101
|
Hu T, Yao B, Huang S, Fu X. Insight into cellular dedifferentiation in regenerative medicine. SCIENCE CHINA-LIFE SCIENCES 2019; 63:301-304. [PMID: 31187305 DOI: 10.1007/s11427-019-9571-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 05/12/2019] [Indexed: 11/26/2022]
Affiliation(s)
- Tian Hu
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Sciences, General Hospital of PLA, Beijing, 100853, China
- Key Laboratory of Tissue Repair and Regeneration of PLA, Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, the Fourth Medical Center of General Hospital of PLA, Beijing, 100048, China
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Bin Yao
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Sciences, General Hospital of PLA, Beijing, 100853, China
- Key Laboratory of Tissue Repair and Regeneration of PLA, Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, the Fourth Medical Center of General Hospital of PLA, Beijing, 100048, China
- The Shenzhen Key Laboratory of Health Sciences and Technology, Graduate School at Shenzhen, Tsinghua University, Shenzhen, 518055, China
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen, 518055, China
| | - Sha Huang
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Sciences, General Hospital of PLA, Beijing, 100853, China.
- Key Laboratory of Tissue Repair and Regeneration of PLA, Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, the Fourth Medical Center of General Hospital of PLA, Beijing, 100048, China.
| | - Xiaobing Fu
- Wound Healing and Cell Biology Laboratory, Institute of Basic Medical Sciences, General Hospital of PLA, Beijing, 100853, China.
- Key Laboratory of Tissue Repair and Regeneration of PLA, Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, the Fourth Medical Center of General Hospital of PLA, Beijing, 100048, China.
| |
Collapse
|
102
|
Chantre CO, Hoerstrup SP, Parker KK. Engineering biomimetic and instructive materials for wound healing and regeneration. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2019. [DOI: 10.1016/j.cobme.2019.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
103
|
Longitudinal 16S rRNA data derived from limb regenerative tissue samples of axolotl Ambystoma mexicanum. Sci Data 2019; 6:70. [PMID: 31123261 PMCID: PMC6533342 DOI: 10.1038/s41597-019-0077-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 04/16/2019] [Indexed: 12/05/2022] Open
Abstract
The Mexican axolotl (Ambystoma mexicanum) is a critically endangered species and a fruitful amphibian model for regenerative biology. Despite growing body of research on the cellular and molecular biology of axolotl limb regeneration, microbiological aspects of this process remain poorly understood. Here, we describe bacterial 16S rRNA amplicon dataset derived from axolotl limb tissue samples in the course of limb regeneration. The raw data was obtained by sequencing V3–V4 region of 16S rRNA gene and comprised 14,569,756 paired-end raw reads generated from 21 samples. Initial data analysis using DADA2 pipeline resulted in amplicon sequence variant (ASV) table containing a total of ca. 5.9 million chimera-removed, high-quality reads and a median of 296,971 reads per sample. The data constitute a useful resource for the research on the microbiological aspects of axolotl limb regeneration and will also broadly facilitate comparative studies in the developmental and conservation biology of this critically endangered species. Design Type(s) | time series design • organism development design | Measurement Type(s) | rRNA 16S | Technology Type(s) | DNA sequencing | Factor Type(s) | biological replicate • temporal_interval | Sample Characteristic(s) | Ambystoma mexicanum • limb • laboratory environment |
Machine-accessible metadata file describing the reported data (ISA-Tab format)
Collapse
|
104
|
Cao B, Li Y, Yang T, Bao Q, Yang M, Mao C. Bacteriophage-based biomaterials for tissue regeneration. Adv Drug Deliv Rev 2019; 145:73-95. [PMID: 30452949 PMCID: PMC6522342 DOI: 10.1016/j.addr.2018.11.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 07/24/2018] [Accepted: 11/12/2018] [Indexed: 12/11/2022]
Abstract
Bacteriophage, also called phage, is a human-safe bacteria-specific virus. It is a monodisperse biological nanostructure made of proteins (forming the outside surface) and nucleic acids (encased in the protein capsid). Among different types of phages, filamentous phages have received great attention in tissue regeneration research due to their unique nanofiber-like morphology. They can be produced in an error-free format, self-assemble into ordered scaffolds, display multiple signaling peptides site-specifically, and serve as a platform for identifying novel signaling or homing peptides. They can direct stem cell differentiation into specific cell types when they are organized into proper patterns or display suitable peptides. These unusual features have allowed scientists to employ them to regenerate a variety of tissues, including bone, nerves, cartilage, skin, and heart. This review will summarize the progress in the field of phage-based tissue regeneration and the future directions in this field.
Collapse
Affiliation(s)
- Binrui Cao
- Department of Chemistry & Biochemistry, Stephenson Life Science Research Center, Institute for Biomedical Engineering, Science and Technology, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, United States
| | - Yan Li
- Department of Chemistry & Biochemistry, Stephenson Life Science Research Center, Institute for Biomedical Engineering, Science and Technology, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, United States
| | - Tao Yang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Qing Bao
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Mingying Yang
- Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Yuhangtang Road 866, Zhejiang, Hangzhou 310058, China.
| | - Chuanbin Mao
- Department of Chemistry & Biochemistry, Stephenson Life Science Research Center, Institute for Biomedical Engineering, Science and Technology, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73019, United States; School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China.
| |
Collapse
|
105
|
Zimta AA, Baru O, Badea M, Buduru SD, Berindan-Neagoe I. The Role of Angiogenesis and Pro-Angiogenic Exosomes in Regenerative Dentistry. Int J Mol Sci 2019; 20:ijms20020406. [PMID: 30669338 PMCID: PMC6359271 DOI: 10.3390/ijms20020406] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/04/2019] [Accepted: 01/15/2019] [Indexed: 02/07/2023] Open
Abstract
Dental surgeries can result in traumatic wounds that provoke major discomfort and have a high risk of infection. In recent years, density research has taken a keen interest in finding answers to this problem by looking at the latest results made in regenerative medicine and adapting them to the specificities of oral tissue. One of the undertaken directions is the study of angiogenesis as an integrative part of oral tissue regeneration. The stimulation of this process is intended to enhance the local availability of stem cells, oxygen levels, nutrient supply, and evacuation of toxic waste. For a successful stimulation of local angiogenesis, two major cellular components must be considered: the stem cells and the vascular endothelial cells. The exosomes are extracellular vesicles, which mediate the communication between two cell types. In regenerative dentistry, the analysis of exosome miRNA content taps into the extended communication between these cell types with the purpose of improving the regenerative potential of oral tissue. This review analyzes the stem cells available for the dentistry, the molecular cargo of their exosomes, and the possible implications these may have for a future therapeutic induction of angiogenesis in the oral wounds.
Collapse
Affiliation(s)
- Alina-Andreea Zimta
- MEDFUTURE-Research Center for Advanced Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania.
| | - Oana Baru
- Department of Preventive Dentistry, Faculty of Dental Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400083 Cluj-Napoca, Romania.
| | - Mandra Badea
- Department of Preventive Dentistry, Faculty of Dental Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, 400083 Cluj-Napoca, Romania.
| | - Smaranda Dana Buduru
- Prosthetics and Dental materials, Faculty of Dental Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, 32 Clinicilor Street, 400006 Cluj-Napoca, Romania.
- Stomestet Stomatology Clinic, Calea Manastur 68A Street, 400658 Cluj-Napoca, Romania.
| | - Ioana Berindan-Neagoe
- MEDFUTURE-Research Center for Advanced Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania.
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania.
- Department of Functional Genomics and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta", Republicii 34th street, 400015 Cluj-Napoca, Romania.
| |
Collapse
|
106
|
Emerging Roles for Immune Cells and MicroRNAs in Modulating the Response to Cardiac Injury. J Cardiovasc Dev Dis 2019; 6:jcdd6010005. [PMID: 30650599 PMCID: PMC6462949 DOI: 10.3390/jcdd6010005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 01/04/2019] [Accepted: 01/09/2019] [Indexed: 01/13/2023] Open
Abstract
Stimulating cardiomyocyte regeneration after an acute injury remains the central goal in cardiovascular regenerative biology. While adult mammals respond to cardiac damage with deposition of rigid scar tissue, adult zebrafish and salamander unleash a regenerative program that culminates in new cardiomyocyte formation, resolution of scar tissue, and recovery of heart function. Recent studies have shown that immune cells are key to regulating pro-inflammatory and pro-regenerative signals that shift the injury microenvironment toward regeneration. Defining the genetic regulators that control the dynamic interplay between immune cells and injured cardiac tissue is crucial to decoding the endogenous mechanism of heart regeneration. In this review, we discuss our current understanding of the extent that macrophage and regulatory T cells influence cardiomyocyte proliferation and how microRNAs (miRNAs) regulate their activity in the injured heart.
Collapse
|
107
|
Suzuki N, Hirano K, Ogino H, Ochi H. Arid3a regulates nephric tubule regeneration via evolutionarily conserved regeneration signal-response enhancers. eLife 2019; 8:43186. [PMID: 30616715 PMCID: PMC6324879 DOI: 10.7554/elife.43186] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 12/18/2018] [Indexed: 12/15/2022] Open
Abstract
Amphibians and fish have the ability to regenerate numerous tissues, whereas mammals have a limited regenerative capacity. Despite numerous developmental genes becoming reactivated during regeneration, an extensive analysis is yet to be performed on whether highly regenerative animals utilize unique cis-regulatory elements for the reactivation of genes during regeneration and how such cis-regulatory elements become activated. Here, we screened regeneration signal-response enhancers at the lhx1 locus using Xenopus and found that the noncoding elements conserved from fish to human function as enhancers in the regenerating nephric tubules. A DNA-binding motif of Arid3a, a component of H3K9me3 demethylases, was commonly found in RSREs. Arid3a binds to RSREs and reduces the H3K9me3 levels. It promotes cell cycle progression and causes the outgrowth of nephric tubules, whereas the conditional knockdown of arid3a using photo-morpholino inhibits regeneration. These results suggest that Arid3a contributes to the regeneration of nephric tubules by decreasing H3K9me3 on RSREs.
Collapse
Affiliation(s)
- Nanoka Suzuki
- Institute for Promotion of Medical Science Research, Yamagata University, Faculty of Medicine, Yamagata, Japan
| | - Kodai Hirano
- Institute for Promotion of Medical Science Research, Yamagata University, Faculty of Medicine, Yamagata, Japan
| | - Hajime Ogino
- Amphibian Research Center, Hiroshima University, Higashi-hiroshima, Japan
| | - Haruki Ochi
- Institute for Promotion of Medical Science Research, Yamagata University, Faculty of Medicine, Yamagata, Japan
| |
Collapse
|
108
|
Telomere maintenance during anterior regeneration and aging in the freshwater annelid Aeolosoma viride. Sci Rep 2018; 8:18078. [PMID: 30584242 PMCID: PMC6305377 DOI: 10.1038/s41598-018-36396-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/20/2018] [Indexed: 12/13/2022] Open
Abstract
Aging is a complex process involving declines in various cellular and physical functionalities, including regenerative ability. Telomere maintenance is thought to be necessary for regeneration, and telomere attrition is one mechanism that contributes to aging. However, it is unclear if aging affects regeneration owing to deterioration of telomeric maintenance. We introduce Aeolosoma viride—a freshwater annelid with strong regenerative abilities—as a new model for studying the effects of aging on telomere functions and regeneration. We show that the anterior regenerative ability of A. viride declines with age. We characterized the A. viride telomere sequence as being composed of TTAGGG repeats and identifyied the telomerase gene Avi-tert. In adult A. viride, telomerase was constantly active and telomere lengths were similar among different body sections and stably maintained with age. Notably, we found that regeneration did not result in telomere shortening at regenerating sites. Moreover, transient up-regulation of Avi-tert expression and telomerase activity was observed at regenerating sites, which might promote telomere lengthening to counteract telomere erosion resulting from cell proliferation. Our study suggests that although aging affects A. viride regeneration independent of steady-state telomere length, timely regulation of telomerase functions is critical for the regeneration process in A. viride.
Collapse
|
109
|
Epigenetic Regulation of Organ Regeneration in Zebrafish. J Cardiovasc Dev Dis 2018; 5:jcdd5040057. [PMID: 30558240 PMCID: PMC6306890 DOI: 10.3390/jcdd5040057] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 02/06/2023] Open
Abstract
The zebrafish is broadly used for investigating de novo organ regeneration, because of its strong regenerative potential. Over the past two decades of intense study, significant advances have been made in identifying both the regenerative cell sources and molecular signaling pathways in a variety of organs in adult zebrafish. Epigenetic regulation has gradually moved into the center-stage of this research area, aided by comprehensive work demonstrating that DNA methylation, histone modifications, chromatin remodeling complexes, and microRNAs are essential for organ regeneration. Here, we present a brief review of how these epigenetic components are induced upon injury, and how they are involved in sophisticated organ regeneration. In addition, we highlight several prospective research directions and their potential implications for regenerative medicine.
Collapse
|
110
|
Fjelldal PG, van der Meeren T, Fraser TWK, Sambraus F, Jawad L, Hansen TJ. Radiological changes during fracture and repair in neural and haemal spines of Atlantic cod (Gadus morhua). JOURNAL OF FISH DISEASES 2018; 41:1871-1875. [PMID: 30294918 DOI: 10.1111/jfd.12899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/28/2018] [Accepted: 08/28/2018] [Indexed: 06/08/2023]
Abstract
Although spinal injuries in fish have been associated with electric stimuli applied during electrofishing and electrotrawling, bone fracture and repair in the axial skeleton have yet not been studied. To study this, we radiographed a group (n = 64) of individually tagged farmed cod twice, with a 1-year interval (∼36 cm at first and ∼ 50 cm at second inspection). The study focus was on the neural and haemal spines. These structures are un-paired and are not covered by other bones laterally, making them useful for radiological studies on axial skeletal fracture in live fish. At the first examination, four animals showed radiological changes in their neural and haemal spines. Two animals had fractures, and two had callus formations. One year later, at the second radiological examination, the fractures had developed into calluses or into normal morphology, and calluses either remained as calluses or had developed into normal morphology. A further 14 animals that were all normal at the first inspection had developed changes in their neural and haemal spines, both fractures and callus formations. This is the first record of spontaneous bone fracture in fish; the fractures observed occurred under normal farming conditions and were not induced. The results show that cod have a functional fracture healing mechanism in their neural and haemal spines. The findings are discussed in relation to fish hyperostosis.
Collapse
Affiliation(s)
- Per Gunnar Fjelldal
- Institute of Marine Research (IMR), Matre Aquaculture Research Station, Matredal, Norway
| | | | - Thomas W K Fraser
- Institute of Marine Research (IMR), Matre Aquaculture Research Station, Matredal, Norway
| | - Florian Sambraus
- Institute of Marine Research (IMR), Matre Aquaculture Research Station, Matredal, Norway
| | | | - Tom Johnny Hansen
- Institute of Marine Research (IMR), Matre Aquaculture Research Station, Matredal, Norway
| |
Collapse
|
111
|
Kizil C, Bhattarai P. Is Alzheimer's Also a Stem Cell Disease? - The Zebrafish Perspective. Front Cell Dev Biol 2018; 6:159. [PMID: 30533414 PMCID: PMC6265475 DOI: 10.3389/fcell.2018.00159] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 11/06/2018] [Indexed: 12/22/2022] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease and is the leading form of dementia. AD entails chronic inflammation, impaired synaptic integrity and reduced neurogenesis. The clinical and molecular onsets of the disease do not temporally overlap and the initiation phase of the cellular changes might start with a complex causativeness between chronic inflammation, reduced neural stem cell plasticity and neurogenesis. Although the immune and neuronal aspects in AD are well studied, the neural stem cell-related features are far less investigated. An intriguing question is, therefore, whether a stem cell can ever be made proliferative and neurogenic during the prevalent AD in the brain. Recent findings affirm this hypothesis and thus a plausible way to circumvent the AD phenotypes could be to mobilize the endogenous stem cells by enhancing their proliferative and neurogenic capacity as well as to provide the newborn neurons the potential to survive and integrate into the existing circuitry. To address these questions, zebrafish offers unprecedented information and tools, which can be effectively translated into mammalian experimental systems.
Collapse
Affiliation(s)
- Caghan Kizil
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Helmholtz Association, Dresden, Germany
- Center for Regenerative Therapies Dresden, Cluster of Excellence, Technische Universität Dresden, Dresden, Germany
| | - Prabesh Bhattarai
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Helmholtz Association, Dresden, Germany
- Center for Regenerative Therapies Dresden, Cluster of Excellence, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
112
|
Planques A, Malem J, Parapar J, Vervoort M, Gazave E. Morphological, cellular and molecular characterization of posterior regeneration in the marine annelid Platynereis dumerilii. Dev Biol 2018; 445:189-210. [PMID: 30445055 DOI: 10.1016/j.ydbio.2018.11.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/29/2018] [Accepted: 11/08/2018] [Indexed: 01/08/2023]
Abstract
Regeneration, the ability to restore body parts after an injury or an amputation, is a widespread but highly variable and complex phenomenon in animals. While having fascinated scientists for centuries, fundamental questions about the cellular basis of animal regeneration as well as its evolutionary history remain largely unanswered. Here, we present a study of regeneration of the marine annelid Platynereis dumerilii, an emerging comparative developmental biology model, which, like many other annelids, displays important regenerative abilities. When P. dumerilii worms are amputated, they are able to regenerate the posteriormost differentiated part of their body and a stem cell-rich growth zone that allows the production of new segments replacing the amputated ones. We show that posterior regeneration is a rapid process that follows a well reproducible path and timeline, going through specific stages that we thoroughly defined. Wound healing is achieved one day after amputation and a regeneration blastema forms one day later. At this time point, some tissue specification already occurs, and a functional posterior growth zone is re-established as early as three days after amputation. Regeneration timing is only influenced, in a minor manner, by worm size. Comparable regenerative abilities are found for amputations performed at different positions along the antero-posterior axis of the worm, except when amputation planes are very close to the pharynx. Regenerative abilities persist upon repeated amputations without important alterations of the process. We also show that intense cell proliferation occurs during regeneration and that cell divisions are required for regeneration to proceed normally. Finally, 5-ethynyl-2'-deoxyuridine (EdU) pulse and chase experiments suggest that blastemal cells mostly derive from the segment immediately abutting the amputation plane. The detailed characterization of P. dumerilii posterior body regeneration presented in this article provides the foundation for future mechanistic and comparative studies of regeneration in this species.
Collapse
Affiliation(s)
- Anabelle Planques
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France
| | - Julien Malem
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France
| | - Julio Parapar
- Departamento de Bioloxía, Universidade da Coruña, Rúa da Fraga 10, 15008 A Coruña, Spain
| | - Michel Vervoort
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France.
| | - Eve Gazave
- Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, F-75205 Paris, France.
| |
Collapse
|
113
|
Rampon C, Volovitch M, Joliot A, Vriz S. Hydrogen Peroxide and Redox Regulation of Developments. Antioxidants (Basel) 2018; 7:E159. [PMID: 30404180 PMCID: PMC6262372 DOI: 10.3390/antiox7110159] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/10/2018] [Accepted: 10/10/2018] [Indexed: 01/16/2023] Open
Abstract
Reactive oxygen species (ROS), which were originally classified as exclusively deleterious compounds, have gained increasing interest in the recent years given their action as bona fide signalling molecules. The main target of ROS action is the reversible oxidation of cysteines, leading to the formation of disulfide bonds, which modulate protein conformation and activity. ROS, endowed with signalling properties, are mainly produced by NADPH oxidases (NOXs) at the plasma membrane, but their action also involves a complex machinery of multiple redox-sensitive protein families that differ in their subcellular localization and their activity. Given that the levels and distribution of ROS are highly dynamic, in part due to their limited stability, the development of various fluorescent ROS sensors, some of which are quantitative (ratiometric), represents a clear breakthrough in the field and have been adapted to both ex vivo and in vivo applications. The physiological implication of ROS signalling will be presented mainly in the frame of morphogenetic processes, embryogenesis, regeneration, and stem cell differentiation. Gain and loss of function, as well as pharmacological strategies, have demonstrated the wide but specific requirement of ROS signalling at multiple stages of these processes and its intricate relationship with other well-known signalling pathways.
Collapse
Affiliation(s)
- Christine Rampon
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, 75231 Paris, France.
- Sorbonne Paris Cité, Univ Paris Diderot, Biology Department, 75205 Paris CEDEX 13, France.
| | - Michel Volovitch
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, 75231 Paris, France.
- École Normale Supérieure, Department of Biology, PSL Research University, 75005 Paris, France.
| | - Alain Joliot
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, 75231 Paris, France.
| | - Sophie Vriz
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, 75231 Paris, France.
- Sorbonne Paris Cité, Univ Paris Diderot, Biology Department, 75205 Paris CEDEX 13, France.
| |
Collapse
|
114
|
Dong WF, Zhang H, Wang RM, Pan HC. Molecular cloning, antiserum preparation and expression analysis during head regeneration of α-crystallin type heat shock protein in Hydra vulgaris. J Genet 2018; 97:911-924. [PMID: 30262703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Our previous study based on the transcriptome profiling indicated that a fragment of α-crystallin type heat shock protein (α-Hsp) gene was one of the numerous cDNA sequences expressed differentially at various stages of head regeneration in Hydra vulgaris. To further investigate the role that which α-Hsp plays during hydra regeneration, a full-length cDNA of α-Hsp gene of H. vulgaris was isolated by the rapid amplification of cDNA ends (RACE) technique. The full-length cDNA of α-Hsp gene was 1156 bp, containing a 765 bp open-reading frame (ORF), which encodes a polypeptide of 254 amino acid residues with a molecular weight of 29.27 kDa. Further, the ORF was subcloned into the plasmid pET-42a(+), and the recombinant plasmid pET-42a(+)-α- Hsp was transformed to Escherichia coli BL21(DE3), then the fusion protein GST-α-Hsp was expressed mainly in the form of a soluble molecule after induction by isopropyl-β-d-thiogalactopyranoside. In addition, BALB/Cmice were immunized with the fusion protein to prepare the polyclonal antiserum which was used as the primary antibody for whole-mount immunohistochemical assay. The results from the immunohistochemical assay showed that α-Hsp had expressedmainly at the wound site and nearby area of hydra after decapitation operation, and both quantitative real-time polymerase chain reaction (qPCR) analysis and immunohistochemical assay revealed that the expression level of α-Hsp increased gradually during the early period of hydra regeneration, then reached a peak at 24 h after decapitation operation, while decreased during the late regeneration period. Moreover, it indicated an important role of α-Hsp gene in hydra head regeneration that RNA interference (RNAi)-mediated α-Hsp silencing led to the obvious delay of the regeneration of head structures in H. vulgaris. In conclusion, our results gave the hint that α-Hsp could be related to wound healing and tissue remodelling at early regeneration stages, and may lay the foundation for further studies about the physiological function and role of α-Hsp during hydra regeneration.
Collapse
Affiliation(s)
- Wen-Fang Dong
- Provincial Key Laboratory of Conservation and Exploitation of Biological Resources in Anhui, Provincial Key Laboratory of Biotic, Environment and Ecological, Safety in Anhui, College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui Province, People's Republic of China.
| | | | | | | |
Collapse
|
115
|
Dong WF, Zhang H, Wang RM, Pan HC. Molecular cloning, antiserum preparation and expression analysis during head regeneration of
$$\upalpha $$
α
-crystallin type heat shock protein in Hydra vulgaris. J Genet 2018. [DOI: 10.1007/s12041-018-0982-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
116
|
Zhang M, Chen Y, Xu H, Yang L, Yuan F, Li L, Xu Y, Chen Y, Zhang C, Lin G. Melanocortin Receptor 4 Signaling Regulates Vertebrate Limb Regeneration. Dev Cell 2018; 46:397-409.e5. [PMID: 30130530 PMCID: PMC6107305 DOI: 10.1016/j.devcel.2018.07.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/28/2018] [Accepted: 07/21/2018] [Indexed: 11/16/2022]
Abstract
Melanocortin 4 receptor (Mc4r) plays a crucial role in the central control of energy homeostasis, but its role in peripheral organs has not been fully explored. We have investigated the roles of hypothalamus-mediated energy metabolism during Xenopus limb regeneration. We report that hypothalamus injury inhibits Xenopus tadpole limb regeneration. By loss-of-function and gain-of-function studies, we show that Mc4r signaling is required for limb regeneration in regeneration-competent tadpoles and stimulates limb regeneration in later-stage regeneration-defective tadpoles. It regulates limb regeneration through modulating energy homeostasis and ROS production. Even more interestingly, our results demonstrate that Mc4r signaling is regulated by innervation and α-MSH substitutes for the effect of nerves in limb regeneration. Mc4r signaling is also required for mouse digit regeneration. Thus, our findings link vertebrate limb regeneration with Mc4r-mediated energy homeostasis and provide a new avenue for understanding Mc4r signaling in the peripheral organs.
Collapse
Affiliation(s)
- Mengshi Zhang
- Research Center for Translational Medicine, Translational Medical Center for Stem Cell Therapy, and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China
| | - Youwei Chen
- Research Center for Translational Medicine, Translational Medical Center for Stem Cell Therapy, and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China
| | - Hanqian Xu
- Research Center for Translational Medicine, Translational Medical Center for Stem Cell Therapy, and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China; Stem Cell Institute, Department of Genetics Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Li Yang
- Research Center for Translational Medicine, Translational Medical Center for Stem Cell Therapy, and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China
| | - Feng Yuan
- Research Center for Translational Medicine, Translational Medical Center for Stem Cell Therapy, and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China
| | - Lei Li
- Research Center for Translational Medicine, Translational Medical Center for Stem Cell Therapy, and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China
| | - Ying Xu
- Research Center for Translational Medicine, Translational Medical Center for Stem Cell Therapy, and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China
| | - Ying Chen
- Stem Cell Institute, Department of Genetics Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Chao Zhang
- Research Center for Translational Medicine, Translational Medical Center for Stem Cell Therapy, and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China.
| | - Gufa Lin
- Research Center for Translational Medicine, Translational Medical Center for Stem Cell Therapy, and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China; Stem Cell Institute, Department of Genetics Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
117
|
Grajevskaja V, Camerota D, Bellipanni G, Balciuniene J, Balciunas D. Analysis of a conditional gene trap reveals that tbx5a is required for heart regeneration in zebrafish. PLoS One 2018; 13:e0197293. [PMID: 29933372 PMCID: PMC6014646 DOI: 10.1371/journal.pone.0197293] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 04/30/2018] [Indexed: 01/27/2023] Open
Abstract
The ability to conditionally inactivate genes is instrumental for fine genetic analysis of all biological processes, but is especially important for studies of biological events, such as regeneration, which occur late in ontogenesis or in adult life. We have constructed and tested a fully conditional gene trap vector, and used it to inactivate tbx5a in the cardiomyocytes of larval and adult zebrafish. We observe that loss of tbx5a function significantly impairs the ability of zebrafish hearts to regenerate after ventricular resection, indicating that Tbx5a plays an essential role in the transcriptional program of heart regeneration.
Collapse
Affiliation(s)
- Viktorija Grajevskaja
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, United States of America
- Department of Zoology, Faculty of Natural Sciences, Vilnius University, Vilnius, Lithuania
| | - Diana Camerota
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, United States of America
| | - Gianfranco Bellipanni
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, United States of America
| | - Jorune Balciuniene
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, United States of America
| | - Darius Balciunas
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA, United States of America
| |
Collapse
|
118
|
Guided genetic screen to identify genes essential in the regeneration of hair cells and other tissues. NPJ Regen Med 2018; 3:11. [PMID: 29872546 PMCID: PMC5986822 DOI: 10.1038/s41536-018-0050-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 04/18/2018] [Accepted: 05/08/2018] [Indexed: 02/06/2023] Open
Abstract
Regenerative medicine holds great promise for both degenerative diseases and traumatic tissue injury which represent significant challenges to the health care system. Hearing loss, which affects hundreds of millions of people worldwide, is caused primarily by a permanent loss of the mechanosensory receptors of the inner ear known as hair cells. This failure to regenerate hair cells after loss is limited to mammals, while all other non-mammalian vertebrates tested were able to completely regenerate these mechanosensory receptors after injury. To understand the mechanism of hair cell regeneration and its association with regeneration of other tissues, we performed a guided mutagenesis screen using zebrafish lateral line hair cells as a screening platform to identify genes that are essential for hair cell regeneration, and further investigated how genes essential for hair cell regeneration were involved in the regeneration of other tissues. We created genetic mutations either by retroviral insertion or CRISPR/Cas9 approaches, and developed a high-throughput screening pipeline for analyzing hair cell development and regeneration. We screened 254 gene mutations and identified 7 genes specifically affecting hair cell regeneration. These hair cell regeneration genes fell into distinct and somewhat surprising functional categories. By examining the regeneration of caudal fin and liver, we found these hair cell regeneration genes often also affected other types of tissue regeneration. Therefore, our results demonstrate guided screening is an effective approach to discover regeneration candidates, and hair cell regeneration is associated with other tissue regeneration. A study on zebrafish has genetically screened 254 genes and identified 7 genes implicated in the development and regeneration of hair cells and other tissues. Humans and other mammals cannot regrow hair cells—inner-ear sensory receptors that enable hearing—whereas non-mammalian vertebrates, including zebrafish, can regrow these following injury. Researchers from the United States, led by the National Institutes of Health’s Shawn Burgess, screened adult zebrafish for genes active during the regeneration of inner-ear epithelium. The researchers then produced zebrafish without these genes to study their functions. The studies tested 254 genes known to respond during regeneration, and identified seven specifically impacting regeneration. Most of these seven genes also functioned in liver and fin tissue regeneration. Understanding the mechanisms of these genes may enable future research into regenerative therapies in humans.
Collapse
|
119
|
Luttrell SM, Su YH, Swalla BJ. Getting a Head with Ptychodera flava Larval Regeneration. THE BIOLOGICAL BULLETIN 2018; 234:152-164. [PMID: 29949438 DOI: 10.1086/698510] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Severe injury to the central nervous system of chordates often results in permanent and irreversible mental and physical challenges. While some chordates are able to repair and/or regenerate portions of their nervous system, no chordate has been shown to be able to regenerate all regions of its central nervous system after catastrophic injury or amputation. Some hemichordates, on the other hand, are able to efficiently regenerate all neural structures, including their dorsal, hollow neural tube after complete ablation. Solitary hemichordates are marine acorn worms and a sister group to the echinoderms. The hemichordate Ptychodera flava progresses from a pelagic, feeding tornaria larva to a tripartite benthic worm with an anterior proboscis, a middle collar region, and a long posterior trunk. The adult worm regenerates all body parts when bisected in the trunk, but it was unknown whether the regeneration process was present in tornaria larvae. Now, we show that P. flava larvae are capable of robust regeneration after bisection through the sagittal, coronal, and axial planes. We also use antibody staining to show that the apical sensory organ regenerates a rich, serotonin-positive complex of cells within two weeks after amputation. Cells labeled with 5-ethynyl-2'-deoxyuridine confirm that regeneration is occurring through epimorphic processes as new cells are added at the cut site and throughout the regenerating tissue. This study verifies that P. flava larvae can be used for future functional studies aimed at identifying the genetic and morphological mechanisms controlling central nervous system regeneration in a stem deuterostome.
Collapse
|
120
|
Takayama K, Muto A, Kikuchi Y. Leucine/glutamine and v-ATPase/lysosomal acidification via mTORC1 activation are required for position-dependent regeneration. Sci Rep 2018; 8:8278. [PMID: 29844341 PMCID: PMC5974189 DOI: 10.1038/s41598-018-26664-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 05/02/2018] [Indexed: 11/13/2022] Open
Abstract
In animal regeneration, control of position-dependent cell proliferation is crucial for the complete restoration of patterned appendages in terms of both, shape and size. However, detailed mechanisms of this process are largely unknown. In this study, we identified leucine/glutamine and v-ATPase/lysosomal acidification, via mechanistic target of rapamycin complex 1 (mTORC1) activation, as effectors of amputation plane-dependent zebrafish caudal fin regeneration. mTORC1 activation, which functions in cell proliferation, was regulated by lysosomal acidification possibly via v-ATPase activity at 3 h post amputation (hpa). Inhibition of lysosomal acidification resulted in reduced growth factor-related gene expression and suppression of blastema formation at 24 and 48 hpa, respectively. Along the proximal-distal axis, position-dependent lysosomal acidification and mTORC1 activation were observed from 3 hpa. We also report that Slc7a5 (L-type amino acid transporter), whose gene expression is position-dependent, is necessary for mTORC1 activation upstream of lysosomal acidification during fin regeneration. Furthermore, treatment with leucine and glutamine, for both proximal and distal fin stumps, led to an up-regulation in cell proliferation via mTORC1 activation, indicating that leucine/glutamine signaling possesses the ability to change the position-dependent regeneration. Our findings reveal that leucine/glutamine and v-ATPase/lysosomal acidification via mTORC1 activation are required for position-dependent zebrafish fin regeneration.
Collapse
Affiliation(s)
- Kazuya Takayama
- Department of Biological Science, Graduate School of Science, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Akihiko Muto
- Department of Biological Science, Graduate School of Science, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima, Hiroshima, 739-8526, Japan.,Hematology Business Development, HU Business Development, Sysmex Corporation, 4-4-4 Takatsukadai, Nishi-ku, Kobe, 651-2271, Japan
| | - Yutaka Kikuchi
- Department of Biological Science, Graduate School of Science, Hiroshima University, Kagamiyama 1-3-1, Higashi-Hiroshima, Hiroshima, 739-8526, Japan.
| |
Collapse
|
121
|
Yuan J, Wang Z, Zou D, Peng Q, Peng R, Zou F. Expression profiling of planarians shed light on a dual role of programmed cell death during the regeneration. J Cell Biochem 2018; 119:5875-5884. [PMID: 29575081 DOI: 10.1002/jcb.26779] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/02/2018] [Indexed: 01/20/2023]
Abstract
Most animals hold the ability to regenerate damaged cells, tissues, and even any lost part of their bodies. To date, there is little known about the precise regulatory mechanism of regeneration and many fundamental questions remain unanswered. To further understand the precise regulatory mechanism of regeneration, we used planarian Dugesia japonica as a model and sequenced the transcriptomes of their regenerated tissues at different regeneration stages. Through de novo assembly and expression profiling, we found that Heat shock protein and MAPK pathway were involved into early response of regeneration in D. japonica. In addition, immune response, cell proliferation, and migration were activated during regeneration. Of notes, our results revealed a specific functional role of programmed cell death (PCD) in regeneration of D. japonica. PCD may not only remove the damaged and superfluous tissues for further patterning with regenerated tissues, but also provide signals to trigger neoblasts proliferation and differentiation directly. Together, our results revealed Heat shock protein and MAPK pathway mediated early response of regeneration and found a dual role of PCD in regeneration D. japonica. Meanwhile, we constructed regulatory networks of apoptosis, autophagy, and related signaling pathways and proposed a schematic model, which provided a global landscape of regeneration.
Collapse
Affiliation(s)
- Junsong Yuan
- College of Life Sciences, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Zhihong Wang
- College of Life Sciences, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Di Zou
- College of Life Sciences, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Quekun Peng
- Department of Biomedical Science, Chengdu Medical College, Chengdu, Sichuan, China
| | - Rui Peng
- College of Life Sciences, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Fangdong Zou
- College of Life Sciences, Sichuan University, Chengdu, Sichuan, P.R. China
| |
Collapse
|
122
|
Hill EM, Petersen CP. Positional information specifies the site of organ regeneration and not tissue maintenance in planarians. eLife 2018; 7:33680. [PMID: 29547123 PMCID: PMC5866098 DOI: 10.7554/elife.33680] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 03/15/2018] [Indexed: 12/24/2022] Open
Abstract
Most animals undergo homeostatic tissue maintenance, yet those capable of robust regeneration in adulthood use mechanisms significantly overlapping with homeostasis. Here we show in planarians that modulations to body-wide patterning systems shift the target site for eye regeneration while still enabling homeostasis of eyes outside this region. The uncoupling of homeostasis and regeneration, which can occur during normal positional rescaling after axis truncation, is not due to altered injury signaling or stem cell activity, nor specific to eye tissue. Rather, pre-existing tissues, which are misaligned with patterning factor expression domains, compete with properly located organs for incorporation of migratory progenitors. These observations suggest that patterning factors determine sites of organ regeneration but do not solely determine the location of tissue homeostasis. These properties provide candidate explanations for how regeneration integrates pre-existing tissues and how regenerative abilities could be lost in evolution or development without eliminating long-term tissue maintenance and repair.
Collapse
Affiliation(s)
- Eric M Hill
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| | - Christian P Petersen
- Department of Molecular Biosciences, Northwestern University, Evanston, United States.,Robert Lurie Comprehensive Cancer Center, Northwestern University, Evanston, United States
| |
Collapse
|
123
|
Blanchoud S, Rinkevich B, Wilson MJ. Whole-Body Regeneration in the Colonial Tunicate Botrylloides leachii. Results Probl Cell Differ 2018; 65:337-355. [PMID: 30083927 DOI: 10.1007/978-3-319-92486-1_16] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The colonial marine invertebrate Botrylloides leachii belongs to the Tunicata subphylum, the closest invertebrate relatives to the vertebrate group and the only known class of chordates that can undergo whole-body regeneration (WBR). This dramatic developmental process allows a minute isolated fragment of B. leachii's vascular system, or a colony excised of all adults, to restore a functional animal in as little as 10 days. In addition to this exceptional regenerative capacity, B. leachii can reproduce both sexually, through a tadpole larval stage, and asexually, through palleal budding. Thus, three alternative developmental strategies lead to the establishment of filter-feeding adults. Consequently, B. leachii is particularly well suited for comparative studies on regeneration and should provide novel insights into regenerative processes in chordates.Here, after a short introduction on regeneration, we overview the biology of B. leachii as well as the current state of knowledge on WBR in this species and in related species of tunicates. Finally, we highlight the possible future directions that research might take in the study of WBR, including thoughts on technological approaches that appear most promising in this context. Overall, we provide a synthesis of the current knowledge on WBR in B. leachii to support research in this chordate species.
Collapse
Affiliation(s)
- Simon Blanchoud
- Department of Biology, University of Fribourg, Fribourg, Switzerland.
| | - Buki Rinkevich
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa, Israel
| | - Megan J Wilson
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
124
|
Sampath Kumar TS, Yogeshwar Chakrapani V. Electrospun 3D Scaffolds for Tissue Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1078:29-47. [PMID: 30357617 DOI: 10.1007/978-981-13-0950-2_3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Tissue engineering aims to fabricate and functionalise constructs that mimic the native extracellular matrix (ECM) in the closest way possible to induce cell growth and differentiation in both in vitro and in vivo conditions. Development of scaffolds that can function as tissue substitutes or augment healing of tissues is an essential aspect of tissue regeneration. Although there are many techniques for achieving this biomimicry in 2D structures and 2D cell cultures, translation of successful tissue regeneration in true 3D microenvironments is still in its infancy. Electrospinning, a well known electrohydrodynamic process, is best suited for producing and functionalising, nanofibrous structures to mimic the ECM. A systematic control of the processing parameters coupled with novel process innovations, has recently resulted in novel 3D electrospun structures. This chapter gives a brief account of the various 3D electrospun structures that are being tried as tissue engineering scaffolds. Combining electrospinning with other 3D structure forming technologies, which have shown promising results, has also been discussed. Electrospinning has the potential to bridge the gap between what is known and what is yet to be known in fabricating 3D scaffolds for tissue regeneration.
Collapse
Affiliation(s)
- T S Sampath Kumar
- Medical Materials Laboratory, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai, India.
| | - V Yogeshwar Chakrapani
- Medical Materials Laboratory, Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai, India
| |
Collapse
|
125
|
Busse SM, McMillen PT, Levin M. Cross-limb communication during Xenopus hind-limb regenerative response: non-local bioelectric injury signals. Development 2018; 145:dev.164210. [DOI: 10.1242/dev.164210] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 07/31/2018] [Indexed: 12/29/2022]
Abstract
Regeneration of damaged body-parts requires coordination of size, shape, location, and orientation of tissue with the rest of the body. It is not currently known how far injury sites communicate with the remaining soma during repair, or what information may emanate from the injury site to other regions. We examined the bioelectric properties (resting potential gradients in the epidermis) of Xenopus froglets undergoing hind-limb amputation and observed that the contralateral (un-damaged) limb exhibits apparent depolarization signals immediately after the opposite hind-limb is amputated. The pattern of depolarization matches that of the amputated limb and is correlated to the position and type of injury, revealing that information about damage is available to remote body tissues and is detectable non-invasively in vivo by monitoring of the bioelectric state. These data extend knowledge about the electrophysiology of regenerative response, identify a novel communication process via long-range spread of injury signaling, a phenomenon which we call bioelectric injury mirroring (BIM), and suggests revisions to regenerative medicine and diagnostic strategies focused entirely on the wound site and to the use of contralateral limbs as controls.
Collapse
Affiliation(s)
- Sera M. Busse
- Biology Department and Allen Discovery Center, Tufts University, Medford, MA 02155, USA
| | - Patrick T. McMillen
- Biology Department and Allen Discovery Center, Tufts University, Medford, MA 02155, USA
| | - Michael Levin
- Biology Department and Allen Discovery Center, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
126
|
Gordon T, Shenkar N. Solitary Ascidians as Model Organisms in Regenerative Biology Studies. Results Probl Cell Differ 2018; 65:321-336. [PMID: 30083926 DOI: 10.1007/978-3-319-92486-1_15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Regeneration, the process of replacing lost or damaged body parts, has long captured human imagination and is a key feature among all animal phyla. Due to their close phylogenetic relationship to vertebrates and their high regenerative abilities, ascidians (Chordata, Ascidiacea) are often used as models to shed light on the cellular and genetic process involved in tissue regeneration. Surprisingly, ascidian regeneration studies are based on only a few model species. In this chapter, we point out the important potential of solitary ascidians in regenerative and stem cell studies. We review recent studies of regeneration among solitary ascidians and discuss the cellular mechanism of tissue regeneration and the possible involvement of circulating cells in these processes. New data regarding the relationship between age and regeneration abilities of the solitary ascidian Polycarpa mytiligera (Stolidobranchia, Styelidae) are presented. The unique regeneration abilities found in P. mytiligera following evisceration of its digestive system and following amputation of its neural complex and siphon-associated structures and nerves imply on its potential to serve as a novel model system for understanding tissue regeneration.
Collapse
Affiliation(s)
- Tal Gordon
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel.
| | - Noa Shenkar
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel.,The Steinhardt Museum of Natural History, Israel National Center for Biodiversity Studies, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
127
|
Abstract
Understanding how and why animals regenerate complex tissues has the potential to transform regenerative medicine. Here we present an overview of genetic approaches that have recently been applied to dissect mechanisms of regeneration. We describe new advances that relate to central objectives of regeneration biologists researching different tissues and species, focusing mainly on vertebrates. These objectives include defining the cellular sources and key cell behaviors in regenerating tissue, elucidating molecular triggers and brakes for regeneration, and defining the earliest events that control the presence of these molecular factors.
Collapse
Affiliation(s)
- Chen-Hui Chen
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei 11529, Taiwan;
| | - Kenneth D Poss
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA;
- Regeneration Next, Duke University, Durham, North Carolina 27710, USA
| |
Collapse
|
128
|
Ando K, Shibata E, Hans S, Brand M, Kawakami A. Osteoblast Production by Reserved Progenitor Cells in Zebrafish Bone Regeneration and Maintenance. Dev Cell 2017; 43:643-650.e3. [PMID: 29103952 DOI: 10.1016/j.devcel.2017.10.015] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/05/2017] [Accepted: 10/06/2017] [Indexed: 11/30/2022]
Abstract
Mammals cannot re-form heavily damaged bones as in large fracture gaps, whereas zebrafish efficiently regenerate bones even after amputation of appendages. However, the source of osteoblasts that mediate appendage regeneration is controversial. Several studies in zebrafish have shown that osteoblasts are generated by dedifferentiation of existing osteoblasts at injured sites, but other observations suggest that de novo production of osteoblasts also occurs. In this study, we found from cell-lineage tracing and ablation experiments that a group of cells reserved in niches serves as osteoblast progenitor cells (OPCs) and has a significant role in fin ray regeneration. Besides regeneration, OPCs also supply osteoblasts for normal bone maintenance. We further showed that OPCs are derived from embryonic somites, as is the case with embryonic osteoblasts, and are replenished from mesenchymal precursors in adult zebrafish. Our findings reveal that reserved progenitors are a significant and complementary source of osteoblasts for zebrafish bone regeneration.
Collapse
Affiliation(s)
- Kazunori Ando
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Eri Shibata
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | - Stefan Hans
- Developmental Genetics, DFG-Center for Regenerative Therapies Dresden, Tatzberg 47/49, 01307 Dresden, Germany
| | - Michael Brand
- Developmental Genetics, DFG-Center for Regenerative Therapies Dresden, Tatzberg 47/49, 01307 Dresden, Germany
| | - Atsushi Kawakami
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan.
| |
Collapse
|
129
|
Acoel regeneration mechanisms indicate an ancient role for muscle in regenerative patterning. Nat Commun 2017; 8:1260. [PMID: 29084955 PMCID: PMC5662612 DOI: 10.1038/s41467-017-01148-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 08/18/2017] [Indexed: 11/08/2022] Open
Abstract
Positional information is required for animal regeneration, yet how it is harbored in adult tissues is poorly understood. In planarians, positional control genes (PCGs) control regeneration outcomes and are regionally expressed predominately in the musculature. Acoels are early diverging bilaterally symmetric animals, having separated from other bilaterians > 550 million years ago. Here, we find that PCGs in the acoel Hofstenia miamia are expressed together and specifically in a primary differentiated cell type: muscle. The vast majority of Hofstenia muscle cells in regions tested express PCGs, suggesting positional information is a major feature of muscle. PCG expression domains are dynamic in muscle after injury, consistent with known PCG roles in guiding regeneration. These data demonstrate an instructive positional role for Hofstenia muscle and this similarity with planarians suggests mesodermal muscle originated at the base of the Bilateria not only for contraction, but also as the source of positional information guiding regeneration.
Collapse
|
130
|
Transflammation: Innate immune signaling in nuclear reprogramming. Adv Drug Deliv Rev 2017; 120:133-141. [PMID: 28916494 DOI: 10.1016/j.addr.2017.09.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/31/2017] [Accepted: 09/07/2017] [Indexed: 12/23/2022]
Abstract
Induction of pluripotency in somatic cells by retroviral overexpression of four transcription factors has revolutionized the field of stem cell biology and regenerative medicine. The efficient induction of pluripotency requires the activation of innate immune signaling in a process termed "transflammation" (Lee et al., 2012). Specifically, the stimulation of pattern recognition receptors (PRRs) causes global alterations in the expression and activity of epigenetic modifiers to favor an open chromatin configuration. Activation of toll-like receptors (TLR) or RIG-1-like receptors (RLR) (Sayed et al. 2017) trigger signaling cascades that result in NFκB or IRF-3 mediated changes in epigenetic plasticity that facilitate reprogramming. Another form of nuclear reprogramming is so-called direct reprogramming or transdifferentiation of one somatic cell to another lineage. We have shown that transdifferentiation of human fibroblasts to endothelial cells also involves transflammation (Sayed et al., 2015). Recently, we also identified reactive oxygen species (ROS) (Zhou et al. 2016) and reactive nitrogen species (RNS) (Meng et al., 2016) as mediators of innate immune signaling in nuclear reprogramming. Innate immune signaling plays a key role in nuclear reprogramming by regulating DNA accessibility (Fig. 1). Here, we review recent progress of innate immunity signaling in nuclear reprogramming and epigenetic plasticity.
Collapse
|
131
|
González-Rosa JM, Burns CE, Burns CG. Zebrafish heart regeneration: 15 years of discoveries. ACTA ACUST UNITED AC 2017; 4:105-123. [PMID: 28979788 PMCID: PMC5617908 DOI: 10.1002/reg2.83] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 08/09/2017] [Accepted: 08/09/2017] [Indexed: 12/12/2022]
Abstract
Cardiovascular disease is the leading cause of death worldwide. Compared to other organs such as the liver, the adult human heart lacks the capacity to regenerate on a macroscopic scale after injury. As a result, myocardial infarctions are responsible for approximately half of all cardiovascular related deaths. In contrast, the zebrafish heart regenerates efficiently upon injury through robust myocardial proliferation. Therefore, deciphering the mechanisms that underlie the zebrafish heart's endogenous regenerative capacity represents an exciting avenue to identify novel therapeutic strategies for inducing regeneration of the human heart. This review provides a historical overview of adult zebrafish heart regeneration. We summarize 15 years of research, with a special focus on recent developments from this fascinating field. We discuss experimental findings that address fundamental questions of regeneration research. What is the origin of regenerated muscle? How is regeneration controlled from a genetic and molecular perspective? How do different cell types interact to achieve organ regeneration? Understanding natural models of heart regeneration will bring us closer to answering the ultimate question: how can we stimulate myocardial regeneration in humans?
Collapse
Affiliation(s)
- Juan Manuel González-Rosa
- Cardiovascular Research Center Massachusetts General Hospital Charlestown MA 02129 USA.,Harvard Medical School Boston MA 02115 USA
| | - Caroline E Burns
- Cardiovascular Research Center Massachusetts General Hospital Charlestown MA 02129 USA.,Harvard Medical School Boston MA 02115 USA.,Harvard Stem Cell Institute Cambridge MA 02138 USA
| | - C Geoffrey Burns
- Cardiovascular Research Center Massachusetts General Hospital Charlestown MA 02129 USA.,Harvard Medical School Boston MA 02115 USA
| |
Collapse
|
132
|
Cheng PL, Wu HR, Li CY, Chen CF, Cheng HC. Characterization of the testicular regeneration potential in premature cockerels. J Reprod Dev 2017; 63:563-570. [PMID: 28890522 PMCID: PMC5735267 DOI: 10.1262/jrd.2017-090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Previous studies have shown that grafted neonatal chicken testicular tissue can develop and produce functional sperm; however, it was unclear whether regenerative processes or proportional growth caused the re-appearance of
spermatogenic tissue. We dissociated testicular tissues, performed subcutaneous auto-transplantation of the re-aggregated cells to castrated cockerels, and monitored the post-surgery development of these transplanted aggregates.
We found that these transplanted cell aggregates experienced compensatory growth in the form of a 300-fold increase in size, rather than the 30-fold increase observed in normal testis development. Further, these dissociated
testicular cell aggregates restored seminiferous tubule structure and were able to produce testosterone and motile sperm. Therefore, we concluded that the dissociated testicular cells from 11-week-old cockerels retained a strong
regenerative potential, as they exhibited compensatory growth, restored destroyed structure, and sustained spermatogenesis.
Collapse
Affiliation(s)
- Po-Liang Cheng
- Center for integrative Evolutionary Galliform Genomics Research (iEGG Center), National Chung Hsing University, Taichung City 402, Taiwan.,Department of Life Sciences, National Chung Hsing University, Taichung City 402, Taiwan
| | - Hui-Ru Wu
- Department of Life Sciences, National Chung Hsing University, Taichung City 402, Taiwan.,Present: Taiwan International Patent & Law Office, Taipei City 104, Taiwan
| | - Cheng-Yan Li
- Center for integrative Evolutionary Galliform Genomics Research (iEGG Center), National Chung Hsing University, Taichung City 402, Taiwan.,Department of Life Sciences, National Chung Hsing University, Taichung City 402, Taiwan
| | - Chih-Feng Chen
- Center for integrative Evolutionary Galliform Genomics Research (iEGG Center), National Chung Hsing University, Taichung City 402, Taiwan.,Department of Animal Sciences, National Chung Hsing University, Taichung City 402, Taiwan
| | - Hsu-Chen Cheng
- Center for integrative Evolutionary Galliform Genomics Research (iEGG Center), National Chung Hsing University, Taichung City 402, Taiwan.,Department of Life Sciences, National Chung Hsing University, Taichung City 402, Taiwan
| |
Collapse
|
133
|
Sahu S, Dattani A, Aboobaker AA. Secrets from immortal worms: What can we learn about biological ageing from the planarian model system? Semin Cell Dev Biol 2017; 70:108-121. [PMID: 28818620 DOI: 10.1016/j.semcdb.2017.08.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 08/07/2017] [Accepted: 08/09/2017] [Indexed: 12/12/2022]
Abstract
Understanding how some animals are immortal and avoid the ageing process is important. We currently know very little about how they achieve this. Research with genetic model systems has revealed the existence of conserved genetic pathways and molecular processes that affect longevity. Most of these established model organisms have relatively short lifespans. Here we consider the use of planarians, with an immortal life-history that is able to entirely avoid the ageing process. These animals are capable of profound feats of regeneration fueled by a population of adult stem cells called neoblasts. These cells are capable of indefinite self-renewal that has underpinned the evolution of animals that reproduce only by fission, having disposed of the germline, and must therefore be somatically immortal and avoid the ageing process. How they do this is only now starting to be understood. Here we suggest that the evidence so far supports the hypothesis that the lack of ageing is an emergent property of both being highly regenerative and the evolution of highly effective mechanisms for ensuring genome stability in the neoblast stem cell population. The details of these mechanisms could prove to be very informative in understanding how the causes of ageing can be avoided, slowed or even reversed.
Collapse
Affiliation(s)
- Sounak Sahu
- Department of Zoology, South Parks Road, University of Oxford, Oxford OX1 3PS, UK
| | - Anish Dattani
- Department of Zoology, South Parks Road, University of Oxford, Oxford OX1 3PS, UK
| | - A Aziz Aboobaker
- Department of Zoology, South Parks Road, University of Oxford, Oxford OX1 3PS, UK.
| |
Collapse
|
134
|
Meda F, Rampon C, Dupont E, Gauron C, Mourton A, Queguiner I, Thauvin M, Volovitch M, Joliot A, Vriz S. Nerves, H 2O 2 and Shh: Three players in the game of regeneration. Semin Cell Dev Biol 2017; 80:65-73. [PMID: 28797840 DOI: 10.1016/j.semcdb.2017.08.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 08/04/2017] [Indexed: 12/12/2022]
Abstract
The tight control of reactive oxygen species (ROS) levels is required during regeneration. H2O2 in particular assumes clear signalling functions at different steps in this process. Injured nerves induce high levels of H2O2 through the activation of the Hedgehog (Shh) pathway, providing an environment that promotes cell plasticity, progenitor recruitment and blastema formation. In turn, high H2O2 levels contribute to growing axon attraction. Once re-innervation is completed, nerves subsequently downregulate H2O2 levels to their original state. A similar regulatory loop between H2O2 levels and nerves also exists during development. This suggests that redox signalling is a major actor in cell plasticity.
Collapse
Affiliation(s)
- Francesca Meda
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, Paris, France; PSL Research University, Paris, France.
| | - Christine Rampon
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, Paris, France; PSL Research University, Paris, France
| | - Edmond Dupont
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, Paris, France; PSL Research University, Paris, France
| | - Carole Gauron
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, Paris, France; PSL Research University, Paris, France
| | - Aurélien Mourton
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, Paris, France; PSL Research University, Paris, France; UPMC, Paris, France
| | - Isabelle Queguiner
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, Paris, France; PSL Research University, Paris, France
| | - Marion Thauvin
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, Paris, France; PSL Research University, Paris, France
| | - Michel Volovitch
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, Paris, France; École Normale Supérieure, Institute of Biology at the Ecole Normale Supérieure (IBENS), CNRS UMR8197, INSERM U1024, Paris, France; PSL Research University, Paris, France
| | - Alain Joliot
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, Paris, France; PSL Research University, Paris, France
| | - Sophie Vriz
- Center for Interdisciplinary Research in Biology (CIRB), College de France, CNRS, INSERM, PSL Research University, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, Paris, France; PSL Research University, Paris, France.
| |
Collapse
|
135
|
Sugimoto K, Hui SP, Sheng DZ, Nakayama M, Kikuchi K. Zebrafish FOXP3 is required for the maintenance of immune tolerance. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 73:156-162. [PMID: 28365195 DOI: 10.1016/j.dci.2017.03.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 03/14/2017] [Indexed: 06/07/2023]
Abstract
Regulatory T (Treg) cells play a central role in the suppression of excessive immune responses against both self and non-self antigens. The development and function of Treg cells are controlled by a master regulatory gene encoding the forkhead box P3 (FOXP3) protein in mammals. However, little is known regarding the functions of Treg cells and FOXP3 in non-mammalian vertebrates. In this study, we generated mutant zebrafish lacking a functional FOXP3 ortholog, and demonstrated a significant reduction in survival accompanied by a marked increase in inflammatory gene expression, mononuclear cell infiltration, and T cell proliferation in peripheral tissues. Our findings indicate that the zebrafish FOXP3 protein may have an evolutionally conserved role in the control of immune tolerance, illuminating the potential of the zebrafish as a novel model for investigating the development and functions of Treg cells.
Collapse
Affiliation(s)
- Kotaro Sugimoto
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Subhra P Hui
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Delicia Z Sheng
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Maki Nakayama
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia
| | - Kazu Kikuchi
- Developmental and Stem Cell Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW 2010, Australia; St. Vincent's Clinical School, University of New South Wales, Kensington, NSW 2052, Australia.
| |
Collapse
|
136
|
Gut P, Reischauer S, Stainier DYR, Arnaout R. LITTLE FISH, BIG DATA: ZEBRAFISH AS A MODEL FOR CARDIOVASCULAR AND METABOLIC DISEASE. Physiol Rev 2017; 97:889-938. [PMID: 28468832 PMCID: PMC5817164 DOI: 10.1152/physrev.00038.2016] [Citation(s) in RCA: 202] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/09/2017] [Accepted: 01/10/2017] [Indexed: 12/17/2022] Open
Abstract
The burden of cardiovascular and metabolic diseases worldwide is staggering. The emergence of systems approaches in biology promises new therapies, faster and cheaper diagnostics, and personalized medicine. However, a profound understanding of pathogenic mechanisms at the cellular and molecular levels remains a fundamental requirement for discovery and therapeutics. Animal models of human disease are cornerstones of drug discovery as they allow identification of novel pharmacological targets by linking gene function with pathogenesis. The zebrafish model has been used for decades to study development and pathophysiology. More than ever, the specific strengths of the zebrafish model make it a prime partner in an age of discovery transformed by big-data approaches to genomics and disease. Zebrafish share a largely conserved physiology and anatomy with mammals. They allow a wide range of genetic manipulations, including the latest genome engineering approaches. They can be bred and studied with remarkable speed, enabling a range of large-scale phenotypic screens. Finally, zebrafish demonstrate an impressive regenerative capacity scientists hope to unlock in humans. Here, we provide a comprehensive guide on applications of zebrafish to investigate cardiovascular and metabolic diseases. We delineate advantages and limitations of zebrafish models of human disease and summarize their most significant contributions to understanding disease progression to date.
Collapse
Affiliation(s)
- Philipp Gut
- Nestlé Institute of Health Sciences, EPFL Innovation Park, Lausanne, Switzerland; Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and Cardiovascular Research Institute and Division of Cardiology, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Sven Reischauer
- Nestlé Institute of Health Sciences, EPFL Innovation Park, Lausanne, Switzerland; Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and Cardiovascular Research Institute and Division of Cardiology, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Didier Y R Stainier
- Nestlé Institute of Health Sciences, EPFL Innovation Park, Lausanne, Switzerland; Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and Cardiovascular Research Institute and Division of Cardiology, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Rima Arnaout
- Nestlé Institute of Health Sciences, EPFL Innovation Park, Lausanne, Switzerland; Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and Cardiovascular Research Institute and Division of Cardiology, Department of Medicine, University of California San Francisco, San Francisco, California
| |
Collapse
|
137
|
Wagner I, Wang H, Weissert PM, Straube WL, Shevchenko A, Gentzel M, Brito G, Tazaki A, Oliveira C, Sugiura T, Shevchenko A, Simon A, Drechsel DN, Tanaka EM. Serum Proteases Potentiate BMP-Induced Cell Cycle Re-entry of Dedifferentiating Muscle Cells during Newt Limb Regeneration. Dev Cell 2017; 40:608-617.e6. [PMID: 28350991 DOI: 10.1016/j.devcel.2017.03.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 12/23/2016] [Accepted: 02/27/2017] [Indexed: 12/28/2022]
Abstract
Limb amputation in the newt induces myofibers to dedifferentiate and re-enter the cell cycle to generate proliferative myogenic precursors in the regeneration blastema. Here we show that bone morphogenetic proteins (BMPs) and mature BMPs that have been further cleaved by serum proteases induce cell cycle entry by dedifferentiating newt muscle cells. Protease-activated BMP4/7 heterodimers that are present in serum strongly induced myotube cell cycle re-entry with protease cleavage yielding a 30-fold potency increase of BMP4/7 compared with canonical BMP4/7. Inhibition of BMP signaling via muscle-specific dominant-negative receptor expression reduced cell cycle entry in vitro and in vivo. In vivo inhibition of serine protease activity depressed cell cycle re-entry, which in turn was rescued by cleaved-mimic BMP. This work identifies a mechanism of BMP activation that generates blastema cells from differentiated muscle.
Collapse
Affiliation(s)
- Ines Wagner
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany; DFG Research Center for Regenerative Therapies, Technische Universität Dresden, Fetscherstrasse 105, 01307 Dresden, Germany
| | - Heng Wang
- Department of Cell and Molecular Biology, Centre of Developmental Biology for Regenerative Medicine, Karolinska Institute, Berzelius väg 35, 17177 Stockholm, Sweden
| | - Philipp M Weissert
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany; DFG Research Center for Regenerative Therapies, Technische Universität Dresden, Fetscherstrasse 105, 01307 Dresden, Germany
| | - Werner L Straube
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Anna Shevchenko
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Marc Gentzel
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Goncalo Brito
- Department of Cell and Molecular Biology, Centre of Developmental Biology for Regenerative Medicine, Karolinska Institute, Berzelius väg 35, 17177 Stockholm, Sweden
| | - Akira Tazaki
- DFG Research Center for Regenerative Therapies, Technische Universität Dresden, Fetscherstrasse 105, 01307 Dresden, Germany
| | - Catarina Oliveira
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany; DFG Research Center for Regenerative Therapies, Technische Universität Dresden, Fetscherstrasse 105, 01307 Dresden, Germany
| | - Takuji Sugiura
- DFG Research Center for Regenerative Therapies, Technische Universität Dresden, Fetscherstrasse 105, 01307 Dresden, Germany
| | - Andrej Shevchenko
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - András Simon
- Department of Cell and Molecular Biology, Centre of Developmental Biology for Regenerative Medicine, Karolinska Institute, Berzelius väg 35, 17177 Stockholm, Sweden.
| | - David N Drechsel
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany.
| | - Elly M Tanaka
- DFG Research Center for Regenerative Therapies, Technische Universität Dresden, Fetscherstrasse 105, 01307 Dresden, Germany.
| |
Collapse
|
138
|
Goldman JA, Kuzu G, Lee N, Karasik J, Gemberling M, Foglia MJ, Karra R, Dickson AL, Sun F, Tolstorukov MY, Poss KD. Resolving Heart Regeneration by Replacement Histone Profiling. Dev Cell 2017; 40:392-404.e5. [PMID: 28245924 DOI: 10.1016/j.devcel.2017.01.013] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 11/07/2016] [Accepted: 01/26/2017] [Indexed: 10/20/2022]
Abstract
Chromatin regulation is a principal mechanism governing animal development, yet it is unclear to what extent structural changes in chromatin underlie tissue regeneration. Non-mammalian vertebrates such as zebrafish activate cardiomyocyte (CM) division after tissue damage to regenerate lost heart muscle. Here, we generated transgenic zebrafish expressing a biotinylatable H3.3 histone variant in CMs and derived cell-type-specific profiles of histone replacement. We identified an emerging program of putative enhancers that revise H3.3 occupancy during regeneration, overlaid upon a genome-wide reduction of H3.3 from promoters. In transgenic reporter lines, H3.3-enriched elements directed gene expression in subpopulations of CMs. Other elements increased H3.3 enrichment and displayed enhancer activity in settings of injury- and/or Neuregulin1-elicited CM proliferation. Dozens of consensus sequence motifs containing predicted transcription factor binding sites were enriched in genomic regions with regeneration-responsive H3.3 occupancy. Thus, cell-type-specific regulatory programs of tissue regeneration can be revealed by genome-wide H3.3 profiling.
Collapse
Affiliation(s)
- Joseph Aaron Goldman
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA; Regeneration Next, Duke University, Durham, NC 27710, USA
| | - Guray Kuzu
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Nutishia Lee
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA; Regeneration Next, Duke University, Durham, NC 27710, USA
| | - Jaclyn Karasik
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA; Regeneration Next, Duke University, Durham, NC 27710, USA
| | - Matthew Gemberling
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA; Regeneration Next, Duke University, Durham, NC 27710, USA
| | - Matthew J Foglia
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA; Regeneration Next, Duke University, Durham, NC 27710, USA
| | - Ravi Karra
- Regeneration Next, Duke University, Durham, NC 27710, USA; Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Amy L Dickson
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA; Regeneration Next, Duke University, Durham, NC 27710, USA
| | - Fei Sun
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA; Regeneration Next, Duke University, Durham, NC 27710, USA
| | - Michael Y Tolstorukov
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA.
| | - Kenneth D Poss
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA; Regeneration Next, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
139
|
LoCascio SA, Lapan SW, Reddien PW. Eye Absence Does Not Regulate Planarian Stem Cells during Eye Regeneration. Dev Cell 2017; 40:381-391.e3. [PMID: 28245923 DOI: 10.1016/j.devcel.2017.02.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 01/06/2017] [Accepted: 02/01/2017] [Indexed: 12/28/2022]
Abstract
Dividing cells called neoblasts contain pluripotent stem cells and drive planarian flatworm regeneration from diverse injuries. A long-standing question is whether neoblasts directly sense and respond to the identity of missing tissues during regeneration. We used the eye to investigate this question. Surprisingly, eye removal was neither sufficient nor necessary for neoblasts to increase eye progenitor production. Neoblasts normally increase eye progenitor production following decapitation, facilitating regeneration. Eye removal alone, however, did not induce this response. Eye regeneration following eye-specific resection resulted from homeostatic rates of eye progenitor production and less cell death in the regenerating eye. Conversely, large head injuries that left eyes intact increased eye progenitor production. Large injuries also non-specifically increased progenitor production for multiple uninjured tissues. We propose a model for eye regeneration in which eye tissue production by planarian stem cells is not directly regulated by the absence of the eye itself.
Collapse
Affiliation(s)
- Samuel A LoCascio
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA; Howard Hughes Medical Institute, MIT, Cambridge, MA 02139, USA
| | - Sylvain W Lapan
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, MIT, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, MIT, Cambridge, MA 02139, USA
| | - Peter W Reddien
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, MIT, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, MIT, Cambridge, MA 02139, USA.
| |
Collapse
|
140
|
Anand SK, Mondal AC. Cellular and molecular attributes of neural stem cell niches in adult zebrafish brain. Dev Neurobiol 2017; 77:1188-1205. [PMID: 28589616 DOI: 10.1002/dneu.22508] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 04/05/2017] [Accepted: 06/02/2017] [Indexed: 12/20/2022]
Abstract
Adult neurogenesis is a complex, presumably conserved phenomenon in vertebrates with a broad range of variations regarding neural progenitor/stem cell niches, cellular composition of these niches, migratory patterns of progenitors and so forth among different species. Current understanding of the reasons underlying the inter-species differences in adult neurogenic potential, the identification and characterization of various neural progenitors, characterization of the permissive environment of neural stem cell niches and other important aspects of adult neurogenesis is insufficient. In the last decade, zebrafish has emerged as a very useful model for addressing these questions. In this review, we have discussed the present knowledge regarding the neural stem cell niches in adult zebrafish brain as well as their cellular and molecular attributes. We have also highlighted their similarities and differences with other vertebrate species. In the end, we shed light on some of the known intrinsic and extrinsic factors that are assumed to regulate the neurogenic process in adult zebrafish brain. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 1188-1205, 2017.
Collapse
Affiliation(s)
- Surendra Kumar Anand
- Cellular and Molecular Neurobiology Lab, School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, India, 110067
| | - Amal Chandra Mondal
- Cellular and Molecular Neurobiology Lab, School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, India, 110067
| |
Collapse
|
141
|
Jafari P, Muller C, Grognuz A, Applegate LA, Raffoul W, di Summa PG, Durand S. First Insights into Human Fingertip Regeneration by Echo-Doppler Imaging and Wound Microenvironment Assessment. Int J Mol Sci 2017; 18:ijms18051054. [PMID: 28505080 PMCID: PMC5454966 DOI: 10.3390/ijms18051054] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Revised: 05/03/2017] [Accepted: 05/06/2017] [Indexed: 11/20/2022] Open
Abstract
Fingertip response to trauma represents a fascinating example of tissue regeneration. Regeneration derives from proliferative mesenchymal cells (blastema) that subsequently differentiate into soft and skeletal tissues. Clinically, conservative treatment of the amputated fingertip under occlusive dressing can shift the response to tissue loss from a wound repair process towards regeneration. When analyzing by Immunoassay the wound exudate from occlusive dressings, the concentrations of brain-derived neurotrophic factor (BDNF) and leukemia inhibitory factor (LIF) were higher in fingertip exudates than in burn wounds (used as controls for wound repair versus regeneration). Vascular endothelial growth factor A (VEGF-A) and platelet-derived growth factor (PDGF) were highly expressed in both samples in comparable levels. In our study, pro-inflammatory cytokines were relatively higher expressed in regenerative fingertips than in the burn wound exudates while chemokines were present in lower levels. Functional, vascular and mechanical properties of the regenerated fingertips were analyzed three months after trauma and the data were compared to the corresponding fingertip on the collateral uninjured side. While sensory recovery and morphology (pulp thickness and texture) were similar to uninjured sides, mechanical parameters (elasticity, vascularization) were increased in the regenerated fingertips. Further studies should be done to clarify the importance of inflammatory cells, immunity and growth factors in determining the outcome of the regenerative process and its influence on the clinical outcome.
Collapse
Affiliation(s)
- Paris Jafari
- Plastic and Hand Surgery Department, Lausanne University Hospital, 1011 Lausanne, Switzerland.
| | - Camillo Muller
- Plastic and Hand Surgery Department, Lausanne University Hospital, 1011 Lausanne, Switzerland.
| | - Anthony Grognuz
- Plastic and Hand Surgery Department, Lausanne University Hospital, 1011 Lausanne, Switzerland.
| | - Lee Ann Applegate
- Plastic and Hand Surgery Department, Lausanne University Hospital, 1011 Lausanne, Switzerland.
| | - Wassim Raffoul
- Plastic and Hand Surgery Department, Lausanne University Hospital, 1011 Lausanne, Switzerland.
| | - Pietro G di Summa
- Plastic and Hand Surgery Department, Lausanne University Hospital, 1011 Lausanne, Switzerland.
| | - Sébastien Durand
- Plastic and Hand Surgery Department, Lausanne University Hospital, 1011 Lausanne, Switzerland.
| |
Collapse
|
142
|
Kanda M, Nagai T. Neonatal Rat Heart Response to Pressure Overload. Int Heart J 2017; 58:155-157. [PMID: 28367851 DOI: 10.1536/ihj.17-006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Masato Kanda
- Department of Cardiovascular Medicine, Chiba University Graduate School of Medicine
| | | |
Collapse
|
143
|
Marshall L, Vivien C, Girardot F, Péricard L, Demeneix BA, Coen L, Chai N. Persistent fibrosis, hypertrophy and sarcomere disorganisation after endoscopy-guided heart resection in adult Xenopus. PLoS One 2017; 12:e0173418. [PMID: 28278282 PMCID: PMC5344503 DOI: 10.1371/journal.pone.0173418] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/15/2017] [Indexed: 12/30/2022] Open
Abstract
Models of cardiac repair are needed to understand mechanisms underlying failure to regenerate in human cardiac tissue. Such studies are currently dominated by the use of zebrafish and mice. Remarkably, it is between these two evolutionary separated species that the adult cardiac regenerative capacity is thought to be lost, but causes of this difference remain largely unknown. Amphibians, evolutionary positioned between these two models, are of particular interest to help fill this lack of knowledge. We thus developed an endoscopy-based resection method to explore the consequences of cardiac injury in adult Xenopus laevis. This method allowed in situ live heart observation, standardised tissue amputation size and reproducibility. During the first week following amputation, gene expression of cell proliferation markers remained unchanged, whereas those relating to sarcomere organisation decreased and markers of inflammation, fibrosis and hypertrophy increased. One-month post-amputation, fibrosis and hypertrophy were evident at the injury site, persisting through 11 months. Moreover, cardiomyocyte sarcomere organisation deteriorated early following amputation, and was not completely recovered as far as 11 months later. We conclude that the adult Xenopus heart is unable to regenerate, displaying cellular and molecular marks of scarring. Our work suggests that, contrary to urodeles and teleosts, with the exception of medaka, adult anurans share a cardiac injury outcome similar to adult mammals. This observation is at odds with current hypotheses that link loss of cardiac regenerative capacity with acquisition of homeothermy.
Collapse
Affiliation(s)
- Lindsey Marshall
- Evolution des Régulations Endocriniennes, Département Régulations, Développement et Diversité Moléculaire, UMR CNRS 7221, Muséum National d'Histoire Naturelle, Sorbonne Université, Paris, France
| | - Céline Vivien
- Evolution des Régulations Endocriniennes, Département Régulations, Développement et Diversité Moléculaire, UMR CNRS 7221, Muséum National d'Histoire Naturelle, Sorbonne Université, Paris, France
| | - Fabrice Girardot
- Evolution des Régulations Endocriniennes, Département Régulations, Développement et Diversité Moléculaire, UMR CNRS 7221, Muséum National d'Histoire Naturelle, Sorbonne Université, Paris, France
| | - Louise Péricard
- Evolution des Régulations Endocriniennes, Département Régulations, Développement et Diversité Moléculaire, UMR CNRS 7221, Muséum National d'Histoire Naturelle, Sorbonne Université, Paris, France
| | - Barbara A. Demeneix
- Evolution des Régulations Endocriniennes, Département Régulations, Développement et Diversité Moléculaire, UMR CNRS 7221, Muséum National d'Histoire Naturelle, Sorbonne Université, Paris, France
| | - Laurent Coen
- Evolution des Régulations Endocriniennes, Département Régulations, Développement et Diversité Moléculaire, UMR CNRS 7221, Muséum National d'Histoire Naturelle, Sorbonne Université, Paris, France
| | - Norin Chai
- Ménagerie du Jardin des Plantes, Muséum National d’Histoire Naturelle, Paris, France
| |
Collapse
|
144
|
Bonar NA, Petersen CP. Integrin suppresses neurogenesis and regulates brain tissue assembly in planarian regeneration. Development 2017; 144:784-794. [PMID: 28126842 DOI: 10.1242/dev.139964] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 12/30/2016] [Indexed: 12/30/2022]
Abstract
Animals capable of adult regeneration require specific signaling to control injury-induced cell proliferation, specification and patterning, but comparatively little is known about how the regeneration blastema assembles differentiating cells into well-structured functional tissues. Using the planarian Schmidtea mediterranea as a model, we identify β1-integrin as a crucial regulator of blastema architecture. β1-integrin(RNAi) animals formed small head blastemas with severe tissue disorganization, including ectopic neural spheroids containing differentiated neurons normally found in distinct organs. By mimicking aspects of normal brain architecture but without normal cell-type regionalization, these spheroids bore a resemblance to mammalian tissue organoids synthesized in vitro We identified one of four planarian integrin-alpha subunits inhibition of which phenocopied these effects, suggesting that a specific receptor controls brain organization through regeneration. Neoblast stem cells and progenitor cells were mislocalized in β1-integrin(RNAi) animals without significantly altered body-wide patterning. Furthermore, tissue disorganization phenotypes were most pronounced in animals undergoing brain regeneration and not homeostatic maintenance or regeneration-induced remodeling of the brain. These results suggest that integrin signaling ensures proper progenitor recruitment after injury, enabling the generation of large-scale tissue organization within the regeneration blastema.
Collapse
Affiliation(s)
- Nicolle A Bonar
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
| | - Christian P Petersen
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA .,Robert Lurie Comprehensive Cancer Center, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
145
|
Demircan T, Keskin I, Dumlu SN, Aytürk N, Avşaroğlu ME, Akgün E, Öztürk G, Baykal AT. Detailed tail proteomic analysis of axolotl (Ambystoma mexicanum) using an mRNA-seq reference database. Proteomics 2017; 17. [DOI: 10.1002/pmic.201600338] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/26/2016] [Accepted: 11/25/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Turan Demircan
- Department of Medical Biology, International School of Medicine; İstanbul Medipol University; Istanbul Turkey
- Regenerative and Restorative Medicine Research Center, REMER; Istanbul Medipol University; Istanbul Turkey
| | - Ilknur Keskin
- Regenerative and Restorative Medicine Research Center, REMER; Istanbul Medipol University; Istanbul Turkey
- Department of Histology and Embryology, School of Medicine; Istanbul Medipol University; Istanbul Turkey
| | - Seda Nilgün Dumlu
- Department of Computer Engineering, School of Engineering and Natural Sciences; Istanbul Medipol University; Istanbul Turkey
- Institute of Biomedical Engineering; Bogazici University; Istanbul Turkey
| | - Nilüfer Aytürk
- Regenerative and Restorative Medicine Research Center, REMER; Istanbul Medipol University; Istanbul Turkey
- Department of Histology and Embryology, School of Medicine; Istanbul Medipol University; Istanbul Turkey
| | - Mahmut Erhan Avşaroğlu
- Regenerative and Restorative Medicine Research Center, REMER; Istanbul Medipol University; Istanbul Turkey
| | - Emel Akgün
- Regenerative and Restorative Medicine Research Center, REMER; Istanbul Medipol University; Istanbul Turkey
- Department of Medical Biochemistry, School of Medicine; Acibadem University; Istanbul Turkey
| | - Gürkan Öztürk
- Regenerative and Restorative Medicine Research Center, REMER; Istanbul Medipol University; Istanbul Turkey
- Department of Physiology, International School of Medicine; İstanbul Medipol University; Istanbul Turkey
| | - Ahmet Tarık Baykal
- Regenerative and Restorative Medicine Research Center, REMER; Istanbul Medipol University; Istanbul Turkey
- Department of Medical Biochemistry, School of Medicine; Acibadem University; Istanbul Turkey
| |
Collapse
|
146
|
Transcriptomic, proteomic, and metabolomic landscape of positional memory in the caudal fin of zebrafish. Proc Natl Acad Sci U S A 2017; 114:E717-E726. [PMID: 28096348 DOI: 10.1073/pnas.1620755114] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Regeneration requires cells to regulate proliferation and patterning according to their spatial position. Positional memory is a property that enables regenerating cells to recall spatial information from the uninjured tissue. Positional memory is hypothesized to rely on gradients of molecules, few of which have been identified. Here, we quantified the global abundance of transcripts, proteins, and metabolites along the proximodistal axis of caudal fins of uninjured and regenerating adult zebrafish. Using this approach, we uncovered complex overlapping expression patterns for hundreds of molecules involved in diverse cellular functions, including development, bioelectric signaling, and amino acid and lipid metabolism. Moreover, 32 genes differentially expressed at the RNA level had concomitant differential expression of the encoded proteins. Thus, the identification of proximodistal differences in levels of RNAs, proteins, and metabolites will facilitate future functional studies of positional memory during appendage regeneration.
Collapse
|
147
|
Bossert P, Thomsen GH. Inducing Complete Polyp Regeneration from the Aboral Physa of the Starlet Sea Anemone Nematostella vectensis. J Vis Exp 2017. [PMID: 28117771 DOI: 10.3791/54626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Cnidarians, and specifically Hydra, were the first animals shown to regenerate damaged or severed structures, and indeed such studies arguably launched modern biological inquiry through the work of Trembley more than 250 years ago. Presently the study of regeneration has seen a resurgence using both "classic" regenerative organisms, such as the Hydra, planaria and Urodeles, as well as a widening spectrum of species spanning the range of metazoa, from sponges through mammals. Besides its intrinsic interest as a biological phenomenon, understanding how regeneration works in a variety of species will inform us about whether regenerative processes share common features and/or species or context-specific cellular and molecular mechanisms. The starlet sea anemone, Nematostella vectensis, is an emerging model organism for regeneration. Like Hydra, Nematostella is a member of the ancient phylum, cnidaria, but within the class anthozoa, a sister clade to the hydrozoa that is evolutionarily more basal. Thus aspects of regeneration in Nematostella will be interesting to compare and contrast with those of Hydra and other cnidarians. In this article, we present a method to bisect, observe and classify regeneration of the aboral end of the Nematostella adult, which is called the physa. The physa naturally undergoes fission as a means of asexual reproduction, and either natural fission or manual amputation of the physa triggers re-growth and reformation of complex morphologies. Here we have codified these simple morphological changes in a Nematostella Regeneration Staging System (the NRSS). We use the NRSS to test the effects of chloroquine, an inhibitor of lysosomal function that blocks autophagy. The results show that the regeneration of polyp structures, particularly the mesenteries, is abnormal when autophagy is inhibited.
Collapse
Affiliation(s)
- Patricia Bossert
- Department of Biochemistry and Cell Biology, Center for Developmental Genetics, Stony Brook University
| | - Gerald H Thomsen
- Department of Biochemistry and Cell Biology, Center for Developmental Genetics, Stony Brook University;
| |
Collapse
|
148
|
Mescher AL, Neff AW, King MW. Inflammation and immunity in organ regeneration. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 66:98-110. [PMID: 26891614 DOI: 10.1016/j.dci.2016.02.015] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 01/19/2016] [Accepted: 02/09/2016] [Indexed: 06/05/2023]
Abstract
The ability of vertebrates to regenerate amputated appendages is increasingly well-understood at the cellular level. Cells mediating an innate immune response and inflammation in the injured tissues are a prominent feature of the limb prior to formation of a regeneration blastema, with macrophage activity necessary for blastema growth and successful development of the new limb. Studies involving either anti-inflammatory or pro-inflammatory agents suggest that the local inflammation produced by injury and its timely resolution are both important for regeneration, with blastema patterning inhibited in the presence of unresolved inflammation. Various experiments with Xenopus larvae at stages where regenerative competence is declining show improved digit formation after treatment with certain immunosuppressive, anti-inflammatory, or antioxidant agents. Similar work with the larval Xenopus tail has implicated adaptive immunity with regenerative competence and suggests a requirement for regulatory T cells in regeneration, which also occurs in many systems of tissue regeneration. Recent analyses of the human nail organ indicate a capacity for local immune tolerance, suggesting roles for adaptive immunity in the capacity for mammalian appendage regeneration. New information and better understanding regarding the neuroendocrine-immune axis in the response to stressors, including amputation, suggest additional approaches useful for investigating effects of the immune system during repair and regeneration.
Collapse
Affiliation(s)
- Anthony L Mescher
- Center for Developmental and Regenerative Biology; Indiana University School of Medicine - Bloomington, USA.
| | - Anton W Neff
- Center for Developmental and Regenerative Biology; Indiana University School of Medicine - Bloomington, USA.
| | - Michael W King
- Center for Developmental and Regenerative Biology; Indiana University School of Medicine - Terre Haute, USA.
| |
Collapse
|
149
|
Tissue Extract Fractions from Starfish Undergoing Regeneration Promote Wound Healing and Lower Jaw Blastema Regeneration of Zebrafish. Sci Rep 2016; 6:38693. [PMID: 27974833 PMCID: PMC5156902 DOI: 10.1038/srep38693] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 11/11/2016] [Indexed: 12/23/2022] Open
Abstract
Natural bioactive materials provide an excellent pool of molecules for regenerative therapy. In the present study, we amputate portions of the arms of Archaster typicus starfish, extract and separate the active biomaterials, and compare the effects of each fraction on in vitro wound healing and in vivo lower jaw regeneration of zebrafish. Compared with crude extract, normal hexane fractions (NHFs) have a remarkable effect on cellular proliferation and collective migration, and exhibit fibroblast-like morphology, while methanol-water fractions (MWFs) increase cell size, cell-cell adhesion, and cell death. Relative to moderate mitochondrialand lysosomal aggregation in NHFs-cultured cells, MWFs-cultured cells contain more and bigger lysosomal accumulations and clump detachment. The in vivo zebrafish lower jaw regeneration model reveals that NHFs enhance blastema formation and vasculogenesis, while MWFs inhibit fibrogenesis and induce cellular transformation. Gene expression analyses indicate that NHFs and MWFs separately activate blastema-characteristic genes as well as those genes-related to autophagy, proteasome, and apoptosis either during cell scratch healing or ganciclovir-induced apoptosis. Our results suggest that bioactive compounds from NHFs and MWFs could induce blastema formation and remodeling, respectively, and prevent tissue overgrowth.
Collapse
|
150
|
Simerman AA, Phan JD, Dumesic DA, Chazenbalk GD. Muse Cells: Nontumorigenic Pluripotent Stem Cells Present in Adult Tissues-A Paradigm Shift in Tissue Regeneration and Evolution. Stem Cells Int 2016; 2016:1463258. [PMID: 28070194 PMCID: PMC5192335 DOI: 10.1155/2016/1463258] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/15/2016] [Accepted: 10/24/2016] [Indexed: 01/26/2023] Open
Abstract
Muse cells are a novel population of nontumorigenic pluripotent stem cells, highly resistant to cellular stress. These cells are present in every connective tissue and intrinsically express pluripotent stem markers such as Nanog, Oct3/4, Sox2, and TRA1-60. Muse cells are able to differentiate into cells from all three embryonic germ layers both spontaneously and under media-specific induction. Unlike ESCs and iPSCs, Muse cells exhibit low telomerase activity and asymmetric division and do not undergo tumorigenesis or teratoma formation when transplanted into a host organism. Muse cells have a high capacity for homing into damaged tissue and spontaneous differentiation into cells of compatible tissue, leading to tissue repair and functional restoration. The ability of Muse cells to restore tissue function may demonstrate the role of Muse cells in a highly conserved cellular mechanism related to cell survival and regeneration, in response to cellular stress and acute injury. From an evolutionary standpoint, genes pertaining to the regenerative capacity of an organism have been lost in higher mammals from more primitive species. Therefore, Muse cells may offer insight into the molecular and evolutionary bases of autonomous tissue regeneration and elucidate the molecular and cellular mechanisms that prevent mammals from regenerating limbs and organs, as planarians, newts, zebrafish, and salamanders do.
Collapse
Affiliation(s)
- Ariel A. Simerman
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at The University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Julia D. Phan
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at The University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Daniel A. Dumesic
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at The University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Gregorio D. Chazenbalk
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at The University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|