101
|
Betolngar DB, Mota É, Fabritius A, Nielsen J, Hougaard C, Christoffersen CT, Yang J, Kehler J, Griesbeck O, Castro LRV, Vincent P. Phosphodiesterase 1 Bridges Glutamate Inputs with NO- and Dopamine-Induced Cyclic Nucleotide Signals in the Striatum. Cereb Cortex 2020; 29:5022-5036. [PMID: 30877787 DOI: 10.1093/cercor/bhz041] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 02/14/2019] [Indexed: 12/15/2022] Open
Abstract
The calcium-regulated phosphodiesterase 1 (PDE1) family is highly expressed in the brain, but its functional role in neurones is poorly understood. Using the selective PDE1 inhibitor Lu AF64196 and biosensors for cyclic nucleotides including a novel biosensor for cGMP, we analyzed the effect of PDE1 on cAMP and cGMP in individual neurones in brain slices from male newborn mice. Release of caged NMDA triggered a transient increase of intracellular calcium, which was associated with a decrease in cAMP and cGMP in medium spiny neurones in the striatum. Lu AF64196 alone did not increase neuronal cyclic nucleotide levels, but blocked the NMDA-induced reduction in cyclic nucleotides indicating that this was mediated by calcium-activated PDE1. Similar effects were observed in the prefrontal cortex and the hippocampus. Upon corelease of dopamine and NMDA, PDE1 was shown to down-regulate the D1-receptor mediated increase in cAMP. PDE1 inhibition increased long-term potentiation in rat ventral striatum, showing that PDE1 is implicated in the regulation of synaptic plasticity. Overall, our results show that PDE1 reduces cyclic nucleotide signaling in the context of glutamate and dopamine coincidence. This effect could have a therapeutic value for treating brain disorders related to dysfunctions in dopamine neuromodulation.
Collapse
Affiliation(s)
| | - Élia Mota
- Sorbonne Université, CNRS, Biological Adaptation and Ageing, Paris, France
| | - Arne Fabritius
- Max Planck Institute for Neurobiology, Tools for Bio-Imaging, Am Klopferspitz 18, Martinsried, Germany
| | | | | | | | - Jun Yang
- Shanghai Chempartner Co. Ltd., Shanghai, China
| | - Jan Kehler
- H. Lundbeck A/S, Ottiliavej 9, Valby, Denmark
| | - Oliver Griesbeck
- Max Planck Institute for Neurobiology, Tools for Bio-Imaging, Am Klopferspitz 18, Martinsried, Germany
| | - Liliana R V Castro
- Sorbonne Université, CNRS, Biological Adaptation and Ageing, Paris, France
| | - Pierre Vincent
- Sorbonne Université, CNRS, Biological Adaptation and Ageing, Paris, France
| |
Collapse
|
102
|
Shemetov AA, Monakhov MV, Zhang Q, Canton-Josh JE, Kumar M, Chen M, Matlashov ME, Li X, Yang W, Nie L, Shcherbakova DM, Kozorovitskiy Y, Yao J, Ji N, Verkhusha VV. A near-infrared genetically encoded calcium indicator for in vivo imaging. Nat Biotechnol 2020; 39:368-377. [PMID: 33106681 PMCID: PMC7956128 DOI: 10.1038/s41587-020-0710-1] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 09/18/2020] [Indexed: 12/18/2022]
Abstract
While calcium imaging has become a mainstay of modern neuroscience, the spectral properties of current fluorescent calcium indicators limit deep tissue imaging as well as simultaneous use with other probes. Using two monomeric near-infrared fluorescent proteins, we engineered a near-infrared FRET-based genetically encoded calcium indicator (iGECI). iGECI exhibits high brightness, high photostability, and up to 600% increase in fluorescence response to calcium. In dissociated neurons, iGECI detects spontaneous neuronal activity, and electrically and optogenetically induced firing. We validated iGECI performance up to a depth of almost 400 μm in acute brain slices using one-photon light-sheet imaging. Applying hybrid photoacoustic and fluorescence microscopy, we simultaneously monitored neuronal and hemodynamic activities in the mouse brain through an intact skull, with ~3 μm lateral and ~25–50 μm axial resolution. Using two-photon imaging, we detected evoked and spontaneous neuronal activity in the mouse visual cortex, with fluorescence changes of up to 25%. iGECI allows biosensors and optogenetic actuators to be multiplexed without spectral crosstalk.
Collapse
Affiliation(s)
- Anton A Shemetov
- Department of Anatomy and Structural Biology and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA.,Autonomous Therapeutics, Inc., New York, NY, USA
| | - Mikhail V Monakhov
- Department of Anatomy and Structural Biology and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Qinrong Zhang
- Department of Physics, University of California, Berkeley, Berkeley, CA, USA
| | - Jose Ernesto Canton-Josh
- Department of Neurobiology, Weinberg School of Arts and Sciences, Northwestern University, Evanston, IL, USA
| | - Manish Kumar
- Department of Neurobiology, Weinberg School of Arts and Sciences, Northwestern University, Evanston, IL, USA
| | - Maomao Chen
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.,Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Mikhail E Matlashov
- Department of Anatomy and Structural Biology and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Xuan Li
- Department of Anesthesiology, Duke University, Durham, NC, USA
| | - Wei Yang
- Department of Anesthesiology, Duke University, Durham, NC, USA
| | - Liming Nie
- Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China.,Department of Radiology and Optical Imaging Laboratory, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Daria M Shcherbakova
- Department of Anatomy and Structural Biology and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Yevgenia Kozorovitskiy
- Department of Neurobiology, Weinberg School of Arts and Sciences, Northwestern University, Evanston, IL, USA.,Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
| | - Junjie Yao
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Na Ji
- Department of Physics, University of California, Berkeley, Berkeley, CA, USA
| | - Vladislav V Verkhusha
- Department of Anatomy and Structural Biology and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA. .,Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
103
|
Zhang X, Mariano CF, Ando Y, Shen K. Bioengineering tools for probing intracellular events in T lymphocytes. WIREs Mech Dis 2020; 13:e1510. [PMID: 33073545 DOI: 10.1002/wsbm.1510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 11/11/2022]
Abstract
T lymphocytes are the central coordinator and executor of many immune functions. The activation and function of T lymphocytes are mediated through the engagement of cell surface receptors and regulated by a myriad of intracellular signaling network. Bioengineering tools, including imaging modalities and fluorescent probes, have been developed and employed to elucidate the cellular events throughout the functional lifespan of T cells. A better understanding of these events can broaden our knowledge in the immune systems biology, as well as accelerate the development of effective diagnostics and immunotherapies. Here we review the commonly used and recently developed techniques and probes for monitoring T lymphocyte intracellular events, following the order of intracellular events in T cells from activation, signaling, metabolism to apoptosis. The techniques introduced here can be broadly applied to other immune cells and cell systems. This article is categorized under: Immune System Diseases > Molecular and Cellular Physiology Immune System Diseases > Biomedical Engineering Infectious Diseases > Biomedical Engineering.
Collapse
Affiliation(s)
- Xinyuan Zhang
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA
| | - Chelsea F Mariano
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA
| | - Yuta Ando
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA
| | - Keyue Shen
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California, USA.,Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California, USA.,USC Stem Cell, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
104
|
Egbert JR, Fahey PG, Reimer J, Owen CM, Evsikov AV, Nikolaev VO, Griesbeck O, Ray RS, Tolias AS, Jaffe LA. Follicle-stimulating hormone and luteinizing hormone increase Ca2+ in the granulosa cells of mouse ovarian follicles†. Biol Reprod 2020; 101:433-444. [PMID: 31087036 DOI: 10.1093/biolre/ioz085] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/08/2019] [Accepted: 05/13/2019] [Indexed: 12/16/2022] Open
Abstract
In mammalian ovarian follicles, follicle stimulating hormone (FSH) and luteinizing hormone (LH) signal primarily through the G-protein Gs to elevate cAMP, but both of these hormones can also elevate Ca2+ under some conditions. Here, we investigate FSH- and LH-induced Ca2+ signaling in intact follicles of mice expressing genetically encoded Ca2+ sensors, Twitch-2B and GCaMP6s. At a physiological concentration (1 nM), FSH elevates Ca2+ within the granulosa cells of preantral and antral follicles. The Ca2+ rise begins several minutes after FSH application, peaks at ∼10 min, remains above baseline for another ∼10 min, and depends on extracellular Ca2+. However, suppression of the FSH-induced Ca2+ increase by reducing extracellular Ca2+ does not inhibit FSH-induced phosphorylation of MAP kinase, estradiol production, or the acquisition of LH responsiveness. Like FSH, LH also increases Ca2+, when applied to preovulatory follicles. At a physiological concentration (10 nM), LH elicits Ca2+ oscillations in a subset of cells in the outer mural granulosa layer. These oscillations continue for at least 6 h and depend on the activity of Gq family G-proteins. Suppression of the oscillations by Gq inhibition does not inhibit meiotic resumption, but does delay the time to 50% ovulation by about 3 h. In summary, both FSH and LH increase Ca2+ in the granulosa cells of intact follicles, but the functions of these Ca2+ rises are only starting to be identified.
Collapse
Affiliation(s)
- Jeremy R Egbert
- Department of Cell Biology, UConn Health, Farmington, CT, USA
| | - Paul G Fahey
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Jacob Reimer
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Corie M Owen
- Department of Cell Biology, UConn Health, Farmington, CT, USA
| | - Alexei V Evsikov
- Department of Research and Development, Bay Pines Veteran Administration Healthcare System, Bay Pines, FL, USA
| | - Viacheslav O Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Russell S Ray
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Andreas S Tolias
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, TX, USA
| | | |
Collapse
|
105
|
Wang L, Hiblot J, Popp C, Xue L, Johnsson K. Environmentally Sensitive Color‐Shifting Fluorophores for Bioimaging. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008357] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Lu Wang
- Department of Chemical Biology Max Planck Institute for Medical Research Jahnstrasse 29 69120 Heidelberg Germany
| | - Julien Hiblot
- Department of Chemical Biology Max Planck Institute for Medical Research Jahnstrasse 29 69120 Heidelberg Germany
- Institute of Chemical Sciences and Engineering École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Christoph Popp
- Department of Chemical Biology Max Planck Institute for Medical Research Jahnstrasse 29 69120 Heidelberg Germany
| | - Lin Xue
- Department of Chemical Biology Max Planck Institute for Medical Research Jahnstrasse 29 69120 Heidelberg Germany
| | - Kai Johnsson
- Department of Chemical Biology Max Planck Institute for Medical Research Jahnstrasse 29 69120 Heidelberg Germany
- Institute of Chemical Sciences and Engineering École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| |
Collapse
|
106
|
Mapping Calcium Dynamics in the Heart of Zebrafish Embryos with Ratiometric Genetically Encoded Calcium Indicators. Int J Mol Sci 2020; 21:ijms21186610. [PMID: 32927644 PMCID: PMC7555812 DOI: 10.3390/ijms21186610] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 09/08/2020] [Indexed: 12/23/2022] Open
Abstract
Zebrafish embryos have been proposed as a cost-effective vertebrate model to study heart function. Many fluorescent genetically encoded Ca2+ indicators (GECIs) have been developed, but those with ratiometric readout seem more appropriate to image a moving organ such as the heart. Four ratiometric GECIs based on troponin C, TN-XXL, Twitch-1, Twitch-2B, and Twitch-4 were expressed transiently in the heart of zebrafish embryos. Their emission ratio reported the Ca2+ levels in both the atrium and the ventricle. We measured several kinetic parameters of the Ca2+ transients: systolic and diastolic ratio, the amplitude of the systolic Ca2+ rise, the heart rate, as well as the rise and decay times and slopes. The systolic ratio change decreased in cells expressing high biosensor concentration, possibly caused by Ca2+ buffering. The GECIs were able to report the effect of nifedipine and propranolol on the heart, which resulted in changes in heart rate, diastolic and systolic Ca2+ levels, and Ca2+ kinetics. As a result, Twitch-1 and Twitch-4 (Kd 0.25 and 2.8 µM, respectively) seem the most promising GECIs for generating transgenic zebrafish lines, which could be used for modeling heart disorders, for drug screening, and for cardiotoxicity assessment during drug development.
Collapse
|
107
|
Pacheco-Fernandez N, Pakdel M, Blank B, Sanchez-Gonzalez I, Weber K, Tran ML, Hecht TKH, Gautsch R, Beck G, Perez F, Hausser A, Linder S, von Blume J. Nucleobindin-1 regulates ECM degradation by promoting intra-Golgi trafficking of MMPs. J Cell Biol 2020; 219:e201907058. [PMID: 32479594 PMCID: PMC7401813 DOI: 10.1083/jcb.201907058] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 12/29/2019] [Accepted: 05/04/2020] [Indexed: 12/14/2022] Open
Abstract
Matrix metalloproteinases (MMPs) degrade several ECM components and are crucial modulators of cell invasion and tissue organization. Although much has been reported about their function in remodeling ECM in health and disease, their trafficking across the Golgi apparatus remains poorly understood. Here we report that the cis-Golgi protein nucleobindin-1 (NUCB1) is critical for MMP2 and MT1-MMP trafficking along the Golgi apparatus. This process is Ca2+-dependent and is required for invasive MDA-MB-231 cell migration as well as for gelatin degradation in primary human macrophages. Our findings emphasize the importance of NUCB1 as an essential component of MMP transport and its overall impact on ECM remodeling.
Collapse
Affiliation(s)
| | | | - Birgit Blank
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | | | - Kathrin Weber
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg, Hamburg, Germany
| | - Mai Ly Tran
- Max Planck Institute of Biochemistry, Martinsried, Germany
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | - Tobias Karl-Heinz Hecht
- Max Planck Institute of Biochemistry, Martinsried, Germany
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | - Renate Gautsch
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Gisela Beck
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Franck Perez
- Institute Curie, PSL Research University, Centre National de la Recherche Scientifique, UMR 144, Paris, France
| | - Angelika Hausser
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Stefan Linder
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg, Hamburg, Germany
| | - Julia von Blume
- Max Planck Institute of Biochemistry, Martinsried, Germany
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
108
|
Okkelman IA, McGarrigle R, O’Carroll S, Berrio DC, Schenke-Layland K, Hynes J, Dmitriev RI. Extracellular Ca2+-Sensing Fluorescent Protein Biosensor Based on a Collagen-Binding Domain. ACS APPLIED BIO MATERIALS 2020; 3:5310-5321. [DOI: 10.1021/acsabm.0c00649] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Irina A. Okkelman
- Metabolic Imaging Group, Laboratory of Biophysics and Bioanalysis, ABCRF, University College Cork, College Road, Cork T12 YN60, Ireland
| | - Ryan McGarrigle
- Agilent Technologies Ireland Limited, Little
Island T45 WK12, Cork, Ireland
| | - Shane O’Carroll
- Metabolic Imaging Group, Laboratory of Biophysics and Bioanalysis, ABCRF, University College Cork, College Road, Cork T12 YN60, Ireland
| | - Daniel Carvajal Berrio
- Department of Women’s Health, Research Institute for Women’s Health, Eberhard Karls University Tübingen, Tübingen 72074, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies” (iFIT), Eberhard Karls University Tübingen, Geschwister-Scholl-Platz, Tübingen 72074, Germany
| | - Katja Schenke-Layland
- Department of Women’s Health, Research Institute for Women’s Health, Eberhard Karls University Tübingen, Tübingen 72074, Germany
- Cluster of Excellence iFIT (EXC 2180) “Image-Guided and Functionally Instructed Tumor Therapies” (iFIT), Eberhard Karls University Tübingen, Geschwister-Scholl-Platz, Tübingen 72074, Germany
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen 72770, Germany
- Department of Medicine/Cardiology, Cardiovascular Research Laboratories, David Geffen School of Medicine at UCLA, Los Angeles 90095, California, United States
| | - James Hynes
- Agilent Technologies Ireland Limited, Little
Island T45 WK12, Cork, Ireland
| | - Ruslan I. Dmitriev
- Metabolic Imaging Group, Laboratory of Biophysics and Bioanalysis, ABCRF, University College Cork, College Road, Cork T12 YN60, Ireland
- I.M. Sechenov First Moscow State University, Institute for Regenerative Medicine, Moscow 119992, Russian Federation
- Tissue Engineering and Biomaterials Group, Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent 9000, Belgium
| |
Collapse
|
109
|
Cherif O, Agrebi A, Alves S, Baleizão C, Farinha JP, Allouche F. Synthesis and fluorescence properties of aminocyanopyrrole and aminocyanothiophene esthers for biomedical and bioimaging applications. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.127974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
110
|
Nguyen D, Behrens DM, Sen S, Najdahmadi A, Pham JN, Speciale G, Lawrence MM, Majumdar S, Weiss GA, Botvinick EL. Photostable and Proteolysis-Resistant Förster Resonance Energy Transfer-Based Calcium Biosensor. Anal Chem 2020; 92:7683-7689. [PMID: 32352281 DOI: 10.1021/acs.analchem.0c00573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Molecular sensors from protein engineering offer new methods to sensitively bind to and detect target analytes for a wide range of applications. For example, these sensors can be integrated into probes for implantation, and then yield new and valuable physiological information. Here, a new Förster resonance energy transfer (FRET)-based sensor is integrated with an optical fiber to yield a device measuring free Ca2+. This membrane encapsulated optical fiber (MEOF) device is composed of a sensor matrix that fills poly(tetrafluoroethylene) (PTFE) with an engineered troponin C (TnC) protein fused to a pair of FRET fluorophores. The FRET efficiency is modulated upon Ca2+ ion binding. The probe further comprises a second, size-excluding filter membrane that is synthesized by filling the pores of a PTFE matrix with a poly(ethylene glycol) dimethacrylate (PEGDMA) hydrogel; this design ensures protection from circulating proteases and the foreign body response. The two membranes are stacked and placed on a thin, silica optical fiber for optical excitation and detection. Results show the biosensor responds to changes in Ca2+ concentration within minutes with a sensitivity ranging from 0.01 to 10 mM Ca2+, allowing discrimination of hyper- and hypocalcemia. Furthermore, the system reversibly binds Ca2+ to allow continuous monitoring. This work paves the way for the use of engineered structure-switching proteins for continuous optical monitoring in a large number of applications.
Collapse
Affiliation(s)
- Dat Nguyen
- Department of Biomedical Engineering, University of California, Irvine, California 92697-2730, United States
| | - Danielle M Behrens
- Department of Biomedical Engineering, University of California, Irvine, California 92697-2730, United States
| | - Sanjana Sen
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3900, United States
| | - Avid Najdahmadi
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, California 92612-1475, United States
| | - Jessica N Pham
- Department of Chemistry, University of California, Irvine, California 92697-2015, United States
| | - Gaetano Speciale
- Department of Chemistry, University of California, Irvine, California 92697-2015, United States
| | - Micah M Lawrence
- Department of Biomedical Engineering, University of California, Irvine, California 92697-2730, United States
| | - Sudipta Majumdar
- Department of Chemistry, University of California, Irvine, California 92697-2015, United States
| | - Gregory A Weiss
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3900, United States.,Department of Chemistry, University of California, Irvine, California 92697-2015, United States.,Department of Pharmaceutical Sciences, University of California, Irvine, California 92697-4625, United States
| | - Elliot L Botvinick
- Department of Biomedical Engineering, University of California, Irvine, California 92697-2730, United States.,Beckman Laser Institute and Medical Clinic, University of California, Irvine, California 92612-1475, United States.,Department of Surgery, University of California, Irvine, California 92697-2730, United States
| |
Collapse
|
111
|
Ong TT, Ang Z, Verma R, Koean R, Tam JKC, Ding JL. pHLuc, a Ratiometric Luminescent Reporter for in vivo Monitoring of Tumor Acidosis. Front Bioeng Biotechnol 2020; 8:412. [PMID: 32457886 PMCID: PMC7225611 DOI: 10.3389/fbioe.2020.00412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 04/14/2020] [Indexed: 12/13/2022] Open
Abstract
Even under normoxia, cancer cells exhibit increased glucose uptake and glycolysis, an occurrence known as the Warburg effect. This altered metabolism results in increased lactic acid production, leading to extracellular acidosis and contributing to metastasis and chemoresistance. Current pH imaging methods are invasive, costly, or require long acquisition times, and may not be suitable for high-throughput pre-clinical small animal studies. Here, we present a ratiometric pH-sensitive bioluminescence reporter called pHLuc for in vivo monitoring of tumor acidosis. pHLuc consists of a pH-sensitive GFP (superecliptic pHluorin or SEP), a pH-stable OFP (Antares), and Nanoluc luciferase. The resulting reporter produces a pH-responsive green 510nm emission (from SEP) and a pH-insensitive red-orange 580nm emission (from Antares). The ratiometric readout (R580 / 510) is indicative of changes in extracellular pH (pHe). In vivo proof-of-concept experiments with NSG mice model bearing human synovial sarcoma SW982 xenografts that stably express the pHLuc reporter suggest that the level of acidosis varies across the tumor. Altogether, we demonstrate the diagnostic value of pHLuc as a bioluminescent reporter for pH variations across the tumor microenvironment. The pHLuc reporter plasmids constructed in this work are available from Addgene.
Collapse
Affiliation(s)
- Tiffany T Ong
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Zhiwei Ang
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Riva Verma
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Ricky Koean
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - John Kit Chung Tam
- Division of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jeak Ling Ding
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
112
|
Tang S, Deng X, Jiang J, Kirberger M, Yang JJ. Design of Calcium-Binding Proteins to Sense Calcium. Molecules 2020; 25:molecules25092148. [PMID: 32375353 PMCID: PMC7248937 DOI: 10.3390/molecules25092148] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 01/25/2023] Open
Abstract
Calcium controls numerous biological processes by interacting with different classes of calcium binding proteins (CaBP’s), with different affinities, metal selectivities, kinetics, and calcium dependent conformational changes. Due to the diverse coordination chemistry of calcium, and complexity associated with protein folding and binding cooperativity, the rational design of CaBP’s was anticipated to present multiple challenges. In this paper we will first discuss applications of statistical analysis of calcium binding sites in proteins and subsequent development of algorithms to predict and identify calcium binding proteins. Next, we report efforts to identify key determinants for calcium binding affinity, cooperativity and calcium dependent conformational changes using grafting and protein design. Finally, we report recent advances in designing protein calcium sensors to capture calcium dynamics in various cellular environments.
Collapse
Affiliation(s)
- Shen Tang
- Department of Chemistry, Center for Diagnostics and Therapeutics and Advanced Translational Imaging Facility, Georgia State University, Atlanta, GA 30303, USA; (S.T.); (X.D.); (J.J.)
| | - Xiaonan Deng
- Department of Chemistry, Center for Diagnostics and Therapeutics and Advanced Translational Imaging Facility, Georgia State University, Atlanta, GA 30303, USA; (S.T.); (X.D.); (J.J.)
| | - Jie Jiang
- Department of Chemistry, Center for Diagnostics and Therapeutics and Advanced Translational Imaging Facility, Georgia State University, Atlanta, GA 30303, USA; (S.T.); (X.D.); (J.J.)
| | - Michael Kirberger
- School of Science and Technology, Georgia Gwinnett College, Lawrenceville, GA 30043, USA;
| | - Jenny J. Yang
- Department of Chemistry, Center for Diagnostics and Therapeutics and Advanced Translational Imaging Facility, Georgia State University, Atlanta, GA 30303, USA; (S.T.); (X.D.); (J.J.)
- Correspondence: ; Tel.: +1-404-413-5520
| |
Collapse
|
113
|
Barykina NV, Sotskov VP, Gruzdeva AM, Wu YK, Portugues R, Subach OM, Chefanova ES, Plusnin VV, Ivashkina OI, Anokhin KV, Vlaskina AV, Korzhenevskiy DA, Nikolaeva AY, Boyko KM, Rakitina TV, Varizhuk AM, Pozmogova GE, Subach FV. FGCaMP7, an Improved Version of Fungi-Based Ratiometric Calcium Indicator for In Vivo Visualization of Neuronal Activity. Int J Mol Sci 2020; 21:ijms21083012. [PMID: 32344594 PMCID: PMC7215472 DOI: 10.3390/ijms21083012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 01/06/2023] Open
Abstract
Genetically encoded calcium indicators (GECIs) have become a widespread tool for the visualization of neuronal activity. As compared to popular GCaMP GECIs, the FGCaMP indicator benefits from calmodulin and M13-peptide from the fungi Aspergillus niger and Aspergillus fumigatus, which prevent its interaction with the intracellular environment. However, FGCaMP exhibits a two-phase fluorescence behavior with the variation of calcium ion concentration, has moderate sensitivity in neurons (as compared to the GCaMP6s indicator), and has not been fully characterized in vitro and in vivo. To address these limitations, we developed an enhanced version of FGCaMP, called FGCaMP7. FGCaMP7 preserves the ratiometric phenotype of FGCaMP, with a 3.1-fold larger ratiometric dynamic range in vitro. FGCaMP7 demonstrates 2.7- and 8.7-fold greater photostability compared to mEGFP and mTagBFP2 fluorescent proteins in vitro, respectively. The ratiometric response of FGCaMP7 is 1.6- and 1.4-fold higher, compared to the intensiometric response of GCaMP6s, in non-stimulated and stimulated neuronal cultures, respectively. We reveal the inertness of FGCaMP7 to the intracellular environment of HeLa cells using its truncated version with a deleted M13-like peptide; in contrast to the similarly truncated variant of GCaMP6s. We characterize the crystal structure of the parental FGCaMP indicator. Finally, we test the in vivo performance of FGCaMP7 in mouse brain using a two-photon microscope and an NVista miniscope; and in zebrafish using two-color ratiometric confocal imaging.
Collapse
Affiliation(s)
- Natalia V. Barykina
- Laboratory for Neurobiology of Memory, P.K. Anokhin Research Institute of Normal Physiology, 125315 Moscow, Russia; (N.V.B.); (O.I.I.); (K.V.A.)
| | - Vladimir P. Sotskov
- Institute for Advanced Brain Studies, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia; (V.P.S.); (A.M.G.)
| | - Anna M. Gruzdeva
- Institute for Advanced Brain Studies, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia; (V.P.S.); (A.M.G.)
- Complex of NBICS Technologies, National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (O.M.S.); (V.V.P.); (A.V.V.); (D.A.K.); (A.Y.N.); (T.V.R.)
- Sensorimotor Control Research Group, Max Planck Institute of Neurobiology, 82152 Martinsried, Germany; (Y.K.W.); (R.P.)
| | - You Kure Wu
- Sensorimotor Control Research Group, Max Planck Institute of Neurobiology, 82152 Martinsried, Germany; (Y.K.W.); (R.P.)
| | - Ruben Portugues
- Sensorimotor Control Research Group, Max Planck Institute of Neurobiology, 82152 Martinsried, Germany; (Y.K.W.); (R.P.)
- Institute of Neuroscience, Technical University of Munich, 80802 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Oksana M. Subach
- Complex of NBICS Technologies, National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (O.M.S.); (V.V.P.); (A.V.V.); (D.A.K.); (A.Y.N.); (T.V.R.)
| | - Elizaveta S. Chefanova
- Department of NBIC-technologies, Moscow Institute of Physics and Technology, 123182 Moscow, Russia;
| | - Viktor V. Plusnin
- Complex of NBICS Technologies, National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (O.M.S.); (V.V.P.); (A.V.V.); (D.A.K.); (A.Y.N.); (T.V.R.)
- Department of NBIC-technologies, Moscow Institute of Physics and Technology, 123182 Moscow, Russia;
| | - Olga I. Ivashkina
- Laboratory for Neurobiology of Memory, P.K. Anokhin Research Institute of Normal Physiology, 125315 Moscow, Russia; (N.V.B.); (O.I.I.); (K.V.A.)
- Institute for Advanced Brain Studies, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia; (V.P.S.); (A.M.G.)
- Complex of NBICS Technologies, National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (O.M.S.); (V.V.P.); (A.V.V.); (D.A.K.); (A.Y.N.); (T.V.R.)
| | - Konstantin V. Anokhin
- Laboratory for Neurobiology of Memory, P.K. Anokhin Research Institute of Normal Physiology, 125315 Moscow, Russia; (N.V.B.); (O.I.I.); (K.V.A.)
- Institute for Advanced Brain Studies, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia; (V.P.S.); (A.M.G.)
| | - Anna V. Vlaskina
- Complex of NBICS Technologies, National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (O.M.S.); (V.V.P.); (A.V.V.); (D.A.K.); (A.Y.N.); (T.V.R.)
| | - Dmitry A. Korzhenevskiy
- Complex of NBICS Technologies, National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (O.M.S.); (V.V.P.); (A.V.V.); (D.A.K.); (A.Y.N.); (T.V.R.)
| | - Alena Y. Nikolaeva
- Complex of NBICS Technologies, National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (O.M.S.); (V.V.P.); (A.V.V.); (D.A.K.); (A.Y.N.); (T.V.R.)
| | - Konstantin M. Boyko
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia;
| | - Tatiana V. Rakitina
- Complex of NBICS Technologies, National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (O.M.S.); (V.V.P.); (A.V.V.); (D.A.K.); (A.Y.N.); (T.V.R.)
- Laboratory of Hormonal Regulation Proteins, M.M. Shemyakin and Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
| | - Anna M. Varizhuk
- Department of Biophysics, Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (A.M.V.); (G.E.P.)
- Department of Biophysics, Center for Precision Genome Editing and Genetic Technologies for Biomedicine, 119435 Moscow, Russia
| | - Galina E. Pozmogova
- Department of Biophysics, Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (A.M.V.); (G.E.P.)
- Department of Biophysics, Center for Precision Genome Editing and Genetic Technologies for Biomedicine, 119435 Moscow, Russia
| | - Fedor V. Subach
- Complex of NBICS Technologies, National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (O.M.S.); (V.V.P.); (A.V.V.); (D.A.K.); (A.Y.N.); (T.V.R.)
- Correspondence: ; Tel.: +07-499-196-7100-3389
| |
Collapse
|
114
|
Reissaus CA, Day KH, Mirmira RG, Dunn KW, Pavalko FM, Day RN. PIE-FLIM Measurements of Two Different FRET-Based Biosensor Activities in the Same Living Cells. Biophys J 2020; 118:1820-1829. [PMID: 32191861 DOI: 10.1016/j.bpj.2020.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/27/2020] [Accepted: 03/02/2020] [Indexed: 12/14/2022] Open
Abstract
We report the use of pulsed interleaved excitation (PIE)-fluorescence lifetime imaging microscopy (FLIM) to measure the activities of two different biosensor probes simultaneously in single living cells. Many genetically encoded biosensors rely on the measurement of Förster resonance energy transfer (FRET) to detect changes in biosensor conformation that accompany the targeted cell signaling event. One of the most robust ways of quantifying FRET is to measure changes in the fluorescence lifetime of the donor fluorophore using FLIM. The study of complex signaling networks in living cells demands the ability to track more than one of these cellular events at the same time. Here, we demonstrate how PIE-FLIM can separate and quantify the signals from different FRET-based biosensors to simultaneously measure changes in the activity of two cell signaling pathways in the same living cells in tissues. The imaging system described here uses selectable laser wavelengths and synchronized detection gating that can be tailored and optimized for each FRET pair. Proof-of-principle studies showing simultaneous measurement of cytosolic calcium and protein kinase A activity are shown, but the PIE-FLIM approach is broadly applicable to other signaling pathways.
Collapse
Affiliation(s)
- Christopher A Reissaus
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana; The Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana
| | - Kathleen H Day
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Raghavendra G Mirmira
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana; The Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana
| | - Kenneth W Dunn
- The Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana; Department of Medicine, Division of Nephrology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Fredrick M Pavalko
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, Indiana; The Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, Indiana
| | - Richard N Day
- The Center for Diabetes and Metabolic Diseases, Indiana University School of Medicine, Indianapolis, Indiana; Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, Indiana.
| |
Collapse
|
115
|
Galeano Niño JL, Tay SS, Tearle JLE, Xie J, Govendir MA, Kempe D, Mazalo J, Drew AP, Colakoglu F, Kummerfeld SK, Proud CG, Biro M. The Lifeact-EGFP mouse is a translationally controlled fluorescent reporter of T cell activation. J Cell Sci 2020; 133:jcs238014. [PMID: 32041902 DOI: 10.1242/jcs.238014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 02/04/2020] [Indexed: 12/11/2022] Open
Abstract
It has become increasingly evident that T cell functions are subject to translational control in addition to transcriptional regulation. Here, by using live imaging of CD8+ T cells isolated from the Lifeact-EGFP mouse, we show that T cells exhibit a gain in fluorescence intensity following engagement of cognate tumour target cells. The GFP signal increase is governed by Erk1/2-dependent distal T cell receptor (TCR) signalling and its magnitude correlates with IFN-γ and TNF-α production, which are hallmarks of T cell activation. Enhanced fluorescence was due to increased translation of Lifeact-EGFP protein, without an associated increase in its mRNA. Activation-induced gains in fluorescence were also observed in naïve and CD4+ T cells from the Lifeact-EGFP reporter, and were readily detected by both flow cytometry and live cell microscopy. This unique, translationally controlled reporter of effector T cell activation simultaneously enables tracking of cell morphology, F-actin dynamics and activation state in individual migrating T cells. It is a valuable addition to the limited number of reporters of T cell dynamics and activation, and opens the door to studies of translational activity and heterogeneities in functional T cell responses in situ.
Collapse
Affiliation(s)
- Jorge Luis Galeano Niño
- EMBL Australia, Single Molecule Science Node, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Szun S Tay
- EMBL Australia, Single Molecule Science Node, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jacqueline L E Tearle
- EMBL Australia, Single Molecule Science Node, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jianling Xie
- Lifelong Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA 5000, Australia
| | - Matt A Govendir
- EMBL Australia, Single Molecule Science Node, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Daryan Kempe
- EMBL Australia, Single Molecule Science Node, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jessica Mazalo
- EMBL Australia, Single Molecule Science Node, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Alexander P Drew
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Feyza Colakoglu
- EMBL Australia, Single Molecule Science Node, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Sarah K Kummerfeld
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, NSW, Australia
- St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Christopher G Proud
- Lifelong Health Theme, South Australian Health and Medical Research Institute, North Terrace, Adelaide, SA 5000, Australia
- School of Biological Sciences, University of Adelaide, Frome Road, Adelaide
| | - Maté Biro
- EMBL Australia, Single Molecule Science Node, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
116
|
Wen L, Fan Z, Mikulski Z, Ley K. Imaging of the immune system - towards a subcellular and molecular understanding. J Cell Sci 2020; 133:133/5/jcs234922. [PMID: 32139598 DOI: 10.1242/jcs.234922] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Immune responses involve many types of leukocytes that traffic to the site of injury, recognize the insult and respond appropriately. Imaging of the immune system involves a set of methods and analytical tools that are used to visualize immune responses at the cellular and molecular level as they occur in real time. We will review recent and emerging technological advances in optical imaging, and their application to understanding the molecular and cellular responses of neutrophils, macrophages and lymphocytes. Optical live-cell imaging provides deep mechanistic insights at the molecular, cellular, tissue and organism levels. Live-cell imaging can capture quantitative information in real time at subcellular resolution with minimal phototoxicity and repeatedly in the same living cells or in accessible tissues of the living organism. Advanced FRET probes allow tracking signaling events in live cells. Light-sheet microscopy allows for deeper tissue penetration in optically clear samples, enriching our understanding of the higher-level organization of the immune response. Super-resolution microscopy offers insights into compartmentalized signaling at a resolution beyond the diffraction limit, approaching single-molecule resolution. This Review provides a current perspective on live-cell imaging in vitro and in vivo with a focus on the assessment of the immune system.
Collapse
Affiliation(s)
- Lai Wen
- Laboratory of Inflammation Biology, La Jolla Institute for Immunology, 9420 Athena Circle Drive, La Jolla, CA 92037, USA
| | - Zhichao Fan
- Department of Immunology, School of Medicine, UConn Health, 263 Farmington Avenue, Farmington, CT 06030, USA
| | - Zbigniew Mikulski
- Microscopy Core Facility, La Jolla Institute for Immunology, 9420 Athena Circle Drive, La Jolla, CA 92037, USA
| | - Klaus Ley
- Laboratory of Inflammation Biology, La Jolla Institute for Immunology, 9420 Athena Circle Drive, La Jolla, CA 92037, USA .,Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|
117
|
Bohineust A, Garcia Z, Corre B, Lemaître F, Bousso P. Optogenetic manipulation of calcium signals in single T cells in vivo. Nat Commun 2020; 11:1143. [PMID: 32123168 PMCID: PMC7051981 DOI: 10.1038/s41467-020-14810-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 01/30/2020] [Indexed: 12/16/2022] Open
Abstract
By offering the possibility to manipulate cellular functions with spatiotemporal control, optogenetics represents an attractive tool for dissecting immune responses. However, applying these approaches to single cells in vivo remains particularly challenging for immune cells that are typically located in scattering tissues. Here, we introduce an improved calcium actuator with sensitivity allowing for two-photon photoactivation. Furthermore, we identify an actuator/reporter combination that permits the simultaneous manipulation and visualization of calcium signals in individual T cells in vivo. With this strategy, we document the consequences of defined patterns of calcium signals on T cell migration, adhesion, and chemokine release. Manipulation of individual immune cells in vivo should open new avenues for establishing the functional contribution of single immune cells engaged in complex reactions. The ability to manipulate and monitor calcium signaling in cells in vivo would provide insights into signaling in an endogenous context. Here the authors develop a two-photon-responsive calcium actuator and reporter combination to monitor the effect of calcium actuation on T cell migration, adhesion and chemokine release in vivo.
Collapse
Affiliation(s)
- Armelle Bohineust
- Dynamics of Immune Responses Unit, Equipe Labellisée Ligue Contre le Cancer, Institut Pasteur, INSERM U1223, 75015, Paris, France
| | - Zacarias Garcia
- Dynamics of Immune Responses Unit, Equipe Labellisée Ligue Contre le Cancer, Institut Pasteur, INSERM U1223, 75015, Paris, France
| | - Béatrice Corre
- Dynamics of Immune Responses Unit, Equipe Labellisée Ligue Contre le Cancer, Institut Pasteur, INSERM U1223, 75015, Paris, France
| | - Fabrice Lemaître
- Dynamics of Immune Responses Unit, Equipe Labellisée Ligue Contre le Cancer, Institut Pasteur, INSERM U1223, 75015, Paris, France
| | - Philippe Bousso
- Dynamics of Immune Responses Unit, Equipe Labellisée Ligue Contre le Cancer, Institut Pasteur, INSERM U1223, 75015, Paris, France.
| |
Collapse
|
118
|
Adams CJ, Krueger R, Meade TJ. A Multimodal Ca(II) Responsive Near IR-MR Contrast Agent Exhibiting High Cellular Uptake. ACS Chem Biol 2020; 15:334-341. [PMID: 31967770 DOI: 10.1021/acschembio.9b00638] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ca(II) ions are critical for the proper function of neurons by contributing to synaptic signaling and regulating neuronal plasticity. Dysregulation of Ca(II) is associated with a number of pathologies that cause neurodegeneration; therefore the ability to monitor Ca(II) intracellularly is an important target for molecular imaging. Contrast-enhanced MR imaging is a promising modality for imaging changes in Ca(II) concentrations. However, the majority of Ca(II) responsive MR agents are limited to the extracellular space or hindered by poor cellular uptake. Here, we describe a new class of multimodal, bioresponsive Ca(II) magnetic resonance agents that are coupled to the NIR probe IR-783. This new design is based on previous generations of our Ca(II) MR agents but overcomes two significant challenges: (1) the presence of the NIR probe dramatically increases cellular uptake of the agent and (2) provides histological validation of the MR signal using NIR fluorescence imaging. IR-783 targets organic anion transporter polypeptides, and we demonstrate that the agents are not toxic in HT-22 or U-87 MG cells up to 20 μM. The cellular uptake of complex 1 was measured to be greater than 16 femtomoles per cell (where ∼1 femtomole/cell is detectable in acquired MR images). Complex 1 is simultaneously detectable by both MR and NIR fluorescence imaging in vitro and is activated (turned on) by intracellular Ca(II) at concentrations between 1 and 10 μM.
Collapse
Affiliation(s)
- Casey J. Adams
- Departments of Chemistry, Molecular Biosciences, Neurobiology, and Radiology, Northwestern University, Evanston, Illinois 60208, United States
| | - Ruby Krueger
- Departments of Chemistry, Molecular Biosciences, Neurobiology, and Radiology, Northwestern University, Evanston, Illinois 60208, United States
| | - Thomas J. Meade
- Departments of Chemistry, Molecular Biosciences, Neurobiology, and Radiology, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
119
|
Greotti E, Pozzan T. Live Mitochondrial or Cytosolic Calcium Imaging Using Genetically-encoded Cameleon Indicator in Mammalian Cells. Bio Protoc 2020; 10:e3504. [PMID: 33654731 DOI: 10.21769/bioprotoc.3504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 02/04/2023] Open
Abstract
Calcium (Ca2+) imaging aims at investigating the dynamic changes in live cells of its concentration ([Ca2+]) in different pathophysiological conditions. Ca2+ is an ubiquitous and versatile intracellular signal that modulates a large variety of cellular functions thanks to a cell type-specific toolkit and a complex subcellular compartmentalization. Many Ca2+ sensors are presently available (chemical and genetically encoded) that can be specifically targeted to different cellular compartments. Using these probes, it is now possible to monitor Ca2+ dynamics of living cells not only in the cytosol but also within specific organelles. The choice of a specific sensor depends on the experimental design and the spatial and temporal resolution required. Here we describe the use of novel Förster resonance energy transfer (FRET)-based fluorescent Ca2+ probes to dynamically and quantitatively monitor the changes in cytosolic and mitochondrial [Ca2+] in a variety of cell types and experimental conditions. FRET-based sensors have the enormous advantage of being ratiometric, a feature that makes them particularly suitable for quantitative and in vivo applications.
Collapse
Affiliation(s)
- Elisa Greotti
- Neuroscience Institute, National Research Council (CNR), 35131 Padua, Italy.,Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy
| | - Tullio Pozzan
- Neuroscience Institute, National Research Council (CNR), 35131 Padua, Italy.,Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy.,Venetian Institute of Molecular Medicine (VIMM), 35129 Padua, Italy
| |
Collapse
|
120
|
Ragucci S, Ruggiero A, Russo R, Landi N, Valletta M, Chambery A, Russo L, Di Maro A. Correlation of structure, function and protein dynamics in myoglobins from Eurasian woodcock, chicken and ostrich. J Biomol Struct Dyn 2020; 39:851-866. [DOI: 10.1080/07391102.2020.1719201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Sara Ragucci
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania ‘Luigi Vanvitelli’, Caserta, Italy
| | - Alessio Ruggiero
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania ‘Luigi Vanvitelli’, Caserta, Italy
| | - Rosita Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania ‘Luigi Vanvitelli’, Caserta, Italy
| | - Nicola Landi
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania ‘Luigi Vanvitelli’, Caserta, Italy
| | - Mariangela Valletta
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania ‘Luigi Vanvitelli’, Caserta, Italy
| | - Angela Chambery
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania ‘Luigi Vanvitelli’, Caserta, Italy
| | - Luigi Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania ‘Luigi Vanvitelli’, Caserta, Italy
| | - Antimo Di Maro
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania ‘Luigi Vanvitelli’, Caserta, Italy
| |
Collapse
|
121
|
|
122
|
Niemeyer A, Rinne A, Kienitz MC. Receptor-specific regulation of atrial GIRK channel activity by different Ca2+-dependent PKC isoforms. Cell Signal 2019; 64:109418. [DOI: 10.1016/j.cellsig.2019.109418] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/11/2019] [Accepted: 09/11/2019] [Indexed: 12/23/2022]
|
123
|
Hofmann UAT, Fabritius A, Rebling J, Estrada H, Deán-Ben XL, Griesbeck O, Razansky D. High-Throughput Platform for Optoacoustic Probing of Genetically Encoded Calcium Ion Indicators. iScience 2019; 22:400-408. [PMID: 31812810 PMCID: PMC6911978 DOI: 10.1016/j.isci.2019.11.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 11/15/2019] [Accepted: 11/19/2019] [Indexed: 12/15/2022] Open
Abstract
Functional optoacoustic (OA) imaging assisted with genetically encoded calcium ion indicators (GECIs) holds promise for imaging large-scale neuronal activity at depths and spatiotemporal resolutions not attainable with existing optical microscopic techniques. However, currently available GECIs optimized for fluorescence (FL) imaging lack sufficient contrast for OA imaging and respond at wavelengths having limited penetration into the mammalian brain. Here we present an imaging platform capable of rapid assessment and cross-validation between OA and FL responses of sensor proteins expressed in Escherichia coli colonies. The screening system features optimized pulsed light excitation combined with ultrasensitive ultrasound detection to mitigate photobleaching while further allowing the dynamic characterization of calcium ion responses with millisecond precision. Targeted probing of up to six individual colonies per second in both calcium-loaded and calcium-unloaded states was possible with the system. The new platform greatly facilitates optimization of absorption-based labels, thus setting the stage for directed evolution of OA GECIs.
Collapse
Affiliation(s)
- Urs A T Hofmann
- Institute of Pharmacology and Toxicology and Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Institute for Biomedical Engineering and Department of Information Technology and Electrical Engineering, ETH Zurich, Gloriastrasse 35, 8092 Zurich, Switzerland
| | - Arne Fabritius
- Tools for Bio-Imaging, Max Planck Institute, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Johannes Rebling
- Institute of Pharmacology and Toxicology and Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Institute for Biomedical Engineering and Department of Information Technology and Electrical Engineering, ETH Zurich, Gloriastrasse 35, 8092 Zurich, Switzerland
| | - Héctor Estrada
- Institute of Pharmacology and Toxicology and Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Institute for Biomedical Engineering and Department of Information Technology and Electrical Engineering, ETH Zurich, Gloriastrasse 35, 8092 Zurich, Switzerland
| | - X Luís Deán-Ben
- Institute of Pharmacology and Toxicology and Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Institute for Biomedical Engineering and Department of Information Technology and Electrical Engineering, ETH Zurich, Gloriastrasse 35, 8092 Zurich, Switzerland
| | - Oliver Griesbeck
- Tools for Bio-Imaging, Max Planck Institute, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Daniel Razansky
- Institute of Pharmacology and Toxicology and Faculty of Medicine, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland; Institute for Biomedical Engineering and Department of Information Technology and Electrical Engineering, ETH Zurich, Gloriastrasse 35, 8092 Zurich, Switzerland.
| |
Collapse
|
124
|
Boulch M, Grandjean CL, Cazaux M, Bousso P. Tumor Immunosurveillance and Immunotherapies: A Fresh Look from Intravital Imaging. Trends Immunol 2019; 40:1022-1034. [DOI: 10.1016/j.it.2019.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 09/12/2019] [Accepted: 09/17/2019] [Indexed: 12/13/2022]
|
125
|
Vicente M, Salgado-Almario J, Soriano J, Burgos M, Domingo B, Llopis J. Visualization of Mitochondrial Ca 2+ Signals in Skeletal Muscle of Zebrafish Embryos with Bioluminescent Indicators. Int J Mol Sci 2019; 20:ijms20215409. [PMID: 31671636 PMCID: PMC6862566 DOI: 10.3390/ijms20215409] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 01/16/2023] Open
Abstract
Mitochondria are believed to play an important role in shaping the intracellular Ca2+ transients during skeletal muscle contraction. There is discussion about whether mitochondrial matrix Ca2+ dynamics always mirror the cytoplasmic changes and whether this happens in vivo in whole organisms. In this study, we characterized cytosolic and mitochondrial Ca2+ signals during spontaneous skeletal muscle contractions in zebrafish embryos expressing bioluminescent GFP-aequorin (GA, cytoplasm) and mitoGFP-aequorin (mitoGA, trapped in the mitochondrial matrix). The Ca2+ transients measured with GA and mitoGA reflected contractions of the trunk observed by transmitted light. The mitochondrial uncoupler FCCP and the inhibitor of the mitochondrial calcium uniporter (MCU), DS16570511, abolished mitochondrial Ca2+ transients whereas they increased the frequency of cytosolic Ca2+ transients and muscle contractions, confirming the subcellular localization of mitoGA. Mitochondrial Ca2+ dynamics were also determined with mitoGA and were found to follow closely cytoplasmic changes, with a slower decay. Cytoplasmic Ca2+ kinetics and propagation along the trunk and tail were characterized with GA and with the genetically encoded fluorescent Ca2+ indicator, Twitch-4. Although fluorescence provided a better spatio-temporal resolution, GA was able to resolve the same kinetic parameters while allowing continuous measurements for hours.
Collapse
Affiliation(s)
- Manuel Vicente
- Physiology and Cell Dynamics Group, Centro Regional de Investigaciones Biomédicas (CRIB) and Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, C/Almansa 14, 02006 Albacete, Spain.
| | - Jussep Salgado-Almario
- Physiology and Cell Dynamics Group, Centro Regional de Investigaciones Biomédicas (CRIB) and Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, C/Almansa 14, 02006 Albacete, Spain.
| | - Joaquim Soriano
- Physiology and Cell Dynamics Group, Centro Regional de Investigaciones Biomédicas (CRIB) and Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, C/Almansa 14, 02006 Albacete, Spain.
| | - Miguel Burgos
- Physiology and Cell Dynamics Group, Centro Regional de Investigaciones Biomédicas (CRIB) and Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, C/Almansa 14, 02006 Albacete, Spain.
| | - Beatriz Domingo
- Physiology and Cell Dynamics Group, Centro Regional de Investigaciones Biomédicas (CRIB) and Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, C/Almansa 14, 02006 Albacete, Spain.
| | - Juan Llopis
- Physiology and Cell Dynamics Group, Centro Regional de Investigaciones Biomédicas (CRIB) and Facultad de Medicina de Albacete, Universidad de Castilla-La Mancha, C/Almansa 14, 02006 Albacete, Spain.
| |
Collapse
|
126
|
Qin Q, Laub S, Shi Y, Ouyang M, Peng Q, Zhang J, Wang Y, Lu S. Fluocell for Ratiometric and High-Throughput Live-Cell Image Visualization and Quantitation. FRONTIERS IN PHYSICS 2019; 7:154. [PMID: 33163483 PMCID: PMC7646842 DOI: 10.3389/fphy.2019.00154] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Spatiotemporal regulation of molecular activities dictates cellular function and fate. Investigation of dynamic molecular activities in live cells often requires the visualization and quantitation of fluorescent ratio image sequences with subcellular resolution and in high throughput. Hence, there is a great need for convenient software tools specifically designed with these capabilities. Here we describe a well-characterized open-source software package, Fluocell, customized to visualize pixelwise ratiometric images and calculate ratio time courses with subcellular resolution and in high throughput. Fluocell also provides group statistics and kinetic analysis functions for the quantified time courses, as well as 3D structure and function visualization for ratio images. The application of Fluocell is demonstrated by the ratiometric analysis of intensity images for several single-chain Förster (or fluorescence) resonance energy transfer (FRET)-based biosensors, allowing efficient quantification of dynamic molecular activities in a heterogeneous population of single live cells. Our analysis revealed distinct activation kinetics of Fyn kinase in the cytosolic and membrane compartments, and visualized a 4D spatiotemporal distribution of epigenetic signals in mitotic cells. Therefore, Fluocell provides an integrated environment for ratiometric live-cell image visualization and analysis, which generates high-quality single-cell dynamic data and allows the quantitative machine-learning of biophysical and biochemical computational models for molecular regulations in cells and tissues.
Collapse
Affiliation(s)
- Qin Qin
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, San Diego, CA, United States
| | - Shannon Laub
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, San Diego, CA, United States
| | - Yiwen Shi
- Department of Mathematics, Center of Computational Mathematics, University of California, San Diego, San Diego, CA, United State
| | - Mingxing Ouyang
- Institute of Biomedical Engineering and Health Sciences, Changzhou University, Changzhou, China
| | - Qin Peng
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, San Diego, CA, United States
| | - Jin Zhang
- Department of Pharmacology, University of California, San Diego, San Diego, CA, United States
| | - Yingxiao Wang
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, San Diego, CA, United States
| | - Shaoying Lu
- Department of Bioengineering, Institute of Engineering in Medicine, University of California, San Diego, San Diego, CA, United States
- Department of Mathematics, Center of Computational Mathematics, University of California, San Diego, San Diego, CA, United State
| |
Collapse
|
127
|
Vigani G, Costa A. Harnessing the new emerging imaging technologies to uncover the role of Ca 2+ signalling in plant nutrient homeostasis. PLANT, CELL & ENVIRONMENT 2019; 42:2885-2901. [PMID: 31286524 DOI: 10.1111/pce.13611] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/03/2019] [Accepted: 07/05/2019] [Indexed: 05/26/2023]
Abstract
Increasing crop yields by using ecofriendly practices is of high priority to tackle problems regarding food security and malnutrition worldwide. A sustainable crop production requires a limited use of fertilizer and the employment of plant varieties with improved ability to acquire nutrients from soil. To reach these goals, the scientific community aims to understand plant nutrients homeostasis by deciphering the nutrient sensing and signalling mechanisms of plants. Several lines of evidence about the involvement of Ca2+ as the signal of an impaired nutrient availability have been reported. Ca2+ signalling is a tightly regulated process that requires specific protein toolkits to perceive external stimuli and to induce the specific responses in the plant needed to survive. Here, we summarize both older and recent findings concerning the involvement of Ca2+ signalling in the homeostasis of nutrients. In this review, we present new emerging technologies, based on the use of genetically encoded Ca2+ sensors and advanced microscopy, which offer the chance to perform in planta analyses of Ca2+ dynamics at cellular resolution. The harnessing of these technologies with different genetic backgrounds and subjected to different nutritional stresses will provide important insights to the still little-known mechanisms of nutrient sensing in plants.
Collapse
Affiliation(s)
- Gianpiero Vigani
- Department of Life Sciences and Systems Biology, University of Turin, Turin, 10135, Italy
| | - Alex Costa
- Department of Biosciences, University of Milan, Milan, 20133, Italy
| |
Collapse
|
128
|
Abstract
Retinal function has long been studied with psychophysical methods in humans, whereas detailed functional studies of vision have been conducted mostly in animals owing to the invasive nature of physiological approaches. There are exceptions to this generalization, for example, the electroretinogram. This review examines exciting recent advances using in vivo retinal imaging to understand the function of retinal neurons. In some cases, the methods have existed for years and are still being optimized. In others, new methods such as optophysiology are revealing novel patterns of retinal function in animal models that have the potential to change our understanding of the functional capacity of the retina. Together, the advances in retinal imaging mark an important milestone that shifts attention away from anatomy alone and begins to probe the function of healthy and diseased eyes.
Collapse
Affiliation(s)
- Jennifer J Hunter
- Flaum Eye Institute and Center for Visual Science, University of Rochester, Rochester, New York 14604, USA; , ,
- The Institute of Optics and Department of Biomedical Engineering, University of Rochester, Rochester, New York 14604, USA
| | - William H Merigan
- Flaum Eye Institute and Center for Visual Science, University of Rochester, Rochester, New York 14604, USA; , ,
| | - Jesse B Schallek
- Flaum Eye Institute and Center for Visual Science, University of Rochester, Rochester, New York 14604, USA; , ,
- Department of Neuroscience, University of Rochester, Rochester, New York 14604, USA
| |
Collapse
|
129
|
Roelse M, Wehrens R, Henquet MG, Witkamp RF, Hall RD, Jongsma MA. The Effect of Calcium Buffering and Calcium Sensor Type on the Sensitivity of an Array-Based Bitter Receptor Screening Assay. Chem Senses 2019; 44:497-505. [PMID: 31278864 PMCID: PMC7357244 DOI: 10.1093/chemse/bjz044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The genetically encoded calcium sensor protein Cameleon YC3.6 has previously been applied for functional G protein-coupled receptor screening using receptor cell arrays. However, different types of sensors are available, with a wide range in [Ca2+] sensitivity, Hill coefficients, calcium binding domains, and fluorophores, which could potentially improve the performance of the assay. Here, we compared the responses of 3 structurally different calcium sensor proteins (Cameleon YC3.6, Nano140, and Twitch2B) simultaneously, on a single chip, at different cytosolic expression levels and in combination with 2 different bitter receptors, TAS2R8 and TAS2R14. Sensor concentrations were modified by varying the amount of calcium sensor DNA that was printed on the DNA arrays prior to reverse transfection. We found that ~2-fold lower concentrations of calcium sensor protein, by transfecting 4 times less sensor-coding DNA, resulted in more sensitive bitter responses. The best results were obtained with Twitch2B, where, relative to YC3.6 at the default DNA concentration, a 4-fold lower DNA concentration increased sensitivity 60-fold and signal strength 5- to 10-fold. Next, we compared the performance of YC3.6 and Twitch2B against an array with 11 different bitter taste receptors. We observed a 2- to 8-fold increase in sensitivity using Twitch2B compared with YC3.6. The bitter receptor arrays contained 300 spots and could be exposed to a series of 18 injections within 1 h resulting in 5400 measurements. These optimized sensor conditions provide a basis for enhancing receptomics calcium assays for receptors with poor Ca2+ signaling and will benefit future high-throughput receptomics experiments.
Collapse
Affiliation(s)
- Margriet Roelse
- BU Bioscience, Wageningen University and Research, Droevendaalsesteeg, PB Wageningen, The Netherlands.,Laboratory of Plant Physiology, Wageningen University and Research, Droevendaalsesteeg, PB Wageningen.,Nutritional Biology and Health, Wageningen University and Research, Stippeneng, WE Wageningen, The Netherlandsand
| | - Ron Wehrens
- BU Bioscience, Wageningen University and Research, Droevendaalsesteeg, PB Wageningen, The Netherlands.,BU Biometris, Wageningen University and Research, Droevendaalsesteeg, PB Wageningen
| | - Maurice Gl Henquet
- BU Bioscience, Wageningen University and Research, Droevendaalsesteeg, PB Wageningen, The Netherlands
| | - Renger F Witkamp
- Nutritional Biology and Health, Wageningen University and Research, Stippeneng, WE Wageningen, The Netherlandsand
| | - Robert D Hall
- BU Bioscience, Wageningen University and Research, Droevendaalsesteeg, PB Wageningen, The Netherlands.,Laboratory of Plant Physiology, Wageningen University and Research, Droevendaalsesteeg, PB Wageningen
| | - Maarten A Jongsma
- BU Bioscience, Wageningen University and Research, Droevendaalsesteeg, PB Wageningen, The Netherlands
| |
Collapse
|
130
|
Wu N, Nishioka WK, Derecki NC, Maher MP. High-throughput-compatible assays using a genetically-encoded calcium indicator. Sci Rep 2019; 9:12692. [PMID: 31481721 PMCID: PMC6722131 DOI: 10.1038/s41598-019-49070-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 08/19/2019] [Indexed: 12/11/2022] Open
Abstract
Measurement of intracellular calcium in live cells is a key component of a wide range of basic life science research, and crucial for many high-throughput assays used in modern drug discovery. Synthetic calcium indicators have become the industry standard, due their ease of use, high reliability, wide dynamic range, and availability of a large variety of spectral and chemical properties. Genetically-encoded calcium indicators (GECIs) have been optimized to the point where their performance rivals that of synthetic calcium indicators in many applications. Stable expression of a GECI has distinct advantages over synthetic calcium indicators in terms of reagent cost and simplification of the assay process. We generated a clonal cell line constitutively expressing GCaMP6s; high expression of the GECI was driven by coupling to a blasticidin resistance gene with a self-cleaving cis-acting hydrolase element (CHYSEL) 2A peptide. Here, we compared the performance of the GECI GCaMP6s to the synthetic calcium indicator fluo-4 in a variety of assay formats. We demonstrate that the pharmacology of ion channel and GPCR ligands as determined using the two indicators is highly similar, and that GCaMP6s is viable as a direct replacement for a synthetic calcium indicator.
Collapse
Affiliation(s)
- Nyantsz Wu
- Janssen Research & Development, LLC, San Diego, CA, 92121, USA
| | | | - Noël C Derecki
- Janssen Research & Development, LLC, San Diego, CA, 92121, USA
| | - Michael P Maher
- Janssen Research & Development, LLC, San Diego, CA, 92121, USA.
| |
Collapse
|
131
|
Kostyuk AI, Demidovich AD, Kotova DA, Belousov VV, Bilan DS. Circularly Permuted Fluorescent Protein-Based Indicators: History, Principles, and Classification. Int J Mol Sci 2019; 20:E4200. [PMID: 31461959 PMCID: PMC6747460 DOI: 10.3390/ijms20174200] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/22/2019] [Accepted: 08/24/2019] [Indexed: 12/28/2022] Open
Abstract
Genetically encoded biosensors based on fluorescent proteins (FPs) are a reliable tool for studying the various biological processes in living systems. The circular permutation of single FPs led to the development of an extensive class of biosensors that allow the monitoring of many intracellular events. In circularly permuted FPs (cpFPs), the original N- and C-termini are fused using a peptide linker, while new termini are formed near the chromophore. Such a structure imparts greater mobility to the FP than that of the native variant, allowing greater lability of the spectral characteristics. One of the common principles of creating genetically encoded biosensors is based on the integration of a cpFP into a flexible region of a sensory domain or between two interacting domains, which are selected according to certain characteristics. Conformational rearrangements of the sensory domain associated with ligand interaction or changes in the cellular parameter are transferred to the cpFP, changing the chromophore environment. In this review, we highlight the basic principles of such sensors, the history of their creation, and a complete classification of the available biosensors.
Collapse
Affiliation(s)
- Alexander I Kostyuk
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
- Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | | | - Daria A Kotova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Vsevolod V Belousov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
- Pirogov Russian National Research Medical University, Moscow 117997, Russia
- Institute for Cardiovascular Physiology, Georg August University Göttingen, D-37073 Göttingen, Germany
| | - Dmitry S Bilan
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia.
- Pirogov Russian National Research Medical University, Moscow 117997, Russia.
| |
Collapse
|
132
|
Bentz BZ, Lin D, Patel JA, Webb KJ. Multiresolution Localization with Temporal Scanning for Super-Resolution Diffuse Optical Imaging of Fluorescence. IEEE TRANSACTIONS ON IMAGE PROCESSING : A PUBLICATION OF THE IEEE SIGNAL PROCESSING SOCIETY 2019; 29:10.1109/TIP.2019.2931080. [PMID: 31403412 PMCID: PMC7012689 DOI: 10.1109/tip.2019.2931080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
A super-resolution optical imaging method is presented that relies on the distinct temporal information associated with each fluorescent optical reporter to determine its spatial position to high precision with measurements of heavily scattered light. This multiple-emitter localization approach uses a diffusion equation forward model in a cost function, and has the potential to achieve micron-scale spatial resolution through centimeters of tissue. Utilizing some degree of temporal separation for the reporter emissions, position and emission strength are determined using a computationally efficient time stripping multiresolution algorithm. The approach circumvents the spatial resolution challenges faced by earlier optical imaging approaches using a diffusion equation forward model, and is promising for in vivo applications. For example, in principle, the method could be used to localize individual neurons firing throughout a rodent brain, enabling direct imaging of neural network activity.
Collapse
|
133
|
Structural and evolutionary approaches to the design and optimization of fluorescence-based small molecule biosensors. Curr Opin Struct Biol 2019; 57:31-38. [DOI: 10.1016/j.sbi.2019.01.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/10/2019] [Accepted: 01/23/2019] [Indexed: 11/21/2022]
|
134
|
Trigo-Mourino P, Thestrup T, Griesbeck O, Griesinger C, Becker S. Dynamic tuning of FRET in a green fluorescent protein biosensor. SCIENCE ADVANCES 2019; 5:eaaw4988. [PMID: 31457088 PMCID: PMC6685724 DOI: 10.1126/sciadv.aaw4988] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 06/27/2019] [Indexed: 06/01/2023]
Abstract
Förster resonance energy transfer (FRET) between mutants of green fluorescent protein is widely used to monitor protein-protein interactions and as a readout mode in fluorescent biosensors. Despite the fundamental importance of distance and molecular angles of fluorophores to each other, structural details on fluorescent protein FRET have been missing. Here, we report the high-resolution x-ray structure of the fluorescent proteins mCerulean3 and cpVenus within the biosensor Twitch-2B, as they undergo FRET and characterize the dynamics of this biosensor with B 0 2 -dependent paramagnetic nuclear magnetic resonance at 900 MHz and 1.1 GHz. These structural data provide the unprecedented opportunity to calculate FRET from the x-ray structure and to compare it to experimental data in solution. We find that interdomain dynamics limits the FRET effect and show that a rigidification of the sensor further enhances FRET.
Collapse
Affiliation(s)
- Pablo Trigo-Mourino
- Department for NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
- Structural Elucidation Group, Analytic Enabling Technologies, Merck & Co., 2015 Galloping Hill Road, Kenilworth, NJ 07033, USA
| | | | | | - Christian Griesinger
- Department for NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Stefan Becker
- Department for NMR-Based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
135
|
Detection of Osmotic Shock-Induced Extracellular Nucleotide Release with a Genetically Encoded Fluorescent Sensor of ADP and ATP. SENSORS 2019; 19:s19153253. [PMID: 31344821 PMCID: PMC6695626 DOI: 10.3390/s19153253] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 07/17/2019] [Accepted: 07/19/2019] [Indexed: 01/19/2023]
Abstract
Purinergic signals, such as extracellular adenosine triphosphate (ATP) and adenosine diphosphate (ADP), mediate intercellular communication and stress responses throughout mammalian tissues, but the dynamics of their release and clearance are still not well understood. Although physiochemical methods provide important insight into physiology, genetically encoded optical sensors have proven particularly powerful in the quantification of signaling in live specimens. Indeed, genetically encoded luminescent and fluorescent sensors provide new insights into ATP-mediated purinergic signaling. However, new tools to detect extracellular ADP are still required. To this end, in this study, we use protein engineering to generate a new genetically encoded sensor that employs a high-affinity bacterial ADP-binding protein and reports a change in occupancy with a change in the Förster-type resonance energy transfer (FRET) between cyan and yellow fluorescent proteins. We characterize the sensor in both protein solution studies, as well as live-cell microscopy. This new sensor responds to nanomolar and micromolar concentrations of ADP and ATP in solution, respectively, and in principle it is the first fully-genetically encoded sensor with sufficiently high affinity for ADP to detect low levels of extracellular ADP. Furthermore, we demonstrate that tethering the sensor to the cell surface enables the detection of physiologically relevant nucleotide release induced by hypoosmotic shock as a model of tissue edema. Thus, we provide a new tool to study purinergic signaling that can be used across genetically tractable model systems.
Collapse
|
136
|
Zhang H, Nielsen AL, Strømgaard K. Recent achievements in developing selective Gqinhibitors. Med Res Rev 2019; 40:135-157. [DOI: 10.1002/med.21598] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/09/2019] [Accepted: 04/26/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Hang Zhang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co‐innovation Center of Henan Province for New Drug R&D and Preclinical Safety, and School of Pharmaceutical SciencesZhengzhou UniversityZhengzhou Henan China
| | - Alexander L. Nielsen
- Department of Drug Design and Pharmacology, Center for BiopharmaceuticalsUniversity of CopenhagenCopenhagen Denmark
| | - Kristian Strømgaard
- Department of Drug Design and Pharmacology, Center for BiopharmaceuticalsUniversity of CopenhagenCopenhagen Denmark
| |
Collapse
|
137
|
Evans TA, Barkauskas DS, Silver J. Intravital imaging of immune cells and their interactions with other cell types in the spinal cord: Experiments with multicolored moving cells. Exp Neurol 2019; 320:112972. [PMID: 31234058 DOI: 10.1016/j.expneurol.2019.112972] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/25/2019] [Accepted: 06/04/2019] [Indexed: 12/25/2022]
Abstract
Intravital imaging of the immune system is a powerful technique for studying biology of the immune response in the spinal cord using a variety of disease models ranging from traumatic injury to autoimmune disorders. Here, we will discuss specific technical aspects as well as many intriguing biological phenomena that have been revealed with the use of intravital imaging for investigation of the immune system in the spinal cord. We will discuss surgical techniques for exposing and stabilizing the spine that are critical for obtaining images, visualizing immune and CNS cells with genetically expressed fluorescent proteins, fluorescent labeling techniques and briefly discuss some of the challenges of image analysis.
Collapse
Affiliation(s)
- Teresa A Evans
- Department of Pediatrics, Stanford University, Stanford, CA, USA.
| | | | - Jerry Silver
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
138
|
Mari E, Bousmah Y, Boutin C, Léonce E, Milanole G, Brotin T, Berthault P, Erard M. Bimodal Detection of Proteins by 129 Xe NMR and Fluorescence Spectroscopy. Chembiochem 2019; 20:1450-1457. [PMID: 30650230 DOI: 10.1002/cbic.201800802] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Indexed: 11/10/2022]
Abstract
A full understanding of biological phenomena involves sensitive and noninvasive detection. Herein, we report the optimization of a probe for intracellular proteins that combines the advantages of fluorescence and hyperpolarized 129 Xe NMR spectroscopy detection. The fluorescence detection part is composed of six residues containing a tetracysteine tag (-CCXXCC-) genetically incorporated into the protein of interest and of a small organic molecule, CrAsH. CrAsH becomes fluorescent if it binds to the tetracysteine tag. The part of the biosensor that enables detection by means of 129 Xe NMR spectroscopy, which is linked to the CrAsH moiety by a spacer, is based on a cryptophane core that is fully suited to reversibly host xenon. Three different peptides, containing the tetracysteine tag and four organic biosensors of different stereochemistry, are benchmarked to propose the best couple that is fully suited for the in vitro detection of proteins.
Collapse
Affiliation(s)
- Emilie Mari
- NIMBE, CEA, CNRS, Université de Paris Saclay, CEA Saclay, 91191, Gif-sur-Yvette, France
- Laboratoire de Chimie Physique, CNRS, Université Paris-Sud, Université Paris-Saclay, Batiment 349, 91405, Orsay, France
| | - Yasmina Bousmah
- Laboratoire de Chimie Physique, CNRS, Université Paris-Sud, Université Paris-Saclay, Batiment 349, 91405, Orsay, France
| | - Céline Boutin
- NIMBE, CEA, CNRS, Université de Paris Saclay, CEA Saclay, 91191, Gif-sur-Yvette, France
| | - Estelle Léonce
- NIMBE, CEA, CNRS, Université de Paris Saclay, CEA Saclay, 91191, Gif-sur-Yvette, France
| | - Gaelle Milanole
- SCBM, Université Paris-Saclay, CEA Saclay, 91191, Gif-sur-Yvette, France
| | - Thierry Brotin
- Université Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5182, Université Lyon 1, Laboratoire de Chimie, 46 allée d'Italie, 69364, Lyon, France
| | - Patrick Berthault
- NIMBE, CEA, CNRS, Université de Paris Saclay, CEA Saclay, 91191, Gif-sur-Yvette, France
| | - Marie Erard
- Laboratoire de Chimie Physique, CNRS, Université Paris-Sud, Université Paris-Saclay, Batiment 349, 91405, Orsay, France
| |
Collapse
|
139
|
Greotti E, Fortunati I, Pendin D, Ferrante C, Galla L, Zentilin L, Giacca M, Kaludercic N, Di Sante M, Mariotti L, Lia A, Gómez-Gonzalo M, Sessolo M, Di Lisa F, Carmignoto G, Bozio R, Pozzan T. mCerulean3-Based Cameleon Sensor to Explore Mitochondrial Ca 2+ Dynamics In Vivo. iScience 2019; 16:340-355. [PMID: 31203189 PMCID: PMC6581653 DOI: 10.1016/j.isci.2019.05.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/26/2019] [Accepted: 05/22/2019] [Indexed: 02/02/2023] Open
Abstract
Genetically Encoded Ca2+ Indicators (GECIs) are extensively used to study organelle Ca2+ homeostasis, although some available probes are still plagued by a number of problems, e.g., low fluorescence intensity, partial mistargeting, and pH sensitivity. Furthermore, in the most commonly used mitochondrial Förster Resonance Energy Transfer based-GECIs, the donor protein ECFP is characterized by a double exponential lifetime that complicates the fluorescence lifetime analysis. We have modified the cytosolic and mitochondria-targeted Cameleon GECIs by (1) substituting the donor ECFP with mCerulean3, a brighter and more stable fluorescent protein with a single exponential lifetime; (2) extensively modifying the constructs to improve targeting efficiency and fluorescence changes caused by Ca2+ binding; and (3) inserting the cDNAs into adeno-associated viral vectors for in vivo expression. The probes have been thoroughly characterized in situ by fluorescence microscopy and Fluorescence Lifetime Imaging Microscopy, and examples of their ex vivo and in vivo applications are described. Donor substitution in a mitochondrial Ca2+ sensor improves photo-physical properties Mitochondria-targeting sequence amelioration enhances the sensor localization Donor substitution allows FLIM-FRET analysis, with a compensation for pH bias The performance of the sensor is improved in situ, ex vivo, and in vivo
Collapse
Affiliation(s)
- Elisa Greotti
- Neuroscience Institute, National Research Council (CNR), 35131 Padua, Italy; Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy
| | - Ilaria Fortunati
- Department of Chemical Sciences and INSTM, University of Padua, 35131 Padua, Italy
| | - Diana Pendin
- Neuroscience Institute, National Research Council (CNR), 35131 Padua, Italy; Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy
| | - Camilla Ferrante
- Department of Chemical Sciences and INSTM, University of Padua, 35131 Padua, Italy
| | - Luisa Galla
- Neuroscience Institute, National Research Council (CNR), 35131 Padua, Italy; Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy
| | - Lorena Zentilin
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy
| | - Mauro Giacca
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy
| | - Nina Kaludercic
- Neuroscience Institute, National Research Council (CNR), 35131 Padua, Italy; Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy
| | - Moises Di Sante
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy
| | - Letizia Mariotti
- Neuroscience Institute, National Research Council (CNR), 35131 Padua, Italy; Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy
| | - Annamaria Lia
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy
| | - Marta Gómez-Gonzalo
- Neuroscience Institute, National Research Council (CNR), 35131 Padua, Italy; Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy
| | - Michele Sessolo
- Neuroscience Institute, National Research Council (CNR), 35131 Padua, Italy; Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy
| | - Fabio Di Lisa
- Neuroscience Institute, National Research Council (CNR), 35131 Padua, Italy; Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy
| | - Giorgio Carmignoto
- Neuroscience Institute, National Research Council (CNR), 35131 Padua, Italy; Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy
| | - Renato Bozio
- Department of Chemical Sciences and INSTM, University of Padua, 35131 Padua, Italy
| | - Tullio Pozzan
- Neuroscience Institute, National Research Council (CNR), 35131 Padua, Italy; Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy; Venetian Institute of Molecular Medicine (VIMM), 35131 Padua, Italy.
| |
Collapse
|
140
|
Guo C, Pan Y, Gong Z. Recent Advances in the Genetic Dissection of Neural Circuits in Drosophila. Neurosci Bull 2019; 35:1058-1072. [PMID: 31119647 DOI: 10.1007/s12264-019-00390-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 12/17/2018] [Indexed: 11/28/2022] Open
Abstract
Nervous systems endow animals with cognition and behavior. To understand how nervous systems control behavior, neural circuits mediating distinct functions need to be identified and characterized. With superior genetic manipulability, Drosophila is a model organism at the leading edge of neural circuit analysis. We briefly introduce the state-of-the-art genetic tools that permit precise labeling of neurons and their interconnectivity and investigating what is happening in the brain of a behaving animal and manipulating neurons to determine how behaviors are affected. Brain-wide wiring diagrams, created by light and electron microscopy, bring neural circuit analysis to a new level and scale. Studies enabled by these tools advances our understanding of the nervous system in relation to cognition and behavior.
Collapse
Affiliation(s)
- Chao Guo
- Key Laboratory of Developmental Genes and Human Disease of the Ministry of Education of China, Institute of Life Sciences, Southeast University, Nanjing, 210096, China.
| | - Yufeng Pan
- Key Laboratory of Developmental Genes and Human Disease of the Ministry of Education of China, Institute of Life Sciences, Southeast University, Nanjing, 210096, China
| | - Zhefeng Gong
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| |
Collapse
|
141
|
Live-Cell Imaging of Physiologically Relevant Metal Ions Using Genetically Encoded FRET-Based Probes. Cells 2019; 8:cells8050492. [PMID: 31121936 PMCID: PMC6562680 DOI: 10.3390/cells8050492] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/17/2019] [Accepted: 05/21/2019] [Indexed: 01/02/2023] Open
Abstract
Essential biochemical reactions and processes within living organisms are coupled to subcellular fluctuations of metal ions. Disturbances in cellular metal ion homeostasis are frequently associated with pathological alterations, including neurotoxicity causing neurodegeneration, as well as metabolic disorders or cancer. Considering these important aspects of the cellular metal ion homeostasis in health and disease, measurements of subcellular ion signals are of broad scientific interest. The investigation of the cellular ion homeostasis using classical biochemical methods is quite difficult, often even not feasible or requires large cell numbers. Here, we report of genetically encoded fluorescent probes that enable the visualization of metal ion dynamics within individual living cells and their organelles with high temporal and spatial resolution. Generally, these probes consist of specific ion binding domains fused to fluorescent protein(s), altering their fluorescent properties upon ion binding. This review focuses on the functionality and potential of these genetically encoded fluorescent tools which enable monitoring (sub)cellular concentrations of alkali metals such as K+, alkaline earth metals including Mg2+ and Ca2+, and transition metals including Cu+/Cu2+ and Zn2+. Moreover, we discuss possible approaches for the development and application of novel metal ion biosensors for Fe2+/Fe3+, Mn2+ and Na+.
Collapse
|
142
|
Slocum JD, Palmer AE, Jimenez R. Intramolecular Fluorescent Protein Association in a Class of Zinc FRET Sensors Leads to Increased Dynamic Range. J Phys Chem B 2019; 123:3079-3085. [PMID: 30942588 DOI: 10.1021/acs.jpcb.9b02479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Genetically encoded Förster resonance energy transfer (FRET) sensors enable the visualization of ions, molecules, and processes in live cells. However, despite their widespread use, the molecular states that determine sensor performance are usually poorly understood, which limits efforts to improve them. We used dynamic light scattering (DLS) and time-resolved fluorescence anisotropy to uncover the sensing mechanism of ZifCV1.173, a Zn2+ FRET sensor. We found that the dynamic range (DR) of ZifCV1.173 was dominated by the high FRET efficiency of the Zn2+-free state, in which the donor and acceptor fluorescent proteins were closely associated. Mutating the donor-acceptor interface revealed that the DR of ZifCV1.173 could be increased or decreased by promoting or disrupting the donor-acceptor interaction, respectively. Adapting the same mutations to a related sensor showed the same pattern of DR tuning, supporting our sensing mechanism and suggesting that DLS and time-resolved fluorescence anisotropy might be generally useful in the biophysical characterization of other FRET sensors.
Collapse
|
143
|
Wehrens R, Roelse M, Henquet M, van Lenthe M, Goedhart PW, Jongsma MA. Statistical models discriminating between complex samples measured with microfluidic receptor-cell arrays. PLoS One 2019; 14:e0214878. [PMID: 30958871 PMCID: PMC6453450 DOI: 10.1371/journal.pone.0214878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/21/2019] [Indexed: 12/16/2022] Open
Abstract
Data analysis for flow-based in-vitro receptomics array, like a tongue-on-a-chip, is complicated by the relatively large variability within and between arrays, transfected DNA types, spots, and cells within spots. Simply averaging responses of spots of the same type would lead to high variances and low statistical power. This paper presents an approach based on linear mixed models, allowing a quantitative and robust comparison of complex samples and indicating which receptors are responsible for any differences. These models are easily extended to take into account additional effects such as the build-up of cell stress and to combine data from replicated experiments. The increased analytical power this brings to receptomics research is discussed.
Collapse
Affiliation(s)
- Ron Wehrens
- Biometris, Wageningen University & Research, Wageningen, The Netherlands
- Bioscience, Wageningen University & Research, Wageningen, The Netherlands
- * E-mail:
| | - Margriet Roelse
- Bioscience, Wageningen University & Research, Wageningen, The Netherlands
- Laboratory of Plant Physiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Maurice Henquet
- Bioscience, Wageningen University & Research, Wageningen, The Netherlands
| | - Marco van Lenthe
- Biometris, Wageningen University & Research, Wageningen, The Netherlands
| | - Paul W. Goedhart
- Biometris, Wageningen University & Research, Wageningen, The Netherlands
| | - Maarten A. Jongsma
- Bioscience, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
144
|
Cazaux M, Grandjean CL, Lemaître F, Garcia Z, Beck RJ, Milo I, Postat J, Beltman JB, Cheadle EJ, Bousso P. Single-cell imaging of CAR T cell activity in vivo reveals extensive functional and anatomical heterogeneity. J Exp Med 2019; 216:1038-1049. [PMID: 30936262 PMCID: PMC6504219 DOI: 10.1084/jem.20182375] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/07/2019] [Accepted: 03/04/2019] [Indexed: 12/21/2022] Open
Abstract
Cazaux et al. use intravital imaging to dissect anti-CD19 CAR T cell activity. This study uncovers both anatomical and functional diversity in the outcome of anti-CD19 CAR T cell interactions with tumor cells impacting engraftment, killing dynamics, and tumor immunoediting. CAR T cells represent a potentially curative strategy for B cell malignancies. However, the outcome and dynamics of CAR T cell interactions in distinct anatomical sites are poorly understood. Using intravital imaging, we tracked interactions established by anti-CD19 CAR T cells in B cell lymphoma–bearing mice. Circulating targets trapped CAR T cells in the lungs, reducing their access to lymphoid organs. In the bone marrow, tumor apoptosis was largely due to CAR T cells that engaged, killed, and detached from their targets within 25 min. Notably, not all CAR T cell contacts elicited calcium signaling or killing while interacting with tumors, uncovering extensive functional heterogeneity. Mathematical modeling revealed that direct killing was sufficient for tumor regression. Finally, antigen-loss variants emerged in the bone marrow, but not in lymph nodes, where CAR T cell cytotoxic activity was reduced. Our results identify a previously unappreciated level of diversity in the outcomes of CAR T cell interactions in vivo, with important clinical implications.
Collapse
Affiliation(s)
- Marine Cazaux
- Dynamics of Immune Responses Unit, Equipe Labellisée Ligue Contre le Cancer, Institut Pasteur, INSERM U1223, Paris, France.,University Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France
| | - Capucine L Grandjean
- Dynamics of Immune Responses Unit, Equipe Labellisée Ligue Contre le Cancer, Institut Pasteur, INSERM U1223, Paris, France
| | - Fabrice Lemaître
- Dynamics of Immune Responses Unit, Equipe Labellisée Ligue Contre le Cancer, Institut Pasteur, INSERM U1223, Paris, France
| | - Zacarias Garcia
- Dynamics of Immune Responses Unit, Equipe Labellisée Ligue Contre le Cancer, Institut Pasteur, INSERM U1223, Paris, France
| | - Richard J Beck
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Idan Milo
- Dynamics of Immune Responses Unit, Equipe Labellisée Ligue Contre le Cancer, Institut Pasteur, INSERM U1223, Paris, France
| | - Jérémy Postat
- Dynamics of Immune Responses Unit, Equipe Labellisée Ligue Contre le Cancer, Institut Pasteur, INSERM U1223, Paris, France.,University Paris Diderot, Sorbonne Paris Cité, Cellule Pasteur, Paris, France
| | - Joost B Beltman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Eleanor J Cheadle
- Targeted Therapy Group, Manchester Cancer Research Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Philippe Bousso
- Dynamics of Immune Responses Unit, Equipe Labellisée Ligue Contre le Cancer, Institut Pasteur, INSERM U1223, Paris, France
| |
Collapse
|
145
|
Farrell JS, Nguyen QA, Soltesz I. Resolving the Micro-Macro Disconnect to Address Core Features of Seizure Networks. Neuron 2019; 101:1016-1028. [PMID: 30897354 PMCID: PMC6430140 DOI: 10.1016/j.neuron.2019.01.043] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/14/2018] [Accepted: 01/18/2019] [Indexed: 02/07/2023]
Abstract
Current drug treatments for epilepsy attempt to broadly restrict excitability to mask a symptom, seizures, with little regard for the heterogeneous mechanisms that underlie disease manifestation across individuals. Here, we discuss the need for a more complete view of epilepsy, outlining how key features at the cellular and microcircuit level can significantly impact disease mechanisms that are not captured by the most common methodology to study epilepsy, electroencephalography (EEG). We highlight how major advances in neuroscience tool development now enable multi-scale investigation of fundamental questions to resolve the currently controversial understanding of seizure networks. These findings will provide essential insight into what has emerged as a disconnect between the different levels of investigation and identify new targets and treatment options.
Collapse
Affiliation(s)
- Jordan S Farrell
- Department of Neurosurgery, Stanford University, Stanford, CA, USA.
| | - Quynh-Anh Nguyen
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Ivan Soltesz
- Department of Neurosurgery, Stanford University, Stanford, CA, USA.
| |
Collapse
|
146
|
Mattocks JA, Ho JV, Cotruvo JA. A Selective, Protein-Based Fluorescent Sensor with Picomolar Affinity for Rare Earth Elements. J Am Chem Soc 2019; 141:2857-2861. [DOI: 10.1021/jacs.8b12155] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Joseph A. Mattocks
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Jackson V. Ho
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Joseph A. Cotruvo
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
147
|
Wang H, Mu X, Yang J, Liang Y, Zhang XD, Ming D. Brain imaging with near-infrared fluorophores. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2018.11.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
148
|
Witte ME, Schumacher AM, Mahler CF, Bewersdorf JP, Lehmitz J, Scheiter A, Sánchez P, Williams PR, Griesbeck O, Naumann R, Misgeld T, Kerschensteiner M. Calcium Influx through Plasma-Membrane Nanoruptures Drives Axon Degeneration in a Model of Multiple Sclerosis. Neuron 2019; 101:615-624.e5. [PMID: 30686733 PMCID: PMC6389591 DOI: 10.1016/j.neuron.2018.12.023] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 11/09/2018] [Accepted: 12/12/2018] [Indexed: 11/15/2022]
Abstract
Axon loss determines persistent disability in multiple sclerosis patients. Here, we use in vivo calcium imaging in a multiple sclerosis model to show that cytoplasmic calcium levels determine the choice between axon loss and survival. We rule out the endoplasmic reticulum, glutamate excitotoxicity, and the reversal of the sodium-calcium exchanger as sources of intra-axonal calcium accumulation and instead identify nanoscale ruptures of the axonal plasma membrane as the critical path of calcium entry.
Collapse
Affiliation(s)
- Maarten E Witte
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians Universität München, Marchioninistraße 15, 81377 Munich, Germany; Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians Universität München, Großhaderner Strasse 9, 82152 Planegg Martinsried, Germany
| | - Adrian-Minh Schumacher
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians Universität München, Marchioninistraße 15, 81377 Munich, Germany; Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians Universität München, Großhaderner Strasse 9, 82152 Planegg Martinsried, Germany
| | - Christoph F Mahler
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians Universität München, Marchioninistraße 15, 81377 Munich, Germany; Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians Universität München, Großhaderner Strasse 9, 82152 Planegg Martinsried, Germany
| | - Jan P Bewersdorf
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians Universität München, Marchioninistraße 15, 81377 Munich, Germany; Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians Universität München, Großhaderner Strasse 9, 82152 Planegg Martinsried, Germany
| | - Jonas Lehmitz
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians Universität München, Marchioninistraße 15, 81377 Munich, Germany; Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians Universität München, Großhaderner Strasse 9, 82152 Planegg Martinsried, Germany; Institute of Neuronal Cell Biology, Technische Universität München, Biedersteiner Straße 29, 80802 Munich, Germany
| | - Alexander Scheiter
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians Universität München, Marchioninistraße 15, 81377 Munich, Germany; Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians Universität München, Großhaderner Strasse 9, 82152 Planegg Martinsried, Germany; Institute of Neuronal Cell Biology, Technische Universität München, Biedersteiner Straße 29, 80802 Munich, Germany
| | - Paula Sánchez
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians Universität München, Marchioninistraße 15, 81377 Munich, Germany; Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians Universität München, Großhaderner Strasse 9, 82152 Planegg Martinsried, Germany
| | - Philip R Williams
- Institute of Neuronal Cell Biology, Technische Universität München, Biedersteiner Straße 29, 80802 Munich, Germany
| | - Oliver Griesbeck
- Max-Planck Institute of Neurobiology, Am Klopferspitz 18, 82152 Planegg-Martinsried, Germany
| | - Ronald Naumann
- Max-Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Thomas Misgeld
- Institute of Neuronal Cell Biology, Technische Universität München, Biedersteiner Straße 29, 80802 Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Feodor-Lynen-Straße 17, 81377 Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen-Straße 17, 81377 Munich, Germany; Center of Integrated Protein Science (CIPSM), Butenandtstraße 5-13, 81377 Munich, Germany.
| | - Martin Kerschensteiner
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians Universität München, Marchioninistraße 15, 81377 Munich, Germany; Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians Universität München, Großhaderner Strasse 9, 82152 Planegg Martinsried, Germany; Munich Cluster for Systems Neurology (SyNergy), Feodor-Lynen-Straße 17, 81377 Munich, Germany.
| |
Collapse
|
149
|
Wang W, Kim CK, Ting AY. Molecular tools for imaging and recording neuronal activity. Nat Chem Biol 2019; 15:101-110. [PMID: 30659298 DOI: 10.1038/s41589-018-0207-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 11/20/2018] [Indexed: 11/09/2022]
Abstract
To understand how the brain relates to behavior, it is essential to record neural activity in awake, behaving animals. To achieve this goal, a large variety of genetically encoded sensors have been developed to monitor and record the series of events following neuronal firing, including action potentials, intracellular calcium rise, neurotransmitter release and immediate early gene expression. In this Review, we discuss the existing genetically encoded tools for detecting and integrating neuronal activity in animals and highlight the remaining challenges and future opportunities for molecular biologists.
Collapse
Affiliation(s)
- Wenjing Wang
- Departments of Genetics, Biology, and Chemistry, Stanford University, Stanford, CA, USA.,Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA.,Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Christina K Kim
- Departments of Genetics, Biology, and Chemistry, Stanford University, Stanford, CA, USA
| | - Alice Y Ting
- Departments of Genetics, Biology, and Chemistry, Stanford University, Stanford, CA, USA. .,Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
150
|
Shen Y, Wu SY, Rancic V, Aggarwal A, Qian Y, Miyashita SI, Ballanyi K, Campbell RE, Dong M. Genetically encoded fluorescent indicators for imaging intracellular potassium ion concentration. Commun Biol 2019; 2:18. [PMID: 30652129 PMCID: PMC6331434 DOI: 10.1038/s42003-018-0269-2] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 12/17/2018] [Indexed: 11/13/2022] Open
Abstract
Potassium ion (K+) homeostasis and dynamics play critical roles in biological activities. Here we describe three genetically encoded K+ indicators. KIRIN1 (potassium (K) ion ratiometric indicator) and KIRIN1-GR are Förster resonance energy transfer (FRET)-based indicators with a bacterial K+ binding protein (Kbp) inserting between the fluorescent protein FRET pairs mCerulean3/cp173Venus and Clover/mRuby2, respectively. GINKO1 (green indicator of K+ for optical imaging) is a single fluorescent protein-based K+ indicator constructed by insertion of Kbp into enhanced green fluorescent protein (EGFP). These indicators are suitable for detecting K+ at physiologically relevant concentrations in vitro and in cells. KIRIN1 enabled imaging of cytosolic K+ depletion in live cells and K+ efflux and reuptake in cultured neurons. GINKO1, in conjunction with red fluorescent Ca2+ indicator, enable dual-color imaging of K+ and Ca2+ dynamics in neurons and glial cells. These results demonstrate that KIRIN1 and GINKO1 are useful tools for imaging intracellular K+ dynamics.
Collapse
Affiliation(s)
- Yi Shen
- Department of Urology, Boston Children’s Hospital, Department of Microbiology and Immunobiology, Department of Surgery, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115 USA
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2 Canada
| | - Sheng-Yi Wu
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2 Canada
| | - Vladimir Rancic
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2H7 Canada
| | - Abhi Aggarwal
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2 Canada
| | - Yong Qian
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2 Canada
| | - Shin-Ichiro Miyashita
- Department of Urology, Boston Children’s Hospital, Department of Microbiology and Immunobiology, Department of Surgery, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115 USA
| | - Klaus Ballanyi
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2H7 Canada
| | - Robert E. Campbell
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2 Canada
- Department of Chemistry, The University of Tokyo, Tokyo, 113-0033 Japan
| | - Min Dong
- Department of Urology, Boston Children’s Hospital, Department of Microbiology and Immunobiology, Department of Surgery, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115 USA
| |
Collapse
|