institute of Chronic Disease, Qingdao Municipal Hospital, Qingdao University, Qingdao 266000, China
| | - Chun-Ping Cui
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China
| | - Xueli Zhang
- Department of General Surgery, Shanghai Fengxian Central Hospital Graduate Training Base, Fengxian Hospital, Southern Medical University, Shanghai, China.
| | - Lingqiang Zhang
- Institute of Chronic Disease, Qingdao Municipal Hospital, Qingdao University, Qingdao 266000, China; State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China; Peixian People's Hospital, Jiangsu Province 221600, China.
| |
Collapse
|
137
|
Functional analysis of deubiquitylating enzymes in tumorigenesis and development. Biochim Biophys Acta Rev Cancer 2019; 1872:188312. [DOI: 10.1016/j.bbcan.2019.188312] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/16/2019] [Accepted: 08/16/2019] [Indexed: 02/06/2023]
|
138
|
Yuan T, Chen Z, Yan F, Qian M, Luo H, Ye S, Cao J, Ying M, Dai X, Gai R, Yang B, He Q, Zhu H. Deubiquitinating enzyme USP10 promotes hepatocellular carcinoma metastasis through deubiquitinating and stabilizing Smad4 protein. Mol Oncol 2019; 14:197-210. [PMID: 31721429 PMCID: PMC6944132 DOI: 10.1002/1878-0261.12596] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 09/10/2019] [Accepted: 11/11/2019] [Indexed: 01/02/2023] Open
Abstract
Hepatocellular carcinoma (HCC) has emerged as one of the most prevalent life-threatening cancers, and the high mortality rate is largely due to the metastasis. The sustained activation of Smad4 and transforming growth factor-β (TGF-β) is closely associated with advanced HCC metastasis. However, the regulatory mechanism underlying the aberrant activation of Smad4 and TGF-β pathway remains elusive. In this study, using a functional screen of USPs siRNA library, we identified ubiquitin-specific proteases USP10 as a deubiquitinating enzyme (DUB) that sustains the protein level of Smad4 and activates TGF-β signaling. Further analysis showed that USP10 directly interacts with Smad4 and stabilizes it through the cleavage of its proteolytic ubiquitination, thus promoting HCC metastasis. The suppression of USP10 by either shRNAs or catalytic inhibitor Spautin-1 significantly inhibited the migration of HCC cells, whereas the reconstitution of Smad4 was able to efficiently rescue this defect. Overall, our study not only uncovers the regulatory effect of USP10 on the protein abundance of Smad4, but also indicates that USP10 could be regarded as a potential intervention target for the metastatic HCC in Smad4-positive patients.
Collapse
Affiliation(s)
- Tao Yuan
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Zibo Chen
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Fangjie Yan
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Meijia Qian
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Hong Luo
- Cancer Hospital of University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China
| | - Song Ye
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ji Cao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Meidan Ying
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Xiaoyang Dai
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Renhua Gai
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Hong Zhu
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
139
|
Abstract
Transforming growth factor (TGF)-β is a secreted multifunctional cytokine that signals via plasma membrane TGF-β type I and type II receptors and intercellular SMAD transcriptional effectors. Aberrant inter- and intracellular TGF-β signaling can contribute to cancer progression. In normal cells and early stages of cancer, TGF-β can stimulate epithelial growth arrest and elicit a tumor suppressor function. However, in late stages of cancer, when the cytostatic effects of TGF-β in cancer cells are blocked, TGF-β signaling can act as tumor promoter by its ability to stimulate epithelial-to-mesenchymal transition of cancer cells, by stimulating angiogenesis, and by promoting evasion of immune responses. In this review, we will discuss the rationale and challenges of targeting TGF-β signaling in cancer and summarize the clinical status of TGF-β signaling inhibitors that interfere with TGFβ bioavailability, TGF-βreceptor interaction, or TGF-β receptor kinase function. Moreover, we will discuss targeting of TGF-β signaling modulators and downstream effectors as well as alternative approaches by using promising technologies that may lead to entirely new classes of drugs.
Collapse
Affiliation(s)
- Linh Khanh Huynh
- Laboratory of Experimental Pathology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Christopher John Hipolito
- Cancer Signaling, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
- Peptide Core Facility, Transborder Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Peter Ten Dijke
- Cancer Signaling, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
- Oncode Institute and Cell Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| |
Collapse
|
140
|
Huynh LK, Hipolito CJ, ten Dijke P. A Perspective on the Development of TGF-β Inhibitors for Cancer Treatment. Biomolecules 2019; 9:biom9110743. [PMID: 31744193 PMCID: PMC6921009 DOI: 10.3390/biom9110743] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 10/22/2019] [Accepted: 11/04/2019] [Indexed: 12/11/2022] Open
Abstract
Transforming growth factor (TGF)-β is a secreted multifunctional cytokine that signals via plasma membrane TGF-β type I and type II receptors and intercellular SMAD transcriptional effectors. Aberrant inter- and intracellular TGF-β signaling can contribute to cancer progression. In normal cells and early stages of cancer, TGF-β can stimulate epithelial growth arrest and elicit a tumor suppressor function. However, in late stages of cancer, when the cytostatic effects of TGF-β in cancer cells are blocked, TGF-β signaling can act as tumor promoter by its ability to stimulate epithelial-to-mesenchymal transition of cancer cells, by stimulating angiogenesis, and by promoting evasion of immune responses. In this review, we will discuss the rationale and challenges of targeting TGF-β signaling in cancer and summarize the clinical status of TGF-β signaling inhibitors that interfere with TGF−β bioavailability, TGF-β/receptor interaction, or TGF-β receptor kinase function. Moreover, we will discuss targeting of TGF-β signaling modulators and downstream effectors as well as alternative approaches by using promising technologies that may lead to entirely new classes of drugs.
Collapse
Affiliation(s)
- Linh Khanh Huynh
- Laboratory of Experimental Pathology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan;
| | - Christopher John Hipolito
- Cancer Signaling, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan;
- Peptide Core Facility, Transborder Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Peter ten Dijke
- Cancer Signaling, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan;
- Oncode Institute and Cell Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
- Correspondence: ; Tel.: +31-71-526-9271; Fax: +31-71-526-8270
| |
Collapse
|
141
|
Shi Y, Tao M, Wang Y, Zang X, Ma X, Qiu A, Zhuang S, Liu N. Genetic or pharmacologic blockade of enhancer of zeste homolog 2 inhibits the progression of peritoneal fibrosis. J Pathol 2019; 250:79-94. [PMID: 31579944 DOI: 10.1002/path.5352] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/01/2019] [Accepted: 09/24/2019] [Indexed: 02/06/2023]
Abstract
Dysregulation of histone methyltransferase enhancer of zeste homolog 2 (EZH2) has been implicated in the pathogenesis of many cancers. However, the role of EZH2 in peritoneal fibrosis remains unknown. We investigated EZH2 expression in peritoneal dialysis (PD) patients and assessed its role in peritoneal fibrosis in cultured human peritoneal mesothelial cells (HPMCs) and murine models of peritoneal fibrosis induced by chlorhexidine gluconate (CG) or high glucose peritoneal dialysis fluid (PDF) by using 3-deazaneplanocin A (3-DZNeP), and EZH2 conditional knockout mice. An abundance of EZH2 was detected in the peritoneum of patients with PD associated peritonitis and the dialysis effluent of long-term PD patients, which was positively correlated with expression of TGF-β1, vascular endothelial growth factor, and IL-6. EZH2 was found highly expressed in the peritoneum of mice following injury by CG or PDF. In both mouse models, treatment with 3-DZNeP attenuated peritoneal fibrosis and inhibited activation of several profibrotic signaling pathways, including TGF-β1/Smad3, Notch1, epidermal growth factor receptor and Src. EZH2 inhibition also inhibited STAT3 and nuclear factor-κB phosphorylation, and reduced lymphocyte and macrophage infiltration and angiogenesis in the injured peritoneum. 3-DZNeP effectively improved high glucose PDF-associated peritoneal dysfunction by decreasing the dialysate-to-plasma ratio of blood urea nitrogen and increasing the ratio of dialysate glucose at 2 h after PDF injection to initial dialysate glucose. Moreover, delayed administration of 3-DZNeP inhibited peritoneal fibrosis progression, reversed established peritoneal fibrosis and reduced expression of tissue inhibitor of metalloproteinase 2, and matrix metalloproteinase-2 and -9. Finally, EZH2-KO mice exhibited less peritoneal fibrosis than EZH2-WT mice. In HPMCs, treatment with EZH2 siRNA or 3-DZNeP suppressed TGF-β1-induced upregulation of α-SMA and Collagen I and preserved E-cadherin. These results indicate that EZH2 is a key epigenetic regulator that promotes peritoneal fibrosis. Targeting EZH2 may have the potential to prevent and treat peritoneal fibrosis. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Yingfeng Shi
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Min Tao
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Yi Wang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Xiujuan Zang
- Department of Nephrology, Shanghai Songjiang District Central Hospital, Shanghai, PR China
| | - Xiaoyan Ma
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, PR China
| | - Andong Qiu
- School of Life Science and Technology, Advanced Institute of Translational Medicine, Tongji University, Shanghai, PR China
| | - Shougang Zhuang
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, PR China.,Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, USA
| | - Na Liu
- Department of Nephrology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, PR China
| |
Collapse
|
142
|
Bai Y, Li LD, Li J, Chen RF, Yu HL, Sun HF, Wang JY, Lu X. A FXYD5/TGF‑β/SMAD positive feedback loop drives epithelial‑to‑mesenchymal transition and promotes tumor growth and metastasis in ovarian cancer. Int J Oncol 2019; 56:301-314. [PMID: 31746425 DOI: 10.3892/ijo.2019.4911] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 10/02/2019] [Indexed: 11/06/2022] Open
Abstract
Epithelial ovarian cancer is aggressive and lacks effective prognostic indicators or therapeutic targets. In the present study, using immunohistochemistry and bioinformatics analysis on ovarian cancer tissue data from The Obstetrics and Gynecology Hospital of Fudan University and The Cancer Genome Atlas database, it was identified that FXYD domain‑containing ion transport regulator 5 (FXYD5) expression was upregulated in the SKOV3‑IP cell line compared with its parental cell line, SKOV3, and in ovarian cancer tissues compared with in normal tissues. In addition, FXYD5 upregulation was predictive of poor patient survival. Furthermore, through various in vitro (Transwell assay, clonogenic assay and western blot analysis) and in vivo (nude mouse model) experiments, it was demonstrated that FXYD5 promoted the metastasis of ovarian cancer cells. Mechanistically, RNA sequencing, western blot analysis, a luciferase reporter assay and chromatin immunoprecipitation were performed to reveal that FXYD5 dispersed the SMAD7‑SMAD specific E3 ubiquitin protein ligase 2‑TGF‑β receptor 1 (TβR1) complex, deubiquitinated and stabilized TβR1, and subsequently enhanced transforming growth factor‑β (TGF‑β) signaling and sustained TGF‑β‑driven epithelial‑mesenchymal transition (EMT). The TGF‑β‑activated SMAD3/SMAD4 complex was in turn directly recruited to the FXYD5 promoter region, interacted with specific SMAD‑binding elements, and then promoted FXYD5 transcription. In brief, FXYD5 positively regulated TGF‑β/SMADs signaling activities, which in turn induced FXYD5 expression, creating a positive feedback loop to drive EMT in the process of ovarian cancer progression. Collectively, the findings of the present study suggested a mechanism through which FXYD5 serves a critical role in the constitutive activation of the TGF‑β/SMADs signaling pathways in ovarian cancer, and provided a promising therapeutic target for human ovarian cancer.
Collapse
Affiliation(s)
- Yang Bai
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, P.R. China
| | - Liang-Dong Li
- Department of Neurosurgery, Fudan University Shanghai Cancer Center, Shanghai 200032, P.R. China
| | - Jun Li
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, P.R. China
| | - Rui-Fang Chen
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, P.R. China
| | - Hai-Lin Yu
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, P.R. China
| | - He-Fen Sun
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200030, P.R. China
| | - Jie-Yu Wang
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, P.R. China
| | - Xin Lu
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, P.R. China
| |
Collapse
|
143
|
Chae DK, Park J, Cho M, Ban E, Jang M, Yoo YS, Kim EE, Baik JH, Song EJ. MiR-195 and miR-497 suppress tumorigenesis in lung cancer by inhibiting SMURF2-induced TGF-β receptor I ubiquitination. Mol Oncol 2019; 13:2663-2678. [PMID: 31581360 PMCID: PMC6887584 DOI: 10.1002/1878-0261.12581] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/24/2019] [Accepted: 10/01/2019] [Indexed: 12/18/2022] Open
Abstract
SMURF2 is a member of the HECT family of E3 ubiquitin ligases that have important roles as a negative regulator of transforming growth factor‐β (TGF‐β) signaling through ubiquitin‐mediated degradation of TGF‐β receptor I. However, the regulatory mechanism of SMURF2 is largely unknown. In this study, we identified that micro(mi)R‐195 and miR‐497 putatively target SMURF2 using several target prediction databases. Both miR‐195 and miR‐497 bind to the 3′‐UTR of the SMURF2 mRNA and inhibit SMURF2 expression. Furthermore, miR‐195 and miR‐497 regulate SMURF2‐dependent TβRI ubiquitination and cause the activation of the TGF‐β signaling pathway in lung cancer cells. Upregulation of miR‐195 and miR‐497 significantly reduced cell viability and colony formation through the activation of TGF‐β signaling. Interestingly, miR‐195 and miR‐497 also reduced the invasion ability of lung cancer cells when cells were treated with TGF‐β1. Subsequent in vivo studies in xenograft nude mice model revealed that miR‐195 and miR‐497 repress tumor growth. These findings demonstrate that miR‐195 and miR‐497 act as a tumor suppressor by suppressing ubiquitination‐mediated degradation of TGF‐β receptors through SMURF2, and suggest that miR‐195 and miR‐497 are potential therapeutic targets for lung cancer.
Collapse
Affiliation(s)
- Dong-Kyu Chae
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul, Korea.,School of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Jinyoung Park
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul, Korea
| | - Moonsoo Cho
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul, Korea.,Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul, Korea
| | - Eunmi Ban
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul, Korea
| | - Mihue Jang
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Korea
| | - Young Sook Yoo
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Seoul, Korea
| | - Eunice EunKyeong Kim
- Biomedical Research Institute, Korea Institute of Science and Technology, Seoul, Korea
| | - Ja-Hyun Baik
- School of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | - Eun Joo Song
- Graduate School of Pharmaceutical Sciences and College of Pharmacy, Ewha Womans University, Seoul, Korea
| |
Collapse
|
144
|
Sun J, Shi X, Mamun MAA, Gao Y. The role of deubiquitinating enzymes in gastric cancer. Oncol Lett 2019; 19:30-44. [PMID: 31897112 PMCID: PMC6924028 DOI: 10.3892/ol.2019.11062] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 10/22/2019] [Indexed: 12/24/2022] Open
Abstract
The epigenetic regulation of gene expression (via DNA methylation, histone modification and microRNA interference) contributes to a variety of diseases, particularly cancer. Protein deubiquitination serves a key role in the mechanism underlying histone modification, and consequently influences tumor development and progression. Improved characterization of the role of ubiquitinating enzymes has led to the identification of numerous deubiquitinating enzymes (DUBs) with various functions. Gastric cancer (GC) is a highly prevalent cancer type that exhibits a high mortality rate. Latest analysis about cancer patient revealed that GC is sixth deadliest cancer type, which frequently occur in male (7.2%) than female (4.1%). Complex associations between DUBs and GC progression have been revealed in multiple studies; however, the molecular mechanism underpinning the metastasis and recurrence of GC is yet to be elucidated. Generally, DUBs were upregulated in gastric cancer. The relation of DUBs and tumor size, classification and staging was observed in GC. Besides, 5-yar survival rate of patients with GC is effeccted by expression level of DUBs. Among the highly expressed DUBs, specifically six DUBs namely UCHs, USPs, OTUs, MJDs, JAMMs and MCPIPs effect on this survival rate. Consequently, the association between GC and DUBs has received increasing attention in recent years. Therefore, in the present review, literature investigating the association between DUBs and GC pathophysiology was analyzed and critically appraised.
Collapse
Affiliation(s)
- Jiangang Sun
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Xiaojing Shi
- Zhengzhou University School of Pharmaceutical Science, Zhengzhou, Henan 450001, P.R. China
| | - M A A Mamun
- Zhengzhou University School of Pharmaceutical Science, Zhengzhou, Henan 450001, P.R. China
| | - Yongshun Gao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
145
|
Fukui S, Nagasaka K, Miyagawa Y, Kikuchi-Koike R, Kawata Y, Kanda R, Ichinose T, Sugihara T, Hiraike H, Wada-Hiraike O, Sasajima Y, Ayabe T. The proteasome deubiquitinase inhibitor bAP15 downregulates TGF-β/Smad signaling and induces apoptosis via UCHL5 inhibition in ovarian cancer. Oncotarget 2019; 10:5932-5948. [PMID: 31666925 PMCID: PMC6800272 DOI: 10.18632/oncotarget.27219] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 09/10/2019] [Indexed: 02/06/2023] Open
Abstract
The ubiquitin-proteasome pathway plays an important role in the regulation of cellular proteins. As an alternative to the proteasome itself, recent research has focused on methods to modulate the regulation of deubiquitinating enzymes (DUBs) upstream of the proteasome, identifying DUBs as novel therapeutic targets in breast, endometrial, and prostate cancers, along with multiple myeloma. bAP15, an inhibitor of the 19S proteasome DUBs UCHL5 and USP14, results in cell growth inhibition in several human cancers; however, the mechanism remains poorly understood in ovarian cancer. Here, we found that aberrant UCHL5 expression predicted shorter progression-free survival (PFS) in a cohort of 1435 patients with ovarian cancer described in the Gene Expression Omnibus and The Cancer Genome Atlas databases. The subgroup of patients with TP53 mutations was significantly more likely to exhibit poor PFS (p <0.001). Moreover, we found bAP15 could suppress TP53-mutant ovarian cancer cell survival by regulating TGF-β signaling through inhibiting UCHL5 expression and dephosphorylating Smad2, consequently inducing apoptosis. bAP15 (2.5 and 5.0 mg/kg) also exerted significant anti-tumor effect on nude mice bearing subcutaneous SKOV3 xenografts. As activated TGF-β signaling is involved in ovarian cancer progression, these findings suggest that UCHL5 inhibition offers potential opportunities for a novel targeted therapy against TGF-β-activated ovarian cancer.
Collapse
Affiliation(s)
- Shiho Fukui
- Department of Obstetrics and Gynecology, Teikyo University School of Medicine, Itabashi-ku, Tokyo 173-8605, Japan
| | - Kazunori Nagasaka
- Department of Obstetrics and Gynecology, Teikyo University School of Medicine, Itabashi-ku, Tokyo 173-8605, Japan
| | - Yuko Miyagawa
- Department of Obstetrics and Gynecology, Teikyo University School of Medicine, Itabashi-ku, Tokyo 173-8605, Japan
| | - Ryoko Kikuchi-Koike
- Department of Obstetrics and Gynecology, Teikyo University School of Medicine, Itabashi-ku, Tokyo 173-8605, Japan
| | - Yoshiko Kawata
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Ranka Kanda
- Department of Obstetrics and Gynecology, Teikyo University School of Medicine, Itabashi-ku, Tokyo 173-8605, Japan
| | - Takayuki Ichinose
- Department of Obstetrics and Gynecology, Teikyo University School of Medicine, Itabashi-ku, Tokyo 173-8605, Japan
| | - Takeru Sugihara
- Department of Obstetrics and Gynecology, Teikyo University School of Medicine, Itabashi-ku, Tokyo 173-8605, Japan
| | - Haruko Hiraike
- Department of Obstetrics and Gynecology, Teikyo University School of Medicine, Itabashi-ku, Tokyo 173-8605, Japan
| | - Osamu Wada-Hiraike
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Yuko Sasajima
- Department of Pathology, Teikyo University School of Medicine, Itabashi-ku, Tokyo 173-8605, Japan
| | - Takuya Ayabe
- Department of Obstetrics and Gynecology, Teikyo University School of Medicine, Itabashi-ku, Tokyo 173-8605, Japan
| |
Collapse
|
146
|
The role of DUBs in the post-translational control of cell migration. Essays Biochem 2019; 63:579-594. [DOI: 10.1042/ebc20190022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/30/2019] [Accepted: 10/01/2019] [Indexed: 12/26/2022]
Abstract
AbstractCell migration is a multifactorial/multistep process that requires the concerted action of growth and transcriptional factors, motor proteins, extracellular matrix remodeling and proteases. In this review, we focus on the role of transcription factors modulating Epithelial-to-Mesenchymal Transition (EMT-TFs), a fundamental process supporting both physiological and pathological cell migration. These EMT-TFs (Snail1/2, Twist1/2 and Zeb1/2) are labile proteins which should be stabilized to initiate EMT and provide full migratory and invasive properties. We present here a family of enzymes, the deubiquitinases (DUBs) which have a crucial role in counteracting polyubiquitination and proteasomal degradation of EMT-TFs after their induction by TGFβ, inflammatory cytokines and hypoxia. We also describe the DUBs promoting the stabilization of Smads, TGFβ receptors and other key proteins involved in transduction pathways controlling EMT.
Collapse
|
147
|
Ji Y, Gu Y, Hong S, Yu B, Zhang J, Liu J. Comprehensive analysis of lncRNA‐TF crosstalks and identification of prognostic regulatory feedback loops of glioblastoma using lncRNA/TF‐mediated ceRNA network. J Cell Biochem 2019; 121:755-767. [DOI: 10.1002/jcb.29321] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 07/15/2019] [Indexed: 01/10/2023]
Affiliation(s)
- Yang Ji
- Department of Medical Technology Jiangsu Vocational College of Medicine 283 Jiefangnan Road Yangcheng 224005 China
| | - Yaqin Gu
- Department of Medical Technology Jiangsu Vocational College of Medicine 283 Jiefangnan Road Yangcheng 224005 China
| | - Shuai Hong
- Key Laboratory of Intelligent Information Processing, State Key Laboratory of Computer Architecture, Institute of Computing Technology Chinese Academy of Sciences Beijing China
| | - Bo Yu
- Key Laboratory of Intelligent Information Processing, State Key Laboratory of Computer Architecture, Institute of Computing Technology Chinese Academy of Sciences Beijing China
| | - Jian‐Hua Zhang
- Department of Blood Transfusion Peking University People's Hospital Beijing China
| | - Jin‐Na Liu
- Key Laboratory of Intelligent Information Processing, State Key Laboratory of Computer Architecture, Institute of Computing Technology Chinese Academy of Sciences Beijing China
| |
Collapse
|
148
|
Das T, Kim EE, Song EJ. Phosphorylation of USP15 and USP4 Regulates Localization and Spliceosomal Deubiquitination. J Mol Biol 2019; 431:3900-3912. [PMID: 31330151 DOI: 10.1016/j.jmb.2019.07.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/25/2019] [Accepted: 07/11/2019] [Indexed: 02/04/2023]
Abstract
Deubiquitinating enzymes have key roles in diverse cellular processes whose enzymatic activities are regulated by different mechanisms including post-translational modification. Here, we show that USP15 is phosphorylated, and its localization and activity are dependent on the phosphorylation status. Nuclear-cytoplasmic fractionation and mass spectrometric analysis revealed that Thr149 and Thr219 of human USP15, which is conserved among different species, are phosphorylated in the cytoplasm. The phosphorylation status of USP15 at these two positions alters the interaction with its partner protein SART3, consequently leading to its nuclear localization and deubiquitinating activity toward the substrate PRP31. Treatment of cells with purvalanol A, a cyclin-dependent kinase inhibitor, results in nuclear translocation of USP15. USP4, another deubiquitinating enzyme with a high sequence homology and domain structure as USP15, also showed purvalanol A-dependent changes in activity and localization. Collectively, our data suggest that modifications of USP15 and USP4 by phosphorylation are important for the regulation of their localization required for cellular function in the spliceosome.
Collapse
Affiliation(s)
- Tanuza Das
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea; Biomedical Research Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Eunice EunKyeong Kim
- Biomedical Research Institute, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea.
| | - Eun Joo Song
- Molecular Recognition Research Center, Korea Institute of Science and Technology, Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea; Graduate School of Pharmaceutical Sciences, College of Pharmacy, Ewha Womans University, Seoul, Korea 03760.
| |
Collapse
|
149
|
Zhao Y, Wang X, Wang Q, Deng Y, Li K, Zhang M, Zhang Q, Zhou J, Wang HY, Bai P, Ren Y, Zhang N, Li W, Cheng Y, Xiao W, Du HN, Cheng X, Yin L, Fu X, Lin D, Zhou Q, Zhong B. USP2a Supports Metastasis by Tuning TGF-β Signaling. Cell Rep 2019; 22:2442-2454. [PMID: 29490279 DOI: 10.1016/j.celrep.2018.02.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 12/20/2017] [Accepted: 02/01/2018] [Indexed: 01/08/2023] Open
Abstract
TGF-β has been demonstrated to promote tumor metastasis, and the regulatory mechanisms are poorly understood. Here, we report the role of USP2a in promoting metastasis by facilitating TGF-β-triggered signaling. USP2a interacts with TGFBR1 and TGFBR2 upon TGF-β stimulation and removes K33-linked polyubiquitin chains from Lys502 of TGFBR1, promoting the recruitment of SMAD2/3. Simultaneously, TGFBR2 phosphorylates Ser207/Ser225 of USP2a, leading to the disassociation of SMAD2/3 from TGFBR1. The phosphorylation of USP2a and SMAD2 is positively correlated in human tumor biopsies, and USP2a is hyper-phosphorylated in lung adenocarcinomas with lymph node invasion. Depletion or pharmacologic inhibition of USP2a dampens TGF-β-triggered signaling and metastasis. Our findings have characterized an essential role of USP2a as a potential target for treatment of metastatic cancers.
Collapse
Affiliation(s)
- Yin Zhao
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China; College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaomeng Wang
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China; College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Qingqing Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yu Deng
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kang Li
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China; College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Man Zhang
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China; College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Qiang Zhang
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China; College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jin Zhou
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Hong-Yan Wang
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Peng Bai
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yujie Ren
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China; College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Ni Zhang
- Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Weina Li
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | | | - Wuhan Xiao
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Hai-Ning Du
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | | | - Lei Yin
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xiangning Fu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Dandan Lin
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Qianghui Zhou
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Bo Zhong
- Medical Research Institute, School of Medicine, Wuhan University, Wuhan 430071, China; College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
150
|
Young MJ, Hsu KC, Lin TE, Chang WC, Hung JJ. The role of ubiquitin-specific peptidases in cancer progression. J Biomed Sci 2019; 26:42. [PMID: 31133011 PMCID: PMC6537419 DOI: 10.1186/s12929-019-0522-0] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 04/16/2019] [Indexed: 12/13/2022] Open
Abstract
Protein ubiquitination is an important mechanism for regulating the activity and levels of proteins under physiological conditions. Loss of regulation by protein ubiquitination leads to various diseases, such as cancer. Two types of enzymes, namely, E1/E2/E3 ligases and deubiquitinases, are responsible for controlling protein ubiquitination. The ubiquitin-specific peptidases (USPs) are the main members of the deubiquitinase family. Many studies have addressed the roles of USPs in various diseases. An increasing number of studies have indicated that USPs are critical for cancer progression, and some USPs have been used as targets to develop inhibitors for cancer prevention. Herein we collect and organize most of the recent studies on the roles of USPs in cancer progression and discuss the development of USP inhibitors for cancer therapy in the future.
Collapse
Affiliation(s)
- Ming-Jer Young
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 701, Taiwan
| | - Kai-Cheng Hsu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan.,Biomedical Commercialization Center, Taipei Medical University, Taipei, Taiwan
| | - Tony Eight Lin
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Wen-Chang Chang
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jan-Jong Hung
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, 701, Taiwan. .,The Ph.D. Program for Neural Regenerative Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|