101
|
Ocran E, Chornenki NLJ, Bowman M, Sholzberg M, James P. Gastrointestinal bleeding in von Willebrand patients: special diagnostic and management considerations. Expert Rev Hematol 2023; 16:575-584. [PMID: 37278227 DOI: 10.1080/17474086.2023.2221846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/01/2023] [Indexed: 06/07/2023]
Abstract
INTRODUCTION Severe and recurrent gastrointestinal (GI) bleeding caused by angiodysplasia is a significant problem in patients with von Willebrand disease (VWD) and in those with acquired von Willebrand syndrome (AVWS). At present, angiodysplasia-related GI bleeding is often refractory to standard treatment including replacement therapy with von Willebrand factor (VWF) concentrates and continues to remain a major challenge and cause of significant morbidity in patients despite advances in diagnostics and therapeutics. AREAS COVERED This paper reviews the available literature on GI bleeding in VWD patients, examines the molecular mechanisms implicated in angiodysplasia-related GI bleeding, and summarizes existing strategies in the management of bleeding GI angiodysplasia in patients with VWF abnormalities. Suggestions are made for further research directions. EXPERT OPINION Bleeding from angiodysplasia poses a significant challenge for individuals with abnormal VWF. Diagnosis remains a challenge and may require multiple radiologic and endoscopic investigations. Additionally, there is a need for enhanced understanding at a molecular level to identify effective therapies. Future studies of VWF replacement therapies using newer formulations as well as other adjunctive treatments to prevent and treat bleeding will hopefully improve care.
Collapse
Affiliation(s)
- Edwin Ocran
- Department of Medicine, Queen's University, Kingston, Canada
| | | | | | - Michelle Sholzberg
- Division of Hematology-Oncology, St. Michael's Hospital, Li Ka Shing Knowledge Institute, University of Toronto, Toronto, Canada
| | - Paula James
- Department of Medicine, Queen's University, Kingston, Canada
| |
Collapse
|
102
|
Fang J, Wang Z, Miao CY. Angiogenesis after ischemic stroke. Acta Pharmacol Sin 2023; 44:1305-1321. [PMID: 36829053 PMCID: PMC10310733 DOI: 10.1038/s41401-023-01061-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/01/2023] [Indexed: 02/26/2023] Open
Abstract
Owing to its high disability and mortality rates, stroke has been the second leading cause of death worldwide. Since the pathological mechanisms of stroke are not fully understood, there are few clinical treatment strategies available with an exception of tissue plasminogen activator (tPA), the only FDA-approved drug for the treatment of ischemic stroke. Angiogenesis is an important protective mechanism that promotes neural regeneration and functional recovery during the pathophysiological process of stroke. Thus, inducing angiogenesis in the peri-infarct area could effectively improve hemodynamics, and promote vascular remodeling and recovery of neurovascular function after ischemic stroke. In this review, we summarize the cellular and molecular mechanisms affecting angiogenesis after cerebral ischemia registered in PubMed, and provide pro-angiogenic strategies for exploring the treatment of ischemic stroke, including endothelial progenitor cells, mesenchymal stem cells, growth factors, cytokines, non-coding RNAs, etc.
Collapse
Affiliation(s)
- Jie Fang
- Department of Pharmacology, Second Military Medical University / Naval Medical University, Shanghai, 200433, China
| | - Zhi Wang
- Department of Pharmacology, Second Military Medical University / Naval Medical University, Shanghai, 200433, China
| | - Chao-Yu Miao
- Department of Pharmacology, Second Military Medical University / Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
103
|
Papadakos SP, Stergiou IE, Gkolemi N, Arvanitakis K, Theocharis S. Unraveling the Significance of EPH/Ephrin Signaling in Liver Cancer: Insights into Tumor Progression and Therapeutic Implications. Cancers (Basel) 2023; 15:3434. [PMID: 37444544 DOI: 10.3390/cancers15133434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Liver cancer is a complex and challenging disease with limited treatment options and dismal prognosis. Understanding the underlying molecular mechanisms driving liver cancer progression and metastasis is crucial for developing effective therapeutic strategies. The EPH/ephrin system, which comprises a family of cell surface receptors and their corresponding ligands, has been implicated in the pathogenesis of HCC. This review paper aims to provide an overview of the current understanding of the role of the EPH/ephrin system in HCC. Specifically, we discuss the dysregulation of EPH/ephrin signaling in HCC and its impact on various cellular processes, including cell proliferation, migration, and invasion. Overall, the EPH/ephrin signaling system emerges as a compelling and multifaceted player in liver cancer biology. Elucidating its precise mechanisms and understanding its implications in disease progression and therapeutic responses may pave the way for novel targeted therapies and personalized treatment approaches for liver cancer patients. Further research is warranted to unravel the full potential of the EPH/ephrin system in liver cancer and its clinical translation.
Collapse
Affiliation(s)
- Stavros P Papadakos
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Ioanna E Stergiou
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Nikolina Gkolemi
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Konstantinos Arvanitakis
- Division of Gastroenterology and Hepatology, First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, St. Kiriakidi 1, 54636 Thessaloniki, Greece
- Basic and Translational Research Unit, Special Unit for Biomedical Research and Education, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Stamatios Theocharis
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
104
|
Pluta R, Miziak B, Czuczwar SJ. Post-Ischemic Permeability of the Blood-Brain Barrier to Amyloid and Platelets as a Factor in the Maturation of Alzheimer's Disease-Type Brain Neurodegeneration. Int J Mol Sci 2023; 24:10739. [PMID: 37445917 DOI: 10.3390/ijms241310739] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/13/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
The aim of this review is to present evidence of the impact of ischemic changes in the blood-brain barrier on the maturation of post-ischemic brain neurodegeneration with features of Alzheimer's disease. Understanding the processes involved in the permeability of the post-ischemic blood-brain barrier during recirculation will provide clinically relevant knowledge regarding the neuropathological changes that ultimately lead to dementia of the Alzheimer's disease type. In this review, we try to distinguish between primary and secondary neuropathological processes during and after ischemia. Therefore, we can observe two hit stages that contribute to Alzheimer's disease development. The onset of ischemic brain pathology includes primary ischemic neuronal damage and death followed by the ischemic injury of the blood-brain barrier with serum leakage of amyloid into the brain tissue, leading to increased ischemic neuronal susceptibility to amyloid neurotoxicity, culminating in the formation of amyloid plaques and ending in full-blown dementia of the Alzheimer's disease type.
Collapse
Affiliation(s)
- Ryszard Pluta
- Department of Pathophysiology, Medical University of Lublin, 20-059 Lublin, Poland
| | - Barbara Miziak
- Department of Pathophysiology, Medical University of Lublin, 20-059 Lublin, Poland
| | - Stanisław J Czuczwar
- Department of Pathophysiology, Medical University of Lublin, 20-059 Lublin, Poland
| |
Collapse
|
105
|
Song YY, Liang D, Liu DK, Lin L, Zhang L, Yang WQ. The role of the ERK signaling pathway in promoting angiogenesis for treating ischemic diseases. Front Cell Dev Biol 2023; 11:1164166. [PMID: 37427386 PMCID: PMC10325625 DOI: 10.3389/fcell.2023.1164166] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 06/12/2023] [Indexed: 07/11/2023] Open
Abstract
The main treatment strategy for ischemic diseases caused by conditions such as poor blood vessel formation or abnormal blood vessels involves repairing vascular damage and encouraging angiogenesis. One of the mitogen-activated protein kinase (MAPK) signaling pathways, the extracellular signal-regulated kinase (ERK) pathway, is followed by a tertiary enzymatic cascade of MAPKs that promotes angiogenesis, cell growth, and proliferation through a phosphorylation response. The mechanism by which ERK alleviates the ischemic state is not fully understood. Significant evidence suggests that the ERK signaling pathway plays a critical role in the occurrence and development of ischemic diseases. This review briefly describes the mechanisms underlying ERK-mediated angiogenesis in the treatment of ischemic diseases. Studies have shown that many drugs treat ischemic diseases by regulating the ERK signaling pathway to promote angiogenesis. The prospect of regulating the ERK signaling pathway in ischemic disorders is promising, and the development of drugs that specifically act on the ERK pathway may be a key target for promoting angiogenesis in the treatment of ischemic diseases.
Collapse
Affiliation(s)
- Yue-Yue Song
- Innovation Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Dan Liang
- Innovation Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - De-Kun Liu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lin Lin
- Innovation Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lei Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wen-Qing Yang
- Innovation Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Shandong Province Cardiovascular Disease Chinese Medicine Precision Diagnosis Engineering Laboratory, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
106
|
Lu M, Zhang L, Pan J, Shi H, Zhang M, Li C. Advances in the study of the vascular protective effects and molecular mechanisms of hawthorn ( Crataegus anamesa Sarg.) extracts in cardiovascular diseases. Food Funct 2023. [PMID: 37337667 DOI: 10.1039/d3fo01688a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Hawthorn belongs to the rose family and is a type of functional food. It contains various chemicals, including flavonoids, terpenoids, and organic acid compounds. This study aimed to review the vascular protective effects and molecular mechanisms of hawthorn and its extracts on cardiovascular diseases (CVDs). Hawthorn has a wide range of biological functions. Evidence suggests that the active components of HE reduce oxidative stress and inflammation, regulate lipid levels to prevent lipid accumulation, and inhibit free cholesterol accumulation in macrophages and foam cell formation. Additionally, hawthorn extract (HE) can protect vascular endothelial function, regulate endothelial dysfunction, and promote vascular endothelial relaxation. It has also been reported that the effective components of hawthorn can prevent age-related endothelial dysfunction, increase cellular calcium levels, cause antiplatelet aggregation, and promote antithrombosis. In clinical trials, HE has been proved to reduce the adverse effects of CVDs on blood lipids, blood pressure, left ventricular ejection fraction, heart rate, and exercise tolerance. Previous studies have pointed to the benefits of hawthorn and its extracts in treating atherosclerosis and other vascular diseases. Therefore, as both medicine and food, hawthorn can be used as a new drug source for treating cardiovascular diseases.
Collapse
Affiliation(s)
- Mengkai Lu
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Lei Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Jinyuan Pan
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Huishan Shi
- School of Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Muxin Zhang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Chao Li
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
107
|
Namjoo M, Ghafouri H, Assareh E, Aref AR, Mostafavi E, Hamrahi Mohsen A, Balalaie S, Broussy S, Asghari SM. A VEGFB-Based Peptidomimetic Inhibits VEGFR2-Mediated PI3K/Akt/mTOR and PLCγ/ERK Signaling and Elicits Apoptotic, Antiangiogenic, and Antitumor Activities. Pharmaceuticals (Basel) 2023; 16:906. [PMID: 37375853 DOI: 10.3390/ph16060906] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Vascular endothelial growth factor receptor 2 (VEGFR2) mediates VEGFA signaling mainly through the PI3K/AKT/mTOR and PLCγ/ERK1/2 pathways. Here we unveil a peptidomimetic (VGB3) based on the interaction between VEGFB and VEGFR1 that unexpectedly binds and neutralizes VEGFR2. Investigation of the cyclic and linear structures of VGB3 (named C-VGB3 and L-VGB3, respectively) using receptor binding and cell proliferation assays, molecular docking, and evaluation of antiangiogenic and antitumor activities in the 4T1 mouse mammary carcinoma tumor (MCT) model showed that loop formation is essential for peptide functionality. C-VGB3 inhibited proliferation and tubulogenesis of human umbilical vein endothelial cells (HUVECs), accounting for the abrogation of VEGFR2, p-VEGFR2 and, subsequently, PI3K/AKT/mTOR and PLCγ/ERK1/2 pathways. In 4T1 MCT cells, C-VGB3 inhibited cell proliferation, VEGFR2 expression and phosphorylation, the PI3K/AKT/mTOR pathway, FAK/Paxillin, and the epithelial-to-mesenchymal transition cascade. The apoptotic effects of C-VGB3 on HUVE and 4T1 MCT cells were inferred from annexin-PI and TUNEL staining and activation of P53, caspase-3, caspase-7, and PARP1, which mechanistically occurred through the intrinsic pathway mediated by Bcl2 family members, cytochrome c, Apaf-1 and caspase-9, and extrinsic pathway via death receptors and caspase-8. These data indicate that binding regions shared by VEGF family members may be important in developing novel pan-VEGFR inhibitors that are highly relevant in the pathogenesis of angiogenesis-related diseases.
Collapse
Affiliation(s)
- Mohadeseh Namjoo
- Department of Biology, University Campus II, University of Guilan, Rasht P.O. Box 14155-6619, Iran
| | - Hossein Ghafouri
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht P.O. Box 14155-6619, Iran
| | - Elham Assareh
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht P.O. Box 14155-6619, Iran
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Ebrahim Mostafavi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ali Hamrahi Mohsen
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran P.O. Box 1841, Iran
| | - Saeed Balalaie
- Peptide Chemistry Research Center, K. N. Toosi University of Technology, Tehran P.O. Box 1841, Iran
| | - Sylvain Broussy
- CiTCoM, UMR CNRS 8038, U1268 INSERM, UFR de Pharmacie, Faculté de Santé, Université Paris Cité, 75006 Paris, France
| | - S Mohsen Asghari
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran P.O. Box 1841, Iran
| |
Collapse
|
108
|
Xu K, Huang Y, Wu M, Yin J, Wei P. 3D bioprinting of multi-cellular tumor microenvironment for prostate cancer metastasis. Biofabrication 2023; 15:035020. [PMID: 37236173 DOI: 10.1088/1758-5090/acd960] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/26/2023] [Indexed: 05/28/2023]
Abstract
Prostate cancer (PCa) is one of the most lethal cancers in men worldwide. The tumor microenvironment (TME) plays an important role in PCa development, which consists of tumor cells, fibroblasts, endothelial cells, and extracellular matrix (ECM). Hyaluronic acid (HA) and cancer-associated fibroblasts (CAFs) are the major components in the TME and are correlated with PCa proliferation and metastasis, while the underlying mechanism is still not fully understood due to the lack of biomimetic ECM components and coculture models. In this study, gelatin methacryloyl/chondroitin sulfate-based hydrogels were physically crosslinked with HA to develop a novel bioink for the three-dimensional bioprinting of a coculture model that can be used to investigate the effect of HA on PCa behaviors and the mechanism underlying PCa-fibroblasts interaction. PCa cells demonstrated distinct transcriptional profiles under HA stimulation, where cytokine secretion, angiogenesis, and epithelial to mesenchymal transition were significantly upregulated. Further coculture of PCa with normal fibroblasts activated CAF transformation, which could be induced by the upregulated cytokine secretion of PCa cells. These results suggested HA could not only promote PCa metastasis individually but also induce PCa cells to activate CAF transformation and form HA-CAF coupling effects to further promote PCa drug resistance and metastasis.
Collapse
Affiliation(s)
- Kailei Xu
- Department of Plastic and Reconstructive Surgery, The First Affiliated Hospital, Ningbo University School of Medicine, Ningbo 315010, People's Republic of China
- Center for Medical and Engineering Innovation, Central Laboratory, The First Affiliated Hospital, Ningbo University School of Medicine, Ningbo, Zhejiang 315010, People's Republic of China
- Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang Province, Ningbo 315010, People's Republic of China
| | - Yuye Huang
- Department of Plastic and Reconstructive Surgery, The First Affiliated Hospital, Ningbo University School of Medicine, Ningbo 315010, People's Republic of China
- Center for Medical and Engineering Innovation, Central Laboratory, The First Affiliated Hospital, Ningbo University School of Medicine, Ningbo, Zhejiang 315010, People's Republic of China
| | - Miaoben Wu
- School of Medicine, Ningbo University, Ningbo 315211, People's Republic of China
| | - Jun Yin
- The State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Peng Wei
- Department of Plastic and Reconstructive Surgery, The First Affiliated Hospital, Ningbo University School of Medicine, Ningbo 315010, People's Republic of China
| |
Collapse
|
109
|
Dias AM, do Nascimento Canhas I, Bruziquesi CGO, Speziali MG, Sinisterra RD, Cortés ME. Magnesium (Mg2 +), Strontium (Sr2 +), and Zinc (Zn2 +) Co-substituted Bone Cements Based on Nano-hydroxyapatite/Monetite for Bone Regeneration. Biol Trace Elem Res 2023; 201:2963-2981. [PMID: 35994139 DOI: 10.1007/s12011-022-03382-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/06/2022] [Indexed: 11/30/2022]
Abstract
New bone cement type that combines Sr2 + /Mg2 + or Sr2 + /Zn2 + co-substituted nano-hydroxyapatite (n-HAs) with calcium phosphate dibasic and chitosan/gelatin polymers was developed to increase adhesion and cellular response. The cements were physicochemically described and tested in vitro using cell cultures. All cements exhibited quite hydrophilic and had high washout resistance. Cement releases Ca2 + , Mg2 + , Sr2 + , and Zn2 + in concentrations that are suitable for osteoblast proliferation and development. All of the cements stimulated cell proliferation in fibroblasts, endothelial cells, and osteoblasts, were non-cytotoxic, and produced apatite. Cements containing co-substituted n-HAs had excellent cytocompatibility, which improved osteoblast adhesion and cell proliferation. These cements had osteoinductive potential, stimulating extracellular matrix (ECM) mineralization and differentiation of MC3T3-E1 cells by increasing ALP and NO production. The ions Ca2 + , Mg2 + , Zn2 + , and Sr2 + appear to cooperate in promoting osteoblast function. The C3 cement (HA-SrMg5%), which was made up of n-HA co-substituted with 5 mol% Sr and 5 mol% Mg, showed exceptional osteoinductive capacity in terms of bone regeneration, indicating that this new bone cement could be a promising material for bone replacement.
Collapse
Affiliation(s)
- Alexa Magalhães Dias
- Dentistry Department, Faculty of Dentistry, Universidade Federal de Juiz de Fora, Rua São Paulo, 745 Governador Valadares/MG Brazil, Governador Valadares, MG, CEP, 31270901, Brazil
- Restorative Dentistry Department, Faculty of Dentistry, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos 6627, Belo Horizonte, MG, CEP, 31270901, Brazil
| | - Isabela do Nascimento Canhas
- Biopharmaceutical and Technology Innovation Graduate Program, ICB, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos 6627, Belo Horizonte, MG, CEP, 31270901, Brazil
| | - Carlos Giovani Oliveira Bruziquesi
- Chemistry Department, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos 6627, Belo Horizonte, MG, CEP, 31270901, Brazil
| | - Marcelo Gomes Speziali
- Biopharmaceutical and Technology Innovation Graduate Program, ICB, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos 6627, Belo Horizonte, MG, CEP, 31270901, Brazil
- Chemistry Department, Instituto de Ciências Exatas E Biológicas, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro s/n, Ouro Preto, MG, CEP, 35400000, Brazil
| | - Rubén Dario Sinisterra
- Biopharmaceutical and Technology Innovation Graduate Program, ICB, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos 6627, Belo Horizonte, MG, CEP, 31270901, Brazil
- Chemistry Department, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos 6627, Belo Horizonte, MG, CEP, 31270901, Brazil
| | - Maria Esperanza Cortés
- Biopharmaceutical and Technology Innovation Graduate Program, ICB, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos 6627, Belo Horizonte, MG, CEP, 31270901, Brazil.
- Restorative Dentistry Department, Faculty of Dentistry, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos 6627, Belo Horizonte, MG, CEP, 31270901, Brazil.
| |
Collapse
|
110
|
Al-Fotawi R, Fallatah W. Revascularization and angiogenesis for bone bioengineering in the craniofacial region: a review. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2023; 34:30. [PMID: 37249725 DOI: 10.1007/s10856-023-06730-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/17/2023] [Indexed: 05/31/2023]
Abstract
The revascularization of grafted tissues is a complicated and non-straightforward process, which makes it challenging to perform reconstructive surgery for critical-sized bone defects. This challenge is combined with the low vascularity that results from radiotherapy. This low vascularity could result from ischemia-reperfusion injuries, also known as ischemia which may happen upon grafting. Ischemia may affect the hard tissue during reconstruction, and this can often cause resorption, infections, disfigurement, and malunion. This paper therefore reviews the clinical and experimental application of procedures that were employed to improve the reconstructive surgery process, which would ensure that the vascularity of the tissue is maintained or enhanced. It also presents the key strategies that are implemented to perform tissue engineering within the grafted sites aiming to optimize the microenvironment and to enhance the overall process of neovascularization and angiogenesis. This review reveals that the current strategies, according to the literature, are the seeding of the mature and progenitor cells, use of extracellular matrix (ECM), co-culturing of osteoblasts with the ECM, growth factors and the use of microcapillaries incorporated into the scaffold design. However, due to the unstable and regression-prone capillary structures in bone constructs, further research focusing on creating long-lasting and stable blood vessels is required.
Collapse
Affiliation(s)
- Randa Al-Fotawi
- Oral and Maxillofacial Dept. Dental Faculty, King Saud University, Riyadh, 11451, Saudi Arabia.
| | | |
Collapse
|
111
|
Loinard C, Benadjaoud MA, Lhomme B, Flamant S, Baijer J, Tamarat R. Inflammatory cells dynamics control neovascularization and tissue healing after localized radiation induced injury in mice. Commun Biol 2023; 6:571. [PMID: 37248293 DOI: 10.1038/s42003-023-04939-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 05/15/2023] [Indexed: 05/31/2023] Open
Abstract
Local overexposure to ionizing radiation leads to chronic inflammation, vascular damage and cachexia. Here we investigate the kinetics of inflammatory cells from day (D)1 to D180 after mouse hindlimb irradiation and analyze the role of monocyte (Mo) subsets in tissue revascularization. At D1, we find that Mo and T cells are mobilized from spleen and bone marrow to the blood. New vessel formation during early phase, as demonstrated by ~1.4- and 2-fold increased angiographic score and capillary density, respectively, correlates with an increase of circulating T cells, and Mohi and type 1-like macrophages in irradiated muscle. At D90 vascular rarefaction and cachexia are observed, associated with decreased numbers of circulating Molo and Type 2-like macrophages in irradiated tissue. Moreover, CCR2- and CX3CR1-deficency negatively influences neovascularization. However adoptive transfer of Mohi enhances vessel growth. Our data demonstrate the radiation-induced dynamic inflammatory waves and the major role of inflammatory cells in neovascularization.
Collapse
Affiliation(s)
- Céline Loinard
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Fontenay-aux-Roses, France.
| | | | - Bruno Lhomme
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Fontenay-aux-Roses, France
| | - Stéphane Flamant
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Fontenay-aux-Roses, France
| | | | - Radia Tamarat
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Fontenay-aux-Roses, France
| |
Collapse
|
112
|
Delgado-Bellido D, Oliver FJ, Vargas Padilla MV, Lobo-Selma L, Chacón-Barrado A, Díaz-Martin J, de Álava E. VE-Cadherin in Cancer-Associated Angiogenesis: A Deceptive Strategy of Blood Vessel Formation. Int J Mol Sci 2023; 24:ijms24119343. [PMID: 37298296 DOI: 10.3390/ijms24119343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Tumor growth depends on the vascular system, either through the expansion of blood vessels or novel adaptation by tumor cells. One of these novel pathways is vasculogenic mimicry (VM), which is defined as a tumor-provided vascular system apart from endothelial cell-lined vessels, and its origin is partly unknown. It involves highly aggressive tumor cells expressing endothelial cell markers that line the tumor irrigation. VM has been correlated with high tumor grade, cancer cell invasion, cancer cell metastasis, and reduced survival of cancer patients. In this review, we summarize the most relevant studies in the field of angiogenesis and cover the various aspects and functionality of aberrant angiogenesis by tumor cells. We also discuss the intracellular signaling mechanisms involved in the abnormal presence of VE-cadherin (CDH5) and its role in VM formation. Finally, we present the implications for the paradigm of tumor angiogenesis and how targeted therapy and individualized studies can be applied in scientific analysis and clinical settings.
Collapse
Affiliation(s)
- Daniel Delgado-Bellido
- Instituto de Parasitología y Biomedicina López Neyra, CSIC, 18016 Granada, Spain
- Instituto de Salud Carlos III, CIBERONC, 28220 Madrid, Spain
- Instituto de Biomedicina de Sevilla, Hospital Virgen del Rocío, 41013 Seville, Spain
| | - F J Oliver
- Instituto de Parasitología y Biomedicina López Neyra, CSIC, 18016 Granada, Spain
| | | | - Laura Lobo-Selma
- Instituto de Biomedicina de Sevilla, Hospital Virgen del Rocío, 41013 Seville, Spain
| | | | - Juan Díaz-Martin
- Instituto de Salud Carlos III, CIBERONC, 28220 Madrid, Spain
- Instituto de Biomedicina de Sevilla, Hospital Virgen del Rocío, 41013 Seville, Spain
| | - Enrique de Álava
- Instituto de Salud Carlos III, CIBERONC, 28220 Madrid, Spain
- Instituto de Biomedicina de Sevilla, Hospital Virgen del Rocío, 41013 Seville, Spain
- Department of Normal and Pathological Cytology and Histology, School of Medicine, University of Seville, 41009 Seville, Spain
| |
Collapse
|
113
|
Barone L, Palano MT, Gallazzi M, Cucchiara M, Rossi F, Borgese M, Raspanti M, Zecca PA, Mortara L, Papait R, Bernardini G, Valdatta L, Bruno A, Gornati R. Adipose mesenchymal stem cell-derived soluble factors, produced under hypoxic condition, efficiently support in vivo angiogenesis. Cell Death Discov 2023; 9:174. [PMID: 37221171 DOI: 10.1038/s41420-023-01464-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 04/21/2023] [Accepted: 05/04/2023] [Indexed: 05/25/2023] Open
Abstract
Tissue regeneration or healing both require efficient vascularization within a tissue-damaged area. Based on this concept, a remarkable number of strategies, aimed at developing new tools to support re-vascularization of damaged tissue have emerged. Among the strategies proposed, the use of pro-angiogenic soluble factors, as a cell-free tool, appears as a promising approach, able to overcome the issues concerning the direct use of cells for regenerative medicine therapy. Here, we compared the effectiveness of adipose mesenchymal stem cells (ASCs), use as cell suspension, ASC protein extract or ASC-conditioned-medium (i.e., soluble factors), combined with collagenic scaffold, in supporting in vivo angiogenesis. We also tested the capability of hypoxia in increasing the efficiency of ASC to promote angiogenesis, via soluble factors, both in vivo and in vitro. In vivo studies were performed using the Integra® Flowable Wound Matrix, and the Ultimatrix in sponge assay. Flow cytometry was used to characterize the scaffold- and sponge-infiltrating cells. Real-time PCR was used to evaluate the expression of pro-angiogenic factors by stimulating Human Umbilical-Vein Endothelial Cells with ASC-conditioned media, obtained in hypoxic and normoxic conditions. We found that, in vivo, ACS-conditioned media can support angiogenesis similar to ASCs and ASC protein extract. Also, we observed that hypoxia increases the pro-angiogenic activities of ASC-conditioned media, compared to normoxia, by generating a secretome enriched in pro-angiogenic soluble factors, with bFGF, Adiponectine, ENA78, GRO, GRO-a, and ICAM1-3, as most regulated factors. Finally, ASC-conditioned media, produced in hypoxic condition, induce the expression of pro-angiogenic molecules in HUVECs. Our results provide evidence that ASC-conditioned-medium can be proposed as a cell-free preparation able to support angiogenesis, thus providing a relevant tool to overcome the issues and restrictions associated with the use of cells.
Collapse
Affiliation(s)
- Ludovica Barone
- Laboratory of Cell Biology, Department of Biotechnology and Life Sciences, University of Insubria, 21100, Varese, Italy
| | - Maria Teresa Palano
- Laboratory of Innate Immunity, Unit of Molecular Pathology, Biochemistry and Immunology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, 20138, Milan, Italy
| | - Matteo Gallazzi
- Laboratory of Innate Immunity, Unit of Molecular Pathology, Biochemistry and Immunology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, 20138, Milan, Italy
| | - Martina Cucchiara
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100, Varese, Italy
| | - Federica Rossi
- Laboratory of Cell Biology, Department of Biotechnology and Life Sciences, University of Insubria, 21100, Varese, Italy
| | - Marina Borgese
- Department of Medicine and Surgery, University of Insubria, 21100, Varese, Italy
| | - Mario Raspanti
- Department of Medicine and Surgery, University of Insubria, 21100, Varese, Italy
| | - Piero Antonio Zecca
- Department of Medicine and Surgery, University of Insubria, 21100, Varese, Italy
| | - Lorenzo Mortara
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100, Varese, Italy
| | - Roberto Papait
- Laboratory of Cell Biology, Department of Biotechnology and Life Sciences, University of Insubria, 21100, Varese, Italy
| | - Giovanni Bernardini
- Laboratory of Cell Biology, Department of Biotechnology and Life Sciences, University of Insubria, 21100, Varese, Italy
| | - Luigi Valdatta
- Unit of Plastic and Reconstructive Surgery, Department of Biotechnology and Life Sciences, University of Insubria, 21100, Varese, Italy
| | - Antonino Bruno
- Laboratory of Innate Immunity, Unit of Molecular Pathology, Biochemistry and Immunology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) MultiMedica, 20138, Milan, Italy.
- Immunology and General Pathology Laboratory, Department of Biotechnology and Life Sciences, University of Insubria, 21100, Varese, Italy.
| | - Rosalba Gornati
- Laboratory of Cell Biology, Department of Biotechnology and Life Sciences, University of Insubria, 21100, Varese, Italy.
| |
Collapse
|
114
|
Wang J, Song Y, Xie W, Zhao J, Wang Y, Yu W. Therapeutic angiogenesis based on injectable hydrogel for protein delivery in ischemic heart disease. iScience 2023; 26:106577. [PMID: 37192972 PMCID: PMC10182303 DOI: 10.1016/j.isci.2023.106577] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023] Open
Abstract
Ischemic heart disease (IHD) remains the leading cause of death and disability worldwide and leads to myocardial necrosis and negative myocardial remodeling, ultimately leading to heart failure. Current treatments include drug therapy, interventional therapy, and surgery. However, some patients with severe diffuse coronary artery disease, complex coronary artery anatomy, and other reasons are unsuitable for these treatments. Therapeutic angiogenesis stimulates the growth of the original blood vessels by using exogenous growth factors to generate more new blood vessels, which provides a new treatment for IHD. However, direct injection of these growth factors can cause a short half-life and serious side effects owing to systemic spread. Therefore, to overcome this problem, hydrogels have been developed for temporally and spatially controlled delivery of single or multiple growth factors to mimic the process of angiogenesis in vivo. This paper reviews the mechanism of angiogenesis, some important bioactive molecules, and natural and synthetic hydrogels currently being applied for bioactive molecule delivery to treat IHD. Furthermore, the current challenges of therapeutic angiogenesis in IHD and its potential solutions are discussed to facilitate real translation into clinical applications in the future.
Collapse
Affiliation(s)
- Junke Wang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 26000, China
- Qingdao Medical College, Qingdao University, Qingdao, Shandong 266071, China
| | - Yancheng Song
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 26000, China
| | - Wenjie Xie
- Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Shandong, Qingdao, Shandong 26000, China
| | - Jiang Zhao
- Department of Urology, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Ying Wang
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, Shandong 26000, China
- Corresponding author
| | - Wenzhou Yu
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 26003, China
- Corresponding author
| |
Collapse
|
115
|
Li X, Zhou J, Wang X, Li C, Ma Z, Wan Q, Peng F. New advances in the research of clinical treatment and novel anticancer agents in tumor angiogenesis. Biomed Pharmacother 2023; 163:114806. [PMID: 37163782 DOI: 10.1016/j.biopha.2023.114806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/24/2023] [Accepted: 04/30/2023] [Indexed: 05/12/2023] Open
Abstract
In 1971, Folkman proposed that tumors could be limited to very small sizes by blocking angiogenesis. Angiogenesis is the generation of new blood vessels from pre-existing vessels, considered to be one of the important processes in tumor growth and metastasis. Angiogenesis is a complex process regulated by various factors and involves many secreted factors and signaling pathways. Angiogenesis is important in the transport of oxygen and nutrients to the tumor during tumor development. Therefore, inhibition of angiogenesis has become an important strategy in the clinical management of many solid tumors. Combination therapies of angiogenesis inhibitors with radiotherapy and chemotherapy are often used in clinical practice. In this article, we will review common targets against angiogenesis, the most common and up-to-date anti-angiogenic drugs and clinical treatments in recent years, including active ingredients from chemical and herbal medicines.
Collapse
Affiliation(s)
- Xin Li
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jianbo Zhou
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xue Wang
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Chunxi Li
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zifan Ma
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Qiaoling Wan
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Fu Peng
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
116
|
Li X, Wang J, Wang Q, Luo T, Song X, Wan G, Feng Z, He X, Lei Q, Xu Y, You X, Yu L, Zhang L, Zhao L. A novel VEGFR inhibitor ZLF-095 with potent antitumor activity and low toxicity. Heliyon 2023; 9:e15152. [PMID: 37251840 PMCID: PMC10209341 DOI: 10.1016/j.heliyon.2023.e15152] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 05/31/2023] Open
Abstract
Angiogenesis plays a critical role in the survival, progression and metastasis of malignant tumors. Multiple factors are known to induce tumor angiogenesis, vascular endothelial growth factor (VEGF) is the most important one. Lenvatinib is an oral multi-kinase inhibitor of VEGFRs which has been approved for the treatment of various malignancies as the first-line agent by the Food and Drug Administration (FDA). It shows excellent antitumor efficacy in clinical practice. However, the adverse effects of Lenvatinib may seriously impair the therapeutic effect. Here we report the discovery and characterization of a novel VEGFR inhibitor (ZLF-095), which exhibited high activity and selectivity for VEGFR1/2/3. ZLF-095 displayed apparently antitumor effect in vitro and in vivo. We discovered that Lenvatinib could provoke fulminant ROS-caspase3-GSDME-dependent pyroptosis in GSDME-expressing cells by loss of mitochondrial membrane potential, which may be one of the reasons for Lenvatinib's toxicity. Meanwhile, ZLF-095 showed less toxicity than Lenvatinib by switching pyroptosis to apoptosis. These results suggest that ZLF-095 could become a potential angiogenesis inhibitor for cancer therapy.
Collapse
Affiliation(s)
- Xiao Li
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Jia Wang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Qianqian Wang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Tianwen Luo
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Xuejiao Song
- West China School of Public Health and West China Fourth Hospital, Sichuan University, 610000, China
| | - Guoquan Wan
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Zhanzhan Feng
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Xiaojie He
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Qian Lei
- Targeted Tracer Research and Development Laboratory, Precision Medicine Key Laboratory of Sichuan Province & Precision Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610093, China
| | - Ying Xu
- School of Chemical Engineering, Northwest University, No.229 North Taibai Road, Xi’an, Shaanxi, 710069, China
| | - Xinyu You
- College of Chemistry and Pharmaceutical Engineering, Huanghuai University, Zhumadian 463000, China
| | - Luoting Yu
- State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Lidan Zhang
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Centre of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, China
| | - Lifeng Zhao
- Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, 610106, China
| |
Collapse
|
117
|
Redigolo L, Sanfilippo V, La Mendola D, Forte G, Satriano C. Bioinspired Nanoplatforms Based on Graphene Oxide and Neurotrophin-Mimicking Peptides. MEMBRANES 2023; 13:membranes13050489. [PMID: 37233550 DOI: 10.3390/membranes13050489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/22/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023]
Abstract
Neurotrophins (NTs), which are crucial for the functioning of the nervous system, are also known to regulate vascularization. Graphene-based materials may drive neural growth and differentiation, and, thus, have great potential in regenerative medicine. In this work, we scrutinized the nano-biointerface between the cell membrane and hybrids made of neurotrophin-mimicking peptides and graphene oxide (GO) assemblies (pep-GO), to exploit their potential in theranostics (i.e., therapy and imaging/diagnostics) for targeting neurodegenerative diseases (ND) as well as angiogenesis. The pep-GO systems were assembled via spontaneous physisorption onto GO nanosheets of the peptide sequences BDNF(1-12), NT3(1-13), and NGF(1-14), mimicking the brain-derived neurotrophic factor (BDNF), the neurotrophin 3 (NT3), and the nerve growth factor (NGF), respectively. The interaction of pep-GO nanoplatforms at the biointerface with artificial cell membranes was scrutinized both in 3D and 2D by utilizing model phospholipids self-assembled as small unilamellar vesicles (SUVs) or planar-supported lipid bilayers (SLBs), respectively. The experimental studies were paralleled via molecular dynamics (MD) computational analyses. Proof-of-work in vitro cellular experiments with undifferentiated neuroblastoma (SH-SY5Y), neuron-like, differentiated neuroblastoma (dSH-SY5Y), and human umbilical vein endothelial cells (HUVECs) were carried out to shed light on the capability of the pep-GO nanoplatforms to stimulate the neurite outgrowth as well as tubulogenesis and cell migration.
Collapse
Affiliation(s)
- Luigi Redigolo
- Nano Hybrid Biointerfaces Lab (NHBIL), Department of Chemical Sciences, University of Catania, Viale Andrea Doria, 6, 95125 Catania, Italy
| | - Vanessa Sanfilippo
- Nano Hybrid Biointerfaces Lab (NHBIL), Department of Chemical Sciences, University of Catania, Viale Andrea Doria, 6, 95125 Catania, Italy
| | - Diego La Mendola
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano, 6, 56126 Pisa, Italy
| | - Giuseppe Forte
- Department of Drug and Health Science, University of Catania, Viale Andrea Doria, 6, 95125 Catania, Italy
| | - Cristina Satriano
- Nano Hybrid Biointerfaces Lab (NHBIL), Department of Chemical Sciences, University of Catania, Viale Andrea Doria, 6, 95125 Catania, Italy
| |
Collapse
|
118
|
Nassief SM, Amer ME, Shawky E, Sishtla K, Mas-Claret E, Muniyandi A, Corson TW, Mulholland DA, El-Masry S. Antiangiogenic Pterocarpan and Flavonoid Constituents of Erythrina lysistemon. JOURNAL OF NATURAL PRODUCTS 2023; 86:759-766. [PMID: 36938984 DOI: 10.1021/acs.jnatprod.2c00909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The roots of Erythrina lysistemon, growing in Egypt, yielded 24 flavonoid compounds, including 17 pterocarpans, two isoflavanones, one flavanone, two isoflavans, one 2-arylbenzofuran, and an isoflava-3-ene. Nine pterocarpans have not been reported previously (7-9, 11-14, 19, and 20), and 11 are reported here for the first time from this species. Structures were established using HRESIMS, NMR, and circular dichroism techniques. Selected compounds were tested for their ability to block the growth of human retinal endothelial cells and antiangiogenic activity in vitro. The isoflavonoids 5 and 6, and the pterocarpans 1, 2, 4, 20, and 22 demonstrated selective antiproliferative activities on endothelial cells compared to a nonendothelial cell type, with concentration-dependent antiangiogenic effects in vitro against HRECs, a cell type relevant to neovascular eye diseases.
Collapse
Affiliation(s)
- Sarah M Nassief
- Department of Pharmacognosy, Faculty of Pharmacy, University of Alexandria, Alkhartoom Square, Alexandria 21521, Egypt
| | - Masouda E Amer
- Department of Pharmacognosy, Faculty of Pharmacy, University of Alexandria, Alkhartoom Square, Alexandria 21521, Egypt
| | - Eman Shawky
- Department of Pharmacognosy, Faculty of Pharmacy, University of Alexandria, Alkhartoom Square, Alexandria 21521, Egypt
| | - Kamakshi Sishtla
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, 1160 W. Michigan St., Indianapolis, Indiana 46202, United States
| | - Eduard Mas-Claret
- Natural Products Research Group, Department of Chemistry, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom
- Royal Botanic Gardens, Kew, Kew Green, Richmond TW9 3AE, United Kingdom
| | - Anbukkarasi Muniyandi
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, 1160 W. Michigan St., Indianapolis, Indiana 46202, United States
| | - Timothy W Corson
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, 1160 W. Michigan St., Indianapolis, Indiana 46202, United States
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, 1160 West Michigan Street, Indianapolis, Indiana 46202, United States
| | - Dulcie A Mulholland
- Natural Products Research Group, Department of Chemistry, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom
| | - Sawsan El-Masry
- Department of Pharmacognosy, Faculty of Pharmacy, University of Alexandria, Alkhartoom Square, Alexandria 21521, Egypt
| |
Collapse
|
119
|
Winkler F, Venkatesh HS, Amit M, Batchelor T, Demir IE, Deneen B, Gutmann DH, Hervey-Jumper S, Kuner T, Mabbott D, Platten M, Rolls A, Sloan EK, Wang TC, Wick W, Venkataramani V, Monje M. Cancer neuroscience: State of the field, emerging directions. Cell 2023; 186:1689-1707. [PMID: 37059069 PMCID: PMC10107403 DOI: 10.1016/j.cell.2023.02.002] [Citation(s) in RCA: 100] [Impact Index Per Article: 100.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/01/2023] [Accepted: 02/01/2023] [Indexed: 04/16/2023]
Abstract
The nervous system governs both ontogeny and oncology. Regulating organogenesis during development, maintaining homeostasis, and promoting plasticity throughout life, the nervous system plays parallel roles in the regulation of cancers. Foundational discoveries have elucidated direct paracrine and electrochemical communication between neurons and cancer cells, as well as indirect interactions through neural effects on the immune system and stromal cells in the tumor microenvironment in a wide range of malignancies. Nervous system-cancer interactions can regulate oncogenesis, growth, invasion and metastatic spread, treatment resistance, stimulation of tumor-promoting inflammation, and impairment of anti-cancer immunity. Progress in cancer neuroscience may create an important new pillar of cancer therapy.
Collapse
Affiliation(s)
- Frank Winkler
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg and Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Humsa S Venkatesh
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Moran Amit
- Department of Head and Neck Surgery, MD Anderson Cancer Center and The University of Texas Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Tracy Batchelor
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Ihsan Ekin Demir
- Department of Surgery, Technical University of Munich, Munich, Germany
| | - Benjamin Deneen
- Center for Stem Cells and Regenerative Medicine, Baylor College of Medicine, Houston, TX, USA
| | - David H Gutmann
- Department of Neurology, Washington University, St Louis, MO, USA
| | - Shawn Hervey-Jumper
- Department of Neurosurgery, University of California, San Francisco, San Francisco, CA, USA
| | - Thomas Kuner
- Department of Functional Neuroanatomy, University of Heidelberg, Heidelberg, Germany
| | - Donald Mabbott
- Department of Psychology, University of Toronto and Neuroscience & Mental Health Program, Research Institute, The Hospital for Sick Children, Toronto, Canada
| | - Michael Platten
- Department of Neurology, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Asya Rolls
- Department of Immunology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Erica K Sloan
- Monash Institute of Pharmaceutical Sciences, Drug Discovery Biology Theme, Monash University, Parkville, VIC, Australia
| | - Timothy C Wang
- Department of Medicine, Division of Digestive and Gastrointestinal Diseases, Columbia University, New York, NY, USA
| | - Wolfgang Wick
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg and Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Varun Venkataramani
- Neurology Clinic and National Center for Tumor Diseases, University Hospital Heidelberg and Clinical Cooperation Unit Neurooncology, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Functional Neuroanatomy, University of Heidelberg, Heidelberg, Germany.
| | - Michelle Monje
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
120
|
Jiang Y, Lei G, Lin T, Zhou N, Wu J, Wang Z, Fan Y, Sheng H, Mao R. 1,6-Hexanediol regulates angiogenesis via suppression of cyclin A1-mediated endothelial function. BMC Biol 2023; 21:75. [PMID: 37024934 PMCID: PMC10080975 DOI: 10.1186/s12915-023-01580-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 03/28/2023] [Indexed: 04/08/2023] Open
Abstract
BACKGROUND Angiogenesis plays important roles in physiological and pathologic conditions, but the mechanisms underlying this complex process often remain to be elucidated. In recent years, liquid-liquid phase separation (LLPS) has emerged as a new concept to explain many cellular functions and diseases. However, whether LLPS is involved in angiogenesis has not been studied until now. Here, we investigated the potential role of LLPS in angiogenesis and endothelial function. RESULTS We found 1,6-hexanediol (1,6-HD), an inhibitor of LLPS, but not 2,5-hexanediol (2,5-HD) dramatically decreases neovascularization of Matrigel plug and angiogenesis response of murine corneal in vivo. Moreover, 1,6-HD but not 2,5-HD inhibits microvessel outgrowth of aortic ring and endothelial network formation. The endothelial function of migration, proliferation, and cell growth is suppressed by 1,6-HD. Global transcriptional analysis by RNA-sequencing reveals that 1,6-HD specifically blocks cell cycle and downregulates cell cycle-related genes including cyclin A1. Further experimental data show that 1,6-HD treatment greatly reduces the expression of cyclin A1 but with minimal effect on cyclin D1, cyclin E1, CDK2, and CDK4. The inhibitory effect of 1,6-HD on cyclin A1 is mainly through transcriptional regulation because proteasome inhibitors fail to rescue its expression. Furthermore, overexpression of cyclin A1 in HUVECs largely rescues the dysregulated tube formation upon 1,6-HD treatment. CONCLUSIONS Our data reveal a critical role of LLPS inhibitor 1,6-HD in angiogenesis and endothelial function, which specifically affects endothelial G1/S transition through transcriptional suppression of CCNA1, implying LLPS as a possible novel player to modulate angiogenesis, and thus, it might represent an interesting therapeutic target to be investigated in clinic angiogenesis-related diseases in future.
Collapse
Affiliation(s)
- Yongying Jiang
- Department of Pathophysiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong, Jiangsu, 226001, People's Republic of China
| | - Gongyun Lei
- Department of Pathophysiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong, Jiangsu, 226001, People's Republic of China
| | - Ting Lin
- Department of Pathophysiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong, Jiangsu, 226001, People's Republic of China
| | - Nan Zhou
- Department of Pathophysiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong, Jiangsu, 226001, People's Republic of China
| | - Jintao Wu
- Heart Center of Henan Provincial People's Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, People's Republic of China
| | - Zhou Wang
- Laboratory of Medical Science, School of Medicine, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Yihui Fan
- Department of Pathogenic Biology, School of Medicine, Nantong University, Nantong, Jiangsu, 226001, People's Republic of China
| | - Hongzhuan Sheng
- Department of Cardiology, Affiliated Hospital of Nantong University, Nantong University, 19 Qixiu Road, Nantong, Jiangsu, 226001, People's Republic of China.
| | - Renfang Mao
- Department of Pathophysiology, School of Medicine, Nantong University, 19 Qixiu Road, Nantong, Jiangsu, 226001, People's Republic of China.
| |
Collapse
|
121
|
Liu XJ, Zhao HC, Hou SJ, Zhang HJ, Cheng L, Yuan S, Zhang LR, Song J, Zhang SY, Chen SW. Recent development of multi-target VEGFR-2 inhibitors for the cancer therapy. Bioorg Chem 2023; 133:106425. [PMID: 36801788 DOI: 10.1016/j.bioorg.2023.106425] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/05/2023] [Accepted: 02/12/2023] [Indexed: 02/17/2023]
Abstract
Vascular epidermal growth factor receptor-2 (VEGFR-2), as an important tyrosine transmembrane protein, plays an important role in regulating endothelial cell proliferation and migration, regulating angiogenesis and other biological functions. VEGFR-2 is aberrantly expressed in many malignant tumors, and it is also related to the occurrence, development, and growth of tumors and drug resistance. Currently, there are nine VEGFR-2 targeted inhibitors approved by US.FDA for clinical use as anticancer drugs. Due to the limited clinical efficacy and potential toxicity of VEGFR inhibitors, it is necessary to develop new strategies to improve the clinical efficacy of VEGFR inhibitors. The development of multitarget therapy, especially dual-target therapy, has become a hot research field of cancer therapy, which may provide an effective strategy with higher therapeutic efficacy, pharmacokinetic advantages and low toxicity. Many groups have reported that the therapeutic effects could be improved by simultaneously inhibiting VEGFR-2 and other targets, such as EGFR, c-Met, BRAF, HDAC, etc. Therefore, VEGFR-2 inhibitors with multi-targeting capabilities have been considered to be promising and effective anticancer agents for cancer therapy. In this work, we reviewed the structure and biological functions of VEGFR-2, and summarized the drug discovery strategies, and inhibitory activities of VEGFR-2 inhibitors with multi-targeting capabilities reported in recent years. This work might provide the reference for the development of VEGFR-2 inhibitors with multi-targeting capabilities as novel anticancer agents.
Collapse
Affiliation(s)
- Xiu-Juan Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Hong-Cheng Zhao
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, Medical College of China Three Gorges University, Yichang 443003, China
| | - Su-Juan Hou
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Hao-Jie Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Lei Cheng
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Shuo Yuan
- Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou 450018, China
| | - Li-Rong Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jian Song
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Sai-Yang Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Shi-Wu Chen
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
122
|
Davies EM, Gurung R, Le KQ, Roan KT, Harvey RP, Mitchell GM, Schwarz Q, Mitchell CA. PI(4,5)P 2-dependent regulation of endothelial tip cell specification contributes to angiogenesis. SCIENCE ADVANCES 2023; 9:eadd6911. [PMID: 37000875 PMCID: PMC10065449 DOI: 10.1126/sciadv.add6911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 02/24/2023] [Indexed: 06/19/2023]
Abstract
Dynamic positioning of endothelial tip and stalk cells, via the interplay between VEGFR2 and NOTCH signaling, is essential for angiogenesis. VEGFR2 activates PI3K, which phosphorylates PI(4,5)P2 to PI(3,4,5)P3, activating AKT; however, PI3K/AKT does not direct tip cell specification. We report that PI(4,5)P2 hydrolysis by the phosphoinositide-5-phosphatase, INPP5K, contributes to angiogenesis. INPP5K ablation disrupted tip cell specification and impaired embryonic angiogenesis associated with enhanced DLL4/NOTCH signaling. INPP5K degraded a pool of PI(4,5)P2 generated by PIP5K1C phosphorylation of PI(4)P in endothelial cells. INPP5K ablation increased PI(4,5)P2, thereby releasing β-catenin from the plasma membrane, and concurrently increased PI(3,4,5)P3-dependent AKT activation, conditions that licensed DLL4/NOTCH transcription. Suppression of PI(4,5)P2 in INPP5K-siRNA cells by PIP5K1C-siRNA, restored β-catenin membrane localization and normalized AKT signaling. Pharmacological NOTCH or AKT inhibition in vivo or genetic β-catenin attenuation rescued angiogenesis defects in INPP5K-null mice. Therefore, PI(4,5)P2 is critical for β-catenin/DLL4/NOTCH signaling, which governs tip cell specification during angiogenesis.
Collapse
Affiliation(s)
- Elizabeth M. Davies
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| | - Rajendra Gurung
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| | - Kai Qin Le
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| | - Katherine T. T. Roan
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| | - Richard P. Harvey
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales 2010, Australia
- School of Clinical Medicine and School of Biotechnology and Biomolecular Science, University of New South Wales, Kensington, New South Wales 2052, Australia
| | - Geraldine M. Mitchell
- O’Brien Institute Department of St Vincent’s Institute and University of Melbourne, Department of Surgery, St. Vincent’s Hospital, Fitzroy, Victoria 3065, Australia
- Health Sciences Faculty, Australian Catholic University, Fitzroy, Victoria 3065, Australia
| | - Quenten Schwarz
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, South Australia 5001, Australia
| | - Christina A. Mitchell
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| |
Collapse
|
123
|
Chovatiya G, Li KN, Ghuwalewala S, Tumbar T. Single-cell transcriptomics of adult skin VE-cadherin expressing lineages during hair cycle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.22.533784. [PMID: 36993228 PMCID: PMC10055414 DOI: 10.1101/2023.03.22.533784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Adult skin homeostasis involves global reorganization of dermal lineages at different stages of the mouse hair growth cycle. Vascular endothelial cadherin (VE-cadherin encoded by Cdh5 ) expressing cells from blood and lymphatic vasculature structures are known to remodel during the adult hair cycle. Here we employ single-cell RNA-sequencing (scRNA-seq) 10x-genomics analysis of FACS-sorted VE-cadherin expressing cells marked via Cdh5-CreER genetic labeling at resting (telogen) and growth (anagen) stage of hair cycle. Our comparative analysis between the two stages uncovers a persistent Ki67 + proliferative EC population and documents changes in EC population distribution and gene expression. Global gene expression changes in all the analyzed populations revealed bioenergetic metabolic changes that may drive vascular remodeling during HF growth phase, alongside a few highly restricted cluster-specific gene expression differences. This study uncovers active cellular and molecular dynamics of adult skin endothelial lineages during hair cycle that may have broad implications in adult tissue regeneration and for understanding vascular disease.
Collapse
|
124
|
Barachini S, Ghelardoni S, Madonna R. Vascular Progenitor Cells: From Cancer to Tissue Repair. J Clin Med 2023; 12:jcm12062399. [PMID: 36983398 PMCID: PMC10059009 DOI: 10.3390/jcm12062399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/12/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
Vascular progenitor cells are activated to repair and form a neointima following vascular damage such as hypertension, atherosclerosis, diabetes, trauma, hypoxia, primary cancerous lesions and metastases as well as catheter interventions. They play a key role not only in the resolution of the vascular lesion but also in the adult neovascularization and angiogenesis sprouting (i.e., the growth of new capillaries from pre-existing ones), often associated with carcinogenesis, favoring the formation of metastases, survival and progression of tumors. In this review, we discuss the biology, cellular plasticity and pathophysiology of different vascular progenitor cells, including their origins (sources), stimuli and activated pathways that induce differentiation, isolation and characterization. We focus on their role in tumor-induced vascular injury and discuss their implications in promoting tumor angiogenesis during cancer proliferation and migration.
Collapse
Affiliation(s)
- Serena Barachini
- Laboratory for Cell Therapy, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Sandra Ghelardoni
- Laboratory of Biochemistry, Department of Pathology, University of Pisa, 56126 Pisa, Italy
| | - Rosalinda Madonna
- Department of Pathology, Cardiology Division, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
125
|
Olesen HØ, Pors SE, Adrados CS, Zeuthen MC, Mamsen LS, Pedersen AT, Kristensen SG. Effects of needle puncturing on re-vascularization and follicle survival in xenotransplanted human ovarian tissue. Reprod Biol Endocrinol 2023; 21:28. [PMID: 36941662 PMCID: PMC10026519 DOI: 10.1186/s12958-023-01081-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/12/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Ovarian tissue transplantation can restore fertility in young cancer survivors, however the detrimental loss of follicles following transplantation of cryopreserved ovarian tissue is hampering the efficiency of the procedure. This study investigates whether needle puncturing prior to transplantation can enhance revascularization and improve follicle survival in xenotransplanted human ovarian cortex. METHODS Cryopreserved human ovarian cortex pieces (N = 36) from 20 women aged 24-36 years were included. During the thawing process, each piece of tissue was cut in halves; one half serving as the untreated control and the other half was punctured approximately 150-200 times with a 29-gauge needle. The cortex pieces were transplanted subcutaneously to immunodeficient mice for 3, 6 and 10 days (N = 8 patients) and for 4 weeks (N = 12 patients). After 3, 6 and 10 days, revascularization of the ovarian xenografts were assessed using immunohistochemical detection of CD31 and gene expression of angiogenic factors (Vegfα, Angptl4, Ang1, and Ang2), and apoptotic factors (BCL2 and BAX) were performed by qPCR. Follicle density and morphology were evaluated in ovarian xenografts after 4 weeks. RESULTS A significant increase in the CD31 positive area in human ovarian xenografts was evident from day 3 to 10, but no significant differences were observed between the needle and control group. The gene expression of Vegfα was consistently higher in the needle group compared to control at all three time points, but not statistically significant. The expression of Ang1 and Ang2 increased significantly from day 3 to day 10 in the control group (p < 0.001, p = 0.0023), however, in the needle group this increase was not observed from day 6 to 10 (Ang2 p = 0.027). The BAX/BCL2 ratio was similar in the needle and control groups. After 4-weeks xenografting, follicle density (follicles/mm3, mean ± SEM) was higher in the needle group (5.18 ± 2.24) compared to control (2.36 ± 0.67) (p = 0.208), and a significant lower percentage of necrotic follicles was found in the needle group (19%) compared to control (36%) (p = 0.045). CONCLUSIONS Needle puncturing of human ovarian cortex prior to transplantation had no effect on revascularization of ovarian grafts after 3, 6 and 10 days xenotransplantation. However, needle puncturing did affect angiogenic genes and improved follicle morphology.
Collapse
Affiliation(s)
- Hanna Ørnes Olesen
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, Section 5712, University Hospital of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark.
| | - Susanne Elisabeth Pors
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, Section 5712, University Hospital of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Cristina Subiran Adrados
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, Section 5712, University Hospital of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Mette Christa Zeuthen
- Department of Technology, Faculty of Health, University College Copenhagen, 2100, Copenhagen, Denmark
| | - Linn Salto Mamsen
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, Section 5712, University Hospital of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Anette Tønnes Pedersen
- Fertility Clinic, University Hospital of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark
| | - Stine Gry Kristensen
- Laboratory of Reproductive Biology, The Juliane Marie Centre for Women, Children and Reproduction, Section 5712, University Hospital of Copenhagen, Blegdamsvej 9, 2100, Copenhagen, Denmark
| |
Collapse
|
126
|
Kumar R, Vitvitsky V, Seth P, Hiraki HL, Bell H, Andren A, Singhal R, Baker BM, Lyssiotis CA, Shah YM, Banerjee R. Sulfide oxidation promotes hypoxic angiogenesis and neovascularization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.14.532677. [PMID: 36993187 PMCID: PMC10055101 DOI: 10.1101/2023.03.14.532677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Angiogenic programming in the vascular endothelium is a tightly regulated process to maintain tissue homeostasis and is activated in tissue injury and the tumor microenvironment. The metabolic basis of how gas signaling molecules regulate angiogenesis is elusive. Herein, we report that hypoxic upregulation of NO synthesis in endothelial cells reprograms the transsulfuration pathway and increases H 2 S biogenesis. Furthermore, H 2 S oxidation by mitochondrial sulfide quinone oxidoreductase (SQOR) rather than downstream persulfides, synergizes with hypoxia to induce a reductive shift, limiting endothelial cell proliferation that is attenuated by dissipation of the mitochondrial NADH pool. Tumor xenografts in whole-body WB Cre SQOR fl/fl knockout mice exhibit lower mass and reduced angiogenesis compared to SQOR fl/fl controls. WB Cre SQOR fl/fl mice also exhibit reduced muscle angiogenesis following femoral artery ligation, compared to controls. Collectively, our data reveal the molecular intersections between H 2 S, O 2 and NO metabolism and identify SQOR inhibition as a metabolic vulnerability for endothelial cell proliferation and neovascularization. Highlights Hypoxic induction of •NO in endothelial cells inhibits CBS and switches CTH reaction specificity Hypoxic interruption of the canonical transsulfuration pathway promotes H 2 S synthesis Synergizing with hypoxia, SQOR deficiency induces a reductive shift in the ETC and restricts proliferationSQOR KO mice exhibit lower neovascularization in tumor xenograft and hind limb ischemia models.
Collapse
|
127
|
Ghalehbandi S, Yuzugulen J, Pranjol MZI, Pourgholami MH. The role of VEGF in cancer-induced angiogenesis and research progress of drugs targeting VEGF. Eur J Pharmacol 2023; 949:175586. [PMID: 36906141 DOI: 10.1016/j.ejphar.2023.175586] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/16/2023] [Accepted: 02/08/2023] [Indexed: 03/11/2023]
Abstract
Angiogenesis is a double-edged sword; it is a mechanism that defines the boundary between health and disease. In spite of its central role in physiological homeostasis, it provides the oxygen and nutrition needed by tumor cells to proceed from dormancy if pro-angiogenic factors tip the balance in favor of tumor angiogenesis. Among pro-angiogenic factors, vascular endothelial growth factor (VEGF) is a prominent target in therapeutic methods due to its strategic involvement in the formation of anomalous tumor vasculature. In addition, VEGF exhibits immune-regulatory properties which suppress immune cell antitumor activity. VEGF signaling through its receptors is an integral part of tumoral angiogenic approaches. A wide variety of medicines have been designed to target the ligands and receptors of this pro-angiogenic superfamily. Herein, we summarize the direct and indirect molecular mechanisms of VEGF to demonstrate its versatile role in the context of cancer angiogenesis and current transformative VEGF-targeted strategies interfering with tumor growth.
Collapse
Affiliation(s)
| | - Jale Yuzugulen
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, North Cyprus via Mersin 10, Turkey
| | | | | |
Collapse
|
128
|
Al Bitar S, El-Sabban M, Doughan S, Abou-Kheir W. Molecular mechanisms targeting drug-resistance and metastasis in colorectal cancer: Updates and beyond. World J Gastroenterol 2023; 29:1395-1426. [PMID: 36998426 PMCID: PMC10044855 DOI: 10.3748/wjg.v29.i9.1395] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/12/2022] [Accepted: 11/17/2022] [Indexed: 03/07/2023] Open
Abstract
Colorectal cancer (CRC) is the third most diagnosed malignancy and a major leading cause of cancer-related deaths worldwide. Despite advances in therapeutic regimens, the number of patients presenting with metastatic CRC (mCRC) is increasing due to resistance to therapy, conferred by a small population of cancer cells, known as cancer stem cells. Targeted therapies have been highly successful in prolonging the overall survival of patients with mCRC. Agents are being developed to target key molecules involved in drug-resistance and metastasis of CRC, and these include vascular endothelial growth factor, epidermal growth factor receptor, human epidermal growth factor receptor-2, mitogen-activated extracellular signal-regulated kinase, in addition to immune checkpoints. Currently, there are several ongoing clinical trials of newly developed targeted agents, which have shown considerable clinical efficacy and have improved the prognosis of patients who do not benefit from conventional chemotherapy. In this review, we highlight recent developments in the use of existing and novel targeted agents against drug-resistant CRC and mCRC. Furthermore, we discuss limitations and challenges associated with targeted therapy and strategies to combat intrinsic and acquired resistance to these therapies, in addition to the importance of implementing better preclinical models and the application of personalized therapy based on predictive biomarkers for treatment selection.
Collapse
Affiliation(s)
- Samar Al Bitar
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Marwan El-Sabban
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon
| | - Samer Doughan
- Department of Surgery, American University of Beirut Medical Center, Beirut 1107-2020, Lebanon
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut 1107-2020, Lebanon
| |
Collapse
|
129
|
Garufi A, D’Orazi V, Pistritto G, Cirone M, D’Orazi G. HIPK2 in Angiogenesis: A Promising Biomarker in Cancer Progression and in Angiogenic Diseases. Cancers (Basel) 2023; 15:cancers15051566. [PMID: 36900356 PMCID: PMC10000595 DOI: 10.3390/cancers15051566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Angiogenesis is the formation of new blood capillaries taking place from preexisting functional vessels, a process that allows cells to cope with shortage of nutrients and low oxygen availability. Angiogenesis may be activated in several pathological diseases, from tumor growth and metastases formation to ischemic and inflammatory diseases. New insights into the mechanisms that regulate angiogenesis have been discovered in the last years, leading to the discovery of new therapeutic opportunities. However, in the case of cancer, their success may be limited by the occurrence of drug resistance, meaning that the road to optimize such treatments is still long. Homeodomain-interacting protein kinase 2 (HIPK2), a multifaceted protein that regulates different molecular pathways, is involved in the negative regulation of cancer growth, and may be considered a "bona fide" oncosuppressor molecule. In this review, we will discuss the emerging link between HIPK2 and angiogenesis and how the control of angiogenesis by HIPK2 impinges in the pathogenesis of several diseases, including cancer.
Collapse
Affiliation(s)
- Alessia Garufi
- Unit of Cellular Networks, Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
| | - Valerio D’Orazi
- Department of Surgery, Sapienza University, 00185 Rome, Italy
| | - Giuseppa Pistritto
- Centralized Procedures Office, Italian Medicines Agency (AIFA), 00187 Rome, Italy
| | - Mara Cirone
- Laboratory Affiliated to Pasteur Institute Italy Foundation Cenci Bolognetti, Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Gabriella D’Orazi
- Unit of Cellular Networks, Department of Research and Advanced Technologies, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy
- Department of Neurosciences, Imaging and Clinical Sciences, University “G. D’Annunzio”, 66013 Chieti, Italy
- Correspondence:
| |
Collapse
|
130
|
Tsai HR, Lo RY, Liang KH, Chen TL, Huang HK, Wang JH, Lee YC. Risk of Subsequent Dementia or Alzheimer Disease Among Patients With Age-Related Macular Degeneration: A Systematic Review and Meta-analysis. Am J Ophthalmol 2023; 247:161-169. [PMID: 36375591 DOI: 10.1016/j.ajo.2022.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022]
Abstract
PURPOSE Alzheimer disease (AD), a common form of dementia, shares several clinical and pathologic features with age-related macular degeneration (AMD). Epidemiologic reports on the association of AMD with subsequent dementia or AD are inconsistent. DESIGN Systematic review and meta-analysis. METHODS The Meta-analysis of Observational Studies in Epidemiology reporting guidelines were applied. The Newcastle-Ottawa Scale was used to evaluate the risk of bias in the included cohort studies that examined the association of AMD with subsequent dementia or AD. We estimated the pooled hazard ratios (HRs) of dementia or AD using random effects model meta-analysis and subgroup analysis on different follow-up periods, AMD subtype, gender, age, study design, and methods to ascertain dementia or AD. RESULTS A total of 8 223 581 participants were included in 8 studies published during 2000-2021. The meta-analysis showed that AMD was significantly associated with subsequent dementia (pooled HR 1.22, 95% CI 1.01-1.47) or AD (pooled HR 1.21, 95% CI 1.03-1.43). Our secondary analysis revealed that the association was more noticeable in dry AMD than wet AMD. CONCLUSIONS Patients with AMD have higher risks of developing dementia or AD, and therefore identifying related comorbidities and retinal biomarkers is much warranted for older adults with AMD in ophthalmologic practice.
Collapse
Affiliation(s)
- Hou-Ren Tsai
- From the Department of Ophthalmology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation (H.-R.T., Y.-C.L.), Hualien
| | - Raymond Y Lo
- Division of Cognitive/Geriatric Neurology, Department of Neurology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation and Tzu Chi University (R.Y.L.), Hualien; Institute of Medical Sciences, Tzu Chi University (R.Y.L.), Hualien
| | - Kai-Hsiang Liang
- Department of Medical Education, Medical Administration Office, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City
| | - Tai-Li Chen
- Center for Aging and Health, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation (T.-L.C.), Hualien; Department of Dermatology, Taipei Veterans General Hospital (T.-L.C.), Taipei
| | - Huei-Kai Huang
- Department of Family medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation (H.-K.H.), Hualien; Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation (H.-K.H., J.-H.W.), Hualien
| | - Jen-Hung Wang
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation (H.-K.H., J.-H.W.), Hualien
| | - Yuan-Chieh Lee
- From the Department of Ophthalmology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation (H.-R.T., Y.-C.L.), Hualien; Department of Ophthalmology and Visual Science, Tzu Chi University (Y.-C.L.), Hualien.
| |
Collapse
|
131
|
Sheikh AM, Yano S, Tabassum S, Mitaki S, Michikawa M, Nagai A. Alzheimer's Amyloid β Peptide Induces Angiogenesis in an Alzheimer's Disease Model Mouse through Placental Growth Factor and Angiopoietin 2 Expressions. Int J Mol Sci 2023; 24:ijms24054510. [PMID: 36901941 PMCID: PMC10003449 DOI: 10.3390/ijms24054510] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Increased angiogenesis, especially the pathological type, has been documented in Alzheimer's disease (AD) brains, and it is considered to be activated due to a vascular dysfunction-mediated hypoxic condition. To understand the role of the amyloid β (Aβ) peptide in angiogenesis, we analyzed its effects on the brains of young APP transgenic AD model mice. Immunostaining results revealed that Aβ was mainly localized intracellularly, with very few immunopositive vessels, and there was no extracellular deposition at this age. Solanum tuberosum lectin staining demonstrated that compared to their wild-type littermates, the vessel number was only increased in the cortex of J20 mice. CD105 staining also showed an increased number of new vessels in the cortex, some of which were partially positive for collagen4. Real-time PCR results demonstrated that placental growth factor (PlGF) and angiopoietin 2 (AngII) mRNA were increased in both the cortex and hippocampus of J20 mice compared to their wild-type littermates. However, vascular endothelial growth factor (VEGF) mRNA did not change. Immunofluorescence staining confirmed the increased expression of PlGF and AngII in the cortex of the J20 mice. Neuronal cells were positive for PlGF and AngII. Treatment of a neural stem cell line (NMW7) with synthetic Aβ1-42 directly increased the expression of PlGF and AngII, at mRNA levels, and AngII at protein levels. Thus, these pilot data indicate that pathological angiogenesis exists in AD brains due to the direct effects of early Aβ accumulation, suggesting that the Aβ peptide regulates angiogenesis through PlGF and AngII expression.
Collapse
Affiliation(s)
- Abdullah Md. Sheikh
- Department of Laboratory Medicine, Shimane University School of Medicine, 89-1 Enya Cho, Izumo 693-8501, Japan
- Correspondence: (A.M.S.); (A.N.); Tel.: +81-0853-20-2306 (A.M.S.); +81-0853-20-2198 (A.N.)
| | - Shozo Yano
- Department of Laboratory Medicine, Shimane University School of Medicine, 89-1 Enya Cho, Izumo 693-8501, Japan
| | - Shatera Tabassum
- Department of Laboratory Medicine, Shimane University School of Medicine, 89-1 Enya Cho, Izumo 693-8501, Japan
| | - Shingo Mitaki
- Department of Neurology, Shimane University School of Medicine, 89-1 Enya Cho, Izumo 693-8501, Japan
| | - Makoto Michikawa
- Department of Biochemistry, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan
| | - Atsushi Nagai
- Department of Laboratory Medicine, Shimane University School of Medicine, 89-1 Enya Cho, Izumo 693-8501, Japan
- Department of Neurology, Shimane University School of Medicine, 89-1 Enya Cho, Izumo 693-8501, Japan
- Correspondence: (A.M.S.); (A.N.); Tel.: +81-0853-20-2306 (A.M.S.); +81-0853-20-2198 (A.N.)
| |
Collapse
|
132
|
Shineh G, Patel K, Mobaraki M, Tayebi L. Functional Approaches in Promoting Vascularization and Angiogenesis in Bone Critical-Sized Defects via Delivery of Cells, Growth Factors, Drugs, and Particles. J Funct Biomater 2023; 14:99. [PMID: 36826899 PMCID: PMC9960138 DOI: 10.3390/jfb14020099] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Critical-sized bone defects, or CSDs, are defined as bone defects that cannot be regenerated by themselves and require surgical intervention via employing specific biomaterials and a certain regenerative strategy. Although a variety of approaches can be used to treat CSDs, poor angiogenesis and vascularization remain an obstacle in these methods. The complex biological healing of bone defects depends directly on the function of blood flow to provide sufficient oxygen and nutrients and the removal of waste products from the defect site. The absence of vascularization can lead to non-union and delayed-union defect development. To overcome this challenge, angiogenic agents can be delivered to the site of injury to stimulate vessel formation. This review begins by introducing the treatment methods for CSDs. The importance of vascularization in CSDs is subsequently highlighted. Delivering angiogenesis agents, including relevant growth factors, cells, drugs, particles, cell secretion substances, their combination, and co-delivery to CSDs are fully explored. Moreover, the effects of such agents on new bone formation, followed by vessel formation in defect areas, are evaluated.
Collapse
Affiliation(s)
- Ghazal Shineh
- School of Biomedical Engineering, University of Sydney, Sydney, NSW 2006, Australia
| | - Kishan Patel
- School of Dentistry, Marquette University, Milwaukee, WI 53207, USA
| | - Mohammadmahdi Mobaraki
- Biomaterial Group, Faculty of Biomedical Engineering, Amirkabir University of Technology, Tehran 15916-34311, Iran
| | - Lobat Tayebi
- School of Dentistry, Marquette University, Milwaukee, WI 53207, USA
| |
Collapse
|
133
|
Novel insights into the angiogenic function of JMJD2B in diabetic hind limb ischemia: involvement of activating Wnt/β-catenin pathway. Hum Cell 2023; 36:1011-1023. [PMID: 36773117 DOI: 10.1007/s13577-023-00874-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 02/01/2023] [Indexed: 02/12/2023]
Abstract
Critical limb ischemia (CLI) is a major health problem, in which diabetes is a risk factor. Lysine Demethylase 4B (JMJD2B) is a histone demethylase. Diabetic CLI model was established in mice by streptozotocin injection and femoral artery ligation. Reduced expression of JMJD2B in lower limb muscles was observed in CLI mice with or without diabetes, accompanied by impaired blood perfusion and mobility. Adenovirus-mediated JMJD2B overexpression improved blood perfusion and angiogenesis as indicated by the alternation in CD31, α-SMA, and VEGFA expression in the lower limb of diabetic mice with CLI. In vitro, JMJD2B expression and the proliferation and tube formation ability were inhibited by high glucose and ischemic conditions in HMEC-1 cells. Overexpressed-JMJD2B contributed to angiogenesis by promoting cell proliferation, migration, and tube formation of HMEC-1 cells, as well as increasing VEGFA and SDF-1 expression. Mechanism study indicated that JMJD2B overexpression activated the Wnt/β-catenin pathway by promoting β-catenin nuclear translocation and the expression. This might lead to stimulated angiogenesis, as demonstrated by the Wnt/β-catenin inhibitor XAV-939. Overall, our study revealed that JMJD2B was down-regulated in CLI mice with diabetes and JMJD2B overexpression promoted angiogenesis probably via the activation of Wnt/β-catenin pathway.
Collapse
|
134
|
Advances in Molecular Regulation of Prostate Cancer Cells by Top Natural Products of Malaysia. Curr Issues Mol Biol 2023; 45:1536-1567. [PMID: 36826044 PMCID: PMC9954984 DOI: 10.3390/cimb45020099] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Prostate cancer (PCa) remains both a global health burden and a scientific challenge. We present a review of the molecular targets driving current drug discovery to fight this disease. Moreover, the preventable nature of most PCa cases represents an opportunity for phytochemicals as chemopreventive when adequately integrated into nutritional interventions. With a renovated interest in natural remedies as a commodity and their essential role in cancer drug discovery, Malaysia is looking towards capitalizing on its mega biodiversity, which includes the oldest rainforest in the world and an estimated 1200 medicinal plants. We here explore whether the list of top Malay plants prioritized by the Malaysian government may fulfill the potential of becoming newer, sustainable sources of prostate cancer chemotherapy. These include Andrographis paniculate, Centella asiatica, Clinacanthus nutans, Eurycoma longifolia, Ficus deltoidea, Hibiscus sabdariffa, Marantodes pumilum (syn. Labisia pumila), Morinda citrifolia, Orthosiphon aristatus, and Phyllanthus niruri. Our review highlights the importance of resistance factors such as Smac/DIABLO in cancer progression, the role of the CXCL12/CXCR4 axis in cancer metastasis, and the regulation of PCa cells by some promising terpenes (andrographolide, Asiatic acid, rosmarinic acid), flavonoids (isovitexin, gossypin, sinensetin), and alkylresorcinols (labisiaquinones) among others.
Collapse
|
135
|
Yang Y, Shao M, Cheng W, Yao J, Ma L, Wang Y, Wang W. A Pharmacological Review of Tanshinones, Naturally Occurring Monomers from Salvia miltiorrhiza for the Treatment of Cardiovascular Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:3801908. [PMID: 36793978 PMCID: PMC9925269 DOI: 10.1155/2023/3801908] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/23/2022] [Accepted: 11/25/2022] [Indexed: 02/09/2023]
Abstract
Cardiovascular diseases (CVDs) are a set of heart and blood vessel disorders that include coronary heart disease (CHD), rheumatic heart disease, and other conditions. Traditional Chinese Medicine (TCM) has definite effects on CVDs due to its multitarget and multicomponent properties, which are gradually gaining national attention. Tanshinones, the major active chemical compounds extracted from Salvia miltiorrhiza, exhibit beneficial improvement on multiple diseases, especially CVDs. At the level of biological activities, they play significant roles, including anti-inflammation, anti-oxidation, anti-apoptosis and anti-necroptosis, anti-hypertrophy, vasodilation, angiogenesis, combat against proliferation and migration of smooth muscle cells (SMCs), as well as anti-myocardial fibrosis and ventricular remodeling, which are all effective strategies in preventing and treating CVDs. Additionally, at the cellular level, Tanshinones produce marked effects on cardiomyocytes, macrophages, endothelia, SMCs, and fibroblasts in myocardia. In this review, we have summarized a brief overview of the chemical structures and pharmacological effects of Tanshinones as a CVD treatment to expound on different pharmacological properties in various cell types in myocardia.
Collapse
Affiliation(s)
- Ye Yang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Key Laboratory of TCM Syndrome and Formula (Beijing University of Chinese Medicine), Ministry of Education, Beijing, China
| | - Mingyan Shao
- Key Laboratory of TCM Syndrome and Formula (Beijing University of Chinese Medicine), Ministry of Education, Beijing, China
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wenkun Cheng
- Key Laboratory of TCM Syndrome and Formula (Beijing University of Chinese Medicine), Ministry of Education, Beijing, China
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Junkai Yao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Key Laboratory of TCM Syndrome and Formula (Beijing University of Chinese Medicine), Ministry of Education, Beijing, China
| | - Lin Ma
- Key Laboratory of TCM Syndrome and Formula (Beijing University of Chinese Medicine), Ministry of Education, Beijing, China
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yong Wang
- Key Laboratory of TCM Syndrome and Formula (Beijing University of Chinese Medicine), Ministry of Education, Beijing, China
- School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wei Wang
- Key Laboratory of TCM Syndrome and Formula (Beijing University of Chinese Medicine), Ministry of Education, Beijing, China
- Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
136
|
HuMSC-EV induce monocyte/macrophage mobilization to orchestrate neovascularization in wound healing process following radiation injury. Cell Death Dis 2023; 9:38. [PMID: 36725841 PMCID: PMC9892506 DOI: 10.1038/s41420-023-01335-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 01/06/2023] [Accepted: 01/12/2023] [Indexed: 02/03/2023]
Abstract
This study aims to investigate the mechanisms of human mesenchymal stem cell-derived extracellular vesicles (HuMSC-EV)-induced proangiogenic paracrine effects after radiation injury. HuMSC-EV were locally administered in mice hindlimb following 80-Gy X-ray irradiation and animals were monitored at different time points. HuMSC-EV improved neovascularization of the irradiated tissue, by stimulating angiogenesis, normalizing cutaneous blood perfusion, and increasing capillary density and production of proangiogenic factors. HuMSC-EV also stimulated vasculogenesis by promoting the recruitment and differentiation of bone marrow progenitors. Moreover, HuMSC-EV improved arteriogenesis by increasing the mobilization of monocytes from the spleen and the bone marrow and their recruitment into the muscle, with a pro-inflammatory potential. Importantly, monocyte depletion by clodronate treatment abolished the proangiogenic effect of HuMSC-EV. The critical role of Ly6C(hi) monocyte subset in HuMSC-EV-induced neovascularization process was further confirmed using Ccr2-/- mice. This study demonstrates that HuMSC-derived EV enhances the neovascularization process in the irradiated tissue by increasing the production of proangiogenic factors, promoting the recruitment of vascular progenitor cells, and the mobilization of innate cells to the injured site. These results support the concept that HuMSC-EV might represent a suitable alternative to stem cells for therapeutic neovascularization in tissue repair.
Collapse
|
137
|
Mammoto A, Mammoto T, Song JW. Editorial: Organ microenvironment in vascular formation, homeostasis and engineering. Front Bioeng Biotechnol 2023; 10:1130851. [PMID: 36704295 PMCID: PMC9871242 DOI: 10.3389/fbioe.2022.1130851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 01/12/2023] Open
Affiliation(s)
- Akiko Mammoto
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States,Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, United States,*Correspondence: Akiko Mammoto,
| | - Tadanori Mammoto
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States,Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jonathan W. Song
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH, United States,Comprehensive Cancer Center, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
138
|
Ghasemi Nasab MS, Niroomand-Oscuii H, Bazmara H, Soltani M. Multi-scale model of lumen formation via inverse membrane blebbing mechanism during sprouting angiogenesis process. J Theor Biol 2023; 556:111312. [PMID: 36279960 DOI: 10.1016/j.jtbi.2022.111312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/04/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022]
Abstract
Cancer is one of the leading causes of mortality and morbidity among people worldwide. Cancer appears as solid tumors in many cases. Angiogenesis is the growth of blood vessels from the existing vasculature and is one of the imperative processes in tumor growth. Another vital phenomenon for formation and functionality of this vasculature network is lumen formation. The results of recent studies indicate the importance of blood pressure in this mechanism. Computational modeling can study these processes in different scales. Hence, wide varieties of these models have been proposed during recent years. In this research, a multi-scale model is developed for the angiogenesis process. In the extracellular scale, the growth factor concentration is calculated via the reaction diffusion equation. At the cellular scale, growth, migration, and the adhesion of endothelial cells are modeled by the Potts cellular model. At the intra-cellular scale by considering biochemical signals, a Boolean network model describes migration, division, or apoptosis of endothelial cells. A stochastic model developed for lumen formation via inverse membrane blebbing mechanism. A CFD simulation was also used to investigate the role of pulsated blood pressure in the inverse membrane blebbing mechanism. The lumen formation model shows stochastic behavior in blebs expansion and lumen expansion. Comparing the stochastic model's results with the CFD simulation also shows the vital role of pressure pulse and the topology of the blebs in bleb retraction.
Collapse
Affiliation(s)
| | | | | | - Majid Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran; Advanced Bioengineering Initiative Center, Computational Medicine Center, K. N. Toosi University of Technology, Tehran, Iran; Cancer Biology Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran; Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Ontario, Canada; Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
139
|
Wang X, Li X, Wu Y, Hong J, Zhang M. The prognostic significance of tumor-associated neutrophils and circulating neutrophils in glioblastoma (WHO CNS5 classification). BMC Cancer 2023; 23:20. [PMID: 36609243 PMCID: PMC9817270 DOI: 10.1186/s12885-022-10492-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 12/27/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Tumor-associated neutrophils (TANs) in the tumor microenvironment are prognostic biomarkers in many malignancies. However, it is unclear whether TANs can serve as a prognostic marker for clinical outcomes in patients with glioblastoma (GBM), as classified according to World Health Organization Classification of Tumors of the Central Nervous System, fifth edition (CNS5). In the present study, we analyzed correlations of TANs and peripheral blood neutrophils prior to radiotherapy with overall survival (OS) in GBM (CNS5). METHODS RNA-seq expression profiles of patients with newly diagnosed GBM (CNS5) were extracted from The Cancer Genome Atlas (TCGA), and The Chinese Glioma Genome Atlas (CGGA). TAN infiltration was inferred using CIBERSORTx algorithm. Neutrophil counts prior to radiotherapy in newly diagnosed GBM (CNS5) were obtained from the First Affiliated Hospital of Fujian Medical University. The prognostic value of TANs and peripheral blood neutrophils before radiotherapy was investigated using Kaplan-Meier analysis and Cox proportional hazards models. The robustness of these findings was evaluated by sensitivity analysis, and E values were calculated. RESULTS A total of 146 and 173 individuals with GBM (CNS5) were identified from the TCGA and CGGA cohorts, respectively. High infiltration of TANs was of prognostic of poor OS in TCGA (HR = 1.621, 95% CI: 1.004-2.619) and CGGA (HR = 1.546, 95% CI: 1.029-2.323). Levels of peripheral blood neutrophils before radiotherapy (HR = 2.073, 95% CI: 1.077-3.990) were independently associated with poor prognosis. Sensitivity analysis determined that the E-value of high TANs infiltration was 2.140 and 2.465 in the TCGA and CGGA cohorts. CONCLUSIONS TANs and peripheral blood neutrophil levels before radiotherapy are prognostic of poor outcomes in GBM (CNS5).
Collapse
Affiliation(s)
- Xuezhen Wang
- grid.412683.a0000 0004 1758 0400Department of Radiotherapy, Cancer Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China ,grid.412683.a0000 0004 1758 0400Department of Radiotherapy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Xiaoxia Li
- grid.412683.a0000 0004 1758 0400Department of Radiotherapy, Cancer Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China ,grid.412683.a0000 0004 1758 0400Department of Radiotherapy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yufan Wu
- grid.412683.a0000 0004 1758 0400Department of Radiotherapy, Cancer Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China ,grid.412683.a0000 0004 1758 0400Department of Radiotherapy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jinsheng Hong
- grid.412683.a0000 0004 1758 0400Department of Radiotherapy, Cancer Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China ,grid.412683.a0000 0004 1758 0400Department of Radiotherapy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital of Fujian Medical University, Fuzhou, China ,grid.412683.a0000 0004 1758 0400Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Mingwei Zhang
- grid.412683.a0000 0004 1758 0400Department of Radiotherapy, Cancer Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China ,grid.412683.a0000 0004 1758 0400Department of Radiotherapy, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital of Fujian Medical University, Fuzhou, China ,grid.412683.a0000 0004 1758 0400Key Laboratory of Radiation Biology of Fujian Higher Education Institutions, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
140
|
Wang Q, Zeng A, Zhu M, Song L. Dual inhibition of EGFR‑VEGF: An effective approach to the treatment of advanced non‑small cell lung cancer with EGFR mutation (Review). Int J Oncol 2023; 62:26. [PMID: 36601768 PMCID: PMC9851127 DOI: 10.3892/ijo.2023.5474] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/01/2022] [Indexed: 01/04/2023] Open
Abstract
On a global scale, the incidence and mortality rates of lung cancer are gradually increasing year by year. A number of bad habits and environmental factors are associated with lung cancer, including smoking, second‑hand smoke exposure, occupational exposure, respiratory diseases and genetics. At present, low‑dose spiral computed tomography is routinely the first choice in the diagnosis of lung cancer. However, pathological examination is still the gold standard for the diagnosis of lung cancer. Based on the classification and stage of the cancer, treatment options such as surgery, radiotherapy, chemotherapy, targeted therapy and immunotherapy are available. The activation of the EGFR pathway can promote the survival and proliferation of tumor cells, and the VEGF pathway can promote the formation of blood vessels, thereby promoting tumor growth. In non‑small cell lung cancer (NSCLC) with EGFR mutation, EGFR activation can promote tumor growth by promoting VEGF upregulation through a hypoxia‑independent mechanism. The upregulation of VEGF can make tumor cells resistant to EGFR inhibitors. In addition, the expression of the VEGF signal is also affected by other factors. Therefore, the use of a single EGFR inhibitor cannot completely inhibit the expression of the VEGF signal. In order to overcome this problem, the combination of VEGF inhibitors and EGFR inhibitors has become the method of choice. Dual inhibition can not only overcome the resistance of tumor cells to EGFR inhibitors, but also significantly increase the progression‑free survival time of patients with NSCLC. The present review discusses the associations between the EGFR and VEGF pathways, and the characteristics of dual inhibition of the EGFR‑VEGF pathway.
Collapse
Affiliation(s)
- Qian Wang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China
| | - Anqi Zeng
- Institute of Translational Pharmacology and Clinical Application, Sichuan Academy of Chinese Medical Science, Chengdu, Sichuan 610041, P.R. China
| | - Min Zhu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China,Correspondence to: Dr Linjiang Song or Dr Min Zhu, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu, Sichuan 611137, P.R. China, E-mail: , E-mail:
| | - Linjiang Song
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China,Correspondence to: Dr Linjiang Song or Dr Min Zhu, School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu, Sichuan 611137, P.R. China, E-mail: , E-mail:
| |
Collapse
|
141
|
Shen N, Maggio M, Woods I, C. Lowry M, Almasri R, Gorgun C, Eichholz K, Stavenschi E, Hokamp K, Roche F, O’Driscoll L, Hoey D. Mechanically activated mesenchymal-derived bone cells drive vessel formation via an extracellular vesicle mediated mechanism. J Tissue Eng 2023; 14:20417314231186918. [PMID: 37654438 PMCID: PMC10467237 DOI: 10.1177/20417314231186918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/23/2023] [Indexed: 09/02/2023] Open
Abstract
Blood vessel formation is an important initial step for bone formation during development as well as during remodelling and repair in the adult skeleton. This results in a heavily vascularized tissue where endothelial cells and skeletal cells are constantly in crosstalk to facilitate homeostasis, a process that is mediated by numerous environmental signals, including mechanical loading. Breakdown in this communication can lead to disease and/or poor fracture repair. Therefore, this study aimed to determine the role of mature bone cells in regulating angiogenesis, how this is influenced by a dynamic mechanical environment, and understand the mechanism by which this could occur. Herein, we demonstrate that both osteoblasts and osteocytes coordinate endothelial cell proliferation, migration, and blood vessel formation via a mechanically dependent paracrine mechanism. Moreover, we identified that this process is mediated via the secretion of extracellular vesicles (EVs), as isolated EVs from mechanically stimulated bone cells elicited the same response as seen with the full secretome, while the EV-depleted secretome did not elicit any effect. Despite mechanically activated bone cell-derived EVs (MA-EVs) driving a similar response to VEGF treatment, MA-EVs contain minimal quantities of this angiogenic factor. Lastly, a miRNA screen identified mechanoresponsive miRNAs packaged within MA-EVs which are linked with angiogenesis. Taken together, this study has highlighted an important mechanism in osteogenic-angiogenic coupling in bone and has identified the mechanically activated bone cell-derived EVs as a therapeutic to promote angiogenesis and potentially bone repair.
Collapse
Affiliation(s)
- N. Shen
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
- Department of Mechanical, Manufacturing, and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - M. Maggio
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
- Department of Mechanical, Manufacturing, and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - I. Woods
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
- Department of Mechanical, Manufacturing, and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - M. C. Lowry
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, and Trinity St. James’s Cancer Institute, Trinity College Dublin, Dublin, Ireland
| | - R. Almasri
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, and Trinity St. James’s Cancer Institute, Trinity College Dublin, Dublin, Ireland
| | - C. Gorgun
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
- Department of Mechanical, Manufacturing, and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - K.F. Eichholz
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
- Department of Mechanical, Manufacturing, and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - E. Stavenschi
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
- Department of Mechanical, Manufacturing, and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
| | - K. Hokamp
- Smurfit Institute of Genetics, School of Genetics and Microbiology, Trinity College Dublin, College Green, Dublin, Ireland
| | - F.M. Roche
- Smurfit Institute of Genetics, School of Genetics and Microbiology, Trinity College Dublin, College Green, Dublin, Ireland
| | - L. O’Driscoll
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, and Trinity St. James’s Cancer Institute, Trinity College Dublin, Dublin, Ireland
| | - D.A. Hoey
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
- Department of Mechanical, Manufacturing, and Biomedical Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre, Trinity College Dublin and Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
142
|
Luo P, Li L, Huang J, Mao D, Lou S, Ruan J, Chen J, Tang R, Shi Y, Zhou S, Yang H. The role of SUMOylation in the neurovascular dysfunction after acquired brain injury. Front Pharmacol 2023; 14:1125662. [PMID: 37033632 PMCID: PMC10073463 DOI: 10.3389/fphar.2023.1125662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/10/2023] [Indexed: 04/11/2023] Open
Abstract
Acquired brain injury (ABI) is the most common disease of the nervous system, involving complex pathological processes, which often leads to a series of nervous system disorders. The structural destruction and dysfunction of the Neurovascular Unit (NVU) are prominent features of ABI. Therefore, understanding the molecular mechanism underlying NVU destruction and its reconstruction is the key to the treatment of ABI. SUMOylation is a protein post-translational modification (PTM), which can degrade and stabilize the substrate dynamically, thus playing an important role in regulating protein expression and biological signal transduction. Understanding the regulatory mechanism of SUMOylation can clarify the molecular mechanism of the occurrence and development of neurovascular dysfunction after ABI and is expected to provide a theoretical basis for the development of potential treatment strategies. This article reviews the role of SUMOylation in vascular events related to ABI, including NVU dysfunction and vascular remodeling, and puts forward therapeutic prospects.
Collapse
Affiliation(s)
- Pengren Luo
- Department of Neuro-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Lin Li
- Department of Neuro-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Jiashang Huang
- Department of Neuro-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Deqiang Mao
- Department of Neuro-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Silong Lou
- Department of Neuro-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Jian Ruan
- Department of Neuro-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Jie Chen
- Department of Neuro-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Ronghua Tang
- Department of Neuro-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - You Shi
- Department of Neuro-Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Shuai Zhou
- Department of Neurosurgery, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
- *Correspondence: Shuai Zhou, ; Haifeng Yang,
| | - Haifeng Yang
- Department of Neuro-Oncology, Chongqing University Cancer Hospital, Chongqing, China
- *Correspondence: Shuai Zhou, ; Haifeng Yang,
| |
Collapse
|
143
|
HIF1A Knockout by Biallelic and Selection-Free CRISPR Gene Editing in Human Primary Endothelial Cells with Ribonucleoprotein Complexes. Biomolecules 2022; 13:biom13010023. [PMID: 36671408 PMCID: PMC9856017 DOI: 10.3390/biom13010023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022] Open
Abstract
Primary endothelial cells (ECs), especially human umbilical vein endothelial cells (HUVECs), are broadly used in vascular biology. Gene editing of primary endothelial cells is known to be challenging, due to the low DNA transfection efficiency and the limited proliferation capacity of ECs. We report the establishment of a highly efficient and selection-free CRISPR gene editing approach for primary endothelial cells (HUVECs) with ribonucleoprotein (RNP) complex. We first optimized an efficient and cost-effective protocol for messenger RNA (mRNA) delivery into primary HUVECs by nucleofection. Nearly 100% transfection efficiency of HUVECs was achieved with EGFP mRNA. Using this optimized DNA-free approach, we tested RNP-mediated CRISPR gene editing of primary HUVECs with three different gRNAs targeting the HIF1A gene. We achieved highly efficient (98%) and biallelic HIF1A knockout in HUVECs without selection. The effects of HIF1A knockout on ECs' angiogenic characteristics and response to hypoxia were validated by functional assays. Our work provides a simple method for highly efficient gene editing of primary endothelial cells (HUVECs) in studies and manipulations of ECs functions.
Collapse
|
144
|
Lu J, Wang W, Zhang C, Xu W, Chen W, Tao L, Li Z, Cheng J, Zhang Y. Characterization of glyphosate-induced cardiovascular toxicity and apoptosis in zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158308. [PMID: 36030873 DOI: 10.1016/j.scitotenv.2022.158308] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Glyphosate, the most widely used herbicide, presents new hazards to human health. The developmental toxicity of glyphosate, especially its cardiovascular toxicity, needs to be closely monitored. To understand how glyphosate affects development, we performed toxicity tests on zebrafish embryos that were continuously exposed to glyphosate. The results indicated that glyphosate affected the overall development of zebrafish embryos, including mortality, hatching abnormalities, and decreased body length. At the same time, zebrafish embryos exposed to glyphosate exhibited cardiac malformations, including enlarged chambers, thinned ventricular walls, and rhythm disturbances. In addition, defective intersegmental vasculature occurred after glyphosate exposure, indicating impaired angiogenesis. Mechanistically, apoptosis clustered in the heart and vascular regions and levels of ATP and apoptosis-related genes including caspase-3, caspase-9, bax, and bcl-2 were altered. In summary, the data showed that cardiovascular toxicity caused by glyphosate exposure may be related to apoptosis. Our study provides evidence for a link between glyphosate exposure and cardiovascular developmental toxicity. This raises concerns regarding the health risks of the glyphosate.
Collapse
Affiliation(s)
- Jian Lu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Weiguo Wang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Cheng Zhang
- Department of Pathology, UT southwestern Medical Center, Dallas, TX 75390, United States
| | - Wenping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Weidong Chen
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Liming Tao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jiagao Cheng
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| | - Yang Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
145
|
Zhao S, Ji W, Shen Y, Fan Y, Huang H, Huang J, Lai G, Yuan K, Cheng C. Expression of hub genes of endothelial cells in glioblastoma-A prognostic model for GBM patients integrating single-cell RNA sequencing and bulk RNA sequencing. BMC Cancer 2022; 22:1274. [PMID: 36474171 PMCID: PMC9724299 DOI: 10.1186/s12885-022-10305-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 11/10/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND This study aimed to use single-cell RNA-seq (scRNA-seq) to discover marker genes in endothelial cells (ECs) and construct a prognostic model for glioblastoma multiforme (GBM) patients in combination with traditional high-throughput RNA sequencing (bulk RNA-seq). METHODS Bulk RNA-seq data was downloaded from The Cancer Genome Atlas (TCGA) and The China Glioma Genome Atlas (CGGA) databases. 10x scRNA-seq data for GBM were obtained from the Gene Expression Omnibus (GEO) database. The uniform manifold approximation and projection (UMAP) were used for downscaling and cluster identification. Key modules and differentially expressed genes (DEGs) were identified by weighted gene correlation network analysis (WGCNA). A non-negative matrix decomposition (NMF) algorithm was used to identify the different subtypes based on DEGs, and multivariate cox regression analysis to model the prognosis. Finally, differences in mutational landscape, immune cell abundance, immune checkpoint inhibitors (ICIs)-associated genes, immunotherapy effects, and enriched pathways were investigated between different risk groups. RESULTS The analysis of scRNA-seq data from eight samples revealed 13 clusters and four cell types. After applying Fisher's exact test, ECs were identified as the most important cell type. The NMF algorithm identified two clusters with different prognostic and immunological features based on DEGs. We finally built a prognostic model based on the expression levels of four key genes. Higher risk scores were significantly associated with poorer survival outcomes, low mutation rates in IDH genes, and upregulation of immune checkpoints such as PD-L1 and CD276. CONCLUSION We built and validated a 4-gene signature for GBM using 10 scRNA-seq and bulk RNA-seq data in this work.
Collapse
Affiliation(s)
- Songyun Zhao
- grid.460176.20000 0004 1775 8598Department of Neurosurgery, Wuxi People’s Hospital Affiliated to Nanjing Medical University, No. 299 Qing Yang Road, 214023 Wuxi, Jiangsu China
| | - Wei Ji
- grid.460176.20000 0004 1775 8598Department of Neurosurgery, Wuxi People’s Hospital Affiliated to Nanjing Medical University, No. 299 Qing Yang Road, 214023 Wuxi, Jiangsu China
| | - Yifan Shen
- grid.460176.20000 0004 1775 8598Department of Neurosurgery, Wuxi People’s Hospital Affiliated to Nanjing Medical University, No. 299 Qing Yang Road, 214023 Wuxi, Jiangsu China
| | - Yuansheng Fan
- grid.460176.20000 0004 1775 8598Department of Neurosurgery, Wuxi People’s Hospital Affiliated to Nanjing Medical University, No. 299 Qing Yang Road, 214023 Wuxi, Jiangsu China
| | - Hui Huang
- grid.460176.20000 0004 1775 8598Department of Neurosurgery, Wuxi People’s Hospital Affiliated to Nanjing Medical University, No. 299 Qing Yang Road, 214023 Wuxi, Jiangsu China
| | - Jin Huang
- grid.460176.20000 0004 1775 8598Department of Neurosurgery, Wuxi People’s Hospital Affiliated to Nanjing Medical University, No. 299 Qing Yang Road, 214023 Wuxi, Jiangsu China
| | - Guichuan Lai
- grid.203458.80000 0000 8653 0555Department of Epidemiology and Health Statistics, School of Public Health, Chongqing Medical University, Yixue Road, 400016 Chongqing, China
| | - Kemiao Yuan
- Department of Oncology, Traditional Chinese Medicine Hospital of Wuxi, No.8, West Zhongnan Road, 214071 Wuxi, China
| | - Chao Cheng
- grid.460176.20000 0004 1775 8598Department of Neurosurgery, Wuxi People’s Hospital Affiliated to Nanjing Medical University, No. 299 Qing Yang Road, 214023 Wuxi, Jiangsu China
| |
Collapse
|
146
|
Ahmad A, Nawaz MI. Molecular mechanism of VEGF and its role in pathological angiogenesis. J Cell Biochem 2022; 123:1938-1965. [PMID: 36288574 DOI: 10.1002/jcb.30344] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 09/12/2022] [Accepted: 10/13/2022] [Indexed: 12/24/2022]
Abstract
Over the last seven decades, a significant scientific contribution took place in the delineation of the implications of vascular endothelial-derived growth factor (VEGF) in the processes of angiogenesis. Under pathological conditions, mainly in response to hypoxia or ischemia, elevated VEGF levels promote vascular damage and the growth of abnormal blood vessels. Indeed, the development of VEGF biology has revolutionized our understanding of its role in pathological conditions. Hence, targeting VEGF or VEGF-mediated molecular pathways could be an excellent therapeutic strategy for managing cancers and intraocular neovascular disorders. Although anti-VEGF therapies, such as monoclonal antibodies and small-molecule tyrosine kinase inhibitors, have limited clinical efficacy, they can still significantly improve the overall survival rate. This thus demands further investigation through the development of alternative strategies in the management of VEGF-mediated pathological angiogenesis. This review article focuses on the recent developments toward the delineation of the functional biology of VEGF and the role of anti-VEGF strategies in the management of tumor and eye pathologies. Moreover, therapeutic angiogenesis, an exciting frontier for the treatment of ischemic disorders, is highlighted in this review, including wound healing.
Collapse
Affiliation(s)
- Ajmal Ahmad
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,Dr. Nasser Al-Rashid Research Chair in Ophthalmology, Abdulaziz University Hospital, Riyadh, Saudi Arabia
| | - Mohd Imtiaz Nawaz
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,Dr. Nasser Al-Rashid Research Chair in Ophthalmology, Abdulaziz University Hospital, Riyadh, Saudi Arabia
| |
Collapse
|
147
|
Afshar S, Abbasinazari M, Amin G, Farrokhian A, Sistanizad M, Afshar F, Khalili S. Endocannabinoids and related compounds as modulators of angiogenesis: Concepts and clinical significance. Cell Biochem Funct 2022; 40:826-837. [PMID: 36317321 DOI: 10.1002/cbf.3754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/08/2022] [Accepted: 09/01/2022] [Indexed: 12/13/2022]
Abstract
Vasculogenesis (the process of differentiation of angioblasts toward endothelial cells and de novo formation of crude vascular networks) and angiogenesis (the process of harmonized sprouting and dispersal of new capillaries from previously existing ones) are two fundamentally complementary processes, obligatory for maintaining physiological functioning of vascular system. In clinical practice, however, the later one is of more importance as it guarantees correct embryonic nourishment, accelerates wound healing processes, prevents uncontrolled cell growth and tumorigenesis, contributes in supplying nutritional demand following occlusion of coronary vessels and is in direct relation with development of diabetic retinopathy. Hence, discovery of novel molecules capable of modulating angiogenic events are of great clinical importance. Recent studies have demonstrated multiple angio-regulatory activities for endocannabinoid system modulators and endocannabinoid-like molecules, as well as their metabolizing enzymes. Hence, in present article, we reviewed the regulatory roles of these molecules on angiogenesis and described molecular mechanisms underlying them.
Collapse
Affiliation(s)
- Shima Afshar
- Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Abbasinazari
- Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gholamreza Amin
- Department of Pharmacognosy, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Farrokhian
- Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Sistanizad
- Department of Clinical Pharmacy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fariba Afshar
- Department of internal medicine, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shayesteh Khalili
- Department of Internal Medicine, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
148
|
Ludwig N, Yerneni SS, Azambuja JH, Pietrowska M, Widłak P, Hinck CS, Głuszko A, Szczepański MJ, Kärmer T, Kallinger I, Schulz D, Bauer RJ, Spanier G, Spoerl S, Meier JK, Ettl T, Razzo BM, Reichert TE, Hinck AP, Whiteside TL. TGFβ + small extracellular vesicles from head and neck squamous cell carcinoma cells reprogram macrophages towards a pro-angiogenic phenotype. J Extracell Vesicles 2022; 11:e12294. [PMID: 36537293 PMCID: PMC9764108 DOI: 10.1002/jev2.12294] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 11/03/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Transforming growth factor β (TGFβ) is a major component of tumor-derived small extracellular vesicles (TEX) in cancer patients. Mechanisms utilized by TGFβ+ TEX to promote tumor growth and pro-tumor activities in the tumor microenvironment (TME) are largely unknown. TEX produced by head and neck squamous cell carcinoma (HNSCC) cell lines carried TGFβ and angiogenesis-promoting proteins. TGFβ+ TEX stimulated macrophage chemotaxis without a notable M1/M2 phenotype shift and reprogrammed primary human macrophages to a pro-angiogenic phenotype characterized by the upregulation of pro-angiogenic factors and functions. In a murine basement membrane extract plug model, TGFβ+ TEX promoted macrophage infiltration and vascularization (p < 0.001), which was blocked by using the TGFβ ligand trap mRER (p < 0.001). TGFβ+ TEX injected into mice undergoing the 4-nitroquinoline-1-oxide (4-NQO)-driven oral carcinogenesis promoted tumor angiogenesis (p < 0.05), infiltration of M2-like macrophages in the TME (p < 0.05) and ultimately tumor progression (p < 0.05). Inhibition of TGFβ signaling in TEX with mRER ameliorated these pro-tumor activities. Silencing of TGFβ emerges as a critical step in suppressing pro-angiogenic functions of TEX in HNSCC.
Collapse
Affiliation(s)
- Nils Ludwig
- Department of Oral and Maxillofacial SurgeryUniversity Hospital RegensburgRegensburgGermany
- Department of PathologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
- UPMC Hillman Cancer CenterPittsburghPennsylvaniaUSA
| | | | - Juliana H. Azambuja
- Department of PathologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
- UPMC Hillman Cancer CenterPittsburghPennsylvaniaUSA
- Postgraduate Program in BiosciencesFederal University of Health Sciences of Porto Alegre (UFCSPA)Porto AlegreBrazil
| | - Monika Pietrowska
- Maria Sklodowska‐Curie National Research Institute of OncologyGliwice BranchGliwicePoland
| | | | - Cynthia S. Hinck
- Department of Structural BiologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Alicja Głuszko
- Chair and Department of BiochemistryMedical University of WarsawWarsawPoland
| | - Mirosław J. Szczepański
- Chair and Department of BiochemistryMedical University of WarsawWarsawPoland
- Department of OtolaryngologyCentre of Postgraduate Medical EducationWarsawPoland
| | - Teresa Kärmer
- Department of Oral and Maxillofacial SurgeryUniversity Hospital RegensburgRegensburgGermany
| | - Isabella Kallinger
- Department of Oral and Maxillofacial SurgeryUniversity Hospital RegensburgRegensburgGermany
| | - Daniela Schulz
- Department of Oral and Maxillofacial SurgeryUniversity Hospital RegensburgRegensburgGermany
| | - Richard J. Bauer
- Department of Oral and Maxillofacial SurgeryUniversity Hospital RegensburgRegensburgGermany
| | - Gerrit Spanier
- Department of Oral and Maxillofacial SurgeryUniversity Hospital RegensburgRegensburgGermany
| | - Steffen Spoerl
- Department of Oral and Maxillofacial SurgeryUniversity Hospital RegensburgRegensburgGermany
| | - Johannes K. Meier
- Department of Oral and Maxillofacial SurgeryUniversity Hospital RegensburgRegensburgGermany
| | - Tobias Ettl
- Department of Oral and Maxillofacial SurgeryUniversity Hospital RegensburgRegensburgGermany
| | | | - Torsten E. Reichert
- Department of Oral and Maxillofacial SurgeryUniversity Hospital RegensburgRegensburgGermany
| | - Andrew P. Hinck
- Department of Structural BiologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Theresa L. Whiteside
- Department of PathologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
- UPMC Hillman Cancer CenterPittsburghPennsylvaniaUSA
- Departments of Immunology and OtolaryngologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| |
Collapse
|
149
|
Xue S, Wang L, Cai J. Sulfono-γ-AApeptides as Protein Helical Domain Mimetics to Manipulate the Angiogenesis. Chembiochem 2022; 23:e202200298. [PMID: 36006398 PMCID: PMC9741949 DOI: 10.1002/cbic.202200298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/23/2022] [Indexed: 02/03/2023]
Abstract
Sulfono-γ-AApeptides recently developed in our group have been proven to be a new class of unnatural foldamer with well-defined helical structure and have been demonstrated to mimic protein helical domains and disrupt biomedically relevant protein-protein interactions (PPIs). Based on our design concept in a recent report, we discovered two similar sulfono-γ-AApeptides V2 and V3 which were designed to mimic the VEGF N-terminal helix α1 known to directly interact with VEGFRs. Interestingly, V2 was shown to possess the pro-angiogenic effect, whereas V3 was proved to be a potent inhibitor for angiogenesis. We speculate that the distinct angiogenesis signaling was due to the selective binding of the two molecules to VEGFR1 and VEGFR2, respectively. Together with their remarkable resistance to proteolytic degradation, relatively small sizes, and amenability to modification with diverse functional groups, V2 and V3 could serve as lead molecules for the development of potential therapeutic agents and molecular probes. These findings highlight sulfono-γ-AApeptides as an alternative paradigm to mimic the α-helical domain to modulate a wide variety of PPIs in the future.
Collapse
Affiliation(s)
- Songyi Xue
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave, Tampa, FL, USA
| | - Lei Wang
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave, Tampa, FL, USA
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, 4202 E. Fowler Ave, Tampa, FL, USA
| |
Collapse
|
150
|
Jeon EY, Sorrells L, Abaci HE. Biomaterials and bioengineering to guide tissue morphogenesis in epithelial organoids. Front Bioeng Biotechnol 2022; 10:1038277. [PMID: 36466337 PMCID: PMC9712807 DOI: 10.3389/fbioe.2022.1038277] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/24/2022] [Indexed: 09/27/2024] Open
Abstract
Organoids are self-organized and miniatured in vitro models of organs and recapitulate key aspects of organ architecture and function, leading to rapid progress in understanding tissue development and disease. However, current organoid culture systems lack accurate spatiotemporal control over biochemical and physical cues that occur during in vivo organogenesis and fail to recapitulate the complexity of organ development, causing the generation of immature organoids partially resembling tissues in vivo. Recent advances in biomaterials and microengineering technologies paved the way for better recapitulation of organ morphogenesis and the generation of anatomically-relevant organoids. For this, understanding the native ECM components and organization of a target organ is essential in providing rational design of extracellular scaffolds that support organoid growth and maturation similarly to the in vivo microenvironment. In this review, we focus on epithelial organoids that resemble the spatial distinct structure and function of organs lined with epithelial cells including intestine, skin, lung, liver, and kidney. We first discuss the ECM diversity and organization found in epithelial organs and provide an overview of developing hydrogel systems for epithelial organoid culture emphasizing their key parameters to determine cell fates. Finally, we review the recent advances in tissue engineering and microfabrication technologies including bioprinting and microfluidics to overcome the limitations of traditional organoid cultures. The integration of engineering methodologies with the organoid systems provides a novel approach for instructing organoid morphogenesis via precise spatiotemporal modulation of bioactive cues and the establishment of high-throughput screening platforms.
Collapse
Affiliation(s)
- Eun Young Jeon
- Dermatology Department, Columbia University Medical Center, New York, NY, United States
| | - Leila Sorrells
- Biomedical Engineering Department, Columbia University, New York, New York, United States
| | - Hasan Erbil Abaci
- Dermatology Department, Columbia University Medical Center, New York, NY, United States
| |
Collapse
|