101
|
Lee JE, Vadlani PV, Faubion J. Corn bran bioprocessing: Development of an integrated process for microbial lipids production. BIORESOURCE TECHNOLOGY 2017; 243:196-203. [PMID: 28666148 DOI: 10.1016/j.biortech.2017.06.065] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/10/2017] [Accepted: 06/12/2017] [Indexed: 06/07/2023]
Abstract
This study investigated the potential of corn bran as a feedstock for microbial lipid production using oleaginous yeast, Trichosporon oleaginosus ATCC20509. Different conditions (solid loading of biomass, acid loading, and pretreatment duration) were applied to optimize pretreatment processes using the Box-Behnken design. The highest sugar yield of 0.53g/g was obtained from corn bran hydrolysates at a pretreatment condition of 5% solid loading and 1% acid loading for 30min. Compared with synthetic media, up to 50% higher lipid accumulations in T. oleaginosus were achieved using corn bran hydrolysates during fermentation. Also, the direct effect of pretreatment condition on the lipid accumulation of T. oleaginosus was investigated using response surface methodology (RSM). Solid loading of biomass during the pretreatment process significantly affected the fermentation process for lipid accumulation of T. oleaginosus. The RSM model can provide useful information to design an integrated bioconversion platform.
Collapse
Affiliation(s)
- Jung-Eun Lee
- Bioprocessing and Renewable Energy Laboratory, Department of Grain Science and Industry, Kansas State University, Manhattan, KS, USA.
| | - Praveen V Vadlani
- Bioprocessing and Renewable Energy Laboratory, Department of Grain Science and Industry, Kansas State University, Manhattan, KS, USA; Department of Chemical Engineering, Kansas State University, Manhattan, KS, USA
| | - Jon Faubion
- Bioprocessing and Renewable Energy Laboratory, Department of Grain Science and Industry, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
102
|
Wang G, Li D, Miao Z, Zhang S, Liang W, Liu L. Comparative transcriptome analysis reveals multiple functions for Mhy1p in lipid biosynthesis in the oleaginous yeast Yarrowia lipolytica. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1863:81-90. [PMID: 29055818 DOI: 10.1016/j.bbalip.2017.10.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/24/2017] [Accepted: 10/17/2017] [Indexed: 02/07/2023]
Abstract
Yarrowia lipolytica is considered as a promising microbial cell factory for bio-oil production due to its ability to accumulate a large amount of lipid. However, the regulation of lipid metabolism in this oleaginous yeast is elusive. In this study, the MHY1 gene was disrupted, and 43.1% (w/w) intracellular oil based on cell dry weight was obtained from the disruptant M-MHY1, while only 30.2% (w/w) lipid based on cell dry weight was obtained from the reference strain. RNA-seq was then performed to analyze transcriptional changes during lipid biosynthesis after MHY1 gene inactivation. The expression of 1597 genes, accounting for 24.7% of annotated Y. lipolytica genes, changed significantly in the disruptant M-MHY1 during lipid biosynthesis. Differential gene expression analysis indicated that Mhy1p performs multiple functions and participates in a wide variety of biological processes, including lipid, amino acid and nitrogen metabolism. Notably, data analysis revealed increased carbon flux through lipid biosynthesis following MHY1 gene inactivation, accompanied by decreased carbon flux through amino acid biosynthesis. Moreover, Mhy1p regulates the cell cycle, and the cell cycle rate was enhanced in the disruptant M-MHY1. These results suggest that Mhy1p plays critical regulatory roles in diverse aspects of various biological processes, especially in lipid biosynthesis, amino acid and nitrogen metabolism and cell cycle. Our dataset appears to elucidate the crucial role of Mhy1p in lipid biosynthesis and serves as a resource for exploring physiological dimorphic growth in Y. lipolytica.
Collapse
Affiliation(s)
- Guangyuan Wang
- College of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao 266109, China
| | - Delong Li
- College of Agronomy and Plant Protection, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Zhengang Miao
- College of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao 266109, China
| | - Shanshan Zhang
- College of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao 266109, China
| | - Wenxing Liang
- College of Agronomy and Plant Protection, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Lin Liu
- College of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
103
|
Donati S, Sander T, Link H. Crosstalk between transcription and metabolism: how much enzyme is enough for a cell? WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2017; 10. [DOI: 10.1002/wsbm.1396] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/20/2017] [Accepted: 07/05/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Stefano Donati
- Max Planck Institute for Terrestrial Microbiology; Marburg Germany
| | - Timur Sander
- Max Planck Institute for Terrestrial Microbiology; Marburg Germany
| | - Hannes Link
- Max Planck Institute for Terrestrial Microbiology; Marburg Germany
| |
Collapse
|
104
|
Jaeger D, Winkler A, Mussgnug JH, Kalinowski J, Goesmann A, Kruse O. Time-resolved transcriptome analysis and lipid pathway reconstruction of the oleaginous green microalga Monoraphidium neglectum reveal a model for triacylglycerol and lipid hyperaccumulation. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:197. [PMID: 28814974 PMCID: PMC5556983 DOI: 10.1186/s13068-017-0882-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/03/2017] [Indexed: 05/03/2023]
Abstract
BACKGROUND Oleaginous microalgae are promising production hosts for the sustainable generation of lipid-based bioproducts and as bioenergy carriers such as biodiesel. Transcriptomics of the lipid accumulation phase, triggered efficiently by nitrogen starvation, is a valuable approach for the identification of gene targets for metabolic engineering. RESULTS An explorative analysis of the detailed transcriptional response to different stages of nitrogen availability was performed in the oleaginous green alga Monoraphidium neglectum. Transcript data were correlated with metabolic data for cellular contents of starch and of different lipid fractions. A pronounced transcriptional down-regulation of photosynthesis became apparent in response to nitrogen starvation, whereas glucose catabolism was found to be up-regulated. An in-depth reconstruction and analysis of the pathways for glycerolipid, central carbon, and starch metabolism revealed that distinct transcriptional changes were generally found only for specific steps within a metabolic pathway. In addition to pathway analyses, the transcript data were also used to refine the current genome annotation. The transcriptome data were integrated into a database and complemented with data for other microalgae which were also subjected to nitrogen starvation. It is available at https://tdbmn.cebitec.uni-bielefeld.de. CONCLUSIONS Based on the transcriptional responses to different stages of nitrogen availability, a model for triacylglycerol and lipid hyperaccumulation is proposed, which involves transcriptional induction of thioesterases, differential regulation of lipases, and a re-routing of the central carbon metabolism. Over-expression of distinct thioesterases was identified to be a potential strategy to increase the oleaginous phenotype of M. neglectum, and furthermore specific lipases were identified as potential targets for future metabolic engineering approaches.
Collapse
Affiliation(s)
- Daniel Jaeger
- Algae Biotechnology and Bioenergy, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany
| | - Anika Winkler
- Microbial Genomics and Biotechnology, Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany
| | - Jan H. Mussgnug
- Algae Biotechnology and Bioenergy, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany
| | - Jörn Kalinowski
- Microbial Genomics and Biotechnology, Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany
| | - Alexander Goesmann
- Bioinformatics and Systems Biology, Justus-Liebig-Universität, 35392 Gießen, Germany
| | - Olaf Kruse
- Algae Biotechnology and Bioenergy, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, 33615 Bielefeld, Germany
- Algae Biotechnology and Bioenergy, Faculty of Biology, Center for Biotechnology (CeBiTec), Bielefeld University, Universitaetsstrasse 27, 33615 Bielefeld, Germany
| |
Collapse
|
105
|
Inference and interrogation of a coregulatory network in the context of lipid accumulation in Yarrowia lipolytica. NPJ Syst Biol Appl 2017; 3:21. [PMID: 28955503 PMCID: PMC5554221 DOI: 10.1038/s41540-017-0024-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 07/07/2017] [Accepted: 07/13/2017] [Indexed: 12/14/2022] Open
Abstract
Complex phenotypes, such as lipid accumulation, result from cooperativity between regulators and the integration of multiscale information. However, the elucidation of such regulatory programs by experimental approaches may be challenging, particularly in context-specific conditions. In particular, we know very little about the regulators of lipid accumulation in the oleaginous yeast of industrial interest Yarrowia lipolytica. This lack of knowledge limits the development of this yeast as an industrial platform, due to the time-consuming and costly laboratory efforts required to design strains with the desired phenotypes. In this study, we aimed to identify context-specific regulators and mechanisms, to guide explorations of the regulation of lipid accumulation in Y. lipolytica. Using gene regulatory network inference, and considering the expression of 6539 genes over 26 time points from GSE35447 for biolipid production and a list of 151 transcription factors, we reconstructed a gene regulatory network comprising 111 transcription factors, 4451 target genes and 17048 regulatory interactions (YL-GRN-1) supported by evidence of protein-protein interactions. This study, based on network interrogation and wet laboratory validation (a) highlights the relevance of our proposed measure, the transcription factors influence, for identifying phases corresponding to changes in physiological state without prior knowledge (b) suggests new potential regulators and drivers of lipid accumulation and
Collapse
|
106
|
Lopes H, Rocha I. Genome-scale modeling of yeast: chronology, applications and critical perspectives. FEMS Yeast Res 2017; 17:3950252. [PMID: 28899034 PMCID: PMC5812505 DOI: 10.1093/femsyr/fox050] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 07/07/2017] [Indexed: 01/21/2023] Open
Abstract
Over the last 15 years, several genome-scale metabolic models (GSMMs) were developed for different yeast species, aiding both the elucidation of new biological processes and the shift toward a bio-based economy, through the design of in silico inspired cell factories. Here, an historical perspective of the GSMMs built over time for several yeast species is presented and the main inheritance patterns among the metabolic reconstructions are highlighted. We additionally provide a critical perspective on the overall genome-scale modeling procedure, underlining incomplete model validation and evaluation approaches and the quest for the integration of regulatory and kinetic information into yeast GSMMs. A summary of experimentally validated model-based metabolic engineering applications of yeast species is further emphasized, while the main challenges and future perspectives for the field are finally addressed.
Collapse
Affiliation(s)
- Helder Lopes
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Isabel Rocha
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
107
|
Abstract
Increasing demand for plant oil for food, feed, and fuel production has led to food-fuel competition, higher plant lipid cost, and more need for agricultural land. On the other hand, the growing global production of biodiesel has increased the production of glycerol as a by-product. Efficient utilization of this by-product can reduce biodiesel production costs. We engineered Yarrowia lipolytica (Y. lipolytica) at various metabolic levels of lipid biosynthesis, degradation, and regulation for enhanced lipid and citric acid production. We used a one-step double gene knock-in and site-specific gene knock-out strategy. The resulting final strain combines the overexpression of homologous DGA1 and DGA2 in a POX-deleted background, and deletion of the SNF1 lipid regulator. This increased lipid and citric acid production in the strain under nitrogen-limiting conditions (C/N molar ratio of 60). The engineered strain constitutively accumulated lipid at a titer of more than 4.8 g/L with a lipid content of 53% of dry cell weight (DCW). The secreted citric acid reached a yield of 0.75 g/g (up to ~45 g/L) from pure glycerol in 3 days of batch fermentation using a 1-L bioreactor. This yeast cell factory was capable of simultaneous lipid accumulation and citric acid secretion. It can be used in fed-batch or continuous bioprocessing for citric acid recovery from the supernatant, along with lipid extraction from the harvested biomass.
Collapse
|
108
|
Abstract
The yeast Yarrowia lipolytica is a potent accumulator of lipids, and lipogenesis in this organism can be influenced by a variety of factors, such as genetics and environmental conditions. Using a multifactorial study, we elucidated the effects of both genetic and environmental factors on regulation of lipogenesis in Y. lipolytica and identified how two opposite regulatory states both result in lipid accumulation. This study involved comparison of a strain overexpressing diacylglycerol acyltransferase (DGA1) with a control strain grown under either nitrogen or carbon limitation conditions. A strong correlation was observed between the responses on the transcript and protein levels. Combination of DGA1 overexpression with nitrogen limitation resulted in a high level of lipid accumulation accompanied by downregulation of several amino acid biosynthetic pathways, including that of leucine in particular, and these changes were further correlated with a decrease in metabolic fluxes. This downregulation was supported by the measured decrease in the level of 2-isopropylmalate, an intermediate of leucine biosynthesis. Combining the multi-omics data with putative transcription factor binding motifs uncovered a contradictory role for TORC1 in controlling lipid accumulation, likely mediated through 2-isopropylmalate and a Leu3-like transcription factor.IMPORTANCE The ubiquitous metabolism of lipids involves refined regulation, and an enriched understanding of this regulation would have wide implications. Various factors can influence lipid metabolism, including the environment and genetics. We demonstrated, using a multi-omics and multifactorial experimental setup, that multiple factors affect lipid accumulation in the yeast Yarrowia lipolytica Using integrative analysis, we identified novel interactions between nutrient restriction and genetic factors involving regulators that are highly conserved among eukaryotes. Given that lipid metabolism is involved in many diseases but is also vital to the development of microbial cell factories that can provide us with sustainable fuels and oleochemicals, we envision that our report introduces foundational work to further unravel the regulation of lipid accumulation in eukaryal cells.
Collapse
|
109
|
Regulation of Nitrogen Metabolism by GATA Zinc Finger Transcription Factors in Yarrowia lipolytica. mSphere 2017; 2:mSphere00038-17. [PMID: 28217743 PMCID: PMC5311114 DOI: 10.1128/msphere.00038-17] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 01/31/2017] [Indexed: 11/30/2022] Open
Abstract
Nitrogen source is commonly used to control lipid production in industrial fungi. Here we identified regulators of nitrogen catabolite repression in the oleaginous yeast Y. lipolytica to determine how the nitrogen source regulates lipid metabolism. We show that disruption of both activators and repressors of nitrogen catabolite repression leads to increased lipid accumulation via activation of carbon catabolite repression through an as yet uncharacterized method. Fungi accumulate lipids in a manner dependent on the quantity and quality of the nitrogen source on which they are growing. In the oleaginous yeast Yarrowia lipolytica, growth on a complex source of nitrogen enables rapid growth and limited accumulation of neutral lipids, while growth on a simple nitrogen source promotes lipid accumulation in large lipid droplets. Here we examined the roles of nitrogen catabolite repression and its regulation by GATA zinc finger transcription factors on lipid metabolism in Y. lipolytica. Deletion of the GATA transcription factor genes gzf3 and gzf2 resulted in nitrogen source-specific growth defects and greater accumulation of lipids when the cells were growing on a simple nitrogen source. Deletion of gzf1, which is most similar to activators of genes repressed by nitrogen catabolite repression in filamentous ascomycetes, did not affect growth on the nitrogen sources tested. We examined gene expression of wild-type and GATA transcription factor mutants on simple and complex nitrogen sources and found that expression of enzymes involved in malate metabolism, beta-oxidation, and ammonia utilization are strongly upregulated on a simple nitrogen source. Deletion of gzf3 results in overexpression of genes with GATAA sites in their promoters, suggesting that it acts as a repressor, while gzf2 is required for expression of ammonia utilization genes but does not grossly affect the transcription level of genes predicted to be controlled by nitrogen catabolite repression. Both GATA transcription factor mutants exhibit decreased expression of genes controlled by carbon catabolite repression via the repressor mig1, including genes for beta-oxidation, highlighting the complex interplay between regulation of carbon, nitrogen, and lipid metabolism. IMPORTANCE Nitrogen source is commonly used to control lipid production in industrial fungi. Here we identified regulators of nitrogen catabolite repression in the oleaginous yeast Y. lipolytica to determine how the nitrogen source regulates lipid metabolism. We show that disruption of both activators and repressors of nitrogen catabolite repression leads to increased lipid accumulation via activation of carbon catabolite repression through an as yet uncharacterized method.
Collapse
|
110
|
Vasdekis AE, Silverman AM, Stephanopoulos G. Exploiting Bioprocessing Fluctuations to Elicit the Mechanistics of De Novo Lipogenesis in Yarrowia lipolytica. PLoS One 2017; 12:e0168889. [PMID: 28052085 PMCID: PMC5215641 DOI: 10.1371/journal.pone.0168889] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 12/07/2016] [Indexed: 01/14/2023] Open
Abstract
Despite substantial achievements in elucidating the metabolic pathways of lipogenesis, a mechanistic representation of lipid accumulation and degradation has not been fully attained to-date. Recent evidence suggests that lipid accumulation can occur through increases of either the cytosolic copy-number of lipid droplets (LDs), or the LDs size. However, the prevailing phenotype, or how such mechanisms pertain to lipid degradation remain poorly understood. To address this shortcoming, we employed the-recently discovered-innate bioprocessing fluctuations in Yarrowia lipolytica, and performed single-cell fluctuation analysis using optical microscopy and microfluidics that generate a quasi-time invariant microenvironment. We report that lipid accumulation at early stationary phase in rich medium is substantially more likely to occur through variations in the LDs copy-number, rather than the LDs size. Critically, these mechanistics are also preserved during lipid degradation, as well as upon exposure to a protein translation inhibitor. The latter condition additionally induced a lipid accumulation phase, accompanied by the downregulation of lipid catabolism. Our results enable an in-depth mechanistic understanding of lipid biogenesis, and expand longitudinal single-cell fluctuation analyses from gene regulation to metabolism.
Collapse
Affiliation(s)
- Andreas E. Vasdekis
- Department of Physics, University of Idaho, Moscow, ID, United States of America
- Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, United States of America
- * E-mail: (AEV); (GS)
| | - Andrew M. Silverman
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| | - Gregory Stephanopoulos
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States of America
- * E-mail: (AEV); (GS)
| |
Collapse
|
111
|
Bredeweg EL, Pomraning KR, Dai Z, Nielsen J, Kerkhoven EJ, Baker SE. A molecular genetic toolbox for Yarrowia lipolytica. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:2. [PMID: 28066508 PMCID: PMC5210315 DOI: 10.1186/s13068-016-0687-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 12/13/2016] [Indexed: 05/29/2023]
Abstract
BACKGROUND Yarrowia lipolytica is an ascomycete yeast used in biotechnological research for its abilities to secrete high concentrations of proteins and accumulate lipids. Genetic tools have been made in a variety of backgrounds with varying similarity to a comprehensively sequenced strain. RESULTS We have developed a set of genetic and molecular tools in order to expand capabilities of Y. lipolytica for both biological research and industrial bioengineering applications. In this work, we generated a set of isogenic auxotrophic strains with decreased non-homologous end joining for targeted DNA incorporation. Genome sequencing, assembly, and annotation of this genetic background uncovers previously unidentified genes in Y. lipolytica. To complement these strains, we constructed plasmids with Y. lipolytica-optimized superfolder GFP for targeted overexpression and fluorescent tagging. We used these tools to build the "Yarrowia lipolytica Cell Atlas," a collection of strains with endogenous fluorescently tagged organelles in the same genetic background, in order to define organelle morphology in live cells. CONCLUSIONS These molecular and isogenetic tools are useful for live assessment of organelle-specific protein expression, and for localization of lipid biosynthetic enzymes or other proteins in Y. lipolytica. This work provides the Yarrowia community with tools for cell biology and metabolism research in Y. lipolytica for further development of biofuels and natural products.
Collapse
Affiliation(s)
- Erin L. Bredeweg
- Earth and Biological Sciences Directorate, Environmental Molecular Sciences Laboratory, Richland, WA 99354 USA
- Department of Energy, Battelle EMSL, 3335 Innovation Blvd, Richland, WA 99354 USA
| | - Kyle R. Pomraning
- Chemical & Biological Process Development Group, Energy and Environment Directorate, Pacific Northwest National Laboratories, Richland, WA 99354 USA
| | - Ziyu Dai
- Chemical & Biological Process Development Group, Energy and Environment Directorate, Pacific Northwest National Laboratories, Richland, WA 99354 USA
| | - Jens Nielsen
- Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| | - Eduard J. Kerkhoven
- Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Göteborg, Sweden
| | - Scott E. Baker
- Earth and Biological Sciences Directorate, Environmental Molecular Sciences Laboratory, Richland, WA 99354 USA
- Department of Energy, Battelle EMSL, 3335 Innovation Blvd, Richland, WA 99354 USA
| |
Collapse
|
112
|
Yu Y, Li T, Wu N, Ren L, Jiang L, Ji X, Huang H. Mechanism of Arachidonic Acid Accumulation during Aging in Mortierella alpina: A Large-Scale Label-Free Comparative Proteomics Study. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:9124-9134. [PMID: 27776414 DOI: 10.1021/acs.jafc.6b03284] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Arachidonic acid (ARA) is an important polyunsaturated fatty acid having various beneficial physiological effects on the human body. The aging of Mortierella alpina has long been known to significantly improve ARA yield, but the exact mechanism is still elusive. Herein, multiple approaches including large-scale label-free comparative proteomics were employed to systematically investigate the mechanism mentioned above. Upon ultrastructural observation, abnormal mitochondria were found to aggregate around shrunken lipid droplets. Proteomics analysis revealed a total of 171 proteins with significant alterations of expression during aging. Pathway analysis suggested that reactive oxygen species (ROS) were accumulated and stimulated the activation of the malate/pyruvate cycle and isocitrate dehydrogenase, which might provide additional NADPH for ARA synthesis. EC 4.2.1.17-hydratase might be a key player in ARA accumulation during aging. These findings provide a valuable resource for efforts to further improve the ARA content in the oil produced by aging M. alpina.
Collapse
Affiliation(s)
- Yadong Yu
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), ‡College of Biotechnology and Pharmaceutical Engineering, ΔCollege of Food Science and Light Industry, #School of Pharmaceutical Sciences, and ⊥State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University , Nanjing 211800, China
| | - Tao Li
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), ‡College of Biotechnology and Pharmaceutical Engineering, ΔCollege of Food Science and Light Industry, #School of Pharmaceutical Sciences, and ⊥State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University , Nanjing 211800, China
| | - Na Wu
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), ‡College of Biotechnology and Pharmaceutical Engineering, ΔCollege of Food Science and Light Industry, #School of Pharmaceutical Sciences, and ⊥State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University , Nanjing 211800, China
| | - Lujing Ren
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), ‡College of Biotechnology and Pharmaceutical Engineering, ΔCollege of Food Science and Light Industry, #School of Pharmaceutical Sciences, and ⊥State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University , Nanjing 211800, China
| | - Ling Jiang
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), ‡College of Biotechnology and Pharmaceutical Engineering, ΔCollege of Food Science and Light Industry, #School of Pharmaceutical Sciences, and ⊥State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University , Nanjing 211800, China
| | - Xiaojun Ji
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), ‡College of Biotechnology and Pharmaceutical Engineering, ΔCollege of Food Science and Light Industry, #School of Pharmaceutical Sciences, and ⊥State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University , Nanjing 211800, China
| | - He Huang
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), ‡College of Biotechnology and Pharmaceutical Engineering, ΔCollege of Food Science and Light Industry, #School of Pharmaceutical Sciences, and ⊥State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University , Nanjing 211800, China
| |
Collapse
|
113
|
Park BG, Kim M, Kim J, Yoo H, Kim BG. Systems biology for understanding and engineering of heterotrophic oleaginous microorganisms. Biotechnol J 2016; 12. [DOI: 10.1002/biot.201600104] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/21/2016] [Accepted: 09/22/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Beom Gi Park
- School of Chemical and Biological Engineering, Institute of Molecular Biology and Genetics, and Bioengineering Institute; Seoul National University; Seoul Republic of Korea
| | - Minsuk Kim
- School of Chemical and Biological Engineering, Institute of Molecular Biology and Genetics, and Bioengineering Institute; Seoul National University; Seoul Republic of Korea
| | - Joonwon Kim
- School of Chemical and Biological Engineering, Institute of Molecular Biology and Genetics, and Bioengineering Institute; Seoul National University; Seoul Republic of Korea
| | - Heewang Yoo
- Interdisciplinary Program for Biochemical Engineering and Biotechnology; Seoul National University; Seoul Republic of Korea
| | - Byung-Gee Kim
- School of Chemical and Biological Engineering, Institute of Molecular Biology and Genetics, and Bioengineering Institute; Seoul National University; Seoul Republic of Korea
- Interdisciplinary Program for Biochemical Engineering and Biotechnology; Seoul National University; Seoul Republic of Korea
| |
Collapse
|
114
|
Ledesma-Amaro R, Nicaud JM. Metabolic Engineering for Expanding the Substrate Range of Yarrowia lipolytica. Trends Biotechnol 2016; 34:798-809. [DOI: 10.1016/j.tibtech.2016.04.010] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 04/19/2016] [Accepted: 04/21/2016] [Indexed: 11/16/2022]
|
115
|
Magnan C, Yu J, Chang I, Jahn E, Kanomata Y, Wu J, Zeller M, Oakes M, Baldi P, Sandmeyer S. Sequence Assembly of Yarrowia lipolytica Strain W29/CLIB89 Shows Transposable Element Diversity. PLoS One 2016; 11:e0162363. [PMID: 27603307 PMCID: PMC5014426 DOI: 10.1371/journal.pone.0162363] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 08/22/2016] [Indexed: 12/27/2022] Open
Abstract
Yarrowia lipolytica, an oleaginous yeast, is capable of accumulating significant cellular mass in lipid making it an important source of biosustainable hydrocarbon-based chemicals. In spite of a similar number of protein-coding genes to that in other Hemiascomycetes, the Y. lipolytica genome is almost double that of model yeasts. Despite its economic importance and several distinct strains in common use, an independent genome assembly exists for only one strain. We report here a de novo annotated assembly of the chromosomal genome of an industrially-relevant strain, W29/CLIB89, determined by hybrid next-generation sequencing. For the first time, each Y. lipolytica chromosome is represented by a single contig. The telomeric rDNA repeats were localized by Irys long-range genome mapping and one complete copy of the rDNA sequence is reported. Two large structural variants and retroelement differences with reference strain CLIB122 including a full-length, novel Ty3/Gypsy long terminal repeat (LTR) retrotransposon and multiple LTR-like sequences are described. Strikingly, several of these are adjacent to RNA polymerase III-transcribed genes, which are almost double in number in Y. lipolytica compared to other Hemiascomycetes. In addition to previously-reported dimeric RNA polymerase III-transcribed genes, tRNA pseudogenes were identified. Multiple full-length and truncated LINE elements are also present. Therefore, although identified transposons do not constitute a significant fraction of the Y. lipolytica genome, they could have played an active role in its evolution. Differences between the sequence of this strain and of the existing reference strain underscore the utility of an additional independent genome assembly for this economically important organism.
Collapse
Affiliation(s)
- Christophe Magnan
- Department of Computer Science, School of Computer Sciences, University of California Irvine, Irvine, California, United States of America
- Institute for Genomics and Bioinformatics, University of California Irvine, Irvine, California, United States of America
| | - James Yu
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, United States of America
| | - Ivan Chang
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, United States of America
| | - Ethan Jahn
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, United States of America
| | - Yuzo Kanomata
- Department of Computer Science, School of Computer Sciences, University of California Irvine, Irvine, California, United States of America
- Institute for Genomics and Bioinformatics, University of California Irvine, Irvine, California, United States of America
| | - Jenny Wu
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, United States of America
| | - Michael Zeller
- Department of Computer Science, School of Computer Sciences, University of California Irvine, Irvine, California, United States of America
| | - Melanie Oakes
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, United States of America
| | - Pierre Baldi
- Department of Computer Science, School of Computer Sciences, University of California Irvine, Irvine, California, United States of America
- Institute for Genomics and Bioinformatics, University of California Irvine, Irvine, California, United States of America
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, United States of America
| | - Suzanne Sandmeyer
- Institute for Genomics and Bioinformatics, University of California Irvine, Irvine, California, United States of America
- Department of Biological Chemistry, School of Medicine, University of California Irvine, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
116
|
Xu J, Zhao X, Du W, Liu D. Bioconversion of glycerol into lipids by Rhodosporidium toruloides in a two-stage process and characterization of lipid properties. Eng Life Sci 2016; 17:303-313. [PMID: 32624776 DOI: 10.1002/elsc.201600062] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 06/06/2016] [Accepted: 07/05/2016] [Indexed: 02/06/2023] Open
Abstract
Rhodosporidium toruloides AS 2.1389 has been considered a promising oleaginous strain due to its flexible substrate adaptability, high lipid content, and coproduction of some pigments. In previous work, R. toruloides has shown good potential to directly convert crude glycerol into intracellular lipids. However, the difference in nutritional demand between cell growth and lipid accumulation was found to be a dilemma. Therefore, a glycerol-based two-stage process was proposed in the present work to separately meet the nutritional demand of both the cell proliferation phase and lipid accumulation phase. Factors that affect microbial conversion of glycerol into lipid were investigated, statistically analyzed, and optimized. As a result, 26.5 g L-1 biomass with 10 g L-1 lipid was obtained in the two-stage process. Lipid yield (0.20 g g-1) and productivity (0.083 g L-1 h-1) achieved were significantly higher than the previously optimized batch culture. In R. toruloides lipids, the dominant fatty acid compositions are palmitic acid (28.5%), stearic acid (12.9%), oleic acid (41.3%), and linoleic acid (12.8%). Phospholipids accounts for 0.63% in total lipid. Lipase-catalyzed methanolysis could achieve up to 95% biodiesel yield. The characterization of R. toruloides lipid suggests its great application potential for biodiesel and specialty-type lipid products.
Collapse
Affiliation(s)
- Jingyang Xu
- Key Laboratory of Forensic Science and Technology Zhejiang Police College Hangzhou China
- Institute of Applied Chemistry Department of Chemical Engineering Tsinghua University Beijing China
| | - Xuebing Zhao
- Institute of Applied Chemistry Department of Chemical Engineering Tsinghua University Beijing China
| | - Wei Du
- Institute of Applied Chemistry Department of Chemical Engineering Tsinghua University Beijing China
| | - Dehua Liu
- Institute of Applied Chemistry Department of Chemical Engineering Tsinghua University Beijing China
| |
Collapse
|