101
|
Kim HK, Kim HY, Schneewind O, Missiakas D. Identifying protective antigens of Staphylococcus aureus, a pathogen that suppresses host immune responses. FASEB J 2011; 25:3605-12. [PMID: 21753082 PMCID: PMC3177580 DOI: 10.1096/fj.11-187963] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 07/01/2011] [Indexed: 12/28/2022]
Abstract
Staphylococcus aureus infections result in abscesses as well as septicemia. Even with therapy, abscesses can persist or even reoccur, as staphylococcal infections fail to induce protective immune responses. Here, we show that prior infection with certain attenuated strains may elicit protective immunity. A closer examination reveals that protection correlates with antibody responses elicited on exposure to particular attenuated variants. Linear regression analysis was used to compare reduction in staphylococcal disease and antibody responses to infection with wild-type and attenuated variants. This analysis identified protective antigens that, when tested as vaccines in mice, elicited disease protection. Protection afforded by attenuated strains correlates in part with the ability of Staphylococcus aureus to modulate B cell responses via protein A (spa encoded). We designate this approach "genetic vaccinology," since it exploits genetic variants to draw a correlation between disease protection and humoral immune responses for the deduction of vaccine antigens. Genetic vaccinology is particularly useful for microbes that do not elicit natural protective immunity during infection.
Collapse
Affiliation(s)
| | | | - Olaf Schneewind
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | | |
Collapse
|
102
|
Bockstal V, Guirnalda P, Caljon G, Goenka R, Telfer JC, Frenkel D, Radwanska M, Magez S, Black SJ. T. brucei infection reduces B lymphopoiesis in bone marrow and truncates compensatory splenic lymphopoiesis through transitional B-cell apoptosis. PLoS Pathog 2011; 7:e1002089. [PMID: 21738467 PMCID: PMC3128123 DOI: 10.1371/journal.ppat.1002089] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Accepted: 04/12/2011] [Indexed: 12/31/2022] Open
Abstract
African trypanosomes of the Trypanosoma brucei species are extracellular protozoan parasites that cause the deadly disease African trypanosomiasis in humans and contribute to the animal counterpart, Nagana. Trypanosome clearance from the bloodstream is mediated by antibodies specific for their Variant Surface Glycoprotein (VSG) coat antigens. However, T. brucei infection induces polyclonal B cell activation, B cell clonal exhaustion, sustained depletion of mature splenic Marginal Zone B (MZB) and Follicular B (FoB) cells, and destruction of the B-cell memory compartment. To determine how trypanosome infection compromises the humoral immune defense system we used a C57BL/6 T. brucei AnTat 1.1 mouse model and multicolor flow cytometry to document B cell development and maturation during infection. Our results show a more than 95% reduction in B cell precursor numbers from the CLP, pre-pro-B, pro-B, pre-B and immature B cell stages in the bone marrow. In the spleen, T. brucei induces extramedullary B lymphopoiesis as evidenced by significant increases in HSC-LMPP, CLP, pre-pro-B, pro-B and pre-B cell populations. However, final B cell maturation is abrogated by infection-induced apoptosis of transitional B cells of both the T1 and T2 populations which is not uniquely dependent on TNF-, Fas-, or prostaglandin-dependent death pathways. Results obtained from ex vivo co-cultures of living bloodstream form trypanosomes and splenocytes demonstrate that trypanosome surface coat-dependent contact with T1/2 B cells triggers their deletion. We conclude that infection-induced and possibly parasite-contact dependent deletion of transitional B cells prevents replenishment of mature B cell compartments during infection thus contributing to a loss of the host's capacity to sustain antibody responses against recurring parasitemic waves. African trypanosomiasis caused by Trypanosoma brucei species is fatal in both humans and animals and cannot be combated by vaccination because of extensive parasite antigenic variation. Effective trypanosome control and clearance from the bloodstream involves the action of antibodies specific for the parasite's highly diverse variable surface glycoprotein antigens. However, experimental infections in mice have shown that trypanosomiasis elicits a rapid process of B cell exhaustion and loss of protective antibody responses. Indeed, both marginal zone B cells, the first line of defense against blood-borne pathogens like T. brucei parasites, and follicular B cells, which are the major source for developing high-affinity antibody-producing plasma cells and memory B cells, become depleted during infection. In addition, existing B-cell memory, both against parasite antigens and non related pathogens, is destroyed early on in infection. Here, we demonstrate that during infection, B cell development is decreased in the bone marrow and early B cell development is taken over by the spleen. However, full maturation of developing B cells is abrogated by the occurrence of transitional B cell apoptosis. This impairs the replenishment of the mature marginal zone and follicular B cell pools and prevents the buildup of protective immunity against successive parasitemic waves.
Collapse
Affiliation(s)
- Viki Bockstal
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts, United States of America
- Laboratory for Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Molecular and Cellular Interactions, VIB, Brussels, Belgium
| | - Patrick Guirnalda
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - Guy Caljon
- Laboratory for Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Molecular and Cellular Interactions, VIB, Brussels, Belgium
- Unit of Veterinary Protozoology, Institute of Tropical Medicine, Antwerp, Belgium
| | - Radhika Goenka
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - Janice C. Telfer
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - Deborah Frenkel
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts, United States of America
| | | | - Stefan Magez
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts, United States of America
- Laboratory for Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Molecular and Cellular Interactions, VIB, Brussels, Belgium
- * E-mail: (SJB); (SM)
| | - Samuel J. Black
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, Massachusetts, United States of America
- * E-mail: (SJB); (SM)
| |
Collapse
|
103
|
Ghia EM, Widhopf GF, Rassenti LZ, Kipps TJ. Analyses of recombinant stereotypic IGHV3-21-encoded antibodies expressed in chronic lymphocytic leukemia. THE JOURNAL OF IMMUNOLOGY 2011; 186:6338-44. [PMID: 21525382 DOI: 10.4049/jimmunol.0902875] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Chronic lymphocytic leukemia (CLL) cells that use IgH encoded by IGHV3-21 and that have a particular stereotypic third CDR (HCDR3), DANGMDV (motif-1), almost invariably express Ig L chains (IgL) encoded by IGLV3-21, whereas CLL that use IGHV3-21-encoded IgH with another stereotypic HCDR3, DPSFYSSSWTLFDY (motif-2), invariably express κ-IgL encoded by IGKV3-20. This nonstochastic pairing could reflect steric factors that preclude these IgH from pairing with other IgL or selection for an Ig with a particular Ag-binding activity. We generated rIg with IGHV3-21-encoded IgH with HCDR3 motif-1 or -2 and IgL encoded by IGKV3-20 or IGLV3-21. Each IgH paired equally well with matched or mismatched κ- or λ-IgL to form functional Ig, which we screened for binding to an array of different Ags. Ig with IGLV3-21-encoded λ-IgL could bind with an affinity of ∼ 2 × 10(-6) M to protein L, a cell-wall protein of Peptostreptococcus magnus, independent of the IgH, indicating that protein L is a superantigen for IGLV3-21-encoded λ-IgL. We also detected Ig binding to cofilin, a highly conserved actin-binding protein. However, cofilin binding was independent of native pairing of IgH and IgL and was not specific for Ig with IgH encoded by IGHV3-21. We conclude that steric factors or the binding activity for protein L or cofilin cannot account for the nonstochastic pairing of IgH and IgL observed for the stereotypic Ig made by CLL cells that express IGHV3-21.
Collapse
Affiliation(s)
- Emanuela M Ghia
- Moores University of California San Diego Cancer Center, La Jolla, CA 92093-0820, USA
| | | | | | | |
Collapse
|
104
|
Dal-Bo M, Del Giudice I, Bomben R, Capello D, Bertoni F, Forconi F, Laurenti L, Rossi D, Zucchetto A, Pozzato G, Marasca R, Efremov DG, Guarini A, Del Poeta G, Foà R, Gaidano G, Gattei V. B-cell receptor, clinical course and prognosis in chronic lymphocytic leukaemia: the growing saga of the IGHV3 subgroup gene usage. Br J Haematol 2011; 153:3-14. [PMID: 21303354 DOI: 10.1111/j.1365-2141.2010.08440.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The immunoglobulin heavy chain variable gene (IGHV) mutational status has been recognized as an important predictor of prognosis in chronic lymphocytic leukaemia (CLL) since 1999. More recently, other features of the B-cell receptor, such as stereotypy, have been identified as capable of refining the prognostic potential of IGHV status in the clinical assessment of CLL patients. In this context, different genes belonging to the IGHV3 subgroup, the most frequently used subgroup in CLL, have been shown to denote disease subsets that either display a bad prognosis (i.e. IGHV3-21, IGHV3-23) or are associated with particularly good clinical outcomes, including a highly stable/indolent clinical course, even prone to spontaneous regression (i.e. IGHV3-72, IGHV3-30). The present review focuses on the molecular and biological features of CLL-expressing specific genes belonging to the IGHV3 subgroup that are known to mark disease subsets with completely different clinical courses, and may be possibly related to CLL pathogenesis via antigen and/or superantigen involvement.
Collapse
Affiliation(s)
- Michele Dal-Bo
- Department of Cellular Biotechnologies and Haematology, Sapienza University, Rome, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Paul S, Planque S, Nishiyama Y, Escobar M, Hanson C. Back to the future: covalent epitope-based HIV vaccine development. Expert Rev Vaccines 2010; 9:1027-43. [PMID: 20822346 DOI: 10.1586/erv.10.77] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Traditional HIV vaccine approaches have proved ineffective because the immunodominant viral epitopes are mutable and the conserved epitopes necessary for infection are not sufficiently immunogenic. The CD4 binding site expressed by the HIV envelope protein of glycoprotein 120 is essential for viral entry into host cells. In this article, we review the B-cell superantigenic character of the CD4 binding site as the cause of its poor immunogenicity. We summarize evidence supporting development of covalent immunization as the first vaccine strategy with the potential to induce an antibody response to a conserved HIV epitope that neutralizes genetically divergent HIV strains.
Collapse
Affiliation(s)
- Sudhir Paul
- Department of Pathology and Laboratory Medicine, Chemical Immunology Research Center, University of Texas-Houston Medical School, 6431 Fannin, MSB 2.230A, Houston, TX 77030, USA.
| | | | | | | | | |
Collapse
|
106
|
Paul S, Planque S, Nishiyama Y. Immunological origin and functional properties of catalytic autoantibodies to amyloid beta peptide. J Clin Immunol 2010; 30 Suppl 1:S43-9. [PMID: 20454852 DOI: 10.1007/s10875-010-9414-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OBJECTIVES Objectives The objectives of this study are to (1) evaluate the ability of the immune system to synthesize specific antibodies that catalyze the degradation of amyloid beta peptide (Abeta) and to (2) evaluate the prospect of developing a catalytic IVIG (CIVIG) formulation for therapy of Alzheimer's disease (AD). CONCLUSIONS Polyclonal autoantibodies from humans without dementia hydrolyzed Abeta specifically. The catalytic activity improved as a function of age. Patients with AD produced catalytic antibodies at increased levels. IgM-class antibodies expressed the activity at levels superior to IgGs. Production of catalytic autoantibodies appears to be an innate immunity function with adaptive improvements occurring upon Abeta overexpression, which suggests a beneficial function of the catalytic activity. The catalytic autoantibodies impeded Abeta aggregation, dissolved preformed Abeta aggregates, and inhibited Abeta cytotoxicity in tissue culture. Recombinant catalytic antibodies from a human library have been identified, validating the phenomenon of antibody-catalyzed Abeta cleavage. As a single catalyst molecule inactivates multiple Abeta molecules, catalytic antibodies may clear Abeta efficiently. IVIG did not cleave Abeta, indicating the importance of purification procedures that maintain catalytic site integrity. Traditional Abeta-binding antibodies form immune complexes that can induce inflammatory reaction and vascular dysfunction. Catalysts do not form stable immune complexes, minimizing these risks. Criteria appropriate for developing a CIVIG formulation with potential therapeutic utility are discussed, including isolation of the Abeta-specific catalytic subsets present in IgM and IgG from human blood.
Collapse
Affiliation(s)
- Sudhir Paul
- Department of Pathology and Laboratory Medicine, Chemical Immunology Research Center, University of Texas-Houston Medical School, Houston, TX 77030, USA.
| | | | | |
Collapse
|
107
|
Frankel MB, Wojcik BM, DeDent AC, Missiakas DM, Schneewind O. ABI domain-containing proteins contribute to surface protein display and cell division in Staphylococcus aureus. Mol Microbiol 2010; 78:238-52. [PMID: 20923422 PMCID: PMC3538852 DOI: 10.1111/j.1365-2958.2010.07334.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The human pathogen Staphylococcus aureus requires cell wall anchored surface proteins to cause disease. During cell division, surface proteins with YSIRK signal peptides are secreted into the cross-wall, a layer of newly synthesized peptidoglycan between separating daughter cells. The molecular determinants for the trafficking of surface proteins are, however, still unknown. We screened mutants with non-redundant transposon insertions by fluorescence-activated cell sorting for reduced deposition of protein A (SpA) into the staphylococcal envelope. Three mutants, each of which harboured transposon insertions in genes for transmembrane proteins, displayed greatly reduced envelope abundance of SpA and surface proteins with YSIRK signal peptides. Characterization of the corresponding mutations identified three transmembrane proteins with abortive infectivity (ABI) domains, elements first described in lactococci for their role in phage exclusion. Mutations in genes for ABI domain proteins, designated spdA, spdB and spdC (surface protein display), diminish the expression of surface proteins with YSIRK signal peptides, but not of precursor proteins with conventional signal peptides. spdA, spdB and spdC mutants display an increase in the thickness of cross-walls and in the relative abundance of staphylococci with cross-walls, suggesting that spd mutations may represent a possible link between staphylococcal cell division and protein secretion.
Collapse
Affiliation(s)
- Matthew B Frankel
- Department of Microbiology, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | |
Collapse
|
108
|
Abstract
Superantigens (SAgs) are derived from diverse sources, including bacteria, viruses, and human hepatic tissue. SAgs initially cause lymphocyte activation but then result in clonal deletion and anergy, leading to immune tolerance. They can also act as superallergens by stimulating a broad spectrum of mast cells and basophils in patients with allergic conditions. The newly described staphylococcal SAg-like proteins subvert innate immune function by several mechanisms, which are distinct from SAgs' effects on lymphocytes and other acquired immune processes. There is mounting evidence to suggest that SAgs play a role in the pathophysiology of inflammatory airway disease. The pathophysiologic role of SAg-like proteins awaits clarification.
Collapse
Affiliation(s)
- Nicholas W Stow
- Department of Otorhinolaryngology-Head and Neck Surgery, North Shore Hospital, Private Bag 93-503 Takapuna, North Shore City 0740, Auckland, New Zealand.
| | | | | | | |
Collapse
|
109
|
Kim HK, Cheng AG, Kim HY, Missiakas DM, Schneewind O. Nontoxigenic protein A vaccine for methicillin-resistant Staphylococcus aureus infections in mice. J Exp Med 2010; 207:1863-70. [PMID: 20713595 PMCID: PMC2931167 DOI: 10.1084/jem.20092514] [Citation(s) in RCA: 154] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Accepted: 07/16/2010] [Indexed: 01/15/2023] Open
Abstract
The current epidemic of hospital- and community-acquired methicillin-resistant Staphylococcus aureus (MRSA) infections has caused significant human morbidity, but a protective vaccine is not yet available. Prior infection with S. aureus is not associated with protective immunity. This phenomenon involves staphylococcal protein A (SpA), an S. aureus surface molecule that binds to Fcgamma of immunoglobulin (Ig) and to the Fab portion of V(H)3-type B cell receptors, thereby interfering with opsonophagocytic clearance of the pathogen and ablating adaptive immune responses. We show that mutation of each of the five Ig-binding domains of SpA with amino acid substitutions abolished the ability of the resulting variant SpA(KKAA) to bind Fcgamma or Fab V(H)3 and promote B cell apoptosis. Immunization of mice with SpA(KKAA) raised antibodies that blocked the virulence of staphylococci, promoted opsonophagocytic clearance, and protected mice against challenge with highly virulent MRSA strains. Furthermore, SpA(KKAA) immunization enabled MRSA-challenged mice to mount antibody responses to many different staphylococcal antigens.
Collapse
Affiliation(s)
- Hwan Keun Kim
- Department of Microbiology, University of Chicago, Chicago, IL 60637
| | | | | | | | | |
Collapse
|
110
|
Severson KM, Mallozzi M, Driks A, Knight KL. B cell development in GALT: role of bacterial superantigen-like molecules. THE JOURNAL OF IMMUNOLOGY 2010; 184:6782-9. [PMID: 20483765 DOI: 10.4049/jimmunol.1000155] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Intestinal bacteria drive the formation of lymphoid tissues, and in rabbit, bacteria also promote development of the preimmune Ab repertoire and positive selection of B cells in GALT. Previous studies indicated that Bacillus subtilis promotes B cell follicle formation in GALT, and we investigated the mechanism by which B. subtilis stimulates B cells. We found that spores of B. subtilis and other Bacillus species, including Bacillus anthracis, bound rabbit IgM through an unconventional, superantigen-like binding site, and in vivo, surface molecules of B. anthracis spores promoted GALT development. Our study provides direct evidence that B cell development in GALT may be driven by superantigen-like molecules, and furthermore, that bacterial spores modulate host immunity.
Collapse
Affiliation(s)
- Kari M Severson
- Department of Microbiology and Immunology, Loyola University Medical Center, Maywood, IL 60153, USA
| | | | | | | |
Collapse
|
111
|
Bomben R, Dal-Bo M, Benedetti D, Capello D, Forconi F, Marconi D, Bertoni F, Maffei R, Laurenti L, Rossi D, Del Principe MI, Luciano F, Sozzi E, Cattarossi I, Zucchetto A, Rossi FM, Bulian P, Zucca E, Nicoloso MS, Degan M, Marasca R, Efremov DG, Del Poeta G, Gaidano G, Gattei V. Expression of mutated IGHV3-23 genes in chronic lymphocytic leukemia identifies a disease subset with peculiar clinical and biological features. Clin Cancer Res 2010; 16:620-8. [PMID: 20068100 DOI: 10.1158/1078-0432.ccr-09-1638] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE B-cell chronic lymphocytic leukemia (CLL) is a clinically heterogeneous disease whose outcome can be foreseen by investigating the mutational status of immunoglobulin heavy chain variable (IGHV) genes. Moreover, a different prognosis was reported for CLL expressing specific IGHV genes in the context or not of stereotyped B-cell receptors. Here we investigated novel associations between usage of specific IGHV genes and clinical features in CLL. EXPERIMENTAL DESIGN Among 1,426 CLL-specific IG-rearrangements, stereotyped B-cell receptor clusters never utilized the IGHV3-23 gene. Given this notion, this study was aimed at characterizing the IGHV3-23 gene in CLL, and identifying the properties of IGHV3-23-expressing CLL. RESULTS IGHV3-23 was the second most frequently used (134 of 1,426) and usually mutated (M; 109 of 134) IGHV gene in our CLL series. In the vast majority of M IGHV3-23 sequences, the configuration of the 13 amino acids involved in superantigen recognition was consistent with superantigen binding. Clinically, M IGHV3-23 CLL had shorter time-to-treatment than other M non-IGHV3-23 CLL, and multivariate analyses selected IGHV3-23 gene usage, Rai staging, and chromosomal abnormalities as independent prognosticators for M CLL. Compared with M non-IGHV3-23 CLL, the gene expression profile of M IGHV3-23 CLL was deprived in genes, including the growth/tumor suppressor genes PDCD4, TIA1, and RASSF5, whose downregulation is under control of miR-15a and miR-16-1. Accordingly, relatively higher levels of miR-15a and miR-16-1 were found in M IGHV3-23 compared with M non-IGHV3-23 CLL. CONCLUSIONS Altogether, expression of the IGHV3-23 gene characterizes a CLL subset with distinct clinical and biological features.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Cohort Studies
- Diagnosis, Differential
- Gene Expression Profiling
- Gene Expression Regulation, Leukemic
- Gene Rearrangement/physiology
- Genes, Immunoglobulin Heavy Chain/genetics
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/classification
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- MicroRNAs/genetics
- Middle Aged
- Mutant Proteins/genetics
- Neoplasm Staging
- Prognosis
Collapse
Affiliation(s)
- Riccardo Bomben
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico, I.R.C.C.S., Aviano (PN), Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
112
|
Pone EJ, Zan H, Zhang J, Al-Qahtani A, Xu Z, Casali P. Toll-like receptors and B-cell receptors synergize to induce immunoglobulin class-switch DNA recombination: relevance to microbial antibody responses. Crit Rev Immunol 2010; 30:1-29. [PMID: 20370617 PMCID: PMC3038989 DOI: 10.1615/critrevimmunol.v30.i1.10] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Differentiation of naïve B cells, including immunoglobulin class-switch DNA recombination, is critical for the immune response and depends on the extensive integration of signals from the B-cell receptor (BCR), tumor necrosis factor (TNF) family members, Toll-like receptors (TLRs), and cytokine receptors. TLRs and BCR synergize to induce class-switch DNA recombination in T cell-dependent and T cell-independent antibody responses to microbial pathogens. BCR triggering together with simultaneous endosomal TLR engagement leads to enhanced B-cell differentiation and antibody responses. Te requirement of both BCR and TLR engagement would ensure appropriate antigen-specific activation in an infection. Co-stimulation of TLRs and BCR likely plays a significant role in anti-microbial antibody responses to contain pathogen loads until the T cell-dependent antibody responses peak. Furthermore, the temporal sequence of different signals is also critical for optimal B cell responses, as exemplified by the activation of B cells by initial TLR engagement, leading to the up-regulation of co-stimulatory CD80 and MCH-II receptors, which result in more efficient interactions with T cells, thereby enhancing the germinal center reaction and antibody affinity maturation. Overall, BCR and TLR stimulation and the integration with signals from the pathogen or immune cells and their products determine the ensuing B-cell antibody response.
Collapse
Affiliation(s)
- Egest J. Pone
- Institute for Immunology, School of Medicine and School of Biological Sciences, University of California, Irvine, CA 92697-4120, USA
| | - Hong Zan
- Institute for Immunology, School of Medicine and School of Biological Sciences, University of California, Irvine, CA 92697-4120, USA
| | - Jinsong Zhang
- Institute for Immunology, School of Medicine and School of Biological Sciences, University of California, Irvine, CA 92697-4120, USA
| | - Ahmed Al-Qahtani
- Institute for Immunology, School of Medicine and School of Biological Sciences, University of California, Irvine, CA 92697-4120, USA
| | - Zhenming Xu
- Institute for Immunology, School of Medicine and School of Biological Sciences, University of California, Irvine, CA 92697-4120, USA
| | - Paolo Casali
- Institute for Immunology, School of Medicine and School of Biological Sciences, University of California, Irvine, CA 92697-4120, USA
| |
Collapse
|
113
|
Verkoczy L, Moody MA, Holl TM, Bouton-Verville H, Scearce RM, Hutchinson J, Alam SM, Kelsoe G, Haynes BF. Functional, non-clonal IgMa-restricted B cell receptor interactions with the HIV-1 envelope gp41 membrane proximal external region. PLoS One 2009; 4:e7215. [PMID: 19806186 PMCID: PMC2751816 DOI: 10.1371/journal.pone.0007215] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2009] [Accepted: 08/24/2009] [Indexed: 11/24/2022] Open
Abstract
The membrane proximal external region (MPER) of HIV-1 gp41 has several features that make it an attractive antibody-based vaccine target, but eliciting an effective gp41 MPER-specific protective antibody response remains elusive. One fundamental issue is whether the failure to make gp41 MPER-specific broadly neutralizing antibodies like 2F5 and 4E10 is due to structural constraints with the gp41 MPER, or alternatively, if gp41 MPER epitope-specific B cells are lost to immunological tolerance. An equally important question is how B cells interact with, and respond to, the gp41 MPER epitope, including whether they engage this epitope in a non-canonical manner i.e., by non-paratopic recognition via B cell receptors (BCR). To begin understanding how B cells engage the gp41 MPER, we characterized B cell-gp41 MPER interactions in BALB/c and C57BL/6 mice. Surprisingly, we found that a significant (∼7%) fraction of splenic B cells from BALB/c, but not C57BL/6 mice, bound the gp41 MPER via their BCRs. This strain-specific binding was concentrated in IgMhi subsets, including marginal zone and peritoneal B1 B cells, and correlated with enriched fractions (∼15%) of gp41 MPER-specific IgM secreted by in vitro-activated splenic B cells. Analysis of Igha (BALB/c) and Ighb (C57BL/6) congenic mice demonstrated that gp41 MPER binding was controlled by determinants of the Igha locus. Mapping of MPER gp41 interactions with IgMa identified MPER residues distinct from those to which mAb 2F5 binds and demonstrated the requirement of Fc CH regions. Importantly, gp41 MPER ligation produced detectable BCR-proximal signaling events, suggesting that interactions between gp41 MPER and IgMa determinants may elicit partial B cell activation. These data suggest that low avidity, non-paratopic interactions between the gp41 MPER and membrane Ig on naïve B cells may interfere with or divert bnAb responses.
Collapse
Affiliation(s)
- Laurent Verkoczy
- Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, United States of America.
| | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Zhao Y, Gutshall L, Jiang H, Baker A, Beil E, Obmolova G, Carton J, Taudte S, Amegadzie B. Two routes for production and purification of Fab fragments in biopharmaceutical discovery research: Papain digestion of mAb and transient expression in mammalian cells. Protein Expr Purif 2009; 67:182-9. [DOI: 10.1016/j.pep.2009.04.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 04/24/2009] [Accepted: 04/28/2009] [Indexed: 01/10/2023]
|
115
|
Dal-Bo M, Bertoni F, Forconi F, Zucchetto A, Bomben R, Marasca R, Deaglio S, Laurenti L, Efremov DG, Gaidano G, Del Poeta G, Gattei V. Intrinsic and extrinsic factors influencing the clinical course of B-cell chronic lymphocytic leukemia: prognostic markers with pathogenetic relevance. J Transl Med 2009; 7:76. [PMID: 19715592 PMCID: PMC2747913 DOI: 10.1186/1479-5876-7-76] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2009] [Accepted: 08/28/2009] [Indexed: 11/13/2022] Open
Abstract
B-cell chronic lymphocytic leukemia (CLL), the most frequent leukemia in the Western world, is characterized by extremely variable clinical courses with survivals ranging from 1 to more than 15 years. The pathogenetic factors playing a key role in defining the biological features of CLL cells, hence eventually influencing the clinical aggressiveness of the disease, are here divided into "intrinsic factors", mainly genomic alterations of CLL cells, and "extrinsic factors", responsible for direct microenvironmental interactions of CLL cells; the latter group includes interactions of CLL cells occurring via the surface B cell receptor (BCR) and dependent to specific molecular features of the BCR itself and/or to the presence of the BCR-associated molecule ZAP-70, or via other non-BCR-dependent interactions, e.g. specific receptor/ligand interactions, such as CD38/CD31 or CD49d/VCAM-1. A putative final model, discussing the pathogenesis and the clinicobiological features of CLL in relationship of these factors, is also provided.
Collapse
Affiliation(s)
- Michele Dal-Bo
- Clinical and Experimental Onco-Hematology Unit, Centro di Riferimento Oncologico, IRCCS, Aviano (PN), Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
116
|
Butler JE, Zhao Y, Sinkora M, Wertz N, Kacskovics I. Immunoglobulins, antibody repertoire and B cell development. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2009; 33:321-333. [PMID: 18804488 DOI: 10.1016/j.dci.2008.06.015] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Revised: 06/30/2008] [Accepted: 06/30/2008] [Indexed: 05/26/2023]
Abstract
Swine share with most placental mammals the same five antibody isotypes and same two light chain types. Loci encoding lambda, kappa and Ig heavy chains appear to be organized as they are in other mammals. Swine differ from rodents and primates, but are similar to rabbits in using a single VH family (VH3) to encode their variable heavy chain domain, but not the family used by cattle, another artiodactyl. Distinct from other hoofed mammals and rodents, Ckappa:Clambda usage resembles the 1:1 ratio seen in primates. Since IgG subclasses diversified after speciation, same name subclass homologs do not exist among swine and other mammals unless very closely related. Swine possess six putative IgG subclasses that appear to have diversified by gene duplication and exon shuffle while retaining motifs that can bind to FcgammaRs, FcRn, C1q, protein A and protein G. The epithelial chorial placenta of swine and the precosial nature of their offspring have made piglets excellent models for studies on fetal antibody repertoire development and on the postnatal role of gut colonization, maternal colostrum and neonatal infection on the development of adaptive immunity during the "critical window" of immunological development. This chapter traces the study of the humoral immune system of this species through its various eras of discovery and compiles the results in tables and figures that should be a useful reference for educators and investigators.
Collapse
Affiliation(s)
- J E Butler
- Department of Microbiology, University of Iowa, Iowa City, IA, USA.
| | | | | | | | | |
Collapse
|
117
|
Bomben R, Dal Bo M, Capello D, Forconi F, Maffei R, Laurenti L, Rossi D, Del Principe MI, Zucchetto A, Bertoni F, Rossi FM, Bulian P, Cattarossi I, Ilariucci F, Sozzi E, Spina V, Zucca E, Degan M, Lauria F, Del Poeta G, Efremov DG, Marasca R, Gaidano G, Gattei V. Molecular and clinical features of chronic lymphocytic leukaemia with stereotyped B cell receptors: results from an Italian multicentre study. Br J Haematol 2008; 144:492-506. [PMID: 19036101 DOI: 10.1111/j.1365-2141.2008.07469.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A fraction of chronic lymphocytic leukaemia (CLL) cases carry highly homologous B-cell receptors (BCR), i.e. characterized by non-random combinations of immunoglobulin heavy-chain variable (IGHV) genes and heavy-chain complementarity determining region-3 (HCDR3), often associated with a restricted selection of IGVK/L light chains. Such 'stereotyped' BCR occur more frequently in CLL with unmutated (UM) than mutated (M) IGHV genes. We analysed 1426 IG rearrangements (from 1398 CLL cases) by a clustering driven by HCDR3 similarities. Molecular findings were correlated to time-to-treatment (TTT) and presence of known prognosticators. Sixty-nine clusters (319 IG-rearrangements, 22.4%) with stereotyped BCR were identified. Among 30 confirmed clusters (>or=3 IG-rearrangements/cluster), we found 14 novel clusters, of which 11 had M IG rearrangements (M clusters) and predominantly (8/11) used IGHV3 subgroup genes. Recurrent cluster-biased amino acid changes were found throughout IGHV sequences of these 'M clusters'. Regarding clinical outcome: (i) UM CLL from the IGHV1-2/1-3/1-18/1-46/7-4-1/IGKV1-39 cluster had poorer prognosis than UM/M cases, or UM cases using the same IGHV genes but not in clusters; (ii) M CLL from the IGHV3-21/IGLV3-21 cluster had TTT similar to UM CLL, and shorter than M CLL expressing IGHV3-21 but not in cluster. Altogether, our analysis identified additional molecular and clinical features for CLL expressing stereotyped BCR.
Collapse
Affiliation(s)
- Riccardo Bomben
- Clinical and Experimental Onco-Haematology Unit, Centro di Riferimento Oncologico, I.R.C.C.S., Aviano (PN), Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Frequent emergence and limited geographic dispersal of methicillin-resistant Staphylococcus aureus. Proc Natl Acad Sci U S A 2008; 105:14130-5. [PMID: 18772392 DOI: 10.1073/pnas.0804178105] [Citation(s) in RCA: 188] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
A small number of clonal lineages dominates the global population structure of methicillin-resistant Staphylococcus aureus (MRSA), resulting in the concept that MRSA has emerged on a few occasions after penicillinase-stable beta-lactam antibiotics were introduced to clinical practice, followed by intercontinental spread of individual clones. We investigated the evolutionary history of an MRSA clone (ST5) by mutation discovery at 108 loci (46 kb) within a global collection of 135 isolates. The SNPs that were ascertained define a radial phylogenetic structure within ST5 consisting of at least 5 chains of mutational steps that define geographically associated clades. These clades are not concordant with previously described groupings based on staphylococcal protein A gene (spa) typing. By mapping the number of independent imports of the staphylococcal cassette chromosome methicillin-resistance island, we also show that import has occurred on at least 23 occasions within this single sequence type and that the progeny of such recombinant strains usually are distributed locally rather than globally. These results provide strong evidence that geographical spread of MRSA over long distances and across cultural borders is a rare event compared with the frequency with which the staphylococcal cassette chromosome island has been imported.
Collapse
|
119
|
Watts NR, Cardone G, Vethanayagam JG, Cheng N, Hultgren C, Stahl SJ, Steven AC, Sällberg M, Wingfield PT. Non-canonical binding of an antibody resembling a naïve B cell receptor immunoglobulin to hepatitis B virus capsids. J Mol Biol 2008; 379:1119-29. [PMID: 18486949 DOI: 10.1016/j.jmb.2008.04.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Revised: 04/01/2008] [Accepted: 04/03/2008] [Indexed: 12/17/2022]
Abstract
The hepatitis B virus capsid (core antigen) is able to bind to and activate naïve B cells and these become efficient primary antigen-presenting cells for the priming of T cells. We have investigated this interaction by using cryo-electron microscopy, three-dimensional image reconstruction, and molecular modeling to visualize capsids decorated with Fab fragments of a receptor immunoglobulin, and surface plasmon resonance to measure the binding affinity. By both criteria, the mode of binding differs from those of the six monoclonal anti-core antigen antibodies previously characterized. The Fab interacts with two sites approximately 30 A apart. One interaction is canonical, whereby the CDR loops engage the tip of one of the 25 A spikes that protrude from the capsid surface. The second interaction is non-canonical; in it, the Fab framework contacts the tip of an adjacent spike. The binding affinity of this Fab for capsids, K(D) approximately 4 x 10(-7) M, is relatively low for an antibody-antigen interaction, but is approximately 150-fold lower still ( approximately 2.5 x 10(-5) M) for unassembled capsid protein dimers. The latter observation indicates that both of the observed interactions are required to achieve stable binding of capsids by this receptor immunoglobulin. Considerations of conserved sequence motifs in other such molecules suggest that other naïve B cells may interact with HBV capsids in much the same way.
Collapse
Affiliation(s)
- Norman R Watts
- Protein Expression Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Butler JE, Wertz N, Weber P, Lager KM. Porcine Reproductive and Respiratory Syndrome Virus Subverts Repertoire Development by Proliferation of Germline-Encoded B Cells of All Isotypes Bearing Hydrophobic Heavy Chain CDR3. THE JOURNAL OF IMMUNOLOGY 2008; 180:2347-56. [DOI: 10.4049/jimmunol.180.4.2347] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
121
|
Rodgers JR, Rich RR. Antigens and antigen processing. Clin Immunol 2008. [DOI: 10.1016/b978-0-323-04404-2.10006-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
122
|
Abstract
PURPOSE OF REVIEW Significant progress has been made over recent years in uncovering the B-cell tolerance mechanisms that control development of autoreactive antibodies. This review examines current knowledge on the regulation and selection of autoreactive B cells in mouse models, and in healthy humans and patients with autoimmune disorders. RECENT FINDINGS Autoreactive B cells undergo stringent selection either in the bone marrow or peripheral circulation by deletion, induction of anergy, or receptor editing. There is growing evidence that receptor editing represents the primary physiologic B-cell tolerance mechanism. Several checkpoints against autoreactive B cells have been established in bone marrow and peripheral blood of healthy humans. Recent studies demonstrate that some autoimmune disorders are associated with several alterations in B-cell tolerance checkpoints and often lead to a greater number of autoreactive B cells in the circulation. SUMMARY Discovering the precise nature of B-cell tolerance alterations in patients with autoimmune diseases will lead to the identification of new targets for therapeutic interventions in patients with these disorders.
Collapse
Affiliation(s)
- Sergey Yurasov
- Molecular Immunology, The Rockefeller University, New York, New York, USA
| | | |
Collapse
|
123
|
Ishii K, Lin C, Siegel DL, Stanley JR. Isolation of pathogenic monoclonal anti-desmoglein 1 human antibodies by phage display of pemphigus foliaceus autoantibodies. J Invest Dermatol 2007; 128:939-48. [PMID: 18007588 DOI: 10.1038/sj.jid.5701132] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Pemphigus foliaceus (PF) is a blistering disease caused by autoantibodies to desmoglein 1 (Dsg1) that cause loss of epidermal cell adhesion. To better understand PF pathophysiology, we used phage display to isolate anti-Dsg1 mAbs as single-chain variable fragments (scFvs) from a PF patient. Initial panning of the library isolated only non-pathogenic scFvs. We then used these scFvs to block non-pathogenic epitopes and were able to isolate two unique scFvs, each of which caused typical PF blisters in mice or human epidermis models, showing that a single mAb can disrupt Dsg1 function to cause disease. Both pathogenic scFvs bound conformational epitopes in the N terminus of Dsg1. Other PF sera showed a major antibody response against the same or nearby epitopes defined by these pathogenic scFvs. Finally, we showed restriction of the heavy-chain gene usage of all anti-Dsg1 clones to only five genes, which determined their immunological properties despite promiscuous light-chain gene usage. These mAbs will be useful for studying Dsg1 function and mechanisms of blister formation in PF and for developing targeted therapies and tools to monitor disease activity.
Collapse
Affiliation(s)
- Ken Ishii
- Department of Dermatology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
124
|
|
125
|
Silverman GJ, Khanna S. B cell modulation in rheumatology. Curr Opin Pharmacol 2007; 7:426-33. [PMID: 17625968 PMCID: PMC2693398 DOI: 10.1016/j.coph.2007.05.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2007] [Revised: 05/24/2007] [Accepted: 05/24/2007] [Indexed: 12/31/2022]
Abstract
While evidence of dysregulation of the B cell compartment was first demonstrated with the identification of autoantibodies, other functional roles of B lymphocytes in autoimmune pathogenesis have generally been underappreciated or completely overlooked. With the recent approval of the first B cell targeting agent in rheumatoid arthritis, new strategies are being developed to target B cells through a range of membrane-associated lineage-specific molecules and also by interfering with B-cell-specific pro-survival signals. B-cell-directed agents therefore provide an effective new mechanistic approach to treatment and also enable new perspectives from the dissection of the contributions of B cells in physiologic and pathologic immune responses.
Collapse
Affiliation(s)
- Gregg J Silverman
- Rheumatic Diseases Core Center, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0663, USA.
| | | |
Collapse
|
126
|
Forsgren A, Høiby N. COMMENTARY. APMIS 2007. [DOI: 10.1111/j.1600-0463.2007.apm_717.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
127
|
Bekeredjian-Ding I, Inamura S, Giese T, Moll H, Endres S, Sing A, Zähringer U, Hartmann G. Staphylococcus aureus protein A triggers T cell-independent B cell proliferation by sensitizing B cells for TLR2 ligands. THE JOURNAL OF IMMUNOLOGY 2007; 178:2803-12. [PMID: 17312124 DOI: 10.4049/jimmunol.178.5.2803] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
UNLABELLED B cells possess functional characteristics of innate immune cells, as they can present Ag to T cells and can be stimulated with microbial molecules such as TLR ligands. Because crude preparations of Staphylococcus aureus are frequently used as polyclonal B cell activators and contain potent TLR2 activity, the scope of this study was to analyze the impact of S. aureus-derived TLR2-active substances on human B cell activation. Peripheral B cells stimulated with chemically modified S. aureus cell wall preparations proliferated in response to stimulation with crude cell wall preparations but failed to be activated with pure peptidoglycan, indicating that cell wall molecules other than peptidoglycan are responsible for B cell proliferation. Subsequent analysis revealed that surface protein A (SpA), similar to BCR cross-linking with anti-human Ig, sensitizes B cells for the recognition of cell wall-associated TLR2-active lipopeptides (LP). In marked contrast to TLR7- and TLR9-triggered B cell stimulation, stimulation with TLR2-active LP and SpA or with crude cell wall preparations failed to induce IgM secretion, thereby revealing qualitative differences in TLR2 signaling compared with TLR7/9 signaling. Notably, combined stimulation with SpA plus TLR2 ligands induced vigorous proliferation of a defined B cell subset that expressed intracellular IgM in the presence of IL-2. CONCLUSION S. aureus triggers B cell activation via SpA-induced sensitization of B cells for TLR2-active LP. Combined SpA and TLR2-mediated B cell activation promotes B cell proliferation but fails to induce polyclonal IgM secretion as seen after TLR7 and TLR9 ligation.
Collapse
|
128
|
Goodyear CS, Corr M, Sugiyama F, Boyle DL, Silverman GJ. Cutting Edge: Bim is required for superantigen-mediated B cell death. THE JOURNAL OF IMMUNOLOGY 2007; 178:2636-40. [PMID: 17312102 DOI: 10.4049/jimmunol.178.5.2636] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
To impair B cell clonal regulation, the microbial virulence factor, protein A of Staphylococcus aureus, can interact with evolutionarily conserved BCR-binding sites to induce a form of Fas-independent activation-associated B cell death that results in selective immune tolerance. We now show that this in vivo death pathway is associated with induction of increased transcript and protein levels of Bim, a BH3-only proapoptotic Bcl-2 family protein, which is inhibited by excess B cell-activating factor. An absolute requirement for Bim was documented, since Bim-deficient B cells were protected from in vivo superantigen-induced death and instead underwent persistent massive supraclonal expansion without functional impairment. These studies characterize a BCR-dependent negative clonal selection pathway that has been co-opted by a common bacterial pathogen to induce selective defects in host immune defenses.
Collapse
Affiliation(s)
- Carl S Goodyear
- Rheumatic Diseases Core Center, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | | | | | | | | |
Collapse
|
129
|
Kumar A, Tassopoulos AM, Li Q, Yu FSX. Staphylococcus aureus protein A induced inflammatory response in human corneal epithelial cells. Biochem Biophys Res Commun 2007; 354:955-61. [PMID: 17270147 PMCID: PMC1864947 DOI: 10.1016/j.bbrc.2007.01.072] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2007] [Accepted: 01/15/2007] [Indexed: 11/18/2022]
Abstract
In the present study, we examined the role of Staphylococcus aureus protein A (SpA) in inducing inflammatory response in human corneal epithelial cells (HCECs). Exposure of HCECs to SpA induces rapid NF-kappaB activation and secretion of proinflammatory cytokine/chemokines (TNF-alpha and IL-8) in both concentration and time-dependent manner. Challenge of HCECs with live SpA(-/-) mutant S. aureus strains resulted in significantly reduced production of the cytokines when compared to the wild-type S. aureus strain. SpA also elicited the activation of MAP Kinases P38, ERK, but not JNK, in HCECs. SpA-induced production of proinflammatory cytokine were completely blocked by the NF-kappaB and p38 inhibitors and partially inhibited by the Jnk inhibitor. Pretreatment with anti-TLR2 neutralizing antibody had no effect on SpA-induced inflammatory response in HCECs, suggesting that this response is independent of TLR2 signaling. Moreover, unlike TLR2 ligands, SpA failed to induce the expression of antimicrobial peptides (hBD2 and LL-37) in HCECs. These studies indicate that SpA is a S. aureus virulence factor that stimulates HCEC inflammatory response through a pathway distinct from TLR2 in HCECs.
Collapse
Affiliation(s)
- Ashok Kumar
- The Kresge Eye Institute, Department of Ophthalmology, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | | | | | | |
Collapse
|
130
|
Gould HJ, Takhar P, Harries HE, Durham SR, Corrigan CJ. Germinal-centre reactions in allergic inflammation. Trends Immunol 2006; 27:446-52. [PMID: 16949872 DOI: 10.1016/j.it.2006.08.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2006] [Revised: 07/14/2006] [Accepted: 08/08/2006] [Indexed: 01/10/2023]
Abstract
Primary and secondary immune responses in the germinal centres of lymphoid organs have been studied in the past. There is now compelling evidence of a third stage in the immune response, in 'tertiary lymphoid organs' that develop at sites of chronic inflammation in response to persistent local antigen challenge. Germinal-centre-like reactions are well-documented in the target organs of autoimmune diseases. Here, we review recent evidence that they also occur at sites of allergic inflammation.
Collapse
Affiliation(s)
- Hannah J Gould
- Randall Division of Cell and Molecular Biophysics, King's College London, UK.
| | | | | | | | | |
Collapse
|
131
|
|